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42 SUMMARY

43  Highly transmissible SARS-CoV-2 Omicron variant hassted a new crisis for
44  COVID-19 pandemic control. Within a month, Omicrandominating over Delta
45 variant in several countries probably due to immevasion. It remains unclear
46  whether vaccine-induced memory responses can ladle@dy Omicron infection.
47 Here, we investigated host immune responses irifdtevaccine-breakthrough case
48 of Omicron infection in Hong Kong. We found thaethreakthrough infection rapidly
49 recruited potent cross-reactive broad neutralizintfbodies (bNAbs) against current
50 VOCs, including Alpha, Beta, Gamma, Delta and Oong¢rfrom unmeasurable 46
51 values to mean 1:2929 at around 9-12 days, whiate Wiggher than the mean peak
52 ICso values of BioNTech-vaccinees. Cross-reactive spikel nucleocapsid-specific
53 CD4 and CD8 T cell responses were detected. Simeékults were also obtained in
54  the second vaccine-breakthrough case of Omicr@ctioin. Our preliminary findings
55 may have timely implications to booster vaccine irojtation and preventive
56 strategies of pandemic control.

57
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61
62 Maintext

63 Highly transmissible SARS-CoV-2 and its variantsvéhacaused more than 279
64 million infections with about 5.4 million deathsogllly by December 26, 2021
65 (https://coronavirus.jhu.edu/map.html). To fighetbngoing pandemic, 8.9 billion
66 doses of several types of COVID-19 vaccine havesadly been extensively
67 administered in many countries, which has redubedrates of hospitalization and
68 death significantly (Baden et al., 2021; Polaclalket 2020; Tanriover et al., 2021,
69 Voysey et al., 2021; Xia et al., 2021). Since theaecines cannot confer complete
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prevention of upper airway transmission of SARS-€)\the increasing numbers of
vaccine-breakthrough infections and re-infectionsaveh been documented
(Abu-Raddad et al., 2021; Birhane et al., 2021;etfal., 2021). This situation is
becoming worse because of the rapid spread of SB&®E2 variant of concerns
(VOCs) and waning of vaccine-induced immune reseer{Peng et al., 2021; Wang
et al., 2021a; Wang et al.,, 2021b). After World HeaOrganization (WHO)
designated the Omicron variant of concern (VOC}hen26" of November 2021, the
extremely rapid spread of this variant has ledrottzer crisis of pandemic control.
Within a month, Omicron is replacing the Delta VQ& become the dominant
SARS-CoV-2 variant in many places in the South &dfiEuropean countries and in
the United States (Shu and McCauley, 2017). Twdissureported that the increased
risk of re-infection was associated with emergeoic®micron in South Africa and
Denmark (Espenhain et al., 2021; Pulliam et al.2130 Both vaccine-induced
neutralizing antibody (NAb) and current NAb combldioa therapy for passive
immunization have significantly reduced activitilau et al., 2021; Wang et al.,
2021a). Till now, it remains unclear whether vaegimduced memory responses can
be recalled by the Omicron viral infection. We, riéfere, investigated the host
immune responses in two vaccine-breakthrough aafs€snicron infection in Hong
Kong. Our preliminary finding of Omicron-recalleddadly cross-reactive immune
responses in these cases may have timely impantgoiications to booster vaccine
optimization and implementing adequate preventinterventions to control the
pandemic.

On mid-November 2021, the first Chinese vaccinekiterough case of Omicron
patient (OP1) was diagnosed in a quarantine hotebing Kong (Wong et al., 2021).
OP1 arrived in Hong Kong from Canada and was testedative by reverse
transcription PCR (RT-PCR) for SARS-CoV-2 within f@urs before arrival. Seven
days after arrival, OP1 developed mild symptoms simolved a positive result for
SARS-CoV-2 (Ctvalue 19) on day 8 after arrival amas hospitalized on the same
day. To validate our findings, we subsequently ke blood samples from an
imported mild case of Omicron patient 2 (OP2), wivas due to a separate
transmission and was diagnosed about 9 days h&€dP1. Based on the vaccination
records, OP1 and OP2 were confirmed with Omicrdaciion at 178 and 53 days
after the second dose of BNT162b2 and mRNA-1278peetively Figure 1A).
During hospitalization, both cases presented withd nelinical symptoms not
requiring oxygen supplementation or ICU treatmiVith patients’ informed consent,
we obtained three sequential sera and one periplwad mononuclear cells
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(PBMCs) samples from each patient to determine héretaccine-induced memory
responses can be recalled by the Omicron viratiitie.

We first measured the neutralizing antibody til€s¢) in their sera samples against
the current panel of SARS-CoV-2 VOC pseudoviruseduding Alpha (B.1.1.7),
Beta (B.1.351), Gamma, Delta (B.1.617.2) and Omic{B.1.1.529) as compared
with D614G (WT). We compared #gvalues with 34 local vaccinees, whose blood
was collected around mean 30 days after the sed@Nd@162b2-vaccination
(Pfizer—BioNTech) Figure 1A) (Peng et al., 2021). Consistent with recent pnépr
publications by others, we found that the Omicrariant showed the greatest
resistance to BNT162b2-vaccine-induced neutrabimativith an average 5.9-fold
deficit relative to D614G Rigure 1C). Strikingly, however, the breakthrough
infection was able to elicit cross-reactive broadtralizing antibodies (bNAbs) from
the unmeasurable levels (<1:20) to meag, Malues of 1:2929 (range 588.5-5508)
and from mean 1651:24.3 to 1:854.5 at 9 days in OP1 and 12 days 2 @ost
symptoms onset (PSO), respectivaiyglre 1D). Moreover, the amounts of NAbs
were consistently higher than the meagyNalues of BNT162b2-vaccinees across all
VOCs tested. In particular, there were 121.41- #AdB9-fold higher 16 values
against Beta and Omicron in OP1 than those in BIRIb26s/accineesHigure 1B).
Besides NAbs against the current panel of VOCs, @4 displayed enhancedsiC
values of NAbs against 15/16 SARS-CoV-2 variantthvimdividual mutations or
deletions including the E484K mutation, which cordd significant resistance to
vaccine-induced NAbsF{gure S1). These results demonstrated that, although the
Omicron VOC evaded BNT162b2-vaccine-induced NAbs, lireakthrough infection
elicited cross-reactive bNAbs generally againstcalirent VOCs in both OP1 and
OoP2.

To understand cellular immune responses, we coeddiciw cytometry analysis on
PBMCs of OP1 and OP2 collected on day 11 and 12 R&Pectively. Multi-color
flow cytometry data showed no sign of severe immauppression in both OP1 and
OP2 who had similar frequencies of T lymphocytehaiit lymphocytopenia, stable
conventional dendritic cell (cDC) : plasmacytoiadgtic cell (pDC) ratio and

normal Myeloid-derived suppressor cells (MDSCsiitdl and healthy subjects as we
described previouslyF{gure S2) (Zhou et al., 2020). For antigen-specific B cell
activation, we measured the frequency of SpikeifipegG™ B cells in OP1 and OP2.
The levels of 13.2% in OP1 and 2.31% in OP2 welaively higher than mean 1.12%
(range 0.004-7.92%) found among BNT162b2-vacciaeesnd their peak responses
(Figure 1E). Unlike naturally infected COVID-19 patients, wdisplay
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145 predominantly tissue-like memory (TLM) B cell resse (Woodruff et al., 2020),
146  Spike-specific IgGB cells from OP1 and OP2 exhibited the dominatnplype of
147  resting memory (RM)Kigure 1F), which was also found in our

148 BNT162b2-vaccinees.

149

150 Besides Spike-specific IgGB cell responses, we measured cross-reactive [T cel
151 responses to the Spike and nucleocapsid (NP) gepbadls derived from wildtype
152 SARS-CoV-2 in OP1 and OP2 as compared with BNT162Zinees by
153 intracellular cytokine staining. The cytomegalogir(CMV) pp65 peptide pool was
154 used as a positive control. We found that Spiked &P-specific CD4 IFN-
155 responses were 0.61% and 0.12% in OP1 and 0.15%.26806 in OP2, respectively
156 (Figure 1G). Moreover, Spike- and NP-specific CD8 IFNesponses were 0.56%
157 and 0.11% in OP1 and 0.10% and 0.08% in OP2, réspbc(Figure 1G). These
158 results indicated that cross-reactive CD4 and CD8ell responses to wild type
159 SARS-CoV-2 were primarily against the Spike as carag with NP. Moreover, the
160 Spike-specific T cell responses were relativelyhbigin OP1 or comparable in OP2
161 as compared with mean values in BNT162b2-vaccif€&! T: mean 0.19% and
162 CD8 T: mean 0.10%). Since much weaker or unmeakuralzell responses were
163 found in severe COVID-19 patients around the saredop PSO (Rydyznski
164 Moderbacher et al., 2020; Zhou et al., 2020), T mdponses in OP1 and OP2
165 probably also contributed to disease progressioiraio

166

167 In this brief report, we provide timely communication immune responses in two
168 cases of vaccine-breakthrough infections by the SARV-2 Omicron variant in
169 Hong Kong. Although antibody evasion has been Bledocumented against
170 Omicron due to 32 amino acid changes in viral spitaein (Cameroni et al., 2021;
171 Cele et al.,, 2021; Planas et al., 2021a; Wang .et2@8P1a), we report here that
172  Omicron vaccine-breakthrough infections could eleepss-reactive bNADb responses
173 against all current SARS-CoV-2 VOCs. Since the am®wf bNAb responses were
174  higher than the mean 4gvalues of in BNT162b2-vaccinees at their peak oasp
175 period, we believe that the Omicron infection r&pickcruited the vaccine-induced
176 memory immune responses during the acute phasafettion, which probably
177 contributed to protection and was in line with théd clinical presentation in both
178 patients. Encouragingly, besides rapid bNAb respsnisoth spike- and NP-specific
179 CD4 and CD8 T cells cross-reactive to wild typetmkppools were measurable on
180 day 11-12, which probably also contributed to diggarogression control (Lipsitch et
181 al., 2020; Zhou et al., 2020).
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182

183 Both OP1 and OP2 showed high amounts of bNAbs aggthie Omicron variant and
184 other VOCs. According to the GASAID database, dytime period from October 4,
185 2021 to December 26, 2021, the relative variantogen frequency of the current
186 circulating Delta variant has declined from 89%1&6% while the Omicron variant
187 has increased from 0% to 67.4% in African countigesides insufficient vaccination
188 coverage and preventive masking, high viral infegtiand antibody escape are likely
189 the key reasons for the rapidity of Omicron spré&maked orin vitro experiments, the
190 Omicron variant showed a 10-fold increase in intégt than the Beta or Delta
191 variants (Lu et al., 2021). Consistent with pregidindings that the Beta variant
192 compromised vaccine-induced neutralizing activitiafas et al., 2021b; Wang et al.,
193 2021a), similar findings have already been madeterOmicron variant with even
194 worse antibody evasion (Cameroni et al., 2021; €eld., 2021; Planas et al., 2021a;
195 Wang et al.,, 2021a). We also made similar finditigat a significant drop of
196 neutralizing activity against Omicron variant wasserved among the convalescent
197 patients and vaccine recipients (Lu et al., 202ang/et al., 2022). Since the Omicron
198 variant caused a higher rate of vaccine-breakthranigction and reinfection than the
199 Delta variant (Espenhain et al., 2021), it is wswme if such infections would lead to
200 more severe sickness or death due to immune edcaphes study, we demonstrated
201 that the Omicron breakthrough infection rapidlyréted vaccine-induced memory
202 bNAbs and T cell immune responses, which very yilentributed to protection to
203 both OP1 and OP2. Our finding is consistent witd provides a probable immune
204 mechanism underlying a recent report that most @mipatients had no signs of
205 severe COVID-19 as compared with the Delta varigspenhain et al., 2021). Future
206 studies, however, remain necessary to evaluate @msgpecific T cell immunity for
207 protection although there were no significant redums in CD4 and CD8 T cell
208 responses to the spike peptides-derived from Abfptdh Delta spike variants (Jordan
209 et al.,, 2021). Our findings, therefore, re-emphasize importance of complete
210 vaccination coverage among human populations espean developing countries.
211 Since similarly high amounts of bNAbs against bOticron and other VOCs were
212 detected in both OP1 and OP2, the rapid developofe@micron-based vaccine is a
213 reasonable strategy for the booster vaccine ofsitoiz.

214

215 The major limitation of this study is the small riben of vaccine-breakthrough
216 infections by the SARS-CoV-2 Omicron variant foumd Hong Kong. Some
217 mutations in Omicron spike are shared with preggsYOCs, such as D614G in all
218 VOCs, K417N, E484K and N501Y in Beta variant, a¥8K in Delta variant. The
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E484K mutation in Beta variant has been reportecet@sion of many NAbs under
clinical development (Wang et al.,, 2021a). Thesdations in combination with
additional mutations have led to the striking amdiyp evasion manifested by the
Omicron variant (Wang et al., 2021a). Nevertheless preliminary finding, that OP1
and OP2 could generate bNAbs against all VOCs affection, suggested that the
Omicron-targeted vaccine might boost a broad ptisie@mong existing vaccinees
against SARS-CoV-2 VOC infection. Since currentonaes showed weak effect on
Omicron, our findings also implicate that the depehent of Omicron-targeted
vaccines is urgent and beneficial to fight all eatr SARS-CoV-2 VOCs, especially
when the increased infectivity of Omicron variamastbeen preliminarily reported
vitro (Lu et al., 2021).
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STARMETHODS

RESOURCE AVAILABILITY

L ead Contact

Further information and requests for resourcesraagent should be directed to and
will be fulfilled by the Lead Contact, Zhiwei Chérchenai@hku.hk

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The study did not generate any unique datasetsd@sc

EXPERIMENTAL MODELSAND SUBJECT DETAILS

Human subjects

This study was approved by the Institutional Revigvard of the University of Hong
Kong/Hospital Authority Hong Kong West Cluster (Réd. UW 21-452). Written
informed consent was obtained from all study subjeeripheral blood mononuclear
cells (PBMCs) from healthy donors and patients visskated from fresh blood
samples using Ficoll-Paque density gradient cergation in our BSL-3 laboratory at
the same day of blood collection. The majority ofified PBMCs were used for
immune cell phenotyping whereas plasma samples sudnjected to antibody testing.
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The rest of the cells were cryopreserved in fregmiredium (Synth-a-Freeze
Cryopreservation Medium, ThermoFisher Scientifich & 17 cells/mL at —150°C.

Pseudotyped viral neutralization assay

To determine the neutralizing activity of subjeptasma, plasma was inactivated at
56°C for 30 min prior to a pseudotyped viral entrgsay. In brief, different
SARS-CoV-2 pseudotyped viruses were generated ghr@o-transfection of 293T
cells with 2 plasmids, pSARS-CoV-2 S and pNL4-3LEov_Vpr, carrying the
optimized SARS-CoV-2 S gene and a human immunddefly virus type 1
backbone, respectively. At 48 h post-transfectioral supernatant was collected and
frozen at —-150°C. Serially diluted plasma sampliesn{ 1:20 to 1:14580) were
incubated with 200 TCIE of pseudovirus at 37°C for 1 h. The plasma-virustumes
were then added into pre-seeded HEK293T-hACE2.cafter 48 h, infected cells
were lysed, and luciferase activity was measuréugusuciferase Assay System kits
(Promega) in a Victor3-1420 Multilabel Counter (eElmer). The 50% inhibitory
concentrations (I§5) of each plasma specimen were calculated to teflec
anti-SARS-CoV-2 potency.

Flow cytometry analysis

For immune cell profile analysis, PBMCs were indedafor 10 min with Fc Block
(BD Biosciences) in staining buffer (PBS contain2fp FBS) followed by staining
with the indicated antibodies for 30 min at 4°Cr Hocell responses, PBMCs were
stimulated with 2ig/mL COVID-19 Spike or NP peptide pool (15-mer dapping
by 11) or CMV pp65 peptide pool in the presenceO&ug/mL anti-CD28 and
anti-CD49d mAbs (BD Bioscience). Cells were inceaat 37°C overnight and BFA
was added at 2 h post incubation, as previouslgribesl (Li et al., 2008a After
overnight incubation, cells were washed with stainbuffer (PBS containing 2%
FBS) and stained with mAbs against surface marlk@nsintracellular staining, cells
were fixed and permeabilized with BD Cytofix/Cytope(BD Biosciences) prior to
staining with the mAbs against cytokines with Péfash buffer (BD Biosciences).
Stained cells were acquired by FACSArialll Flow Qyeter (BD Biosciences) inside
a BSL-3 laboratory and analyzed with FlowJo sofev@10.6) (BD Bioscience).
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Figurelegend

Figure 1. Cross-reactive immune responses elicited by vaccine-breakthrough
infection of the SARS-CoV-2 Omicron variant. (A) Characterization of 2 Omicron
patients and 34 BNT162b2-vaccineeB) (Neutralizing antibody titers among the
BNT162b2-vaccinees (grey) (n=34) and two Omicratepés (OP1: red and OP2: blue)
at the peak response time. Neutralizing antibodigrsi represent serum dilution
required to achieve 50% virus neutralizations)CThe numbers indicate the fold of
enhancement of Kz values relative to mean titer measured among
BNT162b2-vaccinees. C) Fold-change of mean igvalues relative to the
SARS-CoV-2 D614G strain among the BNT162b2-vacaneP) Longitudinal
neutralizing antibody titers (Kg) of OP1 and OP2 against the full panel of VOCgHea
symbol with color-coding represents an individu@®. €) The gating strategy for
SARS-CoV-2 Spike-specific B cells by flow cytomet&F488 and AF647 double
positive cells were defined as Spike-specific ceRgpresentative plots (left) and
guantified results (right) are showrk)(Phenotypes of Spike-specific B cells were
defined by using CD21 and CD27 markers (left). ¢hiart showed the proportion of
activated (AM), tissue-like memory (TLM),intermediate memory (IM) and
resting-memory (RM) B cells@) PBMCs were subjected to the ICS assay against
Spike or NP or CMV peptide pools. IFN-cells were gated on CD4 and CD8 T cells,
respectively (left). Quantified results (right) deithe percentage of IFN-cells.
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