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Abstract

The ability to understand and predict molecular responses towards
external perturbations is a core question in molecular biology. Techno-
logical advancements in the recent past have enabled the generation of
high-resolution single-cell data, making it possible to profile individual cells
under different experimentally controlled perturbations. However, cells are
typically destroyed during measurement, resulting in unpaired distributions
over either perturbed or non-perturbed cells. Leveraging the theory of
optimal transport and the recent advents of convex neural architectures,
we learn a coupling describing the response of cell populations upon pertur-
bation, enabling us to predict state trajectories on a single-cell level. We
apply our approach, CELLOT, to predict treatment responses of 21,650 cells
subject to four different drug perturbations. CELLOT outperforms current
state-of-the-art methods both qualitatively and quantitatively, accurately
capturing cellular behavior shifts across all different drugs.

1 Introduction

Characterizing and modeling perturbation responses at the single-cell level from
non-time resolved data remains one of the grand challenges of biology. It finds
applications in predicting cellular reactions to environmental stress or a patient’s
response to drug treatments. Accurate inference of perturbation responses at the
single-cell level allows us, for instance, to understand how and why individual
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tumor cells evade cancer therapies (Frangieh et al., 2021). More generally, it
deepens the mechanistic understanding of the molecular machinery determining
the respective responses to perturbations.

Cell responses to perturbations such as drugs are highly heterogeneous
in nature (Liberali et al., 2014), determined by many factors, including the
preexisting variability in the abundance and localization of molecular entities,
such as RNA or proteins (Shaffer et al., 2017), cellular states (Kramer and
Pelkmans, 2019), or the cellular microenvironment (Snijder et al., 2009). To
effectively predict the drug response of a patient during treatment, it is thus
crucial to incorporate the molecular subpopulation structure of the cell populations
into the analysis.

A key difficulty in learning perturbation responses is that a cell (usually) must
be destroyed to measure its state, meaning that it is only possible to measure a
cell state either before or after a perturbation is applied. The typical experimental
setup divides a set of cells into subsets to which individual perturbations are
applied. Hereby, a subset of cells remains unperturbed, allowing us to measure
the base state of the population. So while we do not have access to a set of
paired control /perturbed single-cell observations, we do have access to samples
of distributions of control/perturbed cell states.

Previous methods to approximate single-cell perturbation responses fall
short of solving this highly complex pairing problem while, at the same time,
accounting for cellular heterogeneity and the strong subpopulation structure of
cell samples. Despite incorporating cell heterogeneity, mechanistic models do
not recover cellular response trajectories, instead of predicting factors such as
cell viability or response variables in the data in order to predict drug efficacy
(Snijder et al., 2012; Berchtold et al., 2018; Green and Pelkmans, 2016). Linear
models (Dixit et al., 2016), on the other hand, are unable to capture complex and
inhomogeneous population responses upon perturbation. Current state-of-the-art
methods (Lopez et al., 2018; Lotfollahi et al., 2019; Yang et al., 2020) predict
perturbation responses via linear shifts in a learned low-dimensional latent
space. While capturing nonlinear cell-type-specific responses, their use of linear
interpolations cause them to resolve the alignment problem with the challenging
task of learning representations that are invariant to their perturbation status.
A similar matching problem was considered in Stark et al. (2020) for matching
cell populations that are profiled with different profiling technologies.

This work proposes CELLOT, a novel approach to predict single-cell pertur-
bation responses by uncovering couplings between control and perturbed cell
states while accounting for heterogeneous subpopulation structures of molecular
environments. We achieve this by utilizing the theory of optimal transport, which
provides natural geometry and mathematical tools to manipulate probability
distributions. To this end, we learn a robust optimal transport map describing
how the distribution of control cells connects to the distribution of perturbed cells.
Utilizing recent developments of neural optimal transport (Makkuva et al., 2020),
we learn a general optimal transport coupling for each perturbation, allowing us
to predict behavioral changes of incoming single-cell samples, e.g., of another
patient, using parameterizations learned for the previous cohort. We demonstrate
CELLOTs effectiveness by deploying it to learning cellular responses to different
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Figure 1: Learning single-cell perturbation responses. We aim to recover a mapping from
control cell distributions p. to some perturbed cell distribution p; or p; by learning the
corresponding neural optimal transport map ~(6x), parameterized by 05, from the observed
distribution of untreated cells and the set of cells observed after the perturbation is applied.

cancer drugs and tumor combination therapies. An overview of our approach is
illustrated in Figure 1.

Optimal transport has previously been applied in the domain of single-cell
biology to uncover trajectories of single-cell reprogramming and to link rich,
non-spatially-resolved with sparse, spatially resolved measurements (Schiebinger
et al., 2019; Cang and Nie, 2020; Demetci et al., 2020; Huizing et al., 2021;
Lavenant et al., 2021; Zhang et al., 2021). Here we apply optimal transport
to a new data modality, consisting of cell morphological measurements and
multiplexed protein state measurements obtained by 4i (Gut et al., 2018) from
large populations of cancer cells exposed in vitro to different drugs used in the
clinic.

2 Background

2.1 Optimal Transport

Optimal transport plays dual roles as it induces a mathematically well-characterized
distance measure between distributions besides providing a geometry-based
approach to realizing couplings between two probability distributions. Let
p=>", a0 and v = Z;”Zl bjdy, be two discrete probability measures in RY.
The optimal transport (OT) problem (Kantorovich, 1942) reads

Wir) = _inf [ o= ulPir(en). (1)

where the polytope I'(a,b) is {y € R}*™ 41, = a,7'1, = b} describes the
set of all couplings v between p and v. The optimal transport plan + thus
corresponds to the coupling between two probability distributions minimizing
the overall transportation cost. Computing optimal transport distances in (1)
involves solving a linear program, and thus their computational cost is prohibitive
for large-scale machine learning problems. Regularizing objective (1) with an
entropy term results in significantly more efficient optimization (Cuturi, 2013),

Wi ) = it [ o= ylPdyey) - eH ), 2
YET (1)
with entropy H(vy) = — Zij 7vij(logvi; — 1) and parameter ¢ controlling the

strength of the regularization. W3 is further differentiable w.r.t. its inputs and
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thus serves as a loss function in machine learning applications.

Problem (1) denotes the primal formulation for the Wasserstein-2 distance.
The corresponding dual introduced by Kantorovich in 1942 is a constrained
concave maximization problem defined as

W3 (p,v) = sup Eu[f(z)] +Eu[g(y)], (3)
(f,9)€®c

where the set of admissible potentials is ®. := {(f,g) € L'(u) x L'(v) : f(z) +
9(y) < iz —yl3, V(z,y)dp @ dv a.e.} (Villani, 2003, Theorem 1.3). Villani
(2003, Theorem 2.9) further simplifies the dual problem (3) over the pair of
functions (f,g) to

W3 (u,v) = %E [lll3 + llyl3] - }22 E.[f (X1 +Ey [f(Y)], (4)

Cu,v

where ® is the set of all convex functions in L!(du) x L'(dv), L'(p) :=
{f is measurable & [ fdu < oo}, and f*(y) = sup,(z,y) — f(x) is f’s con-
vex conjugate. Villani (2003, Theorem 2.9) then proves the existence of an
optimal pair (f, f*) of lower semi-continuous proper conjugate convex functions
on R™ minimizing (3).

2.2 Convex Neural Networks

In order to parameterize convex spaces such as ® in (4), we need neural networks
which are convex w.r.t. to their inputs. One example are input convex neural
networks (ICNN) introduced by Amos et al. (2017). ICNNs are based on fully-
connected feed-forward networks that ensure convexity by placing constraints
on their parameters. An ICNN with parameters 6 = {b;, W7, W} represents a
convex function f(x;0) and, for a layer i =0...L — 1, is defined as

hz‘+1 = UZ(WZ:EHT + Wizhi + bz) and f(.CC, 9) = hp, (5)

where activation functions o; are convex and non-decreasing, and elements of
all W7 are constrained to be nonnegative. Despite their constraints, [CNNs are
able to parameterize a rich class of convex functions. In particular, Chen et al.
(2019) provide a theoretical analysis that any convex function over a convex
domain can be approximated in sup norm by an ICNN. Huang et al. (2021)
further extend ICNNs from fully-connected feed-forward neural networks to
convolutional neural architectures.

2.3 Neural Optimal Transport

Despite existing numerical approximations of the optimal transport distance
and the corresponding optimal coupling (Cuturi, 2013; Aude et al., 2016) (2),
recent efforts have investigated neural network-based approaches as fast and
scalable approximations to (1). Taghvaei and Jalali (2019) consider solving
(4) by parameterizing f with an ICNN and solve for f* at each step, which
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has a high computational cost. Makkuva et al. (2020) extend this work by
approximating f* with another ICNN g, which scales well but transforms the
problem into a min-max optimization task. Huang et al. (2021) introduce a novel,
OT-inspired parameterization of normalizing flows utilizing ICNNs. Korotin
et al. (2021) provide a detailed comparison of the current state of neural optimal
transport solvers. Furthermore, convex neural architectures have been utilized
to parameterize Wasserstein gradient flows (Bunne et al., 2021; Alvarez-Melis
et al., 2021; Mokrov et al., 2021).

3 Model

Recent high-throughput methods provide great insights on how cell populations
respond to various perturbations on the level of individual cells. The provided
data, however, is non-time-resolved and unaligned. Hence, snapshots taken of
biological samples before and after perturbations do not provide information
on single-cell trajectories. Perturbations might include the application of drugs
affecting molecular functions in cells, or changes in the cellular environment
causing shifts in biological signaling, thus impacting cells and their states in
various ways. In the following, we describe our approach, which uncovers
single-cell perturbation responses by predicting couplings between control and
perturbed cell states. Hereby, let X denote the biological data space spanned by
cell morphology and gene expression features. We then treat a cell’s response to
perturbation k as an evolution in a high-dimensional space of cell states R% = X’.

3.1 Recovering Perturbation Effects via Optimal Transport

Given a dataset of n observations {z{,...,z5},zf € X drawn from p. € P(X),
the distribution of cells before applying a perturbation, we aim to learn the
distribution of cells pi, € P(X) upon some perturbation k, given a set of separate
samples {z¥,... 28} 2k e x.

Perturbation responses of cells are dynamic: after applying perturbation k,
cell states evolve over time and thus can be modeled as a stochastic process on
the cell data space. Despite this time-resolved nature of single-cell responses, we
only have access to the distributions of cell states before, p., and after injecting
perturbation k, pr. We thus aim at understanding the underlying stochastic
process without access to time-resolved perturbation responses by uncovering the
coupling v between p. and pg. Given prior biological knowledge, we can assume
that cells do not drastically alter their phenotype w.r.t. morphology and gene
expression pattern. We thus posit that the evolution of probability distributions
of single-cells upon perturbation can be modeled via the mathematical theory
of optimal transport. The coupling v then corresponds to an optimal transport
plan (1) between p. and py.

Following Makkuva et al. (2020), we infer the optimal coupling 7 (1) between
pe and p. Thus, instead of computing a coupling individually for each pair of cell
samples using existing solvers (Cuturi, 2013), we learn a parameterized optimal
transport map using neural networks. The parameterized OT coupling then
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serves as a robust predictor for cellular distribution shifts upon perturbations on
unseen samples {z{ ?;1 ~ pe, i.e., of another patient.

3.2 Parametrization of the Optimal Transport Coupling

Directly learning the optimal transport map in the primal (1) and dual (3) is
notoriously difficult. Instead, Makkuva et al. build upon celebrated results by
Knott and Smith (1984) and Brenier (1991), which relate the optimal solutions
for the dual form (3) and the primal form (1), to derive a min-max formulation
replacing the convex conjugate in (4) (Makkuva et al., 2020, Theorem 3.3)

Wi(pe,pr) = sup  inf Cp, o, =B, [f(2)] = Ep, [(y, Va(y)) — F(Vg(y))]. (6)

fed 29
f*GLl(pk)g vPc,Pk(f»g)

We can further relax the constraint g € ® to L'(py), as a function g € L'(p,)
minimizing (6) is convex and equal to f* for any convex function f. In order
to learn the resulting optimal transport, i.e., the solution of the minimization
problem in (6), Makkuva et al. (2020) parametrize both dual variables f and g
using input convex neural networks (§ 2.3) (Amos et al., 2017). The resulting
approximate Wasserstein distance is thus defined as

W22(PC7 pr) = Sblsp ir;f Coerpr — VPC7Pk(f¢’ 90), (7)

where 0 and ¢ are the parameters of each ICNN. The resulting g; produces an
approximate optimal transport plan v~ (Vgp x Id)xpe.

3.3 Predicting Perturbation Effects via CELLOT

The framework described above allows us to recover couplings between con-
trol {z§,...,2¢} and perturbed cells {z¥,... 2%}, giving insights into cellular
response trajectories upon application of a perturbation k. Given a set of
perturbations K, and sample access to the control distribution p. as well as
distributions pj for each perturbation k € K, CELLOT learns the optimal pair
of dual potentials ( f;k, gg;;) for each perturbation k. Given parametrizations of
the convex potentials for each k, CELLOT then predicts the transformation of a
control cell zf upon perturbation k via jcf = Vgor (x5), i.e., samples following
the predicted perturbed distribution gy = (Vggr)gpe. CELLOT thus provides
a general approach to predict state trajectories on a single-cell level, as well
as understand, how heterogeneous subpopulation structures evolve under the
impact of external factors.

4 FEvaluation

We evaluate CELLOT on the task of predicting single-cell drug responses for
drugs with different molecular effects, using melanoma cell lines profiled by the
4i technology (Gut et al., 2018).
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4.1 Datasets

4i is an imaging technology that detects protein abundance by attaching a
fluorescent tag designed to bind to a target protein and then measuring the
fluorescence intensity of this tag. An iterative staining and washing procedure
allows for the capture of multiple tags. Additionally, an image processing pipeline
extracts morphological features, such as cell perimeter and area and detects
the cell nucleus. We considered four common cancer therapies for this works
since they target different biological processes. Erlotinib is an inhibitor of the
epidermal growth factor receptor (EGFR) tyrosine kinase, Imatinib inhibits the
Ber-Abl tyrosine kinase, and Trametinib is an inhibitor of mitogen-activated
extracellular signal-regulated kinase 1 (MEK1) and MEK2.

We utilized a mixture of 2 melanoma tumor cell lines (ratio 1:1) in order to
image a total of 21,650 cells, of which 11,526 are in the (untreated) control state,
2,364 are treated with Erlotinib, 2,650 with Imatinib, 2,683 with Trametinib,
and 2,417 are treated with a combination of Trametinib and Erlotinib, and
48 features are extracted for each cell. 22 features are morphological, and the
remaining 26 are mean intensities of 13 protein markers detected both inside the
cell nucleus and in the cell as a whole. Finally, we perform an 80/20 train test
split for each condition and evaluate model performance on its ability to make
predictions on the unseen set of control cells. More details regarding dataset
preparation can be found in Appendix B.1.

4.2 Baselines

We compare CELLOT to two other baselines, both of which attempt to add
perturbation effects through the manipulation of a learned latent representa-
tion: SCGEN (Lotfollahi et al., 2019) computes linear shifts using latent space
arithmetic to remove the source condition and add the target condition, and the
conditional autoencoder, CAE, which has an architecture based on batch correc-
tion technique popular in the single-cell community, first introduced by Lopez
et al. (2018). Here, one-hot encodings of batch labels (treatment conditions) are
concatenated to the encoder and decoder inputs, which attempt to remove and
then add condition-specific effects. More details can be found in Appendix A.

4.3 Evaluation Metrics

Since we lack access to the ground truth set of control and treatment observations
on the single-cell level, we first analyze the effectiveness of CELLOT using
evaluations that operate on the level of the distribution of real and predicted
perturbation states. Drug signatures are computed as the difference in means
between the distribution of perturbed states and control states. We then report
the /y-distance between the drug signatures (DS) computed on the true and
predicted distributions (¢2(D.S)). We additionally consider two distributional
distances: kernel maximum mean discrepancy (MMD) (Gretton et al., 2012)
and entropy-regularized Wasserstein distance W22 € (2) (Cuturi, 2013). MMD is
computed using the RBF kernel and averaging over the length scales 0.5,0.1,0.01,
and 0.005; VV22’E is computed with € = 0.5.
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4.4 Results

For each drug perturbation, all models predict the perturbed cell states from
the set of held-out of control cells. Differences between the distribution of
perturbed cells and predicted cells are shown in Table 1. CELLOT significantly
outperforms all baselines on all three metrics. Qualitative assessment of the
marginal distributions of control, treated, and predicted cell states provides
further evidence for superior performance of CELLOT over other approaches
(see Figure 2 for three selected features of the Imatinib condition).

Table 1: Performance assessment of CELLOT compared to different baselines w.r.t. to
Wasserstein (W3, (2)) and MMD distances between the observed perturbed cells and predicted
responses from control cells, as well as the predictive quality of drug signatures (see § 4.3).

Model Drugs
Erlotinib Imatinib Trametinib Trametinib and Erlotinib
£(DS)  MMD  Wj*© £(DS)  MMD  Wp* 6(DS)  MMD  WP€ £(DS) MMD W€
SCGEN 0.41 0.0241  3.542 0.52 0.0361  5.811 0.56 0.0180  3.587 0.60 0.0163  3.594
CAE 0.05 0.0074  3.330 0.16 0.0200 4.512 0.37 0.0087  3.343 0.44 0.0122  3.215
e CELLOT 0.22 0.0013 3.619 0.12 0.0010 3.851 0.14 0.0011 2.846 0.18 0.0014 2.796
Eccentricity (Nuclei) Sox9 Intensity (Nuclei) pERK Intensity (Cell)
6 \ 1.54
5 5 S CellOT
i E Treated
4 1.0 A
’ Control
5 ), 14 W cAE
0.5 scGen
0 T — |\ 0.0 T T T 0 T \I = T
0.5 1.0 0 1 2 3 0 1 2 3

Figure 2: Marginal distributions of observed and predicted cell states for three selected features,
i.e., a measure of the eccentricity of the nucleus, as well as Sox9 intensity level inside the
nucleus and pERK intensity within the cell but outside the nucleus. The marginals of control
and Imatinib distributions correspond to the observed set of untreated cells and cells treated
with the Imatinib drug. The remaining distributions are calculated using the predictions of
each model on the unseen set of control cells.

Next, we compared UMAP projections (McInnes et al., 2018) of the perturbed
and predicted cells (see Figure 3). Predicted cells are colored by the fraction
of other predicted cells in their £ = 100 nearest neighbors. If the distribution
of predicted cells matches the true distribution of perturbed cells, then we
would expect the nearest neighbor of each cell to be well mixed (i.e., 0.5) across
conditions. Thus, cells with values closer 1 indicate regions where the predicted
distribution does not integrate with the true perturbed distribution. We conclude
that predictions made by CELLOT integrate well with measurements of real
treated cells.

Finally, the previous results argue that the distribution of cells predicted
by CELLOT closely matches true distribution; however, they could have also
been replicated by a map that assigns control cells to random treated cells.
Thus, we evaluate the quality of single-cell level pairs induced from the CELLOT
mapping by computing the Spearman correlation of features between the control
state and predicted drug state. The distribution of the correlation coefficient
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Figure 3: UMAP projections computed on the joint set of cells perturbed by Imatinib (grey)
and predictions of each model. Model predictions are colored by the fraction of other predicted
cells in their £ = 100 nearest neighbors in data space. Predicted cells which do not share many
neighbors of the true set of perturbed cells, but instead control cells take values of = 1.0 (blue).
Predicted cells that integrate well with true perturbed cells take values of ~ 0.5 (white).

between the control state and the predicted state across all features of all learned
maps is shown in Figure 4. The low distributional distances between CELLOT-
predicted cells to the true distribution of perturbed cells in conjunction with
a high correlation of features with the control states paired to the predicted
states demonstrate that CELLOT makes sound predictions on the single-cell
level, outperforming current state-of-the-art methods both qualitatively and

quantitatively.
Erlotinib Imatinib Trametinib Trametinib And Erlotinib

1.00
24
£0.75
E
gO.SO
2,
)

0.25

CellOT c scGen CellOT c scGen CellOT c scGen CellOT C scGen

Figure 4: Distribution of Spearman correlation coefficients between the features of control cells
and the features of its corresponding predicted state upon treatment for each considered drug
Erlotinib, Imatinib, Trametinib and the combination therapy of Trametinib and Erlotinib. Low
correlations imply unexpected significant differences in the feature states between prediction
and control, and thus a reduced accuracy of predictive power.

5 Conclusion

In this paper, we present a new framework to learn single-cell perturbation
responses. We approach the problem by learning an optimal transport map that
is parameterized by an ICNN to push-forward the distribution of control cells onto
the distribution of perturbed cells. We validate CELLOT’s effectiveness through
experiments on melanoma cell lines with four different drug perturbations. In
the absence of ground truth, we provide various evaluation metrics to compare
our method to existing approaches. While operating in the original data space,
instead of relying on meaningful low-dimensional representations, CELLOT
performs consistently well across all perturbations, outperforming current state-
of-the-art methods. The use of neural optimal transport to learn single-cell drug
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responses makes for an exciting avenue of future work, including its use to improve
our mechanistic understanding of cell therapies, to study drug responses from
patient samples, and to better account for cell-to-cell variability in large-scale
drug discovery efforts.
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Appendix

A Related Work

Consider a single-cell dataset of a binary perturbation. Let {z;...z,}, z; € X,
drawn from p. U pi, and let ¢(i) € {0,1} indicate the perturbation status of a

single cell,
c(1) =
1, if Ty ~ Pk-

A.1 scGEN

Given representations {z ... z,} of {x1...x,}, learned by an autoencoder, with
encoder ¢ and decoder ¢, SCGEN (Lotfollahi et al., 2019) predicts a perturbation
response using latent space arithmetic. Let Z() be the mean of representations
in condition [

1
f(l):—E: 5
T et = iy & e

the perturbed state of 2’ ~ p,. is predicted as
P(g(a’) — 20 4+ 20).

A.2 CAE

The conditional autoencoder is based on a batch correction technique popular
within the single-cell community, first introduced by (Lopez et al., 2018). It
introduces condition-specific parameters into the encoder and decoder, which
attempt to remove and replace information in the data specific to their conditions.
They operate by concatenating one-hot encodings of condition labels (here,
perturbation status) to the inputs of the encoder and decoder. These encodings,
in effect, make the bias term in the first layer of the encoder and decoder a
learnable parameter specific to each condition and are thus are also considered
to learn a linear shift in latent space. Given an encoder ¢ and decoder 1, the
network is trained to reconstruct cells conditioning on its true label

zi = ¢(wilc(d), i = P(zic(i)).

Once trained, the perturbed state of 2’ ~ p,. is predicted as

zi = ¢(21]0), a1 = P(zi]1).

B Dataset

B.1 Single-Cell Multiplex Data

Biologists have various powerful technologies at their disposal, capable of cap-
turing multivariate single-cell measurements. High-content imaging, particularly
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when augmented by multiplexing abilities such as by Iterative Indirect Immunoflu-
orescence Imaging (4i) (Gut et al., 2018), is ideally suited to study heterogeneous
cell responses. With 4i, fluorescently labeled antibodies are iteratively hybridized,
imaged, and removed from a sample to measure the abundance and localization
of proteins and their modifications. Thus, 4i quickly generates large, spatially
resolved phenotypic datasets rich in molecular information from thousands of
treated and untreated (control) cells. Additionally to the multiplexed information
4i generates, information about cellular and nuclear morphology is routinely
extracted from microscopy images (without the need for 4i) by image analysis
algorithms (Carpenter et al., 2006).

Through multiplexing, 41 datasets are able to capture meaningful features
related to both the treatment response heterogeneity (e.g., the phosphorylation
or dephosphorylation of a kinase in a signaling pathway) and the pre-existing
cell-to-cell variability (e.g., protein levels related to different cellular states or cell
cycle phases) which my determine treatment response. Traditional high-content
imaging datasets often need to compromise between features describing either
the former or the latter and may thus struggle to provide sufficient information
to pair treated and control cells accurately.

The cells were seeded in a 384-well plate, allowed to settle and adhere
overnight. Drugs and Dimethyl sulfoxide as the vehicle control was added to
the cells the next morning and incubated for 8 hours, after which the cells were
fixed with Paraformaldehyde. Subsequently, 6 cycles of 4i were performed, for
which the images were acquired with an automated high-content microscope.

All image analysis steps were performed by our in-house platform called Tis-
sueMAPS (https://github.com/TissueMAPS). The steps included illumination
correction (Snijder et al., 2012), alignment of images from different acquisition
cycles using Fast Fourier Transform (Guizar-Sicairos et al., 2008), segmentation
of nuclei and cell outlines (Stoeger et al., 2015), as well cellular and nuclear
measurements of intensity and morphology features using the scikit-image library
(Van der Walt et al., 2014).

C Experimental Details

To train all networks, we use the Adam optimizer (Kingma and Ba, 2014).

C.1 Baselines

To tune baseline models, we use a batch size of 128 and do a grid search over the
width [16, 32] and depth [2, 3| of the encoder and decoder hidden layers, latent
dimension [4, 8], dropout rate [0.0, 0.05, 0.1, 0.2] and learning rate [0.00001,
0.0001, 0.001].

For both sCGEN and CAE we selected a width=32, depth=2, latent dim=8,
dropout=0.05. SCGEN uses a learning rate of 0.001, and CAE uses a learning
rate of 0.0001. Both models are trained for 1024 epochs.
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Figure 5: Full set of Imatinib marginals.

C.2 Network Architectures

As suggested by Makkuva et al. (2020), we relax the convexity constraint on gy
and instead, penalize its negative weights I/Vlh

RO)=AY [max (—Wh,O)HQF. (8)

The convexity constraint on f4 is enforced after each update by setting negative
weights of all I/Vlh € ¢ to zero. Thus the full objective then states

max —min fo(Vge(y)) — (¥, Vgo(y)) — fo(x) + A x R(0).
¢pWh>ovi 0

C.3 Hyperparameters

To learn the optimal transport maps, we use a batch size of 256, an ICNN
architecture of 4 hidden layers of width 64, a learning rate of 0.0001 (3, = 0.5,
B2 = 0.9) and A=1. The inner loop minimizing g runs for 10 updates to every
update of f.

16


https://doi.org/10.1101/2021.12.15.472775
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.15.472775; this version posted December 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

CDAS Intensity (Cell

DAPLIntensiy (el K7 Intensity (el alnome ke . roxa 3 somo . au c
20 s 20 i
e A os 15
10 A 10 15 15 1o A
1.0 0 A 1.0-
1o I
05 05- B o 05 N
05 o 0.2 08 i A oo
L T T T ¢ L2 R S T T % T 1 T 11 R R
DAKT Imensty Cel) | pEGRR mensiy (o) SERK Intnsity o) PMET otensity (e 2561 ntensty (o) D35 Inensiy (Nucie 1 Caspase 3 Itensity (ucle DAPLInensiy (o
v ' 20
A A
0 2. i h i
1o 1 ] I 1 10 10 10 Al 15
A Al 10 \
WA 1o ) ' o
05: 5 \ 0.5- 05 0.5 ‘
o5 1 | o5
\ AN /
I ] 3 T T 11 R T T we s R S T 7
K467 Inensity (o) Mol omsty (Nucla) ___PONA otansity (clo) Son0 ntonsity (e arun pakr PEGER Intensity (Ve SERK Intonsity (tucto)
5 . 5
s W
10 10 0 \
2 /\ 1.0- 10 A 1.0 1.0-
/A A\ \ N
B T LI S 3 H T LI S LR R E— I B A R N NI
DMET Intensity Quctey DSSKI ntensty Oucte) Area con) Cirowariy con Convesty ety Becentriony (cany - Flongation ey Equivalent diometr (Col)
. § A 5 o \ . .
1.0- 5 A\ N 2-
" 1o 15 \ “ / . :
B 1o / A
05 08 05 . 2 2 | 1 A\ 1
5 \ 1 /) \
% B T I S DR RS T B T Ca—
Major ais lngeh (Col Pusmoter (o) cs Aven (ucl Comvity el
4 2.0- 3 15 3
p o
5 s .
2 1o
2 o , p 20
1 0.5- ! o 2
3 B S R T T L S B
o B
.
.
. i y A a .
I 3 20 n a A\
. i P 2
4 \ N w0 2 p
2 ) 1 1 | 1
\ 7\ /
[ T o5 To s E O W o Lo T T

Figure 6: Full set of Erlotinib marginals.
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