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Abstract

The interpretation of digitized histopathology images has been transformed thanks to artificial
intelligence (Al). End-to-end Al algorithms can infer high-level features directly from raw image
data, extending the capabilities of human experts. In particular, Al can predict tumor subtypes,
genetic mutations and gene expression directly from hematoxylin and eosin (H&E) stained
pathology slides. However, existing end-to-end Al workflows are poorly standardized and not
easily adaptable to new tasks. Here, we introduce DeepMed, a Python library for predicting any
high-level attribute directly from histopathological whole slide images alone, or from images
coupled with additional meta-data (https://github.com/KatherLab/deepmed). Unlike earlier
computational pipelines, DeepMed is highly developer-friendly: its structure is modular and
separates preprocessing, training, deployment, statistics, and visualization in such a way that any
one of these processes can be altered without affecting the others. Also, DeepMed scales easily
from local use on laptop computers to multi-GPU clusters in cloud computing services and
therefore can be used for teaching, prototyping and for large-scale applications. Finally, DeepMed
is user-friendly and allows researchers to easily test multiple hypotheses in a single dataset (via
cross-validation) or in multiple datasets (via external validation). Here, we demonstrate and
document DeepMed’s abilities to predict molecular alterations, histopathological subtypes and
molecular features from routine histopathology images, using a large benchmark dataset which
we release publicly. In summary, DeepMed is a fully integrated and broadly applicable end-to-end
Al pipeline for the biomedical research community.
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Introduction

End-to-End Deep Learning in Computational Pathology

Histopathology slides stained with hematoxylin and eosin (H&E) are ubiquitously available for
virtually every single patient with a solid tumor.* H&E tissue slides are indispensable for making a
disease diagnosis. Beyond that, they are broadly used to derive qualitative and quantitative
biomarkers for translational and basic cancer research studies.? Artificial intelligence (Al),
specifically Deep Learning (DL) with convolutional neural networks (CNNs) can be used to
automatically analyze digitized whole slide images (WSIs) of H&E slides and can vyield
guantifiable information beyond the capabilities of human experts. In the last four years, multiple
research groups have shown that DL methods can predict high-level concepts such as the
presence of specific genetic mutations®**, gene expression®, whole genome duplications®, patient
survival’ and treatment response® from H&E WSI. Since the first publication in 2018°
demonstrated a robust end-to-end workflow, more than one hundred academic studies have used
similar approaches?®. However, unlike in other areas of bioinformatics, there are currently no
standard pipelines for end-to-end-DL in computational pathology. Therefore, virtually all research
teams who are active in this field have implemented their own pipeline with highly similar setups.
For example, multiple analysis pipelines have been developed between 2018 and 2021 to predict
the mutations of oncogenic driver genes from H&E WSI.3**?? The overall design of these
pipelines is largely identical: they load a WSI, tessellate it into tiles, perform data augmentation
and/or normalization, train a CNN, deploy the network on tiles from test patients and use an
aggregation function to pool the tile-level predictions on a patient level.’

Limitations of Previous Deep Learning Pipelines in Computational Pathology

Why do researchers re-implement essentially identical pipelines instead of re-using source codes
of previous publications? A key reason is that published pipelines are not modular. Individual
components of these pipelines are highly interconnected and cannot be easily changed without
disrupting the overall workflow (Figure 1A). For example, many methods have been designed to
train CNNs on a training set and test them on a designated test set.” Others have used stratified
cross-validation**® or Monte-Carlo cross-validation®* on a patient-level. Moving from one
experimental design to another requires a multitude of upstream and downstream changes,
related to data preprocessing, statistical metrics, visualization and essentially any component of
the pipeline. Also, using the pipeline for different types of input data (for example, prediction of
continuous instead of categorical values) disrupts the whole workflow from data loading, training
to visualization of the results. Finally, end-to-end DL pipelines are being run on different types of
hardware ranging from laptop computers with a single graphics processing unit (GPU) over
workstations, in-house servers to commercial cloud computing services (Figure 1B) with
Windows or Linux operating systems. Current processing pipelines cannot be easily deployed on
these different types of hardware and operating systems. We aimed to address these issues and
developed DeepMed, a modular, extensible, versatile, easily usable, powerful DL pipeline for end-
to-end computational pathology in translational and basic research.

Development, Application and Validation of the Protocol

DeepMed is a pipeline that integrates a multitude of algorithms which were developed and
evaluated in end-to-end computational pathology. Unlike previously published pipelines,
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DeepMed includes all commonly used variants of data loading, network training, statistics and
visualization in a fully modular way (Figure 1C). DeepMed can be used for a wide range of
problems including: simple classification and regression tasks on histological image data
only,*®131518 "nrediction of survival markers * (Figure 1D) and inclusion of additional non-image
in the training process in a multi-modal way?® (Figure 1E). DeepMed enables researchers to
conveniently use established methods and test dozens of hypotheses in a single cohort or
multiple patient cohorts with minimal data preprocessing. At the same time, it offers a high degree
of flexibility for developers who can use the robust backbone of DeepMed to try out new methods
without the overhead of re-implementing a full end-to-end DL pipeline. Computational pathology is
a fast-evolving field attracting much attention worldwide, evidenced by the increasing numbers of
publications.? Researchers must be able to iterate new ideas rapidly and scalably in order to keep
up with new advances. DeepMed enables computational researchers to quickly try out many
different approaches on large datasets. The modular composition of this pipeline allows
programmers to easily adapt our code to fit their workflows. Furthermore, as new technologies or
approaches become available, sections can be updated without changing the user-facing parts of
the pipeline. Here, we present a comprehensive overview of setting up, using, validating and
extending DeepMed and provide two benchmark datasets which can be used for many common
problems in end-to-end computational pathology.

Overview of the Algorithm and Workflow

From a user’s perspective, DeepMed is a convenient implementation of previously described
algorithms which have been used for several medical image processing tasks. First, the user
prepares three types of data (Figure 2A): A set of whole slide images (WSIs) in an openslide
compatible format (https://openslide.org/), a clinical (“CLINI") table which assigns patients (each
row is one patient) to targets (e.g. mutational status of gene X) and a SLIDE table which assigns
WSiIs to patients (each row is one WSI). This data format was previously defined and extensively
described in the “The Aachen Protocol for Deep Learning Histopathology”.?* Subsequently, the
user starts the tessellation and, optionally, color normalization?® of WSiIs, yielding individual image
tiles saved on the hard disk. For example, this can be achieved with QuPath® or with our own
Python-based open source tessellation and normalization tool which is available as a command-
line version (Figure 2B, https://github.com/KatherLab/preProcessing) and as a graphical user
interface (GUI, https://github.com/KatherLab/preProcessing/GUI). Finally, the user defines an
experiment in a Python script (“.py file”), as will be explained below (Figure 2C) and runs this
script from the command line. Alternatively to creating a Python script, users can use the
experimental DeepMed GUI for Microsoft Windows, which enables running DeepMed without any
direct use of Python scripts (https://github.com/KatherlLab/deepmed-gui). Without any further
interaction with the user, DeepMed will preprocess the data (Figure 2D): it will parse the CLINI
table, removing patients with missing values (which can be defined by the user as “NA”, “N/A”,
“NaN” or other placeholders). In addition, it can restrict the analysis on subgroups (patients with a
particular feature as defined in the CLINI table), it will collect the image tiles, perform train/test
splits and plan the computing jobs for distribution to multiple GPUs. Subsequently, a neural
network model (e.g., a model pretrained on Imagenet®®) is trained on the tiles to predict the
targets and will be saved for future deployment and/or directly deployed on a test set with known
or unknown status of the target (Figure 2E). During training, the deep learning neural network
learns to map a set of inputs to a set of outputs provided by the training data. In more detail,
training allows the network to optimize weights the model uses to provide accurate predictions,
i.e. predictions that exhibit a high concordance with the ground-truth. Performance of the model is
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evaluated by calculating the objective (loss) function. The typical loss function for categorical
targets (binary/Multi-class) is Cross -Entropy (Binary Cross-Entropy [BCE] / Cross-Entropy [CE])
and the common loss functions for continuous targets are Mean Square Error (MSE) or Mean
Absolute Error (MAE). By modifying the final layer of the DL neural network (one output node for
continuous targets and N output nodes for N class categorical targets) and selecting the best loss
function for optimization, it is possible to train DL algorithms for a wide range of targets. Finally,
and most importantly for the end user, a range of statistics and visualizations can be generated
(Figure 2F), including highly predictive image tiles®, receiver operating characteristic curves
(ROCs)®, whole-slide prediction heatmaps® and additional tile-level and patient-level statistics
including AUROC, F1-score, p-values and others (shown in Suppl. Table 2).

Experimental Results

Prediction of molecular features from breast cancer histology images

Here we present the results achieved for the main functionalities, summarized in Table 1, of
DeepMed in benchmark datasets which are provided under an open access license at
https://zenodo.org/record/5337009. As a benchmark task, we use prediction of pathological and
molecular features in breast cancer based on slide-level (WSl-level) labels. This problem has
been widely investigated in dedicated studies®'***% and as part of systematic pan-cancer
studies*® and represents a clearly defined weakly supervised prediction task. We applied
DeepMed to predict estrogen receptor (ER) status, histological subtype (ductal or lobular), TCGA
gene expression subtype (Basal, LumA and LumB) and the density of tumor infiltrating
lymphocytes (TILS).

We refer to the scripts to perform weakly supervised deep learning analysis with DeepMed
analysis as “experiments” and give a detailed description of how to construct DeepMed
experiments in the section “Materials, Methods and Procedure”. The first sample case experiment
“train_and_deploy_multitarget.py” (Full Script 4) runs a DeepMed analysis that applies transfer
learning with ResNet-18 on the Benchmark dataset, TCGA-BRCA-A2 (from Walter Reed National
Military Medical Center, Bethesda, MD, USA). Subsequently, the resulting neural network model
is deployed to make the predictions for three targets on the second, independent, test dataset,
TCGA-BRCA-E2 (from Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA). When
we applied this workflow and evaluated the performance of the model on the test dataset, the
classification performance was high, ranging from a patient-level AUROC of 0.656 for ER status
to 0.860 for histological subtype (Table 2). All targets reached statistical significance (p<0.05).

If an independent test dataset is not available, researchers can perform exploratory analyses with
DeepMed using patient-level cross-validation. As a demonstration of this feature, we ran
DeepMed analysis to evaluate the performance on unseen patients only on the training dataset
TCGA-BRCA-A2, which is described in “crossvalidated_train_multitarget” (Full Script 5). In this
within-cohort analysis, we found a moderate to high prediction performance for all targets, but
statistical significance was only reached for the easiest task, prediction of histological subtype
(p=0.023) (Table 3).

The receiver operating characteristic (ROC) curves that are among the output of the DeepMed
analysis plotted by true positive rate (TPR) against the false positive rate (FPR) and
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demonstrating the performance of both cross-validated within-cohort and the train-and-deploy
analyses are shown together in Figure 4. The ROC curves are created for each different class of
predicted targets. In the case of cross-validated tasks, the curves for individual folds for each
class are given in the same graph along with the calculated mean curve for the ease of
interpretation of results. Furthermore, DeepMed can produce a single output image which
includes a collage of tiles with highest prediction scores for each class (“top tiles”). In the top tiles-
collages of classes, each row stores the tiles with the highest prediction scores from the patients
with the highest prediction scores. Therefore, the size of the image is the requested number of
patients times the number of tiles, which is 4 times 4 by default while these numbers can be
changed in the experiment scripts. Figure 5 shows the top tiles predicted by the models trained
on the dataset TCGA-BRCA-A2 and deployed on the dataset TCGA-BRCA-E2. This type of
visualization enables explainability of DL models, which is useful as a plausibility check as well as
for discovery of new morphological biomarkers.?’

Another strength of the DeepMed is the subgroup training functionality, which enables users to
apply the DL analysis on a subset of patients of the original dataset. The subsets are defined by
users in the experiment script.In “train_and_deploy_subgroup_based_TMB.py” (Full Script 9), we
show how to train a model for prediction of ER status on subgroups of patients based on their
tumor mutational burde (TMB, low and high as binarized at the median). The results show that ER
status was predictable with an AUROC of 0.687 and 0.768 for TMB-high and TMB-low subgroups
respectively with a p-value smaller than 0.05 in both (Table 5).

These findings demonstrate the utility of DeepMed even in extremely small datasets of only 100
patients or less. Real-world applications of weakly supervised Deep Learning usually train and
validate the models on thousands of cases®*®*®?%%° and a continuous improvement of classifier
performance has been demonstrated for higher patient numbers.**#

Prediction of molecular features from multi-modal data sources (multi-input mode)

In clinical decision making, healthcare providers rarely use only a single data type. Usually,
different types of data, for example images and tabular data are used.** DeepMed can integrate
this multi-modal decision making by incorporating additional variables as an input to the neural
network. We repeated the analyses of the breast cancer dataset and additionally provided the
model with progesterone receptor (PR) status, HER2 status and age as input variables. The
experiment script is shown in “train_and_deploy_multitarget_multiinput.py” (Full Script 8). We
found that this addition of non-image information to the training markedly improves classifier
performance in an external validation experiment (Table 4), showing that DeepMed can leverage
tabular information to boost image-based prediction performance.

The parameterization mode of DeepMed has also been demonstrated with the multi-modality
feature in *“train_and_deploy parameterizing.py” (Full Script 10). Parameterization mode
provides users with the opportunity of running the same experiment with an unlimited number of
different parameters separately and returns the results in the same project folder with an overall
statistics report. In this experiment described in Full Script 10, a model has been trained to predict
ER status on the external dataset first using proliferation and then diagnosis age as an additional
input. The results of the parameterized experiment, given in Table 6, again showed an increase in
the model performance albeit weaker than the previous experiment and proved DeepMed’s ability
to generate strong multi-input models.
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Discussion

Limitations

DeepMed has the capacity to build deep learning networks for patient-level feature prediction
directly from histopathology slides. DeepMed is a re-implementation of algorithms that have
already been published. ****” The fundamental limitation of this method is that not all clinically
significant traits can be predicted from histopathological slides. Two recent large-scale
assessments consistently demonstrated that this method predicts approximately one-third of all
evaluated genetic changes in human cancer *° - and two thirds of all tested molecular alterations
are not predictable. However, although this approach is not ubiquitously applicable, it has been
shown to provide clinically relevant performance % and can be used to discover previously
unknown biological mechanisms 3!, Another restriction is that many non-computer-savvy
researchers find obtaining, storing, preparing, and evaluating histology image data difficult.
DeepMed intends to reduce the work required to employ deep learning in end-to-end
computational pathology by removing this load. However, some of the problems are caused by a
lack of standardization in computational pathology (for example, the widespread use of numerous
proprietary image file formats) or are inherent to the area (such as the large file size of digitized
whole slide images).

Outlook

DeepMed is a straightforward, scalable, and powerful implementation of end-to-end weakly
supervised Deep Learning in histology, as demonstrated here. New technologies, such as
multiple instance learning® and vision transformers'?, have recently been investigated for such
weakly supervised prediction challenges. Although there is limited data on these strategies' real-
world performance, some of them may become the de-facto state of the art in the future.
DeepMed's modular design makes it simple to include new technologies without affecting the user
experience, performance metrics, or any other high-level aspects of the implementation. As a
result, DeepMed could be a versatile and future-proof instrument for academic computational
pathology.
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Materials, Methods and Procedure

Software and hardware requirements and setup

DeepMed has been tested on Windows 10, Windows Server 2019 and Ubuntu 18.04. The first
step is to install Python 3.8 on the computer. We recommend using Anaconda
(https://www.anaconda.com/). The easiest way to get started is to download the latest version of
DeepMed from Github here https://github.com/KatherLab/deepmed and install it with “pip”. On
Windows, navigate to the directory containing the code, run the standard terminal or powershell
and execute:

pip install git+https://github.com/KatherLab/deepmed

Alternatively, download the codes from Github, navigate to the folder and execute:

pip install .

This command will install DeepMed and all its requirements for the current user so that it can be
called by other scripts. This will require administrative rights on Windows. Alternatively, the source
codes can be directly downloaded from the Github website. DeepMed runs on laptops with an
Nvidia graphics processing unit (GPU), on desktop computers with one or multiple Nvidia GPUs
or a computing cluster such as EC2 instances on Amazon Web Services (AWS). Throughout this
manuscript, we refer to the DeepMed release “v0.8.7" which remains available at
https://github.com/KatherLab/deepmed/releases/tag/v0.8.7.

Data requirements and example data

We have shown the functionalities of DeepMed on two benchmark datasets, TCGA-BRCA-A2 and
TCGA-BRCA-E2, that are available at https://zenodo.org/record/5337009%. These datasets are
already tiled and normalized and were constructed with all images from Walter Reed National
Military Medical Center (tissue source site code A2, 100 images) in the TCGA BRCA database
and Roswell Park Comprehensive Cancer Center (tissue source site code E2, 90 images) in the
TCGA-BRCA database respectively. Here, we use the A2 set for training and the E2 set for
testing. For all the experiments herein, the data should be formatted according to the Aachen
Protocol ?'. This requires the image tiles to be situated at the folders named with their parent
WSI's names. Also, for each cohort to be analyzed, there needs to be a clinical table and a slide
table. The clinical and slide tables for the benchmark datasets are also available as part of the
benchmark dataset. The clinical table has all clinical data that has been saved for each patient
including age, sex, cancer type, mutation status etc. Clinical tables include a column which
includes patient names and one or multiple columns of target columns (e.g. diagnosis) which
includes the label for each patient for the target (e.g. positive or negative). Existing categorical or
continuous variables in the clinical table can also be used as inputs in the multi-input models.
DeepMed expects the name of the header of the patients column to be “PATIENT” by default in
the clinical table. Slide tables, on the other hand, are essential for mapping patients and samples,
in this case whole slide image identifiers. They include patient names and corresponding WSI
names and, thereby, help DeepMed to ensure that the deep learning method has not been trained
and tested on images from the same patient. DeepMed expects the header of the patient and
slides columns to be named “PATIENT” and “FILENAME” respectively by default in the slide
table.
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Basic workflow

DeepMed allows the user to perform common analyses with very little code. In general, a short
Python script (“experiment script”) is enough to run a DeepMed workflow on a dataset which has
been prepared in a suitable format. Here, a guideline to construct experiment scripts is given.
Apart from the presented functionalities here, all parameters of DeepMed are shown in Suppl.
Table 1 and 3.

Experiment imports: The first line must be an import statement to import all the necessary
functionality. The import statement should be at the top of the experiment script:

from deepmed.experiment_imports import *

Defining the cohorts: In the DeepMed pipeline, both training and deployment is possible to
perform on cohorts of patients. Cohorts are defined with the cohort function whose parameters
are paths to the directory containing the tiles, the clinical and slide tables, all initalized.
ilesDeepMed can also merge multiple cohorts together for both training and testing using
pd.concat().

A training cohort consisting of a set of multiple cohorts one to train a neural network model on can
be initialized in the following way:

train_cohorts_df = pd.concat([
cohort(tiles_path="I:/TCGA-BRCA-BENCHMARK-DEEPMED-TILES/BLOCKS_NORM',
clini_path="TI:/TCGA-BRCA-A2_CLINI.x1lsx',
slide_path="I:/TCGA-BRCA-A2_SLIDE.x1sx'),
cohort(tiles_path="###",
clini_path="###",
slide_path="###"')])

When using Windows-like paths with backslashes, the string for the paths ought to be prefixed
with an r to prevent the backslashes from being interpreted as character escapes:
tiles _path=r'C:\tile\path'. The variable clini_path holds the string for the path to the
clinical data, while slide_path indicates the path for the slide table.

Defining the experiment structure: Next, the user has to define how to use the selected
cohorts. This is done by using TaskGetters, one of the distinguishing features of DeepMed: they
define the steps which have to be performed in an experiment. Thanks to their composable
structure, they allow the user to easily construct a wide variety of common experiment schemes
such as the training and deployment of a singular model, cross-validation, training models on
different subgroups or with different hyperparameters. Internally, the TaskGetter will generate a
series of tasks, each of which describes a step of our experiment such as preprocessing data,
training or deploying a model or evaluating a deployment result. Most of these features are
implemented in such a form that they adapt other TaskGetters: they take a TaskGetter and modify
it. A cross-validation TaskGetter for example would take another TaskGetter and invoke it multiple
times, each time with a different training and testing set. Similarly, a subgroup TaskGetter would
apply another TaskGetter to one or multiple subsets of our data set. This way, we can nest
TaskGetters to build up more and more complex experiment setups.

In the following, we will construct a TaskGetter for a simple, single-target training:

10


https://doi.org/10.1101/2021.12.19.473344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.19.473344; this version posted December 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

simple_train_get = get.SimpleRun(
target_label="ER Status By IHC',
train_cohorts_df=train_cohorts_df,
max_train_tile_num=500,
na_values=[ "inconclusive', 'NA', 'Equivocal'])

e get.SimpleRun describes how to use the data. In this case, we want to train a simple,
single-target model. All the following lines describe how this training is to be performed.

e target_label="ER Status By IHC' dictates the label that the user selects to predict
within the model. The clinical table is expected to have a column with that name.

e +train_cohorts_df=train_cohorts_df are the cohorts to be used for training.

e max_train_tile num=500 states how many of a patient’s tiles to sample randomly in the
training dataset. Often, increasing the number of tiles for each patient has only a minor
effect on the training result. Thus, sampling from a patient’s tiles can significantly speed up
training without hugely influencing our results.

o Alternatively, to resample the training tiles used from each slide in each epoch, the
option resample_each_epoch.

® na_values=["inconclusive', 'NA', 'Equivocal'] allows the user to define values
which indicate a non-informational training sample. Patients with these indicated labels will
be excluded from training.

Training the model: For the training to be able to start, the function do_experiment() needs to
be called in the main script.

if __name__ == '__main__ ":
do_experiment(
project_dir="I:/results_TCGA_BRCA_ERStatus_SimpleTrain/',
get=simple_train_get)

® project_dir="I:/results_TCGA_BRCA_ERStatus_SimpleTrain/' defines the location for
saving the training results.
e get=simple train_get calls the previously constructed TaskGetter.

Deployment (Inference): Deployment of the neural network model is imperative to ascertain its
performance whenever a test dataset is available. In DeepMed, the deployment procedure is
quite similar to that of training. After defining the test cohorts, a TaskGetter is constructed with a
parameter test_cohorts_df instead of train_cohorts_df:

from deepmed.experiment_imports import *

test_cohorts_df = \
cohort(tiles path="I:/TCGA-BRCA-TESTSET-DEEPMED-TILES/BLOCKS NORM',
clini_path="I:/TCGA-BRCA-E2_CLINI.x1sx",
slide_path="I:/TCGA-BRCA-E2_SLIDE.x1sx')

Next, the user has to specify how and from where to load the models to be deployed. Usually, the
train parameter inside the TaskGetter is used to further define the modalities of a network’s
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training. In the case of deployment, a pretrained model is loaded instead of training a model from
scratch. The loaded model given to the simple TaskGetter is then deployed at the final step:

project_dir="I:/results_TCGA_BRCA_ERStatus_SimpleDeploy/'
training project_dir = 'I:/results_TCGA_BRCA_ERStatus_SimpleTrain/'

load = Load(
project_dir=project_dir,
training project_dir=training_project_dir)

simple_deploy_get = get.SimpleRun(
target_label="ER Status By IHC',
test_cohorts_df=test_cohorts_df,
max_test_tile_num=500,
na_values=[ 'inconclusive', 'NA', 'Equivocal'],
train=1oad)
if _name__ == '__main__ ":
do_experiment(
project_dir=project_dir,
get=simple_deploy_get)

Training and Deployment in a single script: With DeepMed, the training and a consecutive
deployment are possible to run in the same experiment script. An example for running a training
and deployment analysis is given in Full Script 1.

from deepmed.experiment_imports import *

train_cohorts_df = \
cohort(tiles_path="I:/TCGA-BRCA-BENCHMARK-DEEPMED-TILES/BLOCKS_NORM',
clini_path="TI:/TCGA-BRCA-A2_CLINI.x1lsx',
slide_path="I:/TCGA-BRCA-A2_SLIDE.x1sx")
test_cohorts_df = \
cohort(tiles path="I:/TCGA-BRCA-TESTSET-DEEPMED-TILES/BLOCKS NORM',
clini_path="I:/TCGA-BRCA-E2_CLINI.x1sx",
slide path="I:/TCGA-BRCA-E2_SLIDE.x1sx')

project_dir="I:/results_TCGA_BRCA_ERStatus_SimpleDeploy/'

simple_train_get = get.SimpleRun(
target_label="ER Status By IHC',
train_cohorts_df=train_cohorts,
test_cohorts_df=test_cohorts_df,
max_train_tile_num=500,
train=Train(batch_size=64,

max_epochs=32),

na_values=[ "inconclusive', 'NA', 'Equivocal'])

if __name__ == '__main__ ":
do_experiment(
project_dir=project_dir,
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get=simple_train_get)

Full Script 1: simple_train_and_deploy.py: The experiment script for a simple training.

In Full Script 1, it is shown that the train parameter inside the simple TaskGetter is assigned with
the Train function which has the parameters batch_size and max_epochs. Train is a DeepMed
function which describes the details of the single model training. It is an optional function because
the used parameters already have the default values, as listed in Supplementary Table 2 along
with all other parameters of DeepMed.

Defining evaluation Metrics: While the above samples show how to train the model and deploy
on a test set, there will not be any statistics or visual output without defining the metrics alongside
with the basic parameters. In order to assess the performance of the model on the test set, the
parameter evaluators which hold a Python list must be given to the run adapter. For instance:

evaluators = [auroc, count]

These metrics will calculate the area under the receiver operating characteristic curve (AUROC)
and the count of testing samples. However, they are calculated on a tile basis. It is often
advantageous to calculate metrics on a per-patient basis instead. This can be done with the
Grouped adapter:

evaluators += [Grouped(auroc, by="PATIENT'), Grouped(count, by='PATIENT'), \
Grouped(p_value, by="PATIENT')]

This will modify the AUROC and count metrics in such a way that they are calculated on a per-
patient basis instead of a per-tile basis, meaning that instead of the overall tile count per class,
the number of patients per class will be calculated. Additionally, p value on a per-patient basis is
added into the evaluation metrics, which is calculated by applying a two-tailed t test for
differences in the metrics of target classes. Measuring on a per-patient basis is the default
behavior of the Group adapter; thus, by option can be skipped when grouping is desired on a per-
patient basis. The possible evaluation metrics are shown in Suppl. Table 2.

If the deployment script is extended to make use of these evaluators, re-running the script should
yield a file called stats.csv that contains the requested metrics in the project output directory.
The whole experiment script extended with evaluator metrics is given below:

from deepmed.experiment_imports import *

train_cohorts_df = \
cohort(tiles_path="I:/TCGA-BRCA-BENCHMARK-DEEPMED-TILES/BLOCKS NORM',
clini_path="I:/TCGA-BRCA-A2_CLINI.x1sx",
slide path='I:/TCGA-BRCA-A2_SLIDE.x1lsx")
test_cohorts_df = \
cohort(tiles path="I:/TCGA-BRCA-TESTSET-DEEPMED-TILES/BLOCKS NORM',
clini_path="I:/TCGA-BRCA-E2_CLINI.x1lsx',
slide path="I:/TCGA-BRCA-E2_SLIDE.x1sx')

project_dir="I:/results_TCGA_BRCA_ERStatus_SimpleDeploy/'
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evaluators = [auroc, count, p_value, Grouped(auroc, by='PATIENT'),
Grouped(count, by="PATIENT'), Grouped(p_value, by='PATIENT")]

simple_train_get = get.SimpleRun(
target_label="ER Status By IHC',
train_cohorts_df=train_cohorts,
test_cohorts_df=test_cohorts_df,
max_test_tile_num=500,
evaluators=evaluators,
na_values=[ "inconclusive', 'NA', 'Equivocal'])

if __name__ == '__main__ ":
do_experiment(
project_dir=project_dir,
get=simple_train_get,
train=1oad)

Full Script 2: simple_train_and_deploy_w_evaluators.py: The experiment script for a
simple training and deployment that has been extended with evaluator metrics.

The presented experiment here sets an example for the simple run mode in DeepMed. In other
words, the training and deployment tasks with all parameters defined were only on the class-level
prediction. Besides simple run, DeepMed has several training modes that can be used in any
desired combination and order depending on the user's needs: multi-target, cross-validation,
subgroup and parameterize. In the following sections, we will introduce the remaining training
modes and the data types and parameters that can be used for all training modes.

Multi-target training: DeepMed can also run for more than one target with a possibility of using
multiple GPUs in the process. A sample script to construct an experiment for a multi-target
training is given below with the step by step explanations.

from deepmed.experiment_imports import *

train_cohorts_df = \
cohort(tiles_path="I:/TCGA-BRCA-BENCHMARK-DEEPMED-TILES/BLOCKS_NORM',
clini_path="I:/TCGA-BRCA-A2_CLINI.x1lsx',
slide path="'I:/TCGA-BRCA-A2_SLIDE.xIsx')

simple_train_get = get.SimpleRun(
train_cohorts_df=train_cohorts_df,
max_train_tile_num=500,
na_values=[ 'inconclusive', 'NA', 'Equivocal'])

The script starts with a simple TaskGetter as in the previous examples except that the
target_label is not specified this time around. The reason for this is to make sure not to restrict the
run’s target label, but automatically repeat the training with different target labels. To achieve this,
a run adapter is used, which takes another TaskGetter and transforms it instead of generating
runs by itself. In this example, a single target TaskGetter will be given and adapted into a multi-
target one. How to construct such a run adapter is shown here:

14


https://doi.org/10.1101/2021.12.19.473344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.19.473344; this version posted December 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

multi_train_get = get.MultiTarget(
simple_train_get,
target_labels=[ "ER Status By IHC','TCGA Subtype’, \
'Neoplasm Histologic Type Name', 'TIL Regional Fraction'])

if __name__ == '__main__':
do_experiment(
project_dir="I:/results_TCGA_BRCA_SimpleTrain_MultiTarget/',
get=multi_train_get)

The relative deployment script must be modified for the multiple target data. This is done again
with the help of a run adapter that takes the simple deploy TaskGetter as an argument. The
deployment script again defines the test cohort and the project directory that is going to store the
results. Assuming the model to be deployed is the model that has been trained in the previous
example, the training project directory is defined with the output directory of the previously run
project that contains the trained model for multiple targets and assigned into the load variable.

from deepmed.experiment_imports import *

test_cohorts_df = \
cohort(tiles_path="I:/TCGA-BRCA-TESTSET-DEEPMED-TILES/BLOCKS_NORM',
clini_path="I:/TCGA-BRCA-E2_CLINI.x1lsx',
slide_path="I:/TCGA-BRCA-E2_SLIDE.x1sx')
project_dir="I:/results_TCGA_BRCA_SimpleDeploy MultiTarget/'
training_project_dir=r'I:/results_TCGA_BRCA_SimpleTrain_MultiTarget/'
load = Load(
project_dir=project_dir,
training project_dir=training_project_dir)

The deploy TaskGetter is able to load the trained model when the 1oad variable is passed to the
train parameter and serves as a template for DeepMed which declares how to perform
deployment analysis.

simple_deploy_get = get.SimpleRun(
test_cohorts_df=test cohorts_df,
max_train_tile num=500,
na_values=[ 'inconclusive', 'NA', 'Equivocal'],
train=1load,
evaluators=[TopTiles(), Grouped(auroc), Grouped(Roc()), \
Grouped(count), Grouped(p_value)])

The multi-target TaskGetter takes the simple deploy TaskGetter as an argument, and runs it with
its additional functionalities, mainly the multi-target initialization with the parameter
target_labels. In Full Script 3, multiple targets are set to ER status, TCGA subtype, neoplasm
histologic type and TIL regional fraction. The resulting output will be four subdirectories inside the
project directory for each target saving the simple run’s predictions, the metrics defined in the
simple evaluators and a stats.csv file including the results. The AggregateStats function in the
multi_target_evaluators simply concatenates all stats.csv files within the subdirectories.
The label option is used to give a name to the header of the aggregated column in stats.csv.
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Therefore, AggregateStats can only be used on a higher level TaskGetter than a simple
TaskGetter. The label parameter writes a user-defined header into the newly created column
which is the target names in the concatenated table. The experiment is run when the project
directory and the final Task getter is defined in the do_experiment function.

multi deploy get = get.MultiTarget(
simple_deploy_get,
target_labels=[ "ER Status By IHC','TCGA Subtype’, \
'Neoplasm Histologic Type Name', 'TIL Regional Fraction'],
multi_target_evaluators=[AggregateStats(label="target')])

if __name__ == '__main__ ":
do_experiment(
project_dir=project_dir,
get=multi_deploy_get)

The whole script to deploy a multi-target model is given in Full Script 3.

from deepmed.experiment_imports import *

test _cohorts df =\
cohort(tiles_path="I:/TCGA-BRCA-TESTSET-DEEPMED-TILES/BLOCKS_NORM',
clini_path="I:/TCGA-BRCA-E2_CLINI.x1sx",
slide_path="I:/TCGA-BRCA-E2_ SLIDE.x1sx')

project_dir="I:/results_TCGA BRCA_SimpleDeploy MultiTarget/'
training_project_dir=r'I:/results_TCGA BRCA_SimpleTrain_MultiTarget/®
load = Load(

project_dir=project_dir,

training_project_dir=training project_dir)

simple_deploy_get = get.SimpleRun(
test _cohorts_df=test cohorts_df,
max_train_tile num=500,
na_values=["inconclusive', 'NA', 'Equivocal'],
train=1load,
evaluators=[TopTiles(), Grouped(auroc), Grouped(Roc()), \
Grouped(count), Grouped(p_value)])

multi_deploy_get = get.MultiTarget(
simple_deploy_get,
target labels=['ER Status By IHC','TCGA Subtype’, \
"Neoplasm Histologic Type Name', 'TIL Regional Fraction'],
multi_target_evaluators=[AggregateStats(label="target')])
if _name__ == '__main__":
do_experiment(

16


https://doi.org/10.1101/2021.12.19.473344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.19.473344; this version posted December 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

project_dir=project_dir,
get=multi_deploy_get)

Full Script 3: deploy_multitarget.py: The sample experiment script to deploy the trained
multi-target model on the benchmark datasets.

It should be noted that it is possible to write a single script to train a model on a training cohort
and deploy it on a test cohort in any other configuration of experiment. In this case, to perform the
multi-target analysis that has been discussed so far, the user must modify the experiment script in
a way that they define training and test cohort and instead of defining a load variable, simply pass
the training test cohort to the simple deploy TaskGetter. This is shown in Full Script 4.

from deepmed.experiment_imports import *

train_cohorts_df = \
cohort(tiles_path="I:/TCGA-BRCA-BENCHMARK-DEEPMED-TILES/BLOCKS_NORM',
clini_path="I:/TCGA-BRCA-A2_CLINI.x1sx",
slide path='I:/TCGA-BRCA-A2_SLIDE.x1lsx")

test_cohorts_df = \
cohort(tiles_path="I:/TCGA-BRCA-TESTSET-DEEPMED-TILES/BLOCKS_NORM',
clini_path="TI:/TCGA-BRCA-E2_CLINI.x1lsx',
slide_path="I:/TCGA-BRCA-E2_SLIDE.x1sx"')

project_dir="I:/results_TCGA_BRCA_SimpleDeploy MultiTarget/'

simple_deploy get = get.SimpleRun(
test_cohorts_df=test_cohorts_df,
max_train_tile_num=500,
na_values=[ 'inconclusive', 'NA', 'Equivocal'],
evaluators=[TopTiles(), Grouped(auroc), Grouped(Roc()), \
Grouped(count), Grouped(p_value)])

multi deploy get = get.MultiTarget(
simple_deploy_get,
target_labels=[ "ER Status By IHC','TCGA Subtype’, \
'"Neoplasm Histologic Type Name', 'TIL Regional Fraction'],
multi_target_evaluators=[AggregateStats(label="target')])

if __name__ == '_ _main__ ":
do_experiment(
project_dir=project_dir,
get=multi_deploy_get)

Full Script 4: train_and_deploy_multitarget.py: The sample experiment script which
includes command to run training and deployment on the benchmark datasets for multiple
targets.

Cross-validation for within-cohort experiments

In addition to simple training, users have the option to perform cross-validation analyses where
the training data has been randomly split into training and test datasets for a desired number of
17
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times (number of folds), and a model is being trained on each of the different training datasets
and evaluated on the test dataset. Cross-validation, in this way, provides users a better overview
of performance of the models by having several unseen data by each fold’s models for their
evaluation.

A whole sample experiment script to perform a DeepMed analysis with cross-validation is given
below in the Full Script 5.

from deepmed.experiment_imports import *

cohorts_df = cohort(tiles_path="I:/TCGA-BRCA-DX/BLOCKS_NORM',
clini_path="TI:/TCGA-BRCA-A2_CLINI.x1lsx',
slide_path="I:/TCGA-BRCA-A2_SLIDE.xlsx")

project_dir="I:/results_TCGA BRCA ER Crossval/'

simple_train_get = get.SimpleRun(
na_values=[ "inconclusive', 'NA', 'Equivocal'],
evaluators=[Grouped(auroc), Grouped(p_value), Grouped(count)])

crossval_get = get.Crossval(
simple_train_get,
cohorts_df=cohorts_df,
target_label="ER Status By IHC',
crossval_evaluators=[AggregateStats(label="fold"'), TopTiles(), Grouped(Roc())],
folds=3)

if __name__ == '__main__':
do_experiment(
project_dir=project_dir,
get=crossval get)
Full Script 5: crossvalidated_train.py: The sample experiment script to run within cohort

cross-validation analysis to predict ER status only on the benchmark dataset TCGA-BRCA-
A2.

In order to run a cross-validated deep learning analysis with DeepMed for a single target, an adapter
called Crossval needs to be called. Crossval takes the target label and performs cross validation for it.
Once the cross-validation steps have been completed, it applies additional evaluators. These
evaluators can then operate on data from all folds. While the evaluators in the single TaskGetter
would report AUROC, p value and the patient counts for each model, the evaluators defined in the
cross-validation TaskGetter would aggregate these statistics for each target over the different
folds and yield top tiles which influenced the model’s decisions at most and the ROC curves on a
patient- and fold- level.

When there is more than one target, as seen in the benchmark datasets used here, running a
cross validation analysis with DeepMed only requires an additional run adapter for multi-target
training. This multi-target run adapter executes the cross-validation task getter multiple times,
each time with a different target label and output directory, allowing for additional evaluation over
all the targets’ cross-validation results. A whole experiment script with the training modes, cross-
validation and multi-target, is given in Full Script 6.
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from deepmed.experiment_imports import *

cohorts_df = cohort(tiles_path="I:/TCGA-BRCA-DX/BLOCKS_NORM',
clini_path="TI:/TCGA-BRCA-A2_CLINI.x1lsx',
slide_path="I:/TCGA-BRCA-A2_SLIDE.xlsx")

project_dir="I:/results_TCGA BRCA MultiTarget_Crossval/'

simple_train_get = get.SimpleRun(
na_values=[ "inconclusive', 'NA', 'Equivocal']),
evaluators=[Grouped(auroc), Grouped(p_value), Grouped(count)])

crossval_get = get.Crossval(
simple_train_get,
cohorts_df=cohorts_df,
crossval _evaluators=[AggregateStats(label="fold"), TopTiles(), Grouped(Roc())],
folds=3)

multi_target_get=get.MultiTarget(
crossval_get,
target_labels=[ "ER Status By IHC', 'TCGA Subtype', \
'Neoplasm Histologic Type Name', 'TIL Regional Fraction'],
multi target_evaluators=[AggregateStats(label="target’, over=['fold'])])

if _name__ == '__main__ ":
do_experiment(
project_dir=project_dir,
get=multi_ target get)

Full Script 6: crossvalidated_train_multitarget.py: The sample experiment script to run
within-cohort cross-validation analysis on the benchmark dataset TCGA-BRCA-A2.

The Full Script 6 introduces another novelty that is the over option in the AggregateStats.
Without the over option, results from all classes of each target will be reported for all folds in the
statistics file. Thus, the over option commands the pipeline to aggregate over the desired column,
in this case the folds. It results in a summary of the results including the mean auroc, total patient
counts, and p values for the calculations.

Categorical and continuous targets

In the above samples, the training has been applied to both categorical and continuous data.
Categorical targets were “ER Status By IHC” (binary categorical) and “TCGA Subtype”
(multiclass categorical). This means the data within the target groups are always a finite number
of non-overlapping classes, referring to “Positive” and “Negative” for “ER Status By IHC” and
“Basal”, “Lum A” and “Lum B” for “TCGA Subtype”. In addition to categorical data, DeepMed is
also able to process and train continuous data where the targets can take any number in an
infinite range.
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There are two ways that DeepMed handles continuous targets, such as “TMB (nonsynonymous)”
(tumor mutation burden): discretization and regression. If the parameter n_bins is initialized with
a value greater than 0 when the experiment script is handed over to the pipeline, the continuous
values are transformed into discrete values by putting them in a desired number of intervals or
bins whose borders or cut-off points have been determined by the discretization algorithm. The
bins are then subjected to classification in the same way as categorical targets are when being
processed. The number of bins is 2 by default, meaning that if the n_bins parameter is ignored,
the continuous targets are going to be subjected to the binarized classification. If the n_bins
parameter is set to 0, DeepMed will perform a regression task. To evaluate the performance of
such tasks, the coefficient of determination that can be called with r2 in the evaluators parameter
is available in the metrics. Full Script 7 describes an example script to run a regression analysis
with a 3-fold cross-validation that is targeting “total number of mutations”.

from deepmed.experiment_imports import *

cohorts_df=cohort(tiles_path="I:/TCGA-BRCA-DX/BLOCKS_NORM',
clini_path="I:/TCGA-BRCA-A2_CLINI.x1sx",
slide path="I:/TCGA-BRCA-A2_SLIDE.x1sx')

project_dir="I:/TCGA_BRCA_A2_TMB_Regression_Crossval'

simple_train_get = get.SimpleRun(
na_values=[ 'inconclusive', 'NA', 'Equivocal'],
evaluators=[Grouped(r2)])

crossval_get = get.Crossval(
simple_train_get,
cohorts_df=cohorts_df,
target_label="TMB (nonsynonymous)',
folds=3,
n_bins=None,
crossval_evaluators=[AggregateStats(label="fold", over=['fold'])])
if __name__ == '__main__':
do_experiment(
project_dir=project_dir,
get=crossval get)

Full Script 7: crossvalidated_regression_train_TMB.py: The sample experiment script to
run within cohort cross-validation regression analysis on the benchmark dataset TCGA-
BRCA-A2.

Multi-Modality

DeepMed can also perform analysis on data from multiple inputs. These inputs can be of different
modalities, for example image or tabular data, clinical or genetic information. In DeepMed, it is
possible to provide both continuous and categorical variables to the model as additional inputs.
Multiple studies®3* have shown that the performance of Deep Learning models can improve by
adding such additional pieces of information to the model. The general practice of combining the
modalities is to have a high level embedding of individual modalities is tensor concatenation. In
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DeepMed, the image input (tles of whole-slide images) is run through an ImageNet-trained
ResNet-18, and the resulting feature vector is concatenated with the chosen tabular data
normalized by computing the standard score. The new concatenated network is then given into
two fully connected layers and connected to the output layers where predictions are made.

The Full Script 8 shows a whole experiment script to run a multi-modal DeepMed analysis. The
train parameter within a SimpleRun TaskGetter is assigned with the multi_input.Train
function in order to include the desired tabular information into the training along with image data.
The tabular information to be used in the multi-modal training must be present in the clinical table.
Both categorical and continuous values can be used as additional inputs by being given to the
multi-input training function with the parameters cats and conts respectively. It is important to
note that the names of the additional tabular inputs must always be given inside a Python list to
the cats and conts options.

The Full Script 8 utilizes the multi-modal feature where HER2 status and PR status provide
categorical inputs and patient age is provided as a continuous input while training on TCGA-
BRCA-A2 dataset and deploying the model on the TCGA-BRCA-E2 dataset in a multi-target
mode.

from deepmed.experiment_imports import *

train_cohorts_df = \
cohort(tiles_path="I:/TCGA-BRCA-BENCHMARK-DEEPMED-TILES/BLOCKS_NORM',
clini_path="I:/TCGA-BRCA-A2_CLINI.x1sx",
slide path='I:/TCGA-BRCA-A2_SLIDE.x1lsx")

test_cohorts_df = \
cohort(tiles_path="I:/TCGA-BRCA-TESTSET-DEEPMED-TILES/BLOCKS_NORM',
clini_path="TI:/TCGA-BRCA-E2_CLINI.x1lsx',
slide path="I:/TCGA-BRCA-E2_SLIDE.x1lsx")
project_dir="I:/results_TCGA_BRCA_ERStatus_SimpleDeploy MultiInput/'

simple_multi_input_deploy get = get.SimpleRun(
train_cohorts_df=train_cohorts_df,
test_cohorts_df=test_cohorts_df,
na_values=[ '"NA", 'Not Available’, 'Equivocal'],
train = multi_input.Train(cats=[ '"HER2 fish status','PR status by ihc'], \
conts=[ 'Diagnosis Age']),
evaluators=[Grouped(auroc), Grouped(p_value), Grouped(count)])

multi_target_get = get.MultiTarget(
simple_multi_input_deploy get,
target_labels=[ "ER Status By IHC', 'Neoplasm Histologic Type Name', \
'"TCGA Subtype', 'TIL Regional Fraction'],
multi_target_evaluators=[AggregateStats(label="target')])

if _name__ == '__main__ ":
do_experiment(
project_dir=project_dir,
get=multi_target_get)
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Full Script 8: train_and_deploy_multitarget_multiinput.py: The sample experiment script
which includes command to run training and deployment with an additional tabular input
on the benchmark datasets for multiple targets.

Subgroup Training

One of the most important training modes of DeepMed is subgroup training which allows users to
train models for subsets of the original dataset based on user-defined characteristics of the data.
This enables us to train different models to analyze subsets of data and compare results. The
subgroup training obliges users to create a Python function that describes how to divide the
dataset into subsets. Here, we will show how to define a function that would retrieve the
subgroups based on TMB values from the clinical table where patients with the TMB value lower
than 1.0333 constitute the TMB-low subgroup, and patients a TMB value greater than 1.0333 are
analyzed in the TMB-high subgroup. The cut-off value 1.0333, which divides the values under
TMB column into 2 bins after dropping NA values, is determined with the KBinsDiscretizer
function from the preprocessing module of the Python package scikit-learn with a quantile
strategy.

def subgrouper(row: pd.Series):
if row['TMB (nonsynonymous)'] > 1.0333:
return 'TMB_high_ ER®
elif row['TMB (nonsynonymous)'] <= 1.0333:
return 'TMB_low_ ER'
else:
return None

DeepMed takes an input with the data type pd.Series because, in the backend of DeepMed, the
defined operations described in this function will be applied on each row, which is a pandas (a
Python module for data analysis) Series, of the pandas DataFrame.

The Full Script 9 presents a whole DeepMed experiment script to run a simple train-and-deploy
experiment to predict the ER status on TMB-low and TMB-high patients separately. Run adapter
to pass the simple TaskGetter, in this case, is Subgroup TaskGetter. The target label again must
be inside the new adapter and the created function’s name must be assigned to the subgrouper
parameter. The assigned subsets of patients are then used as inputs to train respective models
by the subgroup TaskGetter.

from deepmed.experiment_imports import *

train_cohorts_df = \
cohort(tiles_path="I:/TCGA-BRCA-BENCHMARK-DEEPMED-TILES/BLOCKS NORM',
clini_path="I:/TCGA-BRCA-A2_CLINI.x1sx",
slide path="I:/TCGA-BRCA-A2_SLIDE.x1sx')

test_cohorts_df = \
cohort(tiles path="I:/TCGA-BRCA-TESTSET-DEEPMED-TILES/BLOCKS NORM',
clini_path="TI:/TCGA-BRCA-E2_CLINI.x1lsx',
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slide_path="I:/TCGA-BRCA-E2_SLIDE.x1lsx")
project_dir="I:/results_TCGA_BRCA_ERStatus_SimpleDeploy_Subgroup_TMBHighLow/'

def subgrouper(row: pd.Series):
if row['TMB (nonsynonymous)'] > 1.0333:
return 'TMB_high ER’
elif row['TMB (nonsynonymous)'] <= 1.0333:
return 'TMB_low_ER'
else:
return None

simple_get = get.SimpleRun(
na_values=[ "inconclusive', 'NA', 'Equivocal'],
evaluators=[Grouped(auroc), Grouped(count), Grouped(p_value)],
min_support=>5)

subgroup_get = get.Subgroup(
simple_get,
train_cohorts_df=train_cohorts_df,
test_cohorts_df=test_cohorts_df,
target_label="ER Status By IHC',
subgrouper=subgrouper,
subgroup_evaluators=[AggregateStats()])

if _name__ == '__main__ ":
do_experiment(
project_dir=project_dir,
get=subgroup_get)
Full Script 9: train_and_deploy_subgroup_based TMB.py: The sample experiment script

which runs training and deployment on the subgroups of the benchmark datasets based
on their TMB value in order to predict ER status.

The optional parameter min_support, that was 10 by default, is set to 2 in Full Script 9.
min_support parameter dictates the minimum required number of inputs for each target during
training. Since there are only 7 samples labeled with negative ER status in the TMB-low
subgroup, unless the min_support was not lessened, this class is ignored.

Parameterizing

DeepMed provides users with the opportunity to create and run experiments with different
parameters from the same script. This process, called parameterizing, allows the user to run
experiments with an unlimited number and combinations of parameters consecutively, thereby
saving time and returning aggregated statistics in an orderly fashion.

A parameterization assigns values to arguments which can be given to a TaskGetter. Similarly to
the Crossval and MultiTarget adapters, the Parameterize adapter allows us to repeatedly invoke a
TaskGetter with different parameterizations. To do so, we supply it with a dictionary which maps
the names of the result directories to their respective parameterizations.
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In Full Script 10, we use parameterization to compare the effects of different auxiliary variables
when training multi-modal models. The script will train and evaluate two models, one combining
the image data with proliferation status and one combining image data with patient age at
diagnosis. The results of these models will be saved in the folders ‘with Proliferation’ and ‘with
Diagnosis Age’ respectively. After training both models, it will aggregate these statistics for their
results into a single file.

from deepmed.experiment_imports import *

train_cohorts_df = \
cohort(tiles_path="I:/TCGA-BRCA-BENCHMARK-DEEPMED-TILES/BLOCKS NORM',
clini_path="I:/TCGA-BRCA-A2_CLINI.x1sx",
slide path="I:/TCGA-BRCA-A2_SLIDE.x1sx')

test_cohorts_df = \
cohort(tiles path="I:/TCGA-BRCA-TESTSET-DEEPMED-TILES/BLOCKS NORM',
clini_path="I:/TCGA-BRCA-E2_CLINI.x1sx",
slide_path="I:/TCGA-BRCA-E2_SLIDE.x1sx"')

project_dir= \
'I:/results_TCGA BRCA_ERStatus_SimpleDeploy Parameterize/’

simple_train_deploy_get = get.SimpleRun(
train_cohorts_df=train_cohorts_df,
test_cohorts_df=test_cohorts_df,
target_label="ER Status By IHC',
na_values=[ "inconclusive', 'NA', 'Equivocal'],
evaluators=[Grouped(auroc), Grouped(p_value), Grouped(count)])

parameterize get = get.Parameterize(
simple_train_deploy_get,
parameterize evaluators=[AggregateStats(label="add_input')],
parameterizations={
'with Proliferation’:
{'train': multi_input.Train(conts=[ 'Proliferation’])},
'with Diagnosis Age':
{'train': multi_input.Train(conts=[ 'Diagnosis Age’'])}})
if __name__ == '__main__ ":
do_experiment(
project_dir=project_dir,
get=parameterize_get)

Full Script 10: train_and_deploy_parameterizing.py: The sample experiment script which
runs training and deployment in a parameterized way using the benchmark datasets.
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Figure 1: Overview of the DeepMed concepts. (A) The main components of a typical deep
learning pipeline for biomedical image analysis, (B) The computer systems that run deep learning
pipelines, (C) The modular structure of DeepMed that serves different functions to conduct an
end-to-end bioimage analysis, (D) The network representation of a single model’s training on a
bag of image tiles in the simple run mode, Abbreviations: f_agg = aggregation function. (E) The
network representation of a single model’s training with multiple inputs on the simple run mode.
Only a single tile and a single set of features is visually shown, although in reality, the model
processes a bag of image tiles and a corresponding set of input features.
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Figure 2: Overview of the DeepMed workflows from a user perspective. (A) The data to be
curated prior to preprocessing, (B) The recommended preprocessing steps for WSIs which
include tessellation and normalization, (C) The main parameters to be initialized in the experiment
script or GUI of DeepMed, (D) The data preprocessing steps of DeepMed before the neural
network training, (E) A rough framework of DeepMed that includes training deep learning models
with desired modes , evaluating them and pooling the statistics with an aggregation function on
per-patient or -tile basis, (F) Example evaluation metrics provided by DeepMed. Abbreviations:
WSiIs: whole slide images, f_agg = aggregation function.
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Figure 4: The ROC curves of showing the classification performance of the model on the
negative class of ER Status (A) within cohort (TCGA-BRCA-A2) and (C) on the test dataset
(TCGA-BRCA-E2), the positive class of the target ER status (B) within cohort and (D) on the test
dataset; infiltrating ductal carcinoma class of histologic type name of neoplasm (E) within cohort
and (G) on the test dataset; infiltrating lobular carcinoma class of histologic type name of
neoplasm (F) within cohort and (H) on the test dataset; the class [1.461, inf] of the TIL regional
fraction target (in this case, the range [1.461, inf] refers to the higher values in the continuous
variable of TIL regional fraction, which was binarized at the median, 1.461) (I) within cohort and
(K) on the test dataset; the class [-inf,1.461] of the TIL regional fraction target (I) within cohort and
(K) on the test dataset; the TCGA subtype basal (M) within cohort and (O) on the test dataset; the
TCGA subtype luminal A (N) within cohort and (P) on the test dataset; the TCGA subtype luminal
B (Q) within cohort and (R) on the test dataset. Abbreviations: ER = estrogen receptor, TIL =
tumor-infiltrating lymphocytes.

29


https://doi.org/10.1101/2021.12.19.473344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.19.473344; this version posted December 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ER negative ER positive
C
ductal iobular
E
TIL high TIL low

i __ %1 S Y _ = B
Figure 5: The top predicted tiles of the top predicted patients by the models trained on
TCGA-BRCA-A2 and deployed on TCGA-BRCA-E2 for (A) the negative class and (B) the
positive class of ER status; (C) infiltrating ductal carcinoma and (D) infiltrating lobular carcinoma
of histologic type name of neoplasm ; (E) high TILs (the class [1.461,inf]) and (F) low TILs (the
class [-inf,1.461]) of the TIL regional fraction target (where the classes are artificially named upon
discretizing them with the cutoff point 1.461); (G) the TCGA subtype basal, (H) the TCGA subtype
luminal A (I) the TCGA subtype luminal B. These figures are generated by DeepMed with the
default parameters: number of patients set to 4 and number of tiles set to 4, meaning that each
row represents a patient that has a highest overall score while the tiles in the columns are the tiles

with the highest scores from the respective patient.
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Experiment

Preprocessing

Model

Evaluation

1. Within-cohort k-fold
cross validation

2.Split a cohort into train
and test cohort

3.Train on cohort A,
deploy on cohort B

4.Parameterization
allowing users to run
consecutive experiments
with different parameters

1.Loading tiles and
balancing classes by
undersampling

2.Resize tiles to match
network input size

3.Default transforms eg.

data augmentations as
rotation and flip

1.Classification networks
to predict categories

2.Regression networks to
predict continuous values

3.Multi-input networks
(integrate images and
tabular data)

1. AUROC, F1-Score and
r2

2. Receiver operating
curve (ROC)

3. Heatmap visualization
on whole slide level

4. Input tiles with the
highest prediction score
visualized as a montage

5. P-values for group
comparisons

Table 1: Key modules for all four branches of DeepMed.
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Target Class AUROC Patient count p value

ER Status By IHC Positive 0.656 68 3.04E-02
ER Status By [HC Negative 0.656 22 3.04E-02
Histologic Type Name Infiltrating Ductal 0.860 74 8.00E-06
Histologic Type Name Infiltrating Lobular 0.860 15 8.00E-06
TCGA Subtype BRCA.LumA 0.889 47 0.00E+00
TCGA Subtype BRCA.LumB 0.761 11 9.43E-04
TCGA Subtype BRCA.Basal 0.839 15 3.00E-06
TIL Regional Fraction [-inf,1.461),i.e. low 0.777 51 3.00E-06
TIL Regional Fraction [1.461,inf), i.e. high 0.777 36 3.00E-06

Table 2: Aggregated statistics for multi-target deployment experiment.
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Target Class AUROC mean AUROCCI Patient count p value

ER Status By IHC Negative 0.670 0.231820 24 0.207
ER Status By IHC Positive 0.670 0.231820 76 0.207
Histologic Type Infiltrating Ductal 0.816 0.155585 73 0.023
Histologic Type Infiltrating Lobular 0.816 0.155585 21 0.023
TCGA Subtype BRCA.Basal 0.679 0.004622 23 0.177
TCGA Subtype BRCA.LumA 0.651 0.065480 44 0.151
TCGA Subtype BRCA.LumB 0.687 0.383290 19 0.159
TIL Regional Fraction [-inf,1.461), i.e. low 0.710 0.249816 49 0.072
TIL Regional Fraction [1.461,inf), i.e. high 0.710 0.249816 49 0.072

Table 3: Aggregated statistics for multi-target 3-fold cross-validation experiment. Cl: 95%

confidence interval.
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Target Class AUROC Patient count p value

ER Status By IHC Positive 0.975 3.59E-24 68
ER Status By IHC Negative 0.975 3.59E-24 22
Histologic Type Infiltrating Ductal 0.799 1.93E-04 74
Histologic Type Infiltrating Lobular 0.799 1.93E-04 15
TCGA Subtype BRCA.LumA 0.895 9.86E-12 47
TCGA Subtype BRCA.LumB 0.576 3.21E-01 11
TCGA Subtype BRCA.Basal 0.966 2.24E-15 15
TIL Regional Fraction [-inf,1.461), i.e. low 0.803 1.24E-06 51
TIL Regional Fraction [1.461,inf), i.e. high 0.803 1.24E-06 36

Table 4: Aggregated statistics for multi-target deployment experiment experiment when
HER2 and PR status are used as additional categorical inputs and the patient age is used
as continuous input to the image data.
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Subgroup Target Class AUROC Patient count p value

TMB high ER Status By IHC Positive 0.687 31 2.97E-02
TMB high ER Status By [HC Negative 0.687 15 2.97E-02
TMB low ER Status By [HC Positive 0.765 34 4.30E-02
TMB low ER Status By [HC Negative 0.765 7 4.30E-02

Table 5: Aggregated statistics deployment experiment targeting ER status in the
subgroups with low and high tumor mutational burden (TMB) values respectively.

Additional Input Target Class AUROC Patient count p value
Diagnosis Age ER Status By [HC Positive 0.677 68 2.41E-02
Diagnosis Age ER Status By [HC Negative 0.677 22 2.41E-02

Proliferation Score ER Status By IHC Positive 0.872 68 7.07E-10
Proliferation Score ER Status By IHC Negative 0.872 22 7.07E-10

Table 6: Aggregated statistics deployment experiment parameterized to target ER status
and histologic neoplasm type given proliferation as an additional input in respective
DeepMed runs.
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