
Chaining for Accurate Alignment of Erroneous Long Reads to

Acyclic Variation Graphs∗

Jun Ma 1,†, Manuel Cáceres 1,†, Leena Salmela 1, Veli Mäkinen 1 and Alexandru I. Tomescu 1

1Department of Computer Science, University of Helsinki, Finland
{jun.ma, manuel.caceresreyes, leena.salmela, veli.makinen,

alexandru.tomescu}@helsinki.fi

Abstract

Aligning reads to a variation graph is a standard task in pangenomics, with downstream applications
in e.g., improving variant calling. While the vg toolkit (Garrison et al., Nature Biotechnology, 2018)
is a popular aligner of short reads, GraphAligner (Rautiainen and Marschall, Genome Biology, 2020)
is the state-of-the-art aligner of erroneous long reads. GraphAligner works by finding candidate read
occurrences based on individually extending the best seeds of the read in the variation graph. However,
a more principled approach recognized in the community is to co-linearly chain multiple seeds.

We present a new algorithm to co-linearly chain a set of seeds in a string labeled acyclic graph,
together with the first efficient implementation of such a co-linear chaining algorithm into a new aligner
of long reads to acyclic variation graphs, GraphChainer. Compared to GraphAligner, GraphChainer
aligns 12% to 17% more reads, and 21% to 28% more total read length, on real PacBio reads from
human chromosomes 1 and 22. On both simulated and real data, GraphChainer aligns between 95% and
99% of all reads, and of total read length.

GraphChainer is freely available at https://github.com/algbio/GraphChainer.

1 Introduction

Motivation. Variation graphs are a popular representation of all the genomic diversity of a population [6,
11, 32]. While a single reference sequence can be represented by a single labeled path, a variation graph
encodes each variant observed in the population via an “alternative” path between its start and end genomic
positions in the reference labeled path. For example, the popular vg toolkit [14] can build a variation graph
from a reference genome and a set of variants, or from a set of reference genomes, while also supporting
alignment of reads to the graph.

A key advantage of a variation graph is that it allows for recombinations of two or more variants, that are
not necessarily present in any of the existing reference sequences used to build the graph. Namely, the paths
of a variation graph now spell novel haplotypes recombining different variants, thus improving the accuracy
of downstream applications, such as variant calling [14, 45, 17, 18, 42]. In fact, it has been observed [14]
that mapping reads with vg to a variation graph leads to more accurate results than aligning them to a
single reference (since it decreases the reference bias). The alignment method of vg was developed for short
reads, and while it can run also on long reads, it decreases its performance significantly. To the best of
our knowledge, the only sequence-to-graph aligners tailored to long reads are SPAligner [10], designed for
assembly graphs, GraphAligner [35], designed for both assembly and variation graphs, PaSGAL [22], designed

∗This work was partially funded by the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 851093, SAFEBIO) and partially by the Academy of Finland (grants
No. 322595, 328877, 308030).

†Shared first author contribution.

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://github.com/algbio/GraphChainer
https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

for both short and long reads on acyclic graphs, and the recent extension of AStarix for long reads [20],
designed for low-error reads and relatively small graphs. GraphAligner is the state-of-the-art aligner for
more-erroneous long reads at the chromosome level, allowing for faster and more accurate alignments.

Background. At the core of any sequence-to-graph aligner is the so-called string matching in labeled graphs
problem, asking for a path of a node-labeled graph (e.g., a variation graph) whose spelling matches a given
pattern. If allowing for approximate string matching under the minimum number of edits in the sequence,
then the problem can be solved in quadratic time [2], and extensions to consider affine gap costs [23] and
various practical optimizations [20, 19, 34, 22] were developed later.

Since, conditioned on SETH, no strongly subquadratic-time algorithm for edit distance on sequences
can exist [3], these sequence-to-graph alignment algorithms are worst-case optimal up to subpolynomial
improvements. This lower bound holds even if requiring only exact matches, the graph is acyclic, i.e. a
DAG [12, 15], and we allow any polynomial-time indexing of the graph [13].

Given the hardness of this problem, current tools such as vg and GraphAligner employ various heuristics
and practical optimizations to approximate the sequence-to-graph alignment problem, such as partial order
alignment [26], as in the case of vg, seed-and-extend based on minimizers [36], as in the case of GraphAligner,
parallel computation techniques, as in the case of PaSGAL, and heuristic graph search [16] as in the case of
AStarix. In the case of GraphAligner, the aligner finds the minimizers of the read that have occurrences
in the graph, clusters and ranks these occurrences, similarly to minimap [28], and then tries to extend the
best clusters using an optimized banded implementation of the bit-parallel edit distance computation for
sequence-to-graph alignment [34]. This strategy was shown to be effective in mapping erroneous long reads,
since minimizers between erroneous positions can still have an exact occurrence in the graph. However, it is
simple to observe that it can lead to wrong locations in the variation graph at which to extend a single seed
(cluster) into a full occurrence of the long read. For example, the seeds may be clustered in several regions
of the graph and be separated in distance. Extending from one seed (cluster) through an erroneous zone to
reach the next relatively accurate region would be hard in this case. Hence, for a long read, such an aligner
may find several short alignments covering different parts of the read, but not a long alignment of the entire
read. Furthermore, a seed may have many false alignments in the graph that are not useful in the alignment
of the long read, but which can only be discarded when looking at its position compared to other seed hits.

A standard way to capture the global relation between the seed hits is through the co-linear chaining
problem [33], originally defined for two sequences as follows. Given a set of anchors consisting of pairs of
intervals in the two sequences (e.g., various types of matching substrings, such as minimizers), the goal is
to find a chain of anchors such that their intervals appear in the same order in both sequences. If the
goal is to find a chain of maximum coverage in one of the sequences, the problem can be solved in time
O(N logN) [1, 40, 30], where N is the number of anchors. Co-linear chaining is successfully used by the
popular read-to-reference sequence aligner minimap2 [29] and also in uLTRA [30], an aligner of RNA-Seq reads.
Moreover, recent results show connections between co-linear chaining and classical distance metrics [30, 21].

The co-linear chaining problem can be naturally extended to a sequence and a labeled graph and has
been previously studied for DAGs [31, 25], but now considering the anchors to be pairs of a path in the
graph and a matching interval in the sequence. GraphAligner refers to chaining on DAGs as a principled
way of chaining seeds [35, p. 16], but does not implement co-linear chaining. Also SPAligner appears to
implement a version of co-linear chaining between a sequence and an assembly graph. It uses the BWA-MEM
library [27] to compute anchors between the long read and individual edge labels of the assembly graph,
and then extracts “the heaviest chain of compatible anchors using dynamic programming” [10, p.3–4]. Their
compatibility relation appears to be defined as in the co-linear chaining problem, and further requires that the
distance between the anchor paths is relatively close to the distance between anchor intervals in the sequence.
However, the overall running time of computing distances to check compatibility is quadratic [10, Appendix].

If the co-linear chaining problem is restricted to character-labeled DAGs, it can be solved in time
O(kN logN + k|V |), after a preprocessing step taking O(k(|V | + |E|) log |V |) time [31] when suffix-prefix
overlaps between anchor paths are not allowed. Here, the input is a DAG G = (V,E) of width k, which is
defined as the cardinality of a minimum-sized set of paths of the DAG covering every node at least once (a

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

minimum path cover, or MPC). Thus, if k is constant, this algorithm matches the running time of co-linear
chaining on two sequences, plus an extra term that grows linearly with the size of the graph. Even though
there exists an initial implementation of these ideas tested on (small) RNA splicing graphs [25], it does not
scale to large graphs, such as variation graphs. Moreover, in the same publication, the authors show how
to solve the general problem when suffix-prefix path overlaps of any length are allowed with an additional
running time of O(L log2 |V |) or O(L+#o)1, by using advanced data structures (FM-index, two-dimensional
range search trees, generalized suffix tree).

Contributions. In this paper we compute for the first time the width of variation graphs of all human
chromosomes, which we observe to be at most 9 (see Table 5 in the Appendix), further motivating the idea
of parameterizing the running time of the co-linear chaining problem on the width of the variation graph.

We present the first algorithm solving co-linear chaining on string-labeled DAGs, when allowing one-
node suffix-prefix overlaps between anchor paths. The reasons to consider such variation of the problem
arise from practice. First, variation graphs used in applications usually compress unary paths, also known
as unitigs [24], by storing the concatenation of their labels in a unique node representing them all. This not
only allows to compress graph zones without variations, but also reduces the graph size, and therefore the
running time of the algorithms run on them. In Tables 1 and 5 we show that typical variation graphs have
10 times more nodes in their character based representation (columns #Nodes and Labels bps). Second, as
discussed before, allowing suffix-prefix overlaps of arbitrary length significantly increases the running time
of the algorithm, and also requires the use of advanced data structures incurring in an additional penalty
in practice. However, the important special non-overlapping case in the character based representation
translates into overlaps of at most one node in the corresponding string based representation (see Figure
1), which turns out to be easier to solve. Additionally, we show that allowing such overlaps suffices to solve
co-linear chaining in graphs with cycles in the same running time as our solution for DAGs (Appendix).

Our solution builds on the previous O(k(|V | + |E|) log |V | + kN logN) time solution [31], to efficiently
consider the one-node overlapping case, but without the need of advanced data structures (Section 2.3).
Moreover, we show how to divide the running time of our algorithm into O(k3|V |+ k|E|) for pre-processing
the graph [4, 31], and O(kN log kN) for solving co-linear chaining (Appendix). That is, for constant width
graphs (such as variation graphs), our solution takes linear time to preprocess the graph plus O(N logN)
time to solve co-linear chaining, removing the previous dependency on the graph size and matching the time
complexity of the problem between two sequences. Since in practice N is usually much smaller than the
DAG size, this result allows for a more efficient implementation for the algorithm in practice.

We then implement our algorithm for DAGs into GraphChainer, a new sequence-to-variation-graph
aligner. On both simulated and real data, we show that GraphChainer allows for significantly more accurate
alignments of erroneous long reads than the state-of-art aligner GraphAligner. On simulated reads, we
classify a read as correctly aligned if the reported path overlaps 100 · δ% of the simulated region. We show
that GraphChainer aligns approximately 3% more reads than GraphAligner in all graphs tested and for
every criterion 0 < δ < 1. Moreover, if the criterion matches that of the average identity between the read
and their ground truth, this difference increases to approximately 6% on average. On real reads, where the
ground truth is not available, we classify a read as correctly aligned if the edit distance between the read and
the reported sequence (without edits applied) is at most 100 · σ% of the read length. For criterion σ = 0.3,
GraphChainer aligns between 12% to 17% more real reads, of 21% to 28% more total length, on human
chromosomes 1 and 22. At the same criterion, GraphChainer produces a good alignment of 95% of all reads
or of total read length, while GraphAligner worsens to less that 85% and 78%, respectively.

While this increase in accuracy comes with an increase in computational resources requirements,
GraphChainer can run in parallel and its requirements even on chromosome 1 are still within the capa-
bilities of a modern high-performance computer. We also observe that the most time-intensive part of
GraphChainer is obtaining the anchors for the input to co-linear chaining. This is currently implemented
by aligning shorter fragments of the read using GraphAligner, however given the modularity of this step, in

1L corresponds to the sum of the path lengths, whereas #o is the number of overlaps between paths.

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

the future other methods for finding anchors could be explored, such as using a fast short-read graph aligner
or recent developments in MEMs [37].

2 Methods

2.1 Problem definition

Given a (directed) graph G = (V,E), an anchor A is a tuple (W = (u, . . . , v), I = [x, y]), such that W is a
walk of G starting in u and ending in v, and I = [x, y] (with x ≤ y non-negative integers) is the interval of
integers between x and y (both inclusive). We interpret I as an interval in the read matching the label of
the walk W in G. If A is an anchor, we denote by A.W,A.u,A.v, A.I, A.x and A.y its walk, walk starting
point, walk endpoint, interval, interval starting point and interval endpoint, respectively. Given a set of
anchors A = {A1, . . . , AN}, a chain C of anchors (or just chain) is a sequence of anchors Ai1 , . . . , Aiq of A,
such that for all j ∈ {1, . . . , q − 1}, Aij precedes Aij+1

, where the precedence relation corresponds to the
conjunction of the precedence of anchor walks and of anchor intervals (hence co-linear). We will tailor the
notion of precedence between walks and intervals for every version of the problem. We define the general
co-linear chaining problem as follows:

Problem 1 (Co-linear Chaining, CLC). Given a graph G = (V,E) and a set A of N anchors, find a chain
C = Ai1 , . . . , Aiq of A maximizing cov(C) := |

⋃q

j=1
Aij .I|.

Note that, although the final objective is to align a read to the variation graph, co-linear chaining can be
defined (and solved) independent of the labels in these objects. However, in the case of string labeled graphs
we will also need the exact position A.p in the label of A.v, where the string represented by the anchor path
finishes (see Figure 1).

Co-linear chaining has been solved [31] when the input graph is restricted to be a DAG, interval precedence
is defined as integer inequality of interval endpoints (Aij .y < Aij+1

.y), and path2 precedence is defined as
strict reachability of path extremes (namely, Aij .v strictly reaches Aij+1

.u, i.e., with a path of at least one
edge) in time O(k(|V |+ |E|) log |V |+ kN logN). If the precedence relation is relaxed to allow suffix-prefix
overlaps of paths, then their solution has an additional O(L log2 |V |) or O(L + #o)3 term in the running
time. We will show how to solve co-linear chaining on string labeled DAGs when path precedence allows a
one-node suffix-prefix overlap. More precisely, we solve the following problem (see Figure 1):

Problem 2 (One-node suffix-prefix overlap CLC). Same as Problem 1, but restricting G to be a string
labeled DAG, and such that for every A,A′ ∈ A, we define A precedes A′ iff A.y < A′.y and A.v reaches
A′.u, but if A.v = A′.v we also require that A.p < A.p′.

Removing the strict (reachability) from the path precedence allows one-node suffix-prefix overlaps, and
no more than that (since G is a DAG).

2.2 Overview of the existing solution (without suffix-prefix overlaps)

The previous solution [31] computes an MPC of G in time O(k(|V | + |E|) log |V |), which can be reduced
by a recent result [4] to parameterized linear time O(k3|V | + |E|). Then, the anchors from A are sorted
according to a topological order of its path endpoints (A.v) into A1, . . . , AN . The algorithm uses a dynamic
programming algorithm to compute for every j ∈ {1, . . . , N} the array:

C[j] = max{cov(C) | C is a chain of {A1, . . . , Aj} ending at Aj}.

Since chains (for this version of the problem) do not have suffix-prefix overlaps, they are all subsequences
of A1, . . . , AN , thus the optimal chain can be obtained by taking one of maximum C[j]. To compute C[j]

2Recall that in a DAG all walks are paths (i.e., do not repeat nodes).
3L corresponds to the sum of the path lengths, whereas #o is the number of overlaps between paths.

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

Figure 1: An illustrative example of Problem 2 consisting of a string labeled DAG, a read and a set of five anchors (paths in
the graphs, paired with intervals in the read), shown here in different colors. The sequence C = A1, A2, A3, A4, A5 is a chain
with cov(C) = 16, and it is optimal since every other chain is subsequence of C. In particular, note that A2 precedes A3 because
A2.y = 8 < A3.y = 13 and A2.v reaches A3.u = A3.v, but A2.p = 4 < A3.p = 9. If one-node suffix-prefix overlaps are not
allowed, C is not a chain and the optimal chain would have coverage 4.

efficiently, the algorithm maintains one4 data structure per path in the MPC. The data structure of the
i-th path of the MPC stores the information on the C values for all the anchors whose path endpoints
belong to the i-th path. Since the MPC, by definition, covers all the vertices of G, to compute a particular
C[j] it suffices to query all the data structures that contain anchors whose path endpoint reaches Aj .u [31,
Observation 1], which is done through the forward propagation links.

More precisely, the vertices v of G are processed in topological order:

Step 1, update structures: For every anchor Aj whose path endpoint is v, and for every i such that v
belongs to the i-th path of the MPC, the data structure of the i-th path is updated with the information
of C[j].

Step 2, update C values: For every forward link (u, i) from v (that is, u is the last vertex, different from
v, that reaches v in the i-th path), and every anchor Aj whose path starting point is u, the entry C[j]
is updated with the information stored in the data structure of the i-th path.

Finally, since each data structure is queried and updated O(kN) times, and since these operations can be
implemented in O(logN) time, the running time of the two steps for the entire computation is O(kN logN)
plus O(k|V |) for scanning the forward links.

2.3 One-node suffix-prefix overlaps

When trying to apply the approach from Section 2.2 to solve Problem 2 we have to overcome some problems.
First, it no longer holds that every possible chain is a subsequence of A sorted by (topological order of)
anchor path endpoints: an anchor A whose path is a single vertex v can be preceded by another anchor A′

whose path ends at v, however A could appear before A′ in the order (for example A1, A2, A3 in Figure 1
could have appear in another order). To solve this issue we first sort A by path endpoints (A.v), and in case
of ties by endpoint in the string label of the path endpoint (A.p). As such, anchors appearing after cannot
precede anchors appearing before in the order, and the optimal chain can be obtained by computing the
maximum C[j].

4The algorithm actually maintains two data structures per path in the MPC. One to compute the optimal chain whose last
anchor interval overlaps the previous, and one to compute the optimal chain whose last anchor interval does not overlap the
previous. For ease of explanation we join these two as one data structure.

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

Algorithm 1: Our solution to Problem 2. For a vertex u, Au and Au are the anchors of A whose path
starts and ends at u, respectively, Au

u = Au ∪ A
u. The entry forward[u] contains the pairs (v, Pi),

such that u is the last vertex, in path Pi, that reaches v. These links can be pre-computed in time
O(k|E|), and there are O(k|V |) of them in total [31]. Data structures can answer update, and range
maximum queries (rMq).

Input : A path cover P = P1, . . . , Pk of G, anchors A = A1, . . . , AN sorted by Ai.v, Ai.p.
Output: A chain C of maximum coverage.
initialize(D 6∩

i ,D
∩
i), for every i ∈ {1, . . . , k}

for s ∈ V in topological order do
initialize(U 6∩,U∩)
for p ∈ {Aj .p | Aj ∈ A

s
s} in increasing order do

Ap ← {Aj | Aj .p = p}
for Aj ∈ Ap ∩ As do

C[j]← max(C[j], Aj .y −Aj .x+ 1 + U 6∩.rMq(0, Aj .x− 1), Aj .y + U
∩.rMq(Aj .x, Aj .y))

for Aj ∈ Ap ∩ A
s do

U 6∩.update(Aj .y, C[j])
U∩.update(Aj .y, C[j]−Aj .y)

for Aj ∈ A
s do

for Pi ∈ {P ∈ P | s ∈ P} do

D 6∩
i .update(Aj .y, C[j])
D∩

i .update(Aj .y, C[j]−Aj .y)

for (t, Pi) ∈ forward[s] do
for Aj ∈ At do

C[j]← max(C[j], Aj .y −Aj .x+ 1 +D 6∩
i .rMq(0, Aj .x− 1), Aj .y +D

∩
i .rMq(Aj .x, Aj .y))

return Maximum coverage chain C recovered from C

A second problem is that Step 1 assumes that C[j] contains its final value (and not an intermediate
computation). Since suffix-prefix path overlaps were not allowed, this was a valid assumption in the previous
case, however, because one-node suffix-prefix overlaps are now allowed, the chains whose Aj .W has a suffix-
prefix overlap of one node (with the previous anchor) are not considered. We fix this issue by adding a new
Step 0 before Step 1 in each iteration. Step 0 includes (into the computation of C[j]) those chains whose
last anchors have a one-node suffix-prefix overlap, before applying Steps 1 and 2. Step 0 uses a data
structure (only one5 and it is reinitialized in every Step 0) that maintains the information of the C values
for all anchors whose paths ends at v (the currently processed node). In this case, the information in the
data structure is not propagated through forward links (done in Step 2 as before), but this information is
used to update the C values of anchors whose paths start at v.

More precisely, for every anchor Aj whose path starts or ends at v, in increasing order of Aj .p, we do:

Step 0.1, update C value: If the starting point of Aj ’s path is v, then we update C[j] with the information
stored in the data structure.

Step 0.2, update the structure: If the endpoint of Aj ’s path is v, then we update the data structure
with the information of C[j].

Note that in this case the update of the C value comes before the update of the data structure to
ensure that single node anchor paths are computed correctly. Moreover, to avoid chaining anchors with
the same A.v and A.p, we process all anchors with the same A.p value together, that is, we first apply

5Again, we maintain two data structures (as explained before), but we join them by ease of explanation.

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

Step 0.1 to all such anchors and then Step 0.2 to all such anchors. Algorithm 1 shows the pseudocode
of the algorithm. Since every anchor requires at most two operations in the data structure the running
time of Step 0 during the whole algorithm is O(N logN), thus maintaining the asymptotic running time of
O(k(|V |+ |E|) log |V |+ kN logN).

In the Appendix we explain how to adapt Algorithm 1 to obtain O(k3|V |+ k|E|) time for pre-processing
and O(kN log kN) time for solving co-linear chaining. Also in the Appendix, we show how to solve Problem 2
but removing the restriction of G to be acyclic.

2.4 Implementation

We implemented our algorithm to solve Problem 2 inside a new aligner of long reads to acyclic variation
graphs, GraphChainer. Our C++ code is built on GraphAligner’s codebase. Moreover, GraphAligner’s
alignment routine is also used as a blackbox inside our aligner as explained next (see Fig. 4 in the Appendix
for an overview).

To obtain anchors, GraphChainer extracts fragments of length ` = colinear-split-len (default 35,
experimentally set) from the long read. By default GraphChainer splits the input read into non-overlapping
substrings of length ` each, which together cover the read. Additionally, GraphChainer can receive an extra
parameter s = speed, which samples a fragment every ds× `e positions instead. That is, if s > 1, the frag-
ments do not fully cover the input read, and if s ≤ 1−1/`, fragments are overlapping. Having few fragments to
align increases the speed, but decreases the accuracy. These fragments are then aligned with GraphAligner

to the variation graph6, with default parameters; for each alignment reported by GraphAligner, we obtain
an anchor made up of the reported path in the graph (including the offset in the last node A.p), and the
fragment interval in the long read.

Having the input set of anchors, GraphChainer then solves Problem 2. The MPC index is computed with
theO(k(|V |+|E|) log |V |) time algorithm [31] for its simplicity, where for its max-flow routine we implemented
Dinic’s algorithm [9]. The (range maximum query) data structures that our algorithm maintains per MPC
path are supported by our own thread-safe implementation of a treap [38].

After the co-linear chaining algorithm outputs a maximum-coverage chain Ai1 , . . . , Aiq , GraphChainer
connects the anchor paths to obtain a longer path, which is then reported as the answer. More precisely, for
every j ∈ {1, . . . , q−1}, GraphChainer connects Aij .v to Aij+1

.u by a shortest path (in the number of nodes).
Such connecting path exists by the definition of precedence in a chain, and it can be found by running a
breadth-first search (BFS) from Ai.v. A more principled approach would be to connect consecutive anchors
by a path minimizing edit distance, or to consider such distances as part of the optimization function of
co-linear chaining. We use BFS for performance reasons.

Next, since our definition of co-linear chaining maximizes the coverage of the input read, it could happen
that, in an erroneous chaining of anchors, the path reported by GraphChainer is much longer than the input
read. To control this error, GraphChainer splits its solution whenever a path joining consecutive anchors
is longer (label-wise) than some parameter g = colinear-gap (default 10 000, in the order of magnitude of
the read length), and reports the longest path after these splits.

Finally, GraphChainer uses edlib [43] to compute an alignment between the read and the path found,
and to decide if this alignment is better than the (best) alignment reported by GraphAligner. Therefore,
GraphChainer can be also be viewed as a refinement of GraphAligner’s alignment results.

3 Experiments

We run several erroneous long reads to variation graph alignment experiments, and compare GraphChainer
against GraphAligner, the state-of-the-art aligner of long reads to (chromosome level) variation graphs. We
excluded SPAligner since this is tailored for alignments to assembly graphs. We also excluded PaSGAL [22]
and the recent extension of AStarix for long reads [20], since these aligners are tailored to find optimal
alignments and they were three orders of magnitude slower than GraphChainer in our smallest dataset.

6All calls to GraphAligner are implemented internally, in the same binary of GraphChainer.

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

Table 1: Statistics of every dataset used in our experiments. Every graph has a read set simulated on a random path of the
graph. Graphs Chr22 and Chr1 were built using GRCh37 as reference and variants from the Thousand Genomes Project, these
graphs have an additional PacBio read set (rows “real”) obtained from SRA. Column k is the width of the graph.

Graph #Nodes Labels bps k #Reads Total read bps Cov

LRC 117 787 1 099 856 4 1 093 15 872 214 15×
MHC1 479 531 5 138 362 4 5 091 74 524 274 15×
Chr22

3 197 160 52 423 213 7
52 464 769 238 818 15×

real 136 494 2 858 621 416 56×
Chr1

18 807 963 255 754 179 9
254 251 3 736 803 386 15×

real 907 572 19 617 046 919 79×

3.1 Datasets

Variation graphs. We use two (relatively) small variation graphs and two chromosome-level variation
graphs. The small graphs, LRC and MHC1 [22], correspond to two of the most diverse variation regions in
the human genome [8, 41]. The chromosome-level graphs, Chr22 and Chr1 (human chromosomes 22 and 1,
respectively), were built with the vg toolkit using GRCh37 as reference, and variants from the Thousand
Genomes Project phase 3 release [5]. We use Chr22 to replicate GraphAligner’s results [35], and consider
Chr1 since it is one of the most complex variation graphs of the human chromosomes (see Table 5 in the
Appendix).

Note that acyclic variation graphs (built as above) span all genomic positions, i.e., do not collapse repeats
like, e.g., de Bruijn graphs. As such, the aligner does not perform extra steps to identify the corresponding
repeat of an alignment but instead they are solved by the alignment task itself.

Simulated reads. For each of the previous graphs, we sample a reference sequence and use it to simulate
a PacBio read dataset of 15x coverage and average error rate of 15% with the package Badread [46]. To
build the reference sequence we first sample a source-to-sink path from the graph by starting at a source,
and repeatedly choosing an out-neighbor of the current node uniformly at random, until reaching a sink;
finally, we concatenate the node labels on the path. The ambiguous characters on the simulated reference
sequence are randomly replaced by one of its indicated characters. For each simulated read, we know its
original location on the sampled reference sequence, which can thus also be mapped to its ground truth
location on the graph.

Real reads on chromosome-level graphs. For the chromosome-level grpahs, we also used the whole
human genome PacBio Sequel data from HG00733 (SRA accession SRX4480530)7. We first aligned all the
reads against GRCh37 with minimap2 and selected only the reads that are aligned to chromosome 22 and 1,
respectively, with at least 70% of their length, and have no longer alignments to other chromosomes. This
filtering leads to 56× and 79× coverage on Chr22 and Chr1, respectively.

Table 1 shows more statistics of the variation graphs and read sets. We did not test the aligners on the
variation graph of the whole human genome due to the huge time and memory requirements of both aligners
for this task. However, testing the aligners on one individual chromosome captures most of the complexity of
the problem. The variation graph (built as above) of the whole human genome consists of the disjoint union
of the variation graphs of all chromosomes (i.e., with no edges connecting these independent chromosome
components). As such, one can reduce the alignment task to each of the weakly connected components of
the graph (chromosome graphs) and output the “best” alignment among them.

3.2 Evaluation metrics and experimental setup

For each read, the aligners output an alignment consisting of a path in the graph and a sequence of edits
to perform on the node sequences. We call this path the reported path and the concatenation of the node

7This is the same read set used by GraphAligner’s experiments [35, p.7] but without the subsampling to 15× coverage.

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

Table 2: Correctly aligned reads with respect to the overlap for δ ∈ {0.1, 0.85} (i.e., the overlap between the reported path
and the ground truth is at least 10% or 85% of the length of the ground truth sequence, respectively) for the simulated read
sets. Percentages in parentheses are relative improvements w.r.t. GraphAligner.

Graph Aligner Correctly aligned
δ = 0.1 δ = 0.85

LRC
GraphAligner 95.15% 91.22%
GraphChainer 98.72% (+3.75%) 97.90% (+7.32%)

MHC1
GraphAligner 96.15% 92.52%
GraphChainer 98.98% (+2.94%) 98.17% (+6.11%)

Chr22
GraphAligner 95.78% 92.56%
GraphChainer 99.06% (+3.42%) 98.00% (+5.88%)

Chr1
GraphAligner 95.44% 92.26%
GraphChainer 98.61% (+3.32%) 96.68% (+4.79%)

Table 3: Correctly aligned reads with respect to the distance, and percentage of read length in correctly aligned reads, for
σread = 0.3 (i.e., the edit distance between the read and the reported sequence can be up to 30% of the read length) for real
PacBio read sets. Percentages in parentheses are relative improvements w.r.t. GraphAligner.

Graph Aligner Correctly aligned Good length

Chr22
GraphAligner 82.45% 74.84%

(real)
GraphChainer 96.48% (+17.02%) 96.30% (+28.68%)

--speed 2 95.31% (+15.59%) 95.01% (+26.95%)
--speed 3 94.34% (+14.41%) 93.82% (+25.36%)

Chr1
GraphAligner 84.27% 77.69%

(real)
GraphChainer 95.01% (+12.74%) 94.63% (+21.80%)

--speed 2 93.12% (+10.50%) 92.08% (+18.51%)
--speed 3 91.75% (+8.87%) 89.95% (+15.77%)

sequences without the edits the reported sequence8.
On simulated data, we classify a read as correctly aligned if the overlap (in genomic sequences) between

the reported path and the ground truth path is at least (100 ·δ)% of the length of the ground truth sequence,
where 0 < δ ≤ 1 is a given threshold. As another criterion, we consider a read correctly aligned if the edit
distance between the reported sequence and ground truth sequence is at most (100 ·σ)% of the length of the
ground truth sequence, where 0 < σ ≤ 1 is another given threshold. On real data9, where the ground truth
is not available, we consider a read correctly aligned if the edit distance between the reported sequence and
read is at most (100 · σ)% of the read length.

Since the reads have varying sizes, we also computed the good length, defined as the total length of
correctly aligned reads divided by the total read length, for every criterion and threshold considered.

All experiments were conducted on a server with AMD Ryzen Threadripper PRO 3975WX CPU with 32
cores and 504GB of RAM. Both aligners were run using 30 threads. Time and peak memory usage of each
program were measured with the GNU time command. The commands used to run each tool are listed in
the Appendix.

3.3 Results and discussion

Simulated reads. For criterion δ = 0.85, that is matching the average identity of the simulated reads10,
GraphChainer has at least 4–5% more correctly aligned reads, and at the weaker criterion δ = 0.1, used in
GraphAligner’s evaluation [35, p.3], GraphChainer correctly aligns 3–4% more reads, see Table 2, which
is true for every criterion δ > 0, see Figure 2. Moreover, we observe that the precision of GraphAligner

drops below 95% for δ > 0.6, whereas this does not happen to GraphChainer until δ > 0.98. Similar results

8Both objects, as well as the ground truth path/sequence, exclude the offsets of the first and last nodes.
9Also on simulated data to show the relation between the criteria. This can be found in the Appendix.

10Recall that the average error rate is set to 85%.

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

Table 4: Running time (in format hh:mm:ss) and peak memory (Mem, in GBs) when aligning real PacBio reads. Column
“Real time” corresponds to the wall-clock time of running the aligners with 30 threads.

Graph Aligner Mem CPU time Real time

Chr22
GraphAligner 7.92 02:00:03 00:04:12

(real)
GraphChainer 12.58 04:48:09 00:09:56

--speed 2 12.94 03:48:41 00:07:57
--speed 3 13.14 03:30:07 00:07:20

Chr1
GraphAligner 18.66 13:48:46 00:28:42

(real)
GraphChainer 58.47 73:05:00 02:28:12

--speed 2 58.59 46:10:51 01:34:21
--speed 3 58.78 37:32:20 01:17:05

are obtained when measuring good length and using edit distance criteria, see Tables 8 to 10 and Figures 5
to 12 in the Appendix.

Real reads on chromosome-level graphs (Chr22 and Chr1). In this case the difference between
GraphAligner and GraphChainer is even clearer, see Figure 3. Since these graphs are larger, GraphAligner’s
seeds are more likely to have false occurrences in the graph, and thus extending each seed (cluster) individually
leads to worse alignments in more cases. As shown in Table 3, for criterion σ = 0.3, GraphChainer’s
improvements in correctly aligned reads, and in total length of correctly aligned reads, are up to 17.02%,
and 28.68%, respectively for Chr 22. For Chr1, the improvement in the two metrics is smaller, up to 12.74%,
and 21.80%, but still significant. We also note that GraphChainer reaches a precision of 95% for σ < 0.3,
whereas this happens at σ > 0.5 for GraphAligner.

Performance. Table 4 shows the running time and peak memory of both aligners on real reads and Table 7
(Appendix) on simulated reads. Even though GraphChainer takes more time and memory resources, these
are still within the capabilities of a modern high-performance computer. Moreover, the aligners are naively
parallelized at read level, thus they scale with a larger number of cores. Running times are larger on real
reads on Chr1 due to its bigger size, but also to its larger read coverage (recall Table 1). To explore other
tradeoffs between speed and accuracy, we ran GraphChainer with speed in {1, 2, 3}. We observe that the
alignment accuracy remains significantly above GraphAligner’s, while the running time shrinks by up to
half. Table 6 in the Appendix shows that one bottleneck of GraphChainer is obtaining the anchors, which
could be improved by using a fast short-read graph aligner or MEMs [37] instead.

4 Conclusions

The pangenomic era has given rise to several methods, including the vg toolkit [14], for accurately and
efficiently aligning short reads to variation graphs. However, these tools fail to scale when considering the
more-erroneous long reads and much less work has been published around this problem. GraphAligner [35]
is the state-of-the-art for aligning long reads to (chromosome level) variation graphs. Here, we have pre-
sented the first efficient implementation of co-linear chaining on a string labeled DAG and applied it to
aligning erroneous long reads to acyclic variation graphs. We showed that our new method, GraphChainer,
significantly improves the alignments of GraphAligner, on real PacBio reads and chromosome-level variation
graphs.

Thus, we showed that co-linear chaining, successfully used by sequence-to-sequence aligners [29], is a
useful technique also in the context of variation graphs. Moreover, the fact that human variation graphs
have small width (Table 5), combined with our co-linear chaining algorithm allowing one-node overlaps to
handle string labeled nodes, and running in time O(kN log kN) (once the graph is preprocessed), are key in
making co-linear chaining efficient on DAGs in practice. We hope that these facts could spur the adoption
of this technique by future variation graph aligners, as well as in other applications.

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

0.0 0.2 0.4 0.6 0.8 1.0
Overlap criterion ()

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner (LRC)
GraphAligner (MHC1)
GraphChainer (LRC)
GraphChainer (MHC1)

0.0 0.2 0.4 0.6 0.8 1.0
Overlap criterion ()

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner (Chr 22)
GraphAligner (Chr 1)
GraphChainer (Chr 22)
GraphChainer (Chr 1)

Figure 2: Correctly aligned reads w.r.t overlap with ground truth on the simulated read sets for LRC (top solid), MHC1 (top
dashed), Chr22 (bottom solid) and Chr1 (bottom dashed).

References

[1] Mohamed Abouelhoda. A chaining algorithm for mapping cDNA sequences to multiple genomic se-
quences. In International Symposium on String Processing and Information Retrieval, pages 1–13.
Springer, 2007.

[2] Amihood Amir, Moshe Lewenstein, and Noa Lewenstein. Pattern matching in hypertext. J. Algorithms,
35(1):82–99, 2000.

[3] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time
(unless SETH is false). In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pages 51–58, 2015.

[4] Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and Alexandru I Tomescu. Spar-
sifying, shrinking and splicing for minimum path cover in parameterized linear time. arXiv preprint
arXiv:2107.05717, 2021. To appear in the Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms (SODA 2022).

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (read)

70

75

80

85

90

95

100

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner
GraphChainer
 --speed 2
 --speed 3

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (read)

70

75

80

85

90

95

100

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner
GraphChainer
 --speed 2
 --speed 3

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (read)

70

75

80

85

90

95

100

%
 G

oo
d

le
ng

th

GraphAligner
GraphChainer
 --speed 2
 --speed 3

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (read)

70

75

80

85

90

95

100

%
 G

oo
d

le
ng

th

GraphAligner
GraphChainer
 --speed 2
 --speed 3

Figure 3: Correctly aligned reads w.r.t. the read distance (top), and read length in correctly aligned reads (bottom), on Chr22
(left) and Chr1 (right).

[5] Laura Clarke, Susan Fairley, Xiangqun Zheng-Bradley, Ian Streeter, Emily Perry, Ernesto Lowy, Anne-
Marie Tassé, and Paul Flicek. The international Genome sample resource (IGSR): A worldwide col-
lection of genome variation incorporating the 1000 Genomes Project data. Nucleic Acids Research,
45(D1):D854–D859, 09 2016. doi:10.1093/nar/gkw829.

[6] Computational Pan-Genomics Consortium. Computational pan-genomics: status, promises and chal-
lenges. Briefings in bioinformatics, 19(1):118–135, 2018.

[7] Edsger Wybe Dijkstra. A discipline of programming, volume 613924118. prentice-hall Englewood Cliffs,
1976.

[8] Alexander Dilthey, Charles Cox, Zamin Iqbal, Matthew R Nelson, and Gil McVean. Improved genome
inference in the MHC using a population reference graph. Nature genetics, 47(6):682–688, 2015.

[9] Efim A Dinic. Algorithm for solution of a problem of maximum flow in networks with power estimation.
In Soviet Math. Doklady, volume 11, pages 1277–1280, 1970.

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1093/nar/gkw829
https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

[10] Tatiana Dvorkina, Dmitry Antipov, Anton Korobeynikov, and Sergey Nurk. SPAligner: alignment of
long diverged molecular sequences to assembly graphs. BMC Bioinformatics, 21(12):306, 2020. doi:

10.1186/s12859-020-03590-7.

[11] Jordan M Eizenga, Adam M Novak, Jonas A Sibbesen, Simon Heumos, Ali Ghaffaari, Glenn Hickey,
Xian Chang, Josiah D Seaman, Robin Rounthwaite, Jana Ebler, et al. Pangenome graphs. Annual
review of genomics and human genetics, 21:139–162, 2020.

[12] Massimo Equi, Roberto Grossi, Veli Mäkinen, and Alexandru I. Tomescu. On the complexity of string
matching for graphs. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,
editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July
9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 55:1–55:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.55.

[13] Massimo Equi, Veli Mäkinen, and Alexandru I. Tomescu. Graphs cannot be indexed in polynomial time
for sub-quadratic time string matching, unless SETH fails. In Tomás Bures, Riccardo Dondi, Johann
Gamper, Giovanna Guerrini, Tomasz Jurdzinski, Claus Pahl, Florian Sikora, and Prudence W. H. Wong,
editors, SOFSEM 2021: Theory and Practice of Computer Science - 47th International Conference on
Current Trends in Theory and Practice of Computer Science, SOFSEM 2021, Bolzano-Bozen, Italy,
January 25-29, 2021, Proceedings, volume 12607 of Lecture Notes in Computer Science, pages 608–622.
Springer, 2021. doi:10.1007/978-3-030-67731-2_44.

[14] Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga, Eric T Dawson, William
Jones, Shilpa Garg, Charles Markello, Michael F Lin, et al. Variation graph toolkit improves read
mapping by representing genetic variation in the reference. Nature biotechnology, 36(9):875–879, 2018.

[15] Daniel Gibney, Gary Hoppenworth, and Sharma V. Thankachan. Simple reductions from Formula-SAT
to pattern matching on labeled graphs and subtree isomorphism. In Hung Viet Le and Valerie King,
editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference, January 11-12,
2021, pages 232–242. SIAM, 2021. doi:10.1137/1.9781611976496.26.

[16] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

[17] Glenn Hickey, David Heller, Jean Monlong, Jonas A Sibbesen, Jouni Sirén, Jordan Eizenga, Eric T Daw-
son, Erik Garrison, Adam M Novak, and Benedict Paten. Genotyping structural variants in pangenome
graphs using the vg toolkit. Genome biology, 21(1):1–17, 2020.

[18] Bhavna Hurgobin and David Edwards. SNP discovery using a pangenome: has the single reference
approach become obsolete? Biology, 6(1):21, 2017.

[19] Pesho Ivanov, Benjamin Bichsel, Harun Mustafa, André Kahles, Gunnar Rätsch, and Martin Vechev.
AStarix: Fast and optimal sequence-to-graph alignment. In International Conference on Research in
Computational Molecular Biology, pages 104–119. Springer, 2020.

[20] Pesho Ivanov, Benjamin Bichsel, and Martin Vechev. Fast and optimal sequence-to-graph align-
ment guided by seeds. bioRxiv, 2021. URL: https://www.biorxiv.org/content/early/2021/11/
08/2021.11.05.467453, arXiv:https://www.biorxiv.org/content/early/2021/11/08/2021.11.

05.467453.full.pdf, doi:10.1101/2021.11.05.467453.

[21] Chirag Jain, Daniel Gibney, and Sharma V Thankachan. Co-linear chaining with overlaps and gap
costs. bioRxiv, 2021. To appear in RECOMB 2022.

[22] Chirag Jain, Sanchit Misra, Haowen Zhang, Alexander Dilthey, and Srinivas Aluru. Accelerating se-
quence alignment to graphs. In 2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 451–461, 2019. doi:10.1109/IPDPS.2019.00055.

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1186/s12859-020-03590-7
https://doi.org/10.1186/s12859-020-03590-7
https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.1007/978-3-030-67731-2_44
https://doi.org/10.1137/1.9781611976496.26
https://www.biorxiv.org/content/early/2021/11/08/2021.11.05.467453
https://www.biorxiv.org/content/early/2021/11/08/2021.11.05.467453
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2021/11/08/2021.11.05.467453.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2021/11/08/2021.11.05.467453.full.pdf
https://doi.org/10.1101/2021.11.05.467453
https://doi.org/10.1109/IPDPS.2019.00055
https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

[23] Chirag Jain, Haowen Zhang, Yu Gao, and Srinivas Aluru. On the complexity of sequence-to-graph
alignment. Journal of Computational Biology, 27(4):640–654, 2020.

[24] John D Kececioglu and Eugene W Myers. Combinatorial algorithms for DNA sequence assembly.
Algorithmica, 13(1):7–51, 1995.

[25] Anna Kuosmanen, Topi Paavilainen, Travis Gagie, Rayan Chikhi, Alexandru Tomescu, and Veli
Mäkinen. Using minimum path cover to boost dynamic programming on DAGs: Co-linear chaining
extended. In Benjamin J. Raphael, editor, Research in Computational Molecular Biology, pages 105–
121, Cham, 2018. Springer International Publishing.

[26] Christopher Lee, Catherine Grasso, and Mark F Sharlow. Multiple sequence alignment using partial
order graphs. Bioinformatics, 18(3):452–464, 2002.

[27] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv
preprint arXiv:1303.3997, 2013.

[28] Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioin-
formatics, 32(14):2103–2110, 2016.

[29] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094–3100, 05
2018. doi:10.1093/bioinformatics/bty191.

[30] Veli Mäkinen and Kristoffer Sahlin. Chaining with Overlaps Revisited. In Inge Li Gørtz and Oren
Weimann, editors, 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020), volume
161 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:12, Dagstuhl, Germany,
2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/
volltexte/2020/12150, doi:10.4230/LIPIcs.CPM.2020.25.

[31] Veli Mäkinen, Alexandru I Tomescu, Anna Kuosmanen, Topi Paavilainen, Travis Gagie, and Rayan
Chikhi. Sparse dynamic programming on DAGs with small width. ACM Transactions on Algorithms
(TALG), 15(2):1–21, 2019.

[32] Karen H Miga and Ting Wang. The need for a human pangenome reference sequence. Annual Review
of Genomics and Human Genetics, 22, 2021.

[33] Gene Myers and Webb Miller. Chaining Multiple-Alignment Fragments in Sub-Quadratic Time. In
Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’95, pages
38–47, USA, 1995. Society for Industrial and Applied Mathematics.

[34] Mikko Rautiainen, Veli Mäkinen, and Tobias Marschall. Bit-parallel sequence-to-graph alignment.
Bioinformatics, 35(19):3599–3607, 03 2019. doi:10.1093/bioinformatics/btz162.

[35] Mikko Rautiainen and Tobias Marschall. GraphAligner: rapid and versatile sequence-to-graph align-
ment. Genome biology, 21(1):1–28, 2020.

[36] Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A Yorke. Reducing
storage requirements for biological sequence comparison. Bioinformatics, 20(18):3363–3369, 2004.

[37] Massimiliano Rossi, Marco Oliva, Ben Langmead, Travis Gagie, and Christina Boucher. MONI: A
Pangenomic Index for Finding Maximal Exact Matches. Journal of Computational Biology, 2022.

[38] Raimund Seidel and Cecilia R Aragon. Randomized search trees. Algorithmica, 16(4):464–497, 1996.

[39] Micha Sharir. A strong-connectivity algorithm and its applications in data flow analysis. Computers &
Mathematics with Applications, 7(1):67–72, 1981.

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1093/bioinformatics/bty191
https://drops.dagstuhl.de/opus/volltexte/2020/12150
https://drops.dagstuhl.de/opus/volltexte/2020/12150
https://doi.org/10.4230/LIPIcs.CPM.2020.25
https://doi.org/10.1093/bioinformatics/btz162
https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

[40] Tetsuo Shibuya and Igor Kurochkin. Match chaining algorithms for cDNA mapping. In International
Workshop on Algorithms in Bioinformatics, pages 462–475. Springer, 2003.

[41] Jonas Andreas Sibbesen, Lasse Maretty, and Anders Krogh. Accurate genotyping across variant classes
and lengths using variant graphs. Nature genetics, 50(7):1054–1059, 2018.

[42] Jouni Sirén, Jean Monlong, Xian Chang, Adam M Novak, Jordan M Eizenga, Charles Markello, Jonas A
Sibbesen, Glenn Hickey, Pi-Chuan Chang, Andrew Carroll, et al. Pangenomics enables genotyping of
known structural variants in 5202 diverse genomes. Science, 374(6574):abg8871, 2021.

[43] Martin Šošić and Mile Šikić. Edlib: a C/C++ library for fast, exact sequence alignment using edit
distance. Bioinformatics, 33(9):1394–1395, 01 2017. doi:10.1093/bioinformatics/btw753.

[44] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing, 1(2):146–
160, 1972.

[45] Daniel Valenzuela, Tuukka Norri, Niko Välimäki, Esa Pitkänen, and Veli Mäkinen. Towards pan-genome
read alignment to improve variation calling. BMC genomics, 19(2):123–130, 2018.

[46] Ryan R. Wick. Badread: simulation of error-prone long reads. Journal of Open Source Software,
4(36):1316, 2019. doi:10.21105/joss.01316.

15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1093/bioinformatics/btw753
https://doi.org/10.21105/joss.01316
https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

A Statistics on variation graphs of human genome

Table 5: Statistics of variation graphs of human chromosomes built with the vg toolkit using GRCh37 as reference, and
variants from the Thousand Genomes Project phase 3 release [5]. The number of nodes is from the compact representation
where a non-branching path is merged into a single node. Each graph is a DAG, and the numbers refer only to one of the two
weakly connected components (one being the reverse complement of the other).

Chr #Nodes Labels bps Width
1 18 807 963 255 754 179 9
2 20 597 735 250 312 064 6
3 16 965 471 203 883 122 7
4 16 662 965 196 912 161 6
5 15 313 396 186 204 491 6
6 14 596 952 176 169 819 9
7 13 707 868 163 880 288 8
8 13 370 501 150 986 669 8
9 10 355 761 144 794 206 7
10 11 595 921 139 553 125 6
11 11 760 609 139 076 341 7
12 11 239 568 137 745 335 6
13 8 304 603 118 040 865 6
14 7 714 611 110 019 784 7
15 7 045 787 104 968 212 6
16 7 837 615 93 074 017 8
17 6 758 004 83 545 050 6
18 6 592 253 80 357 608 7
19 5 306 144 60 981 512 6
20 5 268 137 64 854 544 6
21 3 207 166 49 243 683 6
22 3 197 160 52 423 213 7
X 10 011 934 158 748 581 9
Y 184 003 59 435 025 2

B Co-linear chaining in time O(kN log kN)

As we discussed, the pseudocode of Algorithm 1 takes O(kN) updates and queries to the data structures,
which can be answered in O(logN) time each, thus adding up to O(kN logN) time in total. However, the for
loops iterate over all the vertices of the graph, and over all the forward links, adding an O(k|V |) additional
time to the chaining process.

Having such O(k|V |) time while chaining does not change the O(k(|V |+ |E|) log |V |+ kN logN) asymp-
totic running time of our algorithm, but it affects the practical performance of chaining. As such, we decided
to divide the algorithm into pre-processing the DAG, that we solve in O(k3|V |+k|E|) time by using a recent
result to compute a minimum path cover of a DAG [4], and chaining that we solve in time O(kN log kN)11.

To remove the chaining’s dependency on the graph size we get rid of the for loops of Algorithm 1 by
instead processing the anchors (plus the required objects) in an order that simulates the for loop order of
Algorithm 1. In the case of Step 1, this order is simulated by sorting the anchors by topological order of the

11Note that we worsen running time by a k factor inside the log factor. However, k � N , thus the asymptotic running time
is maintained.

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

path endpoints12, which can be done in O(N logN) time (by previously computing the topological ordering
on pre-processing time). For Step 0, we also require to sort the anchors by the topological order of the path
starting points, as well as interleaving the computation of Step 0.1 and Step 0.2. For interleaving the
computation of Step 0.1 and Step 0.2 (as well as the computation of Step 0, Step 1 and Step 2), we
partition the corresponding sorted arrays, such that each part corresponds to a different vertex, which can be
done in extra O(N) time (O(kN) time in the case of Step 2). To interleave the computation of the different
steps, we process the sorted arrays by parts according to the topological ordering of the corresponding paths.
Finally, to simulate the for loop of Step 2, we sort the tuples (s, Pi, Aj) (such that (Aj .u, Pi) ∈ forward[s])
by topological order of s. Since there can be O(kN) such tuples, this takes O(kN log kN) time.

C CLC in general graphs

Our algorithm for Problem 2 allows us to efficiently solve a formulation of co-linear chaining in general
graphs, namely:

Problem 3 (Reachability path precedence CLC). Same as Problem 2 but we do not restrict G to be acyclic.

We solve Problem 3 by solving Problem 2 in the condensation of G. The condensation G = (V , E) of
a graph G = (V,E) is the DAG of its strongly connected connected components, which can be computed
in O(|V | + |E|) time [44, 7, 39]. More precisely, V = {S | S is a strongly connected component of G}, and
E = {(S, S′) | ∃u ∈ S, v ∈ S′, (u, v) ∈ E}. Since the strongly connected components of a graph form a
partition of the vertices, every vertex of G can be mapped to its corresponding vertex (component) in G.
As such, a walk in G can be mapped to its corresponding path in G (the ordered sequence of components it
visits in the walk). Therefore, any path cover of G can be mapped into a path cover of G, thus width(G) =
k ≥ k′ = width(G). To finish our reduction we map the input anchors A to A′ by mapping the corresponding
anchor paths to paths in G. Let us call this anchor transformation fG , such that, fG(A) = (A.I, P), where
P is the corresponding path of A.W in G, and thus A′ = fG(A). The following lemma shows that solving
Problem 3 for G and A is equivalent to solve Problem 2 for G and A′.

Lemma 1. Ai1 , . . . , Aiq is a chain of (G,A) iff fG(Ai1), . . . , fG(Aiq) is a chain of (G, fG(A)).

Proof. Since the anchor intervals do not change it suffices to check the precedence of anchor paths in both
directions of the equivalence.

(⇒): For all j ∈ {1, . . . , q − 1}, if v = Aij .v reaches u = Aij+1
.u, they are either in the same strongly

connected component, or the component of v reaches the component of u, thus fG(Aij).v reaches fG(Aij+1
).v.

(⇐): For all j ∈ {1, . . . , q − 1}, if S = fG(Aij).v reaches T = fG(Aij+1
).u, then every vertex in S reaches

every vertex of T , in particular, Aij .v reaches Aij+1
.u.

Finally, since the anchor intervals do not change, optimal chains are shared in both problems. Therefore,
since G is a DAG, we can solve Problem 3 with our algorithm for Problem 2, in time O(|V | + |E| + N +
k′(|V|+ |E|) log |V|+ k′N logN) = O(k(|V |+ |E|) log |V |+ kN logN).

D Commands for running the tools

Read simulation with BadReads:

badread simulate --seed {seed} --reference {Ref}

--quantity 15x --length 15000,10000

--error_model pacbio2016 --identity 85,95,5

12If there are ties, they are sorted by endpoint in the string label of the path endpoint. This is done in this case as well as
the other sortings, but we remove it from the phrasing by ease of explanation.

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

Output the Alignment with Smaller Global Edit Distance

Parameters

Long Read (.fastq or .fasta)
ACGTCACGTACGTACGTAGCTACGTTAA

Split

Fragment #1
ACGTCA

Fragment #2
CGTACGT

Fragment #M
ACGTTAA

GraphAligner

Co-linear Chaining

Chain of Anchors

Connecting BFS

Path in Graph &
Interval in Long Read

Edlib

Anchor #1

Anchor #2

Fragment #3
ACGTAGCT

GraphAligner GraphAligner

Anchor #3

GraphAligner

Anchor #N-2

Anchor #N-1

Anchor #N

No Alignment

Pangenome Graph (.vg)

Vg Toolkit

Genome Reference Sequence (.fa) Variant Call Format File (.vcf)

Co-linear Chaining
Alignment (.gam)

Split Length

Speed

Parameter

Co-linear Gap

GraphAligner
Alignment (.gam)

GraphAligner

Figure 4: The flow diagram of GraphChainer: a long-read is split into fragments (of default length 35), which are aligned
with GraphAligner (though any other method to extract anchors can be used). Anchors are created for each alignment of a
fragment. The anchors are chained with our algorithm from Section 2.3. The optimal chain is split whenever the BFS shortest
path between consecutive anchor paths is longer than a co-linear gap limit parameter (default 10 000), and the longest resulting
path is kept. If the edit distance between the long read and this path is better than the one obtained by aligning the entire
long read with GraphAligner, then this alignment is output; otherwise GraphAligner’s alignment is reported.

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

Variation graph construction with vg toolkit (same parameters as those used for GraphAligner’s exper-
iments [35, p.24]):

vg construct -t 30 -a -r {ref} -v {vcf} -R 22 -p

-m 3000000

Read alignment (same parameters for GraphAligner as used on its variation graph experiments [35, p.24]
but using 30 threads, default parameters for PaSGAL [22], same parameters for the extension of AStarix on
its experiments for long reads [20, p.13]):

GraphAligner -t 30 -x vg -f {Reads} -g {Graph}

-a {long_gam}

GraphChainer -t 30 -f {Reads} -g {Graph}

-a {clc_gam}

PaSGAL -m vg -r {Graph} -q {Reads} -t 30

-o {output_file}

astarix align-optimal -a astar-seeds -g {Graph}

-q {Reads} --fixed_trie_depth 1 --seeds_len 150

-D 14 -G 1 -S 1

E Further experimental results

Table 6: CPU time spent in the main phases of GraphChainer on Chr22 and Chr1 (in format hh:mm:ss) on the real PacBio
reads. The column edlib is the time needed to run edlib between the read and the path found by co-linear chaining to finally
report the best solution.

Graph speed Getting anchors Co-linear chaining edlib

Chr22 1 01:24:58 00:30:20 00:47:39
Chr22 2 00:42:12 00:12:14 00:49:11
Chr22 3 00:27:55 00:07:05 00:50:03
Chr1 1 31:49:44 19:36:05 05:49:54
Chr1 2 15:56:58 08:22:24 06:02:22
Chr1 3 10:37:14 04:58:55 06:07:00

Table 7: Running time (in format hh:mm:ss) and peak memory (Mem, in GBs) when aligning simulated reads. Column “Real
time” corresponds to the wall-clock time of running the aligners with 30 threads.

Graph Aligner Mem CPU time Real time

LRC
GraphAligner 1.19 00:00:37 00:00:01
GraphChainer 1.54 00:01:01 00:00:02

MHC1
GraphAligner 2.43 00:02:56 00:00:07
GraphChainer 3.33 00:04:43 00:00:12

Chr22
GraphAligner 5.81 00:28:20 00:01:08
GraphChainer 11.38 00:55:43 00:02:11

Chr1
GraphAligner 16.95 02:29:08 00:06:03
GraphChainer 58.14 11:38:42 00:25:16

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

Table 8: Read length in correctly aligned reads with respect to the overlap for δ ∈ {0.1, 0.85} (i.e., the overlap between the
reported path and the ground truth is at least 10% or 85% of the length of the ground truth sequence, respectively) for the
simulated read sets. Percentages in parentheses are relative improvements w.r.t. GraphAligner.

Graph Aligner Good length
δ = 0.1 δ = 0.85

LRC
GraphAligner 95.67% 90.60%
GraphChainer 99.52% (+4.02%) 98.18% (+8.37%)

MHC1
GraphAligner 96.80% 91.70%
GraphChainer 99.50% (+2.79%) 98.44% (+7.36%)

Chr22
GraphAligner 96.26% 91.91%
GraphChainer 99.46% (+3.33%) 98.19% (+6.83%)

Chr1
GraphAligner 96.00% 91.58%
GraphChainer 99.17% (+3.30%) 96.73% (+5.62%)

Table 9: Correctly aligned reads with respect to the distance, for σtruth = 0.3 (i.e., the edit distance between the truth
sequence and the reported sequence can be up to 30% of the truth sequence length), and σread = 0.3 (i.e., the edit distance
between the read and the reported sequence can be up to 30% of the read length) for simulated read sets. Percentages in
parentheses are relative improvements w.r.t. GraphAligner.

Graph Aligner Correctly aligned
σtruth = 0.3 σread = 0.3

LRC
GraphAligner 93.32% 91.40%
GraphChainer 98.72% (+5.78%) 96.25% (+5.31%)

MHC1
GraphAligner 94.03% 92.73%
GraphChainer 98.82% (+5.10%) 96.64 (+4.22%)

Chr22
GraphAligner 94.22% 92.67%
GraphChainer 98.86% (+4.93%) 96.43% (+4.06%)

Chr1
GraphAligner 94.04% 92.57%
GraphChainer 98.19% (+4.41%) 95.73% (+3.42%)

Table 10: Read length in correctly aligned reads with respect to the distance, for σtruth = 0.3 (i.e., the edit distance between
the truth sequence and the reported sequence can be up to 30% of the truth sequence length), and σread = 0.3 (i.e., the edit
distance between the read and the reported sequence can be up to 30% of the read length) for simulated read sets. Percentages
in parentheses are relative improvements w.r.t. GraphAligner.

Graph Aligner Good length
σtruth = 0.3 σread = 0.3

LRC
GraphAligner 92.79% 90.47%
GraphChainer 99.08% (+6.78%) 95.87% (+5.97%)

MHC1
GraphAligner 93.42% 92.06%
GraphChainer 99.00% (+5.97%) 96.76% (+5.10%)

Chr22
GraphAligner 93.97% 92.03%
GraphChainer 99.05% (+5.41%) 96.35% (+4.69%)

Chr1
GraphAligner 93.72% 91.87%
GraphChainer 98.39% (+4.99%) 95.58% (+4.03%)

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

0.0 0.2 0.4 0.6 0.8 1.0
Overlap criterion ()

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (truth)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (read)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner
GraphChainer

Figure 5: Correctly aligned reads w.r.t overlap (top), truth sequence distance (middle) (middle) and read distance (bottom)
for LRC on simulated reads.

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

0.0 0.2 0.4 0.6 0.8 1.0
Overlap criterion ()

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 G

oo
d

le
ng

th
GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (truth)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 G

oo
d

le
ng

th

GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (read)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 G

oo
d

le
ng

th

GraphAligner
GraphChainer

Figure 6: Read length in correctly aligned reads w.r.t overlap (top), truth sequence distance (middle) and read distance
(bottom) for LRC on simulated reads.

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

0.0 0.2 0.4 0.6 0.8 1.0
Overlap criterion ()

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (truth)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (read)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner
GraphChainer

Figure 7: Correctly aligned reads w.r.t overlap (top), truth sequence distance (middle) and read distance (bottom) for MHC1
on simulated reads.

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

0.0 0.2 0.4 0.6 0.8 1.0
Overlap criterion ()

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 G

oo
d

le
ng

th
GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (truth)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 G

oo
d

le
ng

th

GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (read)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 G

oo
d

le
ng

th

GraphAligner
GraphChainer

Figure 8: Read length in correctly aligned reads w.r.t overlap (top), truth sequence distance (middle) and read distance
(bottom) for MHC1 on simulated reads.

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

0.0 0.2 0.4 0.6 0.8 1.0
Overlap criterion ()

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (truth)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (read)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner
GraphChainer

Figure 9: Correctly aligned reads w.r.t overlap (top), truth sequence distance (middle) and read distance (bottom) for Chr22
on simulated reads.

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

0.0 0.2 0.4 0.6 0.8 1.0
Overlap criterion ()

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 G

oo
d

le
ng

th
GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (truth)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 G

oo
d

le
ng

th

GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (read)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 G

oo
d

le
ng

th

GraphAligner
GraphChainer

Figure 10: Read length in correctly aligned reads w.r.t overlap (top), truth sequence distance (middle) and read distance
(bottom) for Chr22 on simulated reads.

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

0.0 0.2 0.4 0.6 0.8 1.0
Overlap criterion ()

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (truth)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (read)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 C

or
re

ct
ly

 a
lig

ne
d

GraphAligner
GraphChainer

Figure 11: Correctly aligned reads w.r.t overlap (top), truth sequence distance (middle) and read distance (bottom) for Chr1
on simulated reads.

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

0.0 0.2 0.4 0.6 0.8 1.0
Overlap criterion ()

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 G

oo
d

le
ng

th
GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (truth)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 G

oo
d

le
ng

th

GraphAligner
GraphChainer

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance criterion (read)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 G

oo
d

le
ng

th

GraphAligner
GraphChainer

Figure 12: Read length in correctly aligned reads w.r.t overlap (top), truth sequence distance (middle) and read distance
(bottom) for Chr1 on simulated reads.

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.01.07.475257doi: bioRxiv preprint

https://doi.org/10.1101/2022.01.07.475257
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Problem definition
	Overview of the existing solution (without suffix-prefix overlaps)
	One-node suffix-prefix overlaps
	Implementation

	Experiments
	Datasets
	Evaluation metrics and experimental setup
	Results and discussion

	Conclusions
	Statistics on variation graphs of human genome
	Co-linear chaining in time O(kNlogkN)
	CLC in general graphs
	Commands for running the tools
	Further experimental results

