

1 Spatiotemporal transcriptomics reveals pathogenesis of viral myocarditis

2 **Authors:** Madhav Mantri¹, Meleana M. Hinchman², David W. McKellar¹, Michael F. Z. Wang¹, Shaun T.
3 Cross^{1,2,3}, John S. L. Parker^{2,3*}, Iwijn De Vlaminck^{1,3*}

4 **Affiliations:** ¹Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New
5 York, ²Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York,
6 ³Cornell Institute for Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York.

7
8 *To whom correspondence should be addressed: vlaminck@cornell.edu and js7@cornell.edu

9

10 ABSTRACT

11 A significant fraction of sudden death in children and young adults is due to myocarditis, an
12 inflammatory disease of the heart, most often caused by viral infection. Here we used
13 integrated single-cell and spatial transcriptomics to create a high-resolution, spatially resolved
14 map of reovirus-induced myocarditis in neonatal murine hearts. We assayed hearts collected
15 at three timepoints after reovirus infection and studied the temporal, spatial, and cellular
16 heterogeneity of host-virus interactions. We further assayed the intestine, the primary site of
17 reovirus infection to establish a full chronology of molecular events that ultimately lead to
18 myocarditis. We implemented targeted enrichment of viral transcripts to establish the cellular
19 targets of the virus in the intestine and the heart. Our data give insight into the cell-type
20 specificity of innate immune responses, and into the transcriptional states of inflamed cardiac
21 cells in reovirus-infected heart. We find that inflamed endothelial cells recruit cytotoxic T cells
22 and undergo pyroptosis in the myocarditic tissue. Analyses of spatially restricted gene
23 expression in myocarditic regions and the border zone around those regions identified
24 immune-mediated cell-type specific injury and stress responses. Overall, we observe a
25 dynamic and complex network of cellular phenotypes and cell-cell interactions associated with
26 viral myocarditis.

27

28 INTRODUCTION

29 Viral infection is the most common cause of myocarditis^{1,2}. The resulting inflammatory
30 cardiomyopathy can lead to arrhythmias, dilated cardiomyopathy, and death^{1,3,4}. In humans,
31 viral myocarditis is challenging to study because of the low sensitivity of available diagnostic
32 testing, the acute onset of the disease, the focal nature of the disease, and the extreme
33 heterogeneity of immune-virus interactions in complex cardiac tissues^{4–6}. In mice, mammalian
34 orthoreovirus offers a flexible model system⁷. After oral inoculation, the Type 1 Lang (T1L)
35 reovirus strain initially infects the gastrointestinal tract. Within days the infection then spreads
36 to secondary sites in the body, including the heart, leading to myocarditis in up to 50% of
37 infections^{7–9}. Yet, even in this mouse model, the molecular pathogenesis of viral myocarditis is
38 difficult to study because of the complex network of cardiac and immune cell types involved
39 and the cellular, spatial, and temporal heterogeneity of the disease^{2,10}. Consequently, neither
40 the cell types that are responsible for the innate immune response, nor the cell types that are
41 infected *in vivo* have been identified. Similarly, the responses of infected and uninfected
42 bystander cells within the heart have not been characterized. In addition, the protective versus
43 damaging effects of adaptive immune responses have not been quantified. Experiments in
44 mice with severe combined immunodeficiency (SCID) indicate that adaptive immune
45 responses are not required for myocardial injury and heart failure^{7,11}, but these observations do
46 not exclude the possibility that immune-cell-mediated injury is important in immunocompetent
47 mice. Unbiased characterization of all cellular phenotypes as a function of time and location
48 within infected cardiac tissues is needed to address these knowledge gaps.

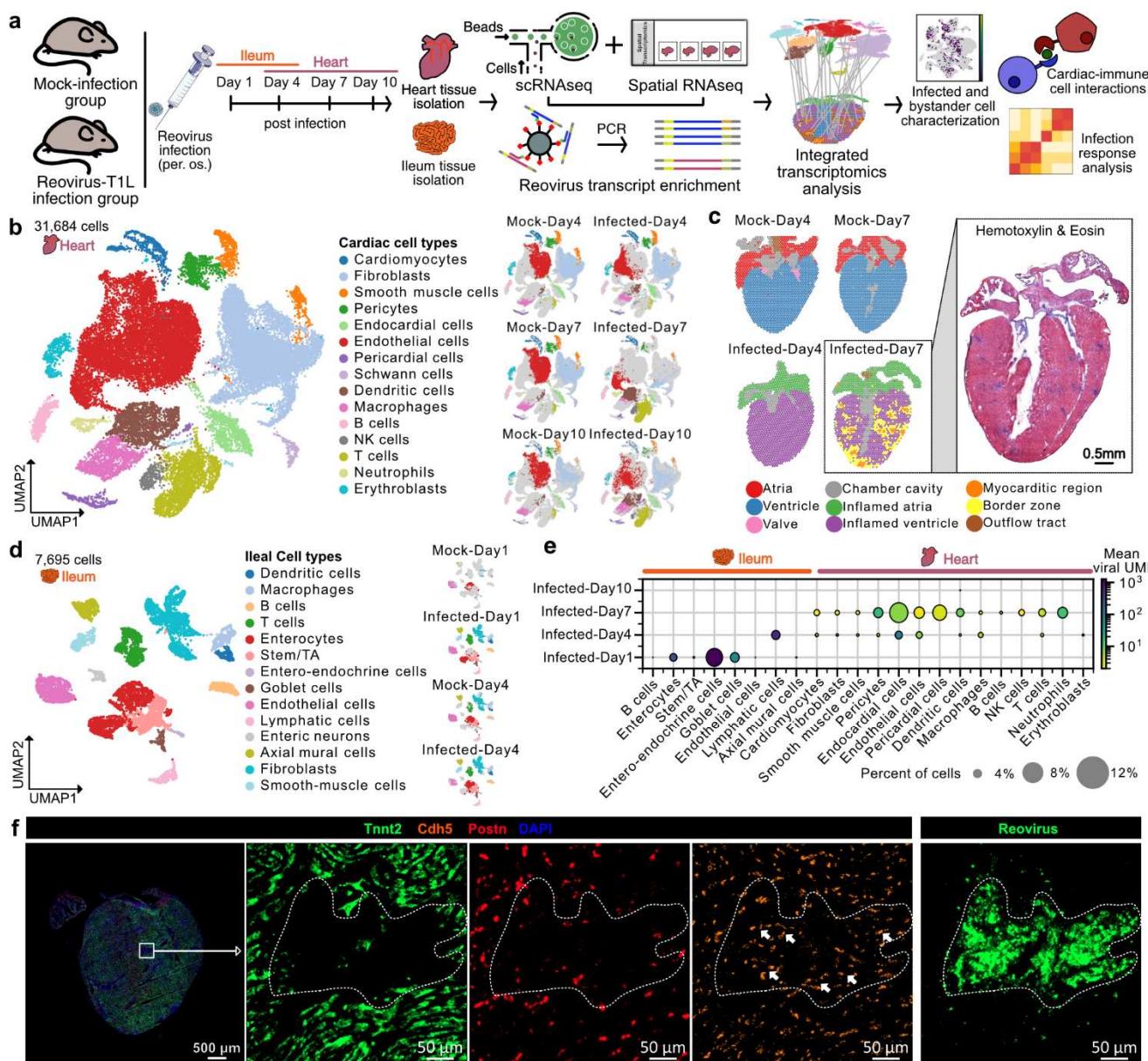
49 Here we used integrated single-cell and spatially resolved RNA-sequencing (RNA-seq) to
50 study the cellular and spatial heterogeneity of myocarditic processes in the hearts of reovirus-
51 infected neonatal mice at multiple time points after infection. We also applied these
52 technologies to study the innate response to reovirus infection in the intestine. In addition, we
53 performed time-series single-cell RNA-seq (scRNA-seq) of cardiac tissues of mice infected
54 with a reovirus point mutant that does not cause myocarditis. To establish viral tropism, we
55 implemented molecular enrichment of non-polyadenylated viral transcripts that were otherwise
56 poorly represented in the transcriptomes. Our measurements give insight into the cell-type
57 specificity of innate immune responses, into the tropism of the virus in the intestine and the
58 heart, and into the transcriptional states of cell types involved in the production of inflammatory
59 cytokines and the recruitment of circulating immune cells. Analyses of spatially restricted gene
60 expression in myocarditic regions and the border zone around those regions identified injury
61 and stress responses in different cell types, including cardiomyocytes. Overall, our data
62 identify spatially restricted cellular interactions and cell-type specific host responses during
63 reovirus-induced myocarditis.

64

65

66

67 **RESULTS**


68 **Single-cell and spatial transcriptomics of reovirus T1L-infected neonatal mice hearts**

69 To elucidate the pathogenesis of reovirus-induced myocarditis, we analyzed heart tissues
70 collected from neonatal mice infected orally with either the T1L strain of reovirus or a mock
71 control (**Methods**, **Fig. 1A**). We generated scRNA-seq data for 31,684 cells from infected
72 hearts and mock controls at 4, 7, and 10 days post-infection (dpi), and 8,243 spatial
73 transcriptomes for four tissue sections from infected hearts and mock controls at 4 and 7 dpi
74 from the same litter (10x Chromium and 10x Visium, **Methods**, **Supp Fig. 1A-1B and Fig. 1B-1C**).
75 The single-cell transcriptomes represented 18 distinct cell types, including
76 cardiomyocytes, endocardial cells, cardiac fibroblasts, endothelial cells, mural cells,
77 macrophages, neutrophils, NK cells, dendritic cells, T cells, and B cells (**Methods**, **Fig 1B**,
78 **Supp Data 1**, **Supp Fig. 1C-F**). Clustering of the spatial transcriptomic data revealed distinct
79 transcriptional programs for myocarditic regions and the border zone surrounding the
80 myocarditic regions in the 7 dpi reovirus-infected heart that corresponded to areas of tissue
81 damage identified by H&E staining (**Fig. 1C**, **Supp Fig. 2A-B**). The combination of scRNA-seq
82 and spatial transcriptomics allowed us to resolve and visualize cell types and gene expression
83 in a spatial context (**Supp Fig. 2C**). Because the virus first infects the gastrointestinal tract
84 before it spreads to other body sites including the heart, we also performed scRNA-seq and
85 spatial transcriptomics on ileum. We obtained 7,695 single-cell transcriptomes and 8,027
86 spatial spot transcriptomes for ileum from mock and infected samples at 1 and 4 dpi (**Fig. 1D**,
87 **Supp Fig. 3A-D**).

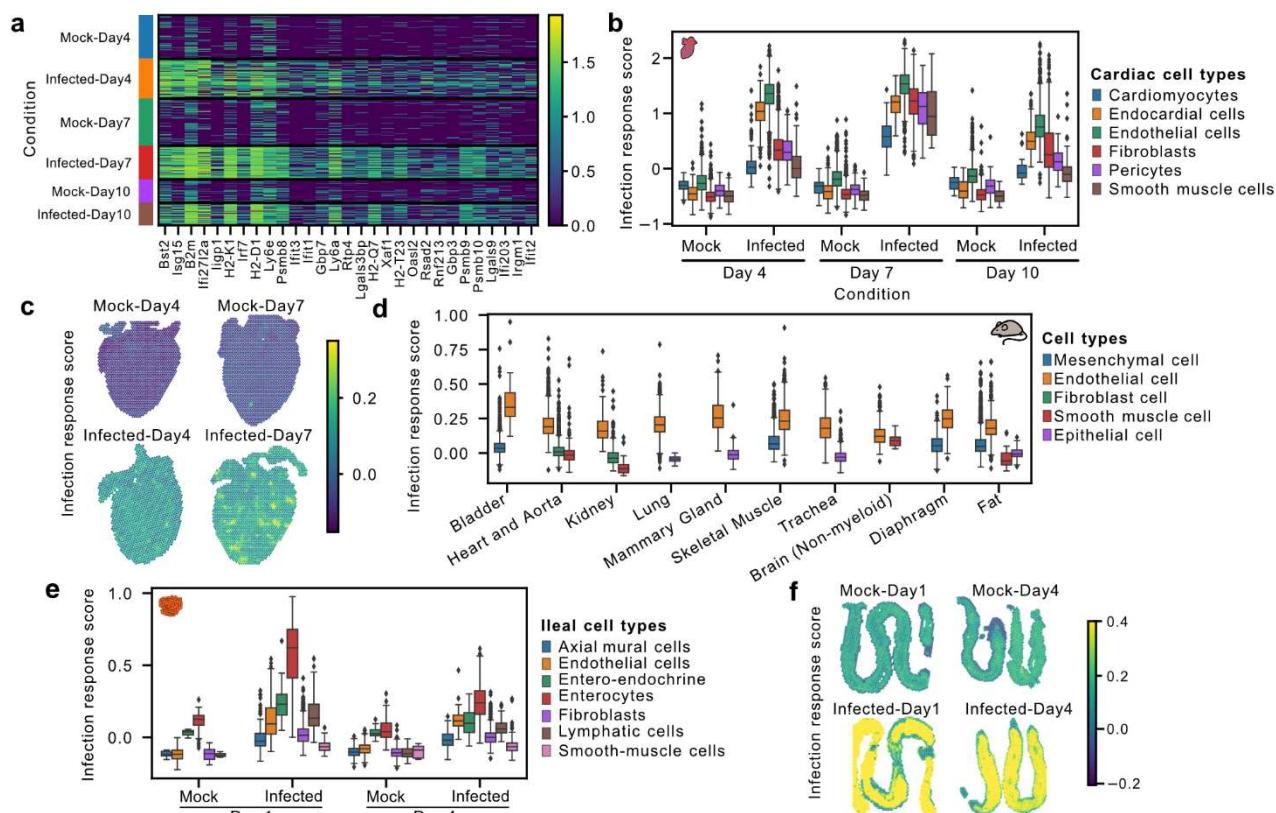
88 To faithfully identify reovirus transcripts in the ileum and heart, which are not polyadenylated,
89 we performed hybridization-based enrichment of viral fragments captured in the scRNA-seq
90 libraries (**Methods**, **Supp Fig. 4A-C**). In the ileum, we captured a total of 13,100 unique viral
91 transcripts, with viral load decreasing from 1 dpi to 4 dpi. At 1 dpi, entero-endocrine cells had
92 the highest fraction of infected cells followed by enterocytes and goblet cells, all of which are
93 present in the gut epithelium. Lymphatic endothelial cells were infected at 4 dpi, suggesting
94 that the virus reaches the bloodstream via lymphatic drainage to allow transmission of the virus
95 to secondary sites in the body, including the heart, as shown before¹² (**Supp Fig. 4D**, **Fig 1E**).
96 We captured 2,762 unique viral transcripts from 392 cells in the T1L-infected hearts. The viral
97 load first increased from 4 dpi to 7 dpi and then decreased from 7 dpi to 10 dpi, consistent with
98 viral titer assays performed on whole hearts^{9,13} (**Fig. 1E**, **Supp Fig. 4E**). Endocardial and
99 endothelial cells were the most frequently infected cell types at 4 dpi, suggesting that
100 endocardial cells lining the ventricular lumen and endothelial cells lining the cardiac
101 vasculature are among the first cells to be infected (**Fig. 1E**). We detected an increased
102 infection in endothelial cells from 4 dpi to 7 dpi, consistent with viral titer assays performed on
103 whole hearts^{9,13} (**Fig. 1E**, **Supp Fig. 4E**). We further detected viral transcripts in neutrophils,
104 dendritic cells, and T cells in the 7 dpi heart (**Fig. 1E**, **Supp Fig. 4E**). This observation

105 suggests that antigen-presenting cells and immune cells may contribute to the spread of
106 infection to other organs in the body. The role of infected dendritic cells in bringing more
107 reovirus to the cardiac tissue during systemic infection has been discussed previously⁸.

108 To validate these observations, we performed histology, multiplexed RNA fluorescence in-situ
109 hybridization (FISH), and immunofluorescence assays on tissue sections from myocarditic
110 hearts and controls (multiple infected mice litters, **Supp Fig. 5A-5E, Methods**). We used RNA-
111 FISH to visualize expression of genes specific to cardiomyocytes, fibroblasts, endothelial cells,
112 macrophages, dendritic cells, neutrophils, and T cells (**Supp Fig. 5C-5E and Fig. 1F,**
113 **Methods**). These experiments revealed infection foci and immune infiltration in myocarditic
114 regions. We found *Itgam*+ *C1qa*- dendritic cells and *Trbc2*+ T cells inside the myocarditic
115 regions and *S100a8*+ neutrophils in the border zones. In contrast, most *Itgam*+ *C1qa*+
116 macrophages were found outside the myocarditic regions at 7 dpi (**Supp Fig. 5C, 5D**). On
117 consecutive tissue sections, we labeled reovirus antigen using immunofluorescence to identify
118 reovirus infected cells (**Supp Fig. 5A, Fig. 1F**). Co-labelling for the endothelial cell marker
119 *Cdh5* and reovirus transcript M3 on the same tissue sections confirmed the presence of viral
120 transcripts in a subset of cardiac endothelial cells (**Supp Fig. 5E**). Endothelial cells that were
121 positive for the reovirus antigen colocalized with T cells within the myocarditic regions (**Fig.**
122 **1F**). A small number of fibroblasts were often located on the edges of these regions (**Fig 1F**).
123 Collectively, these results indicate that vascular endothelial cells are targets of reovirus in the
124 heart.

Figure 1: Single-cell and spatial transcriptomics of cardiac and ileum tissue of reovirus-infected neonatal mice. **a)** Experiment and analysis workflow. **b)** UMAP plot of 31,684 single-cell transcriptomes from mock-infected and reovirus-infected hearts at 4, 7, and 10 dpi (one animal per condition), clustered by gene expression and colored by cell type (left). UMAP plots showing cardiac cell type clusters across samples for the heart scRNA-seq data (right). **c)** 8,243 spatial transcriptomes of cardiac tissue sections from mock-infected and reovirus-infected mice at 4 and 7 dpi (one animal per condition). Hematoxylin and Eosin (H&E) stained image of reovirus-infected myocarditic tissue section used for spatial transcriptomics at 7 dpi (in box). **d)** UMAP plot of 7,695 single-cell transcriptomes from mock-infected and reovirus-infected ileum at day 1 and 4 dpi, clustered and colored by cell type (left). UMAP plots showing the gaussian kernel density of cells across samples for the ileum scRNA-seq data (right). **e)** Dot plot showing the percent of cells with non-zero viral transcripts and the mean viral transcript counts (UMIs) in ileal and cardiac cell types. **f)** RNA FISH labelling of cardiac cell type markers (*Tnnt2* for cardiomyocytes, *Postn* for fibroblasts, and *Cdh5* for endothelial cells), and immunofluorescence staining of reovirus antigen on a consecutive section showing infected endothelial cells within the infection foci at 7 dpi. Representative heart images from six biological replicates.

140


141 **Endothelial cells are primed with a basal interferon response and play an important role**
142 **in initiating host innate immune responses**

143 To detect early transcriptional differences in the cardiac tissue after infection, we performed
144 Differential Gene Expression Analysis (DGEA, mock vs infected hearts at 4 dpi, **Methods**).
145 This analysis revealed a significant upregulation of 226 genes in the infected heart (two-sided
146 Wilcoxon test, log fold-change > 1.0 and p-value < 0.01), including genes related to the
147 interferon- β pathway, interferon signaling, and innate immune responses (**Supp Fig 6A-6B**,
148 **Fig. 2A**).

149 To quantify and compare the overall magnitude of early infection responses across different
150 cell types, we computed a gene module score (infection response score, IR, module of 226
151 genes selected above). Comparison of the IR of different cell types in the absence of infection
152 revealed a small, but higher IR in endothelial cells as compared to other cardiac cell types
153 (**Fig. 2B**). In response to infection, an increase in IR was observed for all cardiac cell types,
154 but the greatest increase in IR was observed for endothelial cells (**Fig. 2B**). These data
155 suggest that endothelial cells lining the cardiac vasculature are important initiators of the host
156 defense to viral infection. Comparison of IR scores using the spatial transcriptomic data
157 showed increased IR scores in the infected hearts at 4 and 7 dpi with the highest scores found
158 in myocarditic regions (**Fig. 2C**). Given our observation that endothelial cells within the heart
159 had the highest IR score in the absence of infection, we asked if this observation was unique
160 to heart tissue or was a more general phenomenon. To this end, we used the Tabula Muris
161 scRNA-seq mouse atlas¹⁴ and estimated the IR of ~16,000 cells of five major cell types
162 (epithelial cells, fibroblasts, endothelial cells, smooth muscle cells, and mesenchymal cells)
163 across 10 different organs and tissues. This analysis revealed that endothelial cells
164 consistently had the highest IR score across all tissues in mice (**Fig. 2D**). These results
165 indicate that endothelial cells lining the vasculature have a higher basal expression of innate
166 response genes within most tissues, which may prime these cells to respond to viral
167 dissemination within the blood and lymphatics.

168 To investigate the cell-type-specific IR in the ileum, the primary site of reovirus infection, we
169 performed DGEA on reovirus-infected and mock-infected ileal cells at 1 dpi and found a
170 significant upregulation of 438 genes (two-sided Wilcoxon test, log fold-change > 1.0 and p-
171 value < 0.01), related to the interferon-beta pathway, interferon signaling, and innate immune
172 responses in reovirus-infected ileal cells (**Supp Fig. 6C-6D**). We computed an IR score using
173 this module of 438 genes and observed higher basal IR scores in enterocytes and entero-
174 endocrine cells as compared to other ileal cell types (**Fig. 2E**). Enterocytes further showed the
175 highest increase in IR score after infection, followed by entero-endocrine, endothelial, and
176 lymphatic cells (**Fig. 2E**). Comparison of IR scores for spatial transcriptomic data further
177 supported our analysis of the scRNA-seq data, showing increased IR scores in the infected
178 ileum at 1 and 4 dpi with the highest scores evident within intestinal mucosa and villi (**Fig. 2F**).

179 The intestinal epithelial cells must tolerate commensal microorganisms present in the lumen of
 180 the gut and yet still be responsive to invasive pathogens. Our data suggest that to achieve this,
 181 enterocytes and entero-endocrine cells in the gut epithelium are primed with a basal interferon
 182 response and play an important part in mounting innate immune responses in the early stages
 183 of viral infection.

184
 185 **Figure 2: Endothelial cells have the highest basal interferon response and the highest increase in innate**
 186 **response upon reovirus infection. a)** Heatmap showing the expression of the 25 most upregulated genes in the
 187 reovirus-infected heart as compared to mock at 4 dpi. **b)** Infection response score for cardiac cell types in scRNA-
 188 seq data across mock-infected and reovirus-infected hearts at three distinct stages. The infection response score
 189 represents the gene module score for a panel of 226 genes that are significantly upregulated (two-sided Wilcoxon
 190 test, log fold-change > 1.0 and p-value < 0.01) in the reovirus-infected heart as compared to the mock-infected
 191 heart at 4 dpi. **c)** Infection response score (defined above) across spots in spatial transcriptomics data. **d)**
 192 Infection response score calculated for five common cell types across 13 tissues from the tabula-muris mouse
 193 atlas data. **e)** Infection response score for ileal cell types in scRNA-seq data across mock-infected and reovirus-
 194 infected ileum at two distinct stages. The infection response score represents the gene module score for a panel
 195 of 438 genes significantly upregulated (two-sided Wilcoxon test, log fold-change > 1.0 and p-value < 0.01) in the
 196 reovirus-infected ileum at 1 dpi as compared to the mock-infected ileum. **f)** Infection response score for spatial
 197 transcriptomics data from mock-infected and reovirus-infected ileum at two distinct stages.

198 Inflamed endothelial cells recruit cytotoxic T cells and undergo pyroptotic cell death

199 To explore the heterogeneity of endothelial cell phenotypes in more detail, we reclustered all
 200 9,786 cardiac endothelial cells in the scRNA-seq data. We observed four distinct phenotypes:
 201 **i)** uninflamed venous endothelial cells expressing *Nr2f2* and *Aplnr* mainly derived from the

202 mock controls¹⁵, **ii)** arterial endothelial cells expressing *Gja4*, *Gja5*, and *Cxcl12* derived from
203 both mock and infected cardiac hearts¹⁵, **iii)** inflamed endothelial cells derived from infected
204 hearts at 4 and 10 dpi, and **iv)** inflamed endothelial cells from the heart at 7 dpi, with both
205 inflamed endothelial cell clusters expressing *lsg15*, *ligrp1*, and *Ly6a* (**Fig. 3A-B**). DGEA across
206 endothelial subclusters revealed that the inflamed 7 dpi endothelial cells overexpressed
207 chemokines *Cxcl9* and *Cxcl10*, which are generally involved in immunoregulatory and
208 inflammatory processes, but more specifically in the recruitment of T cells and NK T cells¹⁶
209 (**Fig. 3B-3C, Supp Fig. 7A**). In line with this observation, T cells in the 7 dpi hearts expressed
210 the *Cxcr3* receptor (see below). The *Cxcl9*-high inflamed endothelial cells furthermore
211 expressed high levels of cell adhesion marker genes *Vcam1* and *Icam1*, which help immune
212 cells in the blood to attach to endothelial cells¹⁷ (**Fig. 3C, Supp Fig. 7A, 7E**). The endothelial
213 cells also overexpressed MHC class 1 (*H2-D1* and *H2-K1*) and MHC class 2 (*Cd74*)
214 molecules, suggesting their involvement in antigen presentation to adaptive immune cells (**Fig.**
215 **3B-C, Supp Fig. 7A, 7E**). Endothelial cells have been shown to be involved in antigen
216 presentation and shaping the cellular immune response in infectious myocarditis^{17,18}. Gene
217 ontology (GO) term enrichment analysis identified pathways further supporting the *Cxcl9*-high
218 endothelial cells' involvement in leukocyte cell-cell adhesion, T cell activation, regulation of
219 interleukin-8 production, and response to cytokines, interferon-gamma, interleukin-1, and
220 tumor necrosis factors (**Supp Fig. 7B**).

221 The observation that endothelial cells are involved in the recruitment of T cells prompted us to
222 explore the heterogeneity of T cells in the infected hearts in more detail. To this end, we
223 reclustered 2,205 T cell single-cell transcriptomes, leading to four subclusters representing
224 three T cell subtypes, **i)** *Cd8+* cytotoxic T cells, **ii)** *Cd4+* helper T cells, and **iii)** naive T cells
225 (**Fig 3E-F**). Both the cytotoxic and helper T cells identified within infected hearts expressed
226 *Cxcr3* receptor, interferon-gamma (*Ifng*), and the chemokines *Ccl3*, *Ccl4*, *Ccl5*, *S100A4*, and
227 *S100A6*, suggesting their involvement in neutrophil recruitment and activation (**Fig. 3G, Supp**
228 **Fig. 7C**). The *Cxcr3* receptor binds selectively to the chemokines *Cxcl9* and *Cxcl10*, promoting
229 chemotaxis (**Fig. 3G**). Cytotoxic T cells represented the majority of infiltrating T cells and
230 expressed *Prf1*, *Gzma*, *Gzmb*, and *Gzmk*, coding for lytic molecules associated with the
231 granzyme-dependent exocytosis pathway¹⁹ (**Fig. 3F-G, Supp Fig. 7C, 7G**). These cells also
232 expressed tumor necrosis factor superfamily genes *Fasl* and *Tradd*, which are involved in the
233 Fas-induced cell death pathway. *Fasl* binds to *Fas* on the surface of target cells and mediates
234 programmed cell death signaling and NF- κ B activation (**Fig. 3G**). The Fasl-Fas apoptosis
235 pathway is important in regulating T cells, in promoting tolerance to self-antigens, and is a
236 mechanism by which cytotoxic T cells kill target cells¹⁹. GO term enrichment analysis identified
237 pathways involved in neutrophil activation and degranulation, processing and presentation of
238 exogenous peptide antigen, interleukin-1-mediated signaling pathway, tumor necrosis factor-
239 mediated signaling, NF- κ B-inducing kinase (NIK) /NF- κ B signaling, cellular response to
240 hypoxia, and apoptotic processes (**Supp Fig. 7D**).

241 The downstream gene markers for cell death-associated pathways *Pycard*, *Acer2*, *Zbp1*, and
242 Caspases *Casp1*, *Casp4*, and *Casp12* were enriched in the *Cxcl9*-high endothelial cells,
243 raising the possibility that cytotoxic lymphocytes are responsible for inflamed endothelial cell
244 death (**Fig. 3B-3C**, **Supp Fig. 7E**). GO term enrichment of endothelial cells confirmed an
245 upregulation of cell death pathways including activation of cysteine-type endopeptidase activity
246 involved in the apoptotic process, positive regulation of the extrinsic apoptotic signaling
247 pathway, and pyroptosis pathway (**Supp Fig. 7B**). We assessed the spatial transcriptomic data
248 to validate direct interactions between *Cxcl9*-high inflamed endothelial cells and T cells and
249 found that they were indeed spatially co-localized in the myocarditic regions and the border
250 zone (**Supp Fig. 2C**). We calculated gene module scores for genes associated with ontology
251 terms enriched in *Cxcl9*-high endothelial and cytotoxic T cells for spatial transcriptomics data
252 and found these pathways to be enriched in the myocarditic regions (**Fig. 3D**, **3H**, and **Supp**
253 **Fig. 7E-H**).

254 We used histology, multiplexed RNA FISH, and immunofluorescence to validate our spatial
255 transcriptomic and scRNA-seq findings on matched tissue sections from myocarditic and
256 mock-infected hearts. (**Supp Fig. 8A, 8B, Methods**). The RNA FISH experiments confirmed
257 the presence of *Cxcl9*-high endothelial cells (detected with *Cdh5*) colocalized with infiltrating T
258 cells within myocarditic tissue (detected by *Trbc2*, and lytic molecule *Prf1*, **Supp Fig. 8A, 8B**,
259 **Fig. 3I, 3J**). By immunofluorescence microscopy, we found expression of the pyroptosis-
260 mediated cell death marker Caspase1 protein, the active cleaved Caspase1 protein and the
261 pore-forming cleaved Gasdermin-D protein in myocarditic hearts at 7 dpi (consecutive tissue
262 sections, **Supp Fig. 8C**, **Supp Fig. 8D, 8E** and **Fig. 3K, 3L**). These observations support the
263 hypothesis that inflamed endothelial cells undergo pyroptosis in reovirus-infected myocarditic
264 hearts.

265 Collectively, these results suggest that endothelial cells lining the cardiac vasculature act as a
266 blood-heart barrier and play an important role in the recruitment and activation of the host
267 adaptive immune system. These cells may be the target of both direct viral damage and
268 immune-mediated damage during reovirus-induced myocarditis. Damage to the
269 microvasculature within the heart may then cause loss of blood supply and be a factor in the
270 subsequent death of cardiomyocytes independent of direct viral replication.

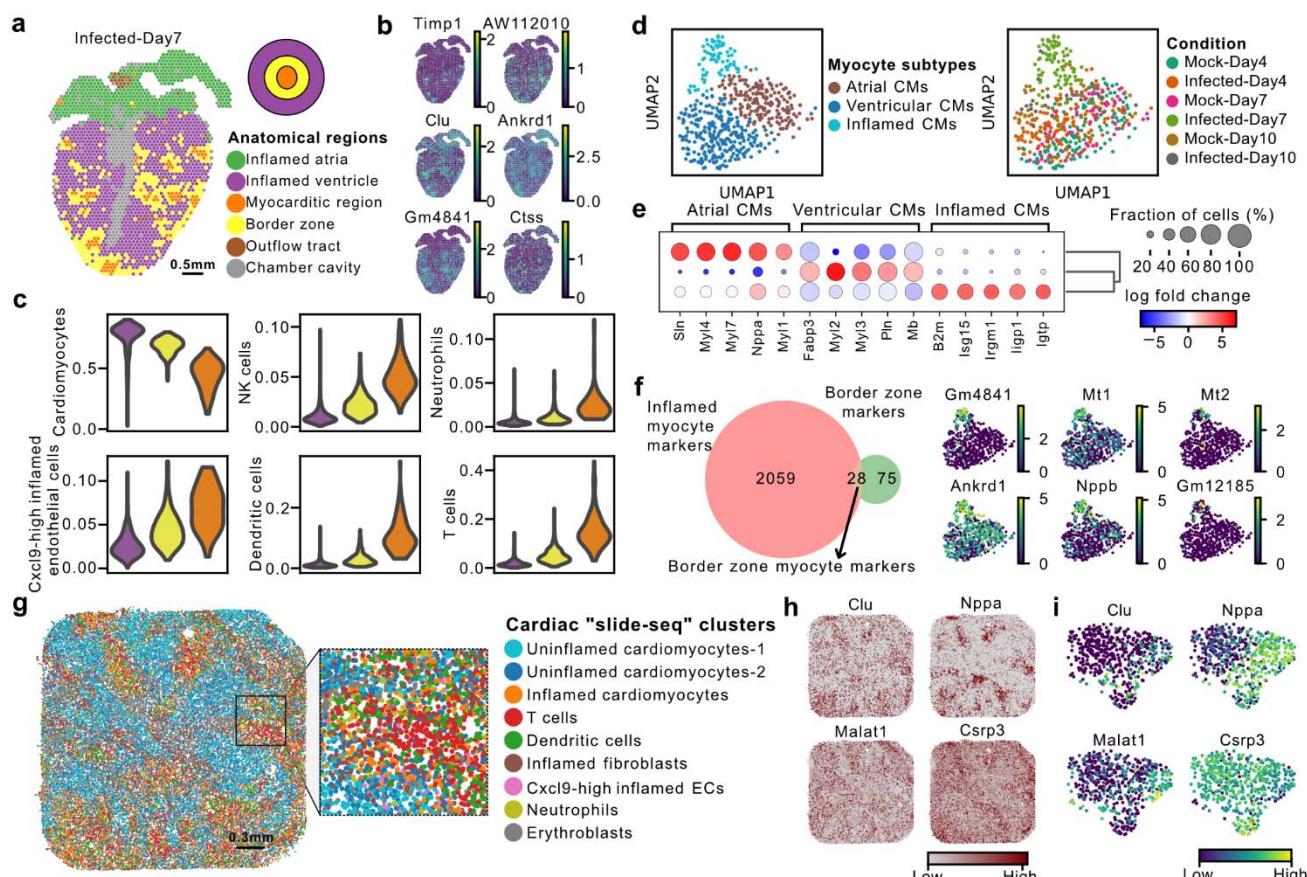
271

Figure 3: Cytotoxic T cells recruited by inflamed endothelial cells induce pyroptosis in myocarditic tissue
a) UMAP plot of 9,786 single-cell endothelial cell transcriptomes from mock-infected and reovirus-infected hearts at 4, 7, and 10 dpi colored by endothelial cell (EC) subtype clusters (phenotypes) (top) and condition (bottom). **b)** Heatmap showing top-five differentially expressed genes (two-sided Wilcoxon test, log fold-change > 1.0 and p-value < 0.01) for endothelial cell subtypes. **c)** UMAP plot showing the expression of genes upregulated in *Cxcl9*-high endothelial cells. **d)** Spatial transcriptomic maps of cardiac tissue from reovirus infected hearts at 7 dpi showing gene module scores calculated for four GO terms enriched in *Cxcl9*-high endothelial cells. **e)** UMAP plot of 2,205 single-cell T cell (TC) transcriptomes from mock-infected and reovirus-infected hearts at 4, 7, and 10 dpi colored by T cell subtype clusters (top) and condition (bottom). **f)** Heatmap showing top-five differentially expressed genes (two-sided Wilcoxon test, log fold-change > 1.0 and p-value < 0.01) for T cell subtypes. **g)** UMAP plot showing the expression of genes upregulated in cytotoxic T cells from myocarditic heart at 7 dpi. **h)** Spatial transcriptomics maps of cardiac tissue from reovirus infected hearts at 7 dpi showing gene module scores calculated for four GO terms enriched in cytotoxic T cells. **i,j)** RNA FISH staining for **i)** endothelial marker *Cdh5*, and chemokine *Cxcl9* **j)** T cell marker *Trbc2* and lytic molecule *Prf1* on consecutive sections from myocarditic hearts at 7 dpi. Representative images from 14 biological replicates (n=7 males and n=7 females). **k,l)**

287 Immunofluorescence staining for **k**) cleaved Caspase1 protein-subunit (Casp1 p20 subunit) **l**) cleaved Gasdermin
288 D protein (GSDMD N terminus fragment) on myocarditic hearts at 7 dpi. Representative images from 14 reovirus-
289 infected biological replicates (n=7 males and n=7 females). Immunofluorescence signal from reovirus-infected
290 hearts was compared to mock-infected hearts using two-sided Wilcoxon statistical test. p-value annotation
291 legend: ns: p <= 1.00e+00, *: 1.00e-02 < p <= 5.00e-02, **: 1.00e-03 < p <= 1.00e-02, ***: 1.00e-04 < p <= 1.00e-
292 03, ****: p <= 1.00e-04.

293 **Spatially restricted cell-type-specific gene expression in myocarditic tissue**

294 The spatially restricted nature of myocarditis motivated us to explore the spatial heterogeneity
295 of gene expression in reovirus-infected hearts. Our initial clustering of the spatial
296 transcriptomic data revealed distinct transcriptional programs for myocarditic regions, the
297 tissue bordering these myocarditic regions, and the rest of the ventricular tissue (**Fig. 1C, 4A,**
298 **Supp Fig. 2A**). Differential spatial gene expression analysis for these regions revealed
299 upregulation in the myocarditic regions of cell-type markers for infiltrating immune cells, (*Cd8a*
300 and *Gzma* for T cells, *Nkg7* for NK cells, *S100a8* for neutrophils), markers of inflammation
301 (*Cd52* and *Lyc62*, **Supp Fig. 9A-B**), and chemokines and cytokines (*Ccl5*, *Ccl2*, *Cxcl9*, and
302 *Cxcl10*). Analysis of the corresponding scRNA-seq data showed that *Ccl5* is expressed by
303 dendritic cells, *Ccl2* by fibroblasts, and *Cxcl9* and *Cxcl10* by endothelial cells. The receptor for
304 *Ccl2*, *Ccr2*, is expressed in macrophages, indicating that fibroblasts use the *Ccl2-Ccr2* axis for
305 macrophage recruitment during myocardial inflammation, as described recently^{20,21} (**Supp Fig.**
306 **9C**). Collectively these analyses suggest that chemokine-producing endothelial cells and
307 cytokine-producing fibroblast cells contribute to the recruitment of immune cells to the
308 myocarditic tissue.


309 Closer inspection of the myocarditic regions and border zones showed an upregulation of
310 additional genes of interest, including *Timp1*, *AW112010*, *Clu*, *Ankrd1*, *Gm4841*, and *Ctss*
311 (**Fig. 4B**). *Timp1* was mainly expressed by inflamed fibroblasts in the scRNA-seq data (**Supp**
312 **Fig. 9D**). *Timp1* is a natural inhibitor of the matrix metalloproteinases (MMPs), a group of
313 peptidases involved in the degradation of the extracellular matrix. Upregulation of *Timp1* in
314 patients with deteriorating heart failure was reported previously²². *AW112010* was expressed
315 by inflamed endothelial cells and fibroblasts in the scRNA-seq data. *AW112010* encodes an
316 interferon-induced small secreted protein which regulates inflammation by suppressing IL-10
317 within proinflammatory T-cells²³ (**Supp Fig. 9D**). *Clu* was expressed in a subset of inflamed
318 cells from all cardiac cell types in our data. *Clu* is upregulated during severe myocarditis²⁴
319 (**Supp Fig. 9D**). *Ctss* was expressed mainly in monocytes (**Supp Fig. 9D**). *Ctss* encodes a
320 protease used for degradation of antigenic proteins to peptides for presentation by MHC class
321 II molecules. Increased formation of immunoproteasomes in susceptible mice has been shown
322 to affect the generation of antigenic peptides and subsequent T cell activity in viral
323 myocarditis^{25,26}. GO term analysis of genes upregulated in the border zone revealed
324 enrichment of terms related to the response to tumor necrosis factor, response to interleukin-1,
325 and NIK/ NF- κ B signaling (**Supp Fig. 9E**).

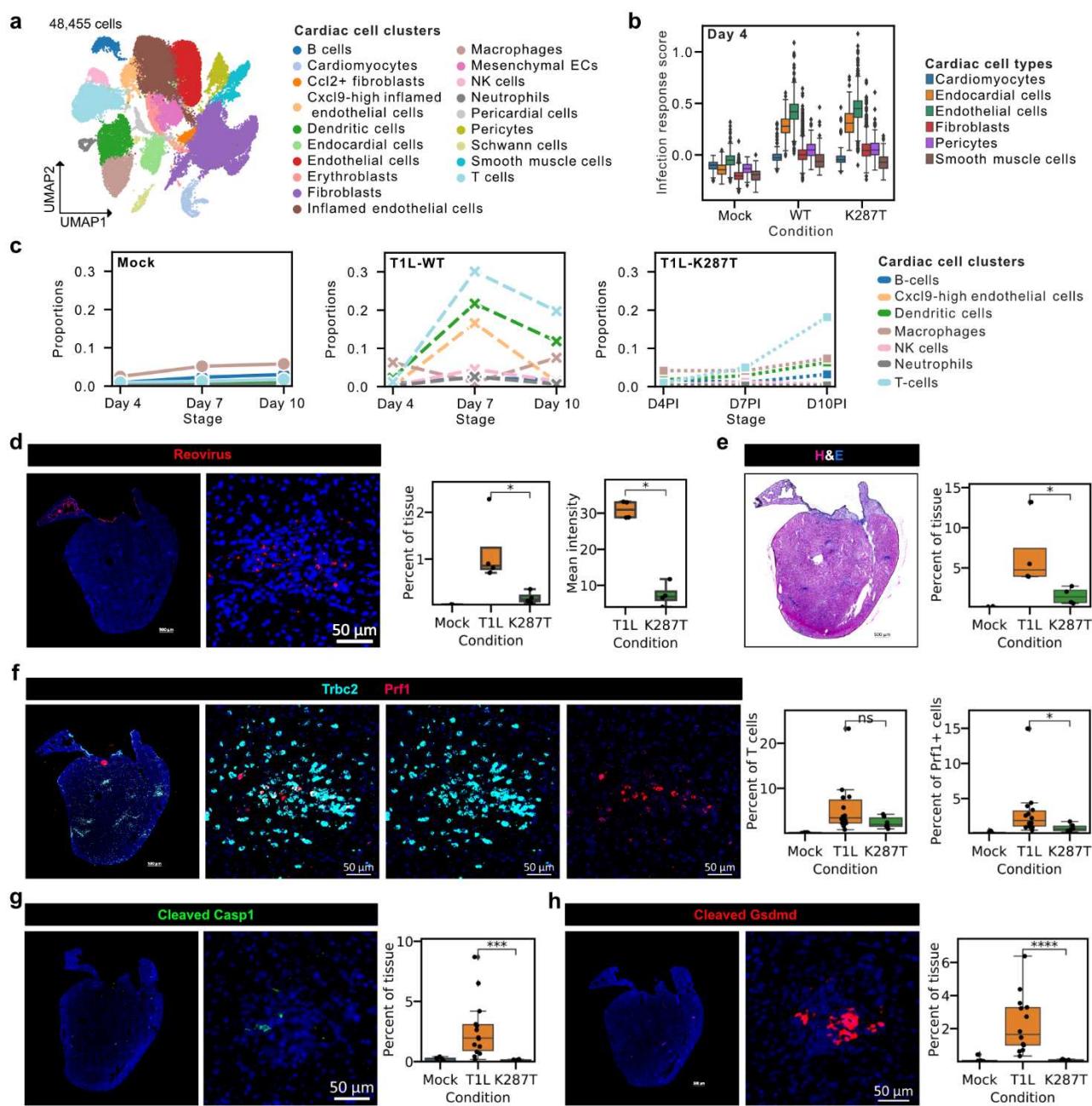
326 To further understand the effect of immune cell infiltration on the cell type composition
327 surrounding the myocarditic regions, we assessed cell type proportions as a function of
328 distance from myocarditic regions in the tissue. We quantified the cell type proportions in
329 myocarditic regions, the border zones, and the rest of the ventricular tissue, and found that the
330 fraction of *Cxcl9*-high endothelial cells, *Ccl2*+ fibroblasts, T cells, dendritic cells, and NK cells
331 was increased in the myocarditic regions, and the fraction of cardiomyocytes was reduced in
332 myocarditic regions (**Fig. 4C, Supp Fig. 2C**). To understand the phenotype of *Ccl2*+ fibroblasts
333 enriched in myocarditic region and border zone, we reclustered 9,192 fibroblast cells from the
334 scRNA-seq dataset and identified a distinct cluster of inflamed *Ccl2*+ fibroblasts from the
335 infected heart at 7 dpi (**Supp. Fig. 9F, 9G**). The *Ccl2*+ fibroblasts expressed high levels of
336 MHC class 1 (*H2-D1* and *H2-K1*), adhesion marker genes *Vcam1* and *Icam1*, and other genes
337 such as *Serpina3g*, *C3*, and *Ms4a4d* (**Supp Fig. 9H, 9I**). Moreover, these cells also expressed
338 *Casp1* and *Casp4*, suggesting that fibroblasts also undergo pyroptosis (**Supp Fig. 9H**).

339 To investigate the effect of inflammation on cardiomyocytes in myocarditic hearts, we
340 reclustered 502 cardiomyocytes from the scRNA-seq dataset and identified three distinct
341 phenotypes: *i*) ventricular myocytes expressing *Myl2*, *Myl3*, and *Mb* derived from mock and
342 infected hearts at 4 and 10 dpi, *ii*) atrial myocytes expressing markers *Myl4*, *Myl7*, and *Nppa*
343 derived from mock and infected hearts at 4 and 10 dpi, and *iii*) inflamed myocytes from the
344 infected heart at 7 dpi expressing innate immunity genes *Isg15*, *Igtp*, and *Ilgp1*²⁷ (**Fig. 4D-E**).
345 Inflamed myocytes from the infected heart at 7 dpi had a distinct phenotype when compared to
346 the myocytes from hearts at 4 and 10 dpi, which clustered with myocyte cells from mock-
347 infected hearts (**Fig. 4E**). To find transcriptional signatures for myocytes present in the border
348 zone, we selected genes that were both enriched in cardiomyocytes in the scRNA-seq data
349 and upregulated in the border zone. This analysis revealed that cardiomyocytes in the border
350 zone expressed *Gm4841*, *Gm12185*, *Mt1*, *Mt2*, *Ankrd1*, and *Nppb* (**Fig. 4F, Supp Fig. 9J**).
351 *Gm4841* and *Gm12185* are interferon-inducible genes produced in response to interferon-
352 gamma. *Mt1* and *Mt2* genes modulate inflammation and support remodeling in ischemic
353 cardiomyopathy in mice²⁸. Upregulation of *Ankrd1*, a myocyte survival factor, occurs during
354 late-stage heart disease in patients with idiopathic dilated cardiomyopathy²⁹. A recent study
355 shows that cardiomyocytes expressing *Ankrd1* are localized in the border zone on day 1 post-
356 myocardial infarction³⁰.

357 To visualize the spatial distribution and phenotypes of cardiac cell types at higher spatial
358 resolution, we also performed "Slide-seq" spatial transcriptomics^{31,32} (resolution = 10 μ m) on
359 ventricular tissue from a single reovirus-infected myocarditic heart (**Methods, Supp Fig. 10A**).
360 We performed unsupervised clustering and DGEA to label these near single-cell resolution
361 slide-seq spatial transcriptomes as cardiac cell types (**Supp Fig. 10B, 10C and Fig. 4G**). We
362 visualized the cell types on the spatial maps and performed neighborhood enrichment analysis
363 and observed neutrophils, *Cxcl9*-expressing endothelial cells, and inflamed cardiomyocytes
364 organized in close proximity to infiltrating T cells and dendritic cells in the myocarditic regions
365 (**Supp Fig. 10D and 10E**). We furthermore used deconvolution using the scRNAseq data as a

366 reference to obtain cell type predictions and to quantify cell-type-specific gene expression at
 367 every spatial location (**Methods, Supp Fig. 11**). We compared the phenotypes of inflamed and
 368 uninflamed myocyte clusters using DGEA and confirmed the upregulation of *Ankrd1*, *Nppb*,
 369 *Gm4241*, and *Saa3*. We furthermore identified additional inflammation and stress related
 370 markers for inflamed cardiomyocytes such as *Clu*³³, *Malat1*³⁴, *Nppa*^{35,36}, and *Cspr3*³⁷ (**Supp**
 371 **Fig. 10F & 10G and Fig. 4H & 4I**). Together, our analysis reveals that tissue injury is localized
 372 to myocarditic regions with remodeling and stress programs being active in the border zone
 373 and demonstrates the importance of spatially resolved molecular measurements to study viral
 374 myocarditis.

375
 376 **Figure 4: Myocarditic regions and the border zone have distinct transcriptomic profiles and cell type**
 377 **specific signatures.** **a)** Spatial transcriptomics map of cardiac tissue section from reovirus-infected mice at 7 dpi
 378 colored by spot clusters representing transcriptionally distinct tissue regions. **b)** Spatial transcriptomics maps of
 379 cardiac tissue sections from reovirus-infected mice at 7 dpi showing the expression of differentially expressed
 380 genes of interest in the myocarditic and the border zone. **c)** Changes in average predicted cell-type proportions
 381 across the infected ventricle, for cell types enriched in the myocarditic region and the border zone. **d)** UMAP plot
 382 of 502 single-cell cardiomyocyte cell transcriptomes from mock-infected and reovirus-infected hearts at 4, 7, and
 383 10 dpi colored by myocyte cell subtype (phenotypes) (left) and condition (right). **e)** Heatmap showing top-five
 384 differentially expressed genes (two-sided Wilcoxon test, log fold-change > 1.0 and p-value < 0.01) for
 385 cardiomyocyte cell subtypes. **f)** Venn Diagram showing myocyte-specific genes upregulated in the border zone
 386 around the myocarditic regions (left). UMAP plot showing the expression of myocyte-specific genes which are
 387 upregulated in the border zone of myocarditic regions (right). **g)** High-resolution Slide-seq spatial transcriptomics
 388 map of cardiac ventricular tissue from reovirus infected mice at 7 dpi colored by Slide-seq bead clusters. Zoom-in


389 shows the spatial arrangement of Slide-seq clusters within a myocarditic region. **h)** Spatial transcriptomic maps
390 showing Slide-seq expression of four cardiomyocyte specific genes enriched in inflamed cardiomyocytes as
391 compared to uninflamed myocytes. **i)** UMAP plot showing the scRNAseq expression of myocyte-specific genes
392 which are upregulated in inflamed myocytes in the slide-seq data.

393 **Reduced adaptive immune cell infiltration associated with reovirus K287T mutant**

394 We recently reported a reovirus mutant T1L S4-K287T (K287T) which has a point mutation in
395 the S4 gene encoding outer capsid protein sigma-3 (σ 3), a double-stranded (ds) RNA-binding
396 multifunctional protein that promotes viral protein synthesis and facilitates viral entry and
397 assembly⁹. This mutation abolishes the capacity of σ 3 to block dsRNA-mediated activation of
398 protein kinase R (PKR). The T1L K287T mutant is less virulent than the WT strain in neonatal
399 mice. K287T replicates to WT titers in the heart at 4 dpi, but to significantly lower viral titers
400 than WT virus at 7 dpi. The K287T mutant does not induce myocarditis as observed by calcium
401 staining in the tissue⁹. To confirm our findings about immune-mediated pathogenesis during
402 reovirus infection, we performed additional scRNA-seq for K287T infected hearts at 4, 7, and
403 10 dpi. We generated a total of 16,771 single-cell transcriptomes and integrated the data with
404 the data from the WT virus. We did not observe sample-specific clusters after data integration,
405 suggesting minimal experimental batch effects (**Fig. 5A, Supp Fig. 12A**). We performed viral
406 transcript enrichment and compared the mean viral transcripts in WT- and mutant-infected
407 cells. We found similar levels of mean viral transcripts for WT and K287T viruses at 4 dpi but a
408 60-fold lower viral load for K287T at 7 dpi, consistent with viral titer assays⁹ (**Supp Fig. 12B-E**). We then compared the early cardiac cell type host responses to K287T and WT infection.
409 K287T induced a similar level of innate immune responses as WT virus with endothelial cells
410 showing the highest increase in cardiac IR score (as defined before) at 4 dpi (**Fig. 5B**).
411

412 We analyzed the cell type composition of inflamed Cxcl9-high endothelial cells and immune
413 cells detected in K287T- and WT-infected hearts. We observed fewer Cxcl9-high endothelial
414 cells and immune cells including cytotoxic T cells, infiltrating the heart at 7 dpi compared to
415 WT-infected heart (**Fig. 5C**). These differences correlate with the reduced levels of
416 inflammation associated with the K287T mutant (**Fig. 5E**). To validate these observations, we
417 performed RNA FISH and immunofluorescence staining on K287T-infected hearts and
418 compared them to mock-infected and reovirus WT-infected hearts (**Fig. 5D-H**).
419 Immunostaining for reoviral antigen in tissue sections confirmed both a significantly reduced
420 area with viral replication (two-sided Mann-Whitney test, p-value < 0.05) and significantly lower
421 viral antigen within those areas (two-sided Mann-Whitney test, p-value < 0.05), consistent with
422 the scRNA-seq analysis and viral titer assays (**Supp. Fig. 12C, Fig. 5D**). We observed a
423 reduction in infiltration of T cells in K287T-infected hearts as compared to WT-infected hearts
424 at 7 dpi (**Fig. 5F**). The fraction of total cytotoxic immune cells (*Prf1+*) was significantly reduced
425 in K287T-infected hearts as compared to WT-infected hearts (two-sided Mann-Whitney test, p-
426 value < 0.05, **Fig. 5F**). These findings support the reduced immune-mediated cytotoxicity seen
427 in K287T-infected hearts. This was further supported by a significant reduction in cleaved
428 Caspase1 and cleaved Gasdermin-D protein expression in K287T-infected hearts as

429 compared to WT-infected hearts (two-sided Mann-Whitney test, p-value < 1.00e-03, **Fig. 5G**,
 430 **5H**). Our results show that cardiac endothelial cells mount a potent and robust innate immune
 431 response when infected with the K287T mutant virus. Clearance of the K287T virus from most
 432 infected cells by 7 dpi leads to a lower immune-mediated cytotoxicity, which correlates with
 433 lack of cardiac injury. These results suggest that a robust early innate immune response in
 434 endothelial cells is critical for early viral clearance and prevention of subsequent cardiac injury
 435 mediated by cytotoxic immune cells during reovirus-induced myocarditis.

436
 437 **Figure 5: A robust innate immune response but reduced adaptive immune cell infiltration explains the**
 438 **non-myocarditic phenotype on infection with reovirus K287T mutant.** **a)** UMAP plot of 48,455 single-cell cell
 439 transcriptomes from mock-infected, reovirus-wildtype (WT) infected, and reovirus mutant (K287T) infected hearts
 440 at 4, 7, and 10 dpi (one animal per condition) colored by cell-type clusters. **b)** Infection response score for cardiac

441 cell types in scRNA-seq data across mock-infected, reovirus-WT infected, and reovirus-K287T infected hearts on
442 4 dpi. The infection response score represents the gene module score for a panel of 226 genes that are
443 significantly upregulated in the reovirus-WT infected sample as compared to the mock-infected sample at 4 dpi. **c)**
444 Changes in cell-type proportions with time for cell types detected in the myocarditic regions. Panels show the
445 changes in cell-type proportions across mock-infected, reovirus-WT infected, and reovirus-K287T infected cells.
446 **d)** Immunofluorescence images of reovirus antigen on reovirus mutant (K287T) infected hearts at 7 dpi. **e)**
447 Hematoxylin and Eosin (H&E) stained image of K287T-infected heart tissue section at 7 dpi. **f)** RNA FISH staining
448 for of T cell marker *Trbc2*, and lytic molecule *Prf1* on K287T-infected heart tissue section at 7 dpi. **d-f)**.
449 Representative heart images from six K287T-infected hearts. **g-h)** Immunofluorescence staining for **g)** cleaved
450 Caspase1 protein-subunit (Casp1 p20 subunit) **I)** cleaved Gasdermin D protein (GSDMD N terminus fragment) on
451 K287T-infected heart tissue section at 7 dpi. Representative images from six K287T-infected biological replicates
452 (n=3 males and n=3 females). Immunofluorescence signal from K287T-infected hearts was compared to WT-
453 infected hearts using two-sided Wilcoxon statistical test. p-value annotation legend: ns: p <= 1.00e+00, *: 1.00e-
454 02 < p <= 5.00e-02, **: 1.00e-03 < p <= 1.00e-02, ***: 1.00e-04 < p <= 1.00e-03, ****: p <= 1.00e-04.

455 DISCUSSION

456 Viral myocarditis has been recognized as a cause of heart failure for more than 50 years, but it
457 is still a challenging disease to study, diagnose, and treat³⁸. Here, we used integrated spatial
458 and single-cell RNA-seq to dissect the temporal, spatial, and cellular heterogeneity of reovirus-
459 induced acute myocarditis in a neonatal mouse model. We assayed ileum and heart tissues at
460 multiple time points after infection. We investigated the cell types that are infected, and the
461 cellular and spatial heterogeneity of innate and adaptive immune responses. We generated a
462 total of thirteen scRNA-seq and eight spatial transcriptomics datasets, spanning two organs,
463 four time points, and three infection conditions. Our data provide detailed insight into the
464 chronology of molecular events that lead to reovirus-induced myocarditis. After oral
465 inoculation, reovirus T1L infects entero-endocrine and enterocyte cells in the gut epithelium
466 within 1 dpi. These cells mount a potent innate immune response to inhibit viral replication.
467 The virus then infects the gut lymphatic cells within 4 dpi and is transmitted via lymphatics to
468 the bloodstream and then to secondary sites in the body, including the heart. Around 4 dpi, the
469 virus infects the endothelial cells lining the cardiac vasculature. Endothelial cells mount a
470 potent innate immune response in the heart. In symptomatic cases, inflamed endothelial cells
471 secrete chemokines that recruit circulating immune cells, including cytotoxic T cells. These
472 inflamed endothelial cells then undergo pyroptotic cell death in the myocarditic tissue. Overall,
473 our experiments reveal a dynamic and spatially heterogeneous network of cellular phenotypes
474 and cell-cell interactions associated with reovirus-induced myocarditis.

475 Integrated high-throughput scRNA-seq and spatial transcriptomics was recently used to study
476 heart development^{39,40} and heart disease^{30,41}, but these methods have not been used to study
477 viral myocarditis prior to our work. Bulk RNA-seq has been used previously to profile
478 transcriptomic signatures of infection, inflammation, and tissue injury associated with viral
479 myocarditis^{9,42-45}. Yet, these ensemble-level approaches do not capture the cellular and spatial
480 heterogeneity of host response to infection. scRNA-seq has recently been used to study
481 Coxsackievirus B3 (CVB3)-induced myocarditis in a mouse model⁴⁶. Lasrado et al. report
482 inflammatory phenotypes of myeloid cells, the role of fibroblasts in remodeling and

483 inflammation, and the role of cytotoxic T-cells in CVB3-induced myocarditis. However, the
484 cardiac cell types that are targeted by the virus, the cell type heterogeneity in basal interferon
485 response and innate immune response, and the spatial restriction of transcriptional programs
486 were not explored in this study.

487 Reovirus infection occurs often in humans, but most cases are mild or subclinical. These
488 viruses display a broad host range, but only young hosts develop the disease. After infection of
489 neonatal mice, reoviruses cause injury to a variety of organs, including the heart, liver, and the
490 central nervous system, depending on the viral strain. Reovirus Type-1-Lang (T1L) strain is
491 mildly virulent and causes myocarditis in ~50% of the infected mice. Neonatal mice with
492 myocarditic hearts due to T1L infection survive with tissue damage and have an increased rate
493 of heart failure. Therefore, reovirus T1L infection in neonatal mice is an ideal model to study
494 the mechanisms and pathogenesis of reovirus induced myocarditis in young hosts. Previous
495 studies have claimed that the direct cytopathic effect of viral replication on cardiac cells is the
496 main cause of cardiac damage during reovirus-induced myocarditis^{7,47}. Notably, Sherry et al.
497 found that reovirus infection can induce myocarditis in immunodeficient mice lacking B and/or
498 T cells, suggesting that reovirus-induced myocarditis does not strictly require adaptive
499 immunity^{7,11}. However, these previous experiments do not rule out the possibility that the host
500 adaptive immune response can augment or delimit the nature and amount of host damage in
501 immune-competent mice, as is suggested by our work. In addition, the viral strain used in
502 these experiments was substantially more virulent. Holm et al. and Stewart et al. have studied
503 the protective role of innate immune responses in reovirus-induced myocarditis^{13,48}. However,
504 prior to this study the temporal, spatial, and cell type heterogeneity of basal type-I IFN and
505 innate immune responses to infection had not been characterized. Miyamoto et al. and Stewart
506 et al. compared basal levels of type-I IFN between cardiac myocytes and fibroblasts *in vitro* but
507 these studies did not include all the cell types that make up complex cardiac tissues^{27,49}.

508 Spatiotemporal characterization of viral myocarditis is crucial to understanding the viral and
509 host factors that are important for disease pathology. This knowledge may ultimately lead to
510 novel diagnostic approaches and better treatments. Several viruses that frequently infect
511 humans can cause myocarditis, including Adenovirus, enteroviruses, Epstein-Barr virus,
512 human Herpesvirus 6, parvovirus B19, and SARS-CoV2. The results presented here may not
513 be representative of the mechanisms for other viral causes of myocarditis or viral myocarditis
514 in adult hosts. However, the approaches that we have implemented here can be used in future
515 studies to investigate how the induction, pathophysiology, and course of myocarditis induced
516 by these viruses differs. We hope that the data and analysis routines that we make available
517 here will be a valuable resource for such future studies.

518 METHODS

519 Reovirus infections of neonatal C57BL/6J mice.

520 Confirmed pregnant female C57BL/6J mice were ordered from Jackson Laboratories to be
521 delivered at embryonic stage E14.5. Litters weighing 3 gram/ pup were gavaged using
522 intramedic tubing (Becton Dickinson 427401) per os with 50 μ l with 10^7 PFU reovirus type 1
523 lang (T1L): wildtype or K287T mutant in 1x phosphate buffered saline (PBS) containing green
524 food color (McCormick) via a 1ml tuberculin slip tip syringe (BD 309659) and 30G x 1/2 needle
525 (BD 305106). Litters treated with 1x PBS containing green food color alone on the same day
526 were used as mock controls for the respective infection groups. The mock-infected and
527 reovirus-infected mice pups were weighed daily until the time points used in the study (1-, 4-,
528 7-, and 10-days post infection (dpi)). Due to the difficulty in determining the sex of mice during
529 infection and early neonatal stages, we randomly selected the mice to collect ileum and heart
530 tissues for scRNASeq and spatial transcriptomics experiments (**Supp Data 2**). All animal work
531 was conducted ethically, conforming to the U.S. Public Health Service policy, and was
532 approved by the Institutional Animal Care and Use Committee at Cornell University (IACUC
533 Number 2019-0129).

534 **Sample preparation for single-cell transcriptomics of cardiac tissue.**

535 We sacrificed mock-infected and reovirus-infected C57BL/6J mice on day 4, day 7, and day 10
536 post-infection and collected cardiac tissues for single cell transcriptomics. Single heart tissue
537 from respective stages (one heart per stage) were isolated aseptically, washed with ice-cold
538 Hank's Balanced Salt Solution, HBSS (with calcium and magnesium chloride; Gibco 14025-
539 134), and minced into 1-2mm pieces. Cardiac tissue pieces were then digested in tissue
540 dissociation media with 200U/mL collagenase type II (Gibco 17100-015), 1 mg/ml dispase
541 (Sigma D4693), and 3mM calcium chloride in HBSS for four cycles of 10 minutes under mild
542 agitation at 37°C in 1.5 ml eppendorf tubes. After every 10-minute cycle, cell suspension was
543 collected, added to ice-cold 1x PBS with 0.04% bovine serum albumin (BSA; Sigma A3803)
544 and new dissociation media was added to the tubes. At the end of the digestion, the cells were
545 passed through a 70 μ m filter and centrifuged into a pellet. To remove most blood
546 contaminants, samples were resuspended in an ammonium-chloride-potassium (ACK) lysis
547 buffer (Lonza #10-548E) for 3-5 minutes and centrifuged. Samples were then washed again in
548 PBS with 0.04% BSA and then resuspended at 1×10^6 cells per ml. Cells from each sample
549 were stained with Trypan Blue and cell viability was calculated on an automated cell counter
550 (Countess II) before loading the cells on 10x Chromium. We used these cell viabilities to adjust
551 the number of cells loaded on 10x Chromium to get the desired number of transcriptomes from
552 viable cells for each sample (5000 cells per sample).

553 **Sample preparation for single-cell transcriptomics of intestinal tissue.**

554 We sacrificed mock-infected and reovirus-infected C57BL/6J mice on days 1 and 4 post-
555 infection and collected intestinal ileum tissue for single cell transcriptomics. Single intestinal
556 ileum tissue from respective stages (one tissue per stage) were isolated aseptically, washed
557 with ice-cold Hank's Balanced Salt Solution, HBSS (without calcium and magnesium chloride;
558 Gibco 14175-095) to remove contamination. The ileum tissue was then opened longitudinally,

559 washed again with HBSS, and minced into 1-2mm pieces. To isolate the epithelial layer of
560 cells, ileum tissue pieces were incubated in HBSS with 10mM Ethylenediaminetetraacetic acid
561 (EDTA, Invitrogen 15575-038) and 1mM Dithiothreitol, (DTT, Sigma 43816-10ML) for two
562 cycles of 10 minutes under mild agitation at 37°C. After every 10-minute cycle, cell suspension
563 containing the intestinal epithelial cells was collected, added to ice-cold 1x PBS with 0.04%
564 bovine serum albumin (BSA; Sigma A3803). The undigested pieces of lamina propria were
565 then washed thoroughly with PBS (with calcium and magnesium chloride; Gibco 14080-055) to
566 get rid of all EDTA. These pieces were then transferred to fresh tubes and incubated in
567 200U/ml Collagenase type I (Gibco 17100-017) and 3mM calcium chloride in PBS for three
568 cycles of 10 minutes under mild agitation at 37°C in 1.5 ml eppendorf tubes. After every 10-
569 minute cycle, cell suspension containing the lamina propria cells was collected, added to ice-
570 cold phosphate buffered saline, PBS with 0.04% BSA in separate tubes. At the end of the
571 digestion, the cells were passed through a 40µm filter and washed twice in PBS with 0.04%
572 BSA and then resuspended at 1×10^6 cells per ml. Cells from intestinal epithelium and
573 lamina propria for each sample were stained with Trypan Blue and cell viability was calculated
574 on automated cell counters (Countess II). Cell counts adjusted with viability were then pooled
575 as 40% epithelial cells and 60% lamina propria to adjust the number of cells loaded on 10x
576 Chromium and to get the desired number of transcriptomes from viable cells for each sample
577 (5000 cells per sample).

578 **Single-cell RNA sequencing library preparation.**

579 5000-6000 viable cells per sample (for heart and ileum tissues) were targeted on the
580 Chromium platform (10x Genomics) using one lane per sample per time point. Single-cell
581 libraries were built using the Chromium Next GEM Single Cell 3' Library Construction V3 Kit
582 (10x Genomics) and were then sequenced on an Illumina NextSeq 500 using 75 cycle high
583 output kits (Index 1 = 8, Read 1 = 28, and Read 2 = 55) for all samples. Sequencing data
584 were aligned to a combined mouse and reovirus reference genome (described below) using
585 the Cell Ranger 6.0.0 pipeline (10x Genomics).

586 **Hybridization-based enrichment of viral fragments**

587 We performed a hybridization-based enrichment of viral fragments on a part of scRNA-seq
588 libraries using xGen NGS target enrichment kit (IDT; 1080577). In this approach, a panel of 5'-
589 biotinylated oligonucleotides is used for capture and pulldown of target molecules of interest,
590 which are then PCR amplified and sequenced. We designed a panel of 202 biotinylated probes
591 tiled across the entire reovirus T1L genome to selectively sequence viral molecules from the
592 scRNA-seq libraries (**Supp Data 3**). 300ng of fragmented and indexed scRNA-seq libraries
593 from reovirus-WT infected hearts, reovirus-mutant infected hearts, and reovirus-infected ileum
594 were pooled in three separate reactions for xGen hybridization capture. Two rounds of
595 hybridization capture using the xGen enrichment protocol were performed for every reaction to
596 enrich viral transcripts. Amplification was performed for a total of 18 PCR cycles after the first
597 round of capture. 50% of the amplified product was used for the second round of hybridization

598 capture and amplification was performed for a total of 5 PCR cycles after the second round of
599 enrichment. Post-enrichment products were pooled and sequenced on Illumina Mini-seq for
600 ileum libraries and NextSeq 500 for heart libraries.

601 **Sample preparation for Visium spatial transcriptomics.**

602 Whole hearts and intestinal ileum were isolated using aseptic techniques and placed in ice
603 cold sterile Hank's Balanced Salt Solution, HBSS (without calcium and magnesium chloride;
604 Gibco 14175-095). Blood and other contamination were carefully removed by perfusing the
605 tissues with fresh HBSS. Fresh tissues were immediately embedded in Optimal Cutting
606 Compound (OCT) media (SAKURA 25608-930) and frozen in a liquid-nitrogen-cooled
607 isopentane (EMD Millipore, MX0760) bath for spatial transcriptomics experiments. The tissue
608 blocks were cut into 10 μ m sections using Thermo Scientific CryoStar NX50 cryostat and
609 mounted on Visium Gene Expression slides (10x Genomics), which were pre-cooled to -20°C
610 and used for the Visium Spatial Gene Expression experiment.

611 **Visium spatial transcriptomics library preparation.**

612 We used the Visium Spatial Gene Expression (10x Genomics) platform for the spatial
613 transcriptomics experiments. Tissue sections from fresh-frozen hearts (mock-infected and
614 reovirus-infected at day 4 and day 7 post infection) and ileum (mock infected and reovirus
615 infected at day 1 and day 4 post infection) were mounted with one section per capture area on
616 individual Visium Gene Expression slides. These sections are then fixed in pre-chilled
617 methanol for 30 minutes and then hematoxylin and eosin (H&E) stained and imaged, which is
618 later used by the 10x Genomics Space Ranger (version 1.0.0) software to detect the spots
619 which are covered by the tissue. The optimal permeabilization time for 10 μ m thick sections
620 was found to be 18 minutes for the heart and 12 minutes for the ileum using the 10x Genomics
621 Visium Tissue Optimization kit. Spatially tagged cDNA libraries were built using the 10x
622 Genomics Visium Spatial Gene Expression 3' Library Construction V1 Kit. H&E-stained heart
623 tissue sections were imaged using Zeiss PALM MicroBeam laser capture microdissection
624 system at 20x objective and the images were stitched and processed using Fiji ImageJ
625 software. cDNA libraries were sequenced on an Illumina NextSeq 500/550 using 150 cycle
626 high output kits (Read 1 = 28, Read 2 = 120, Index 1 = 10, and Index 2 = 10) for ileum
627 and on an Illumina NextSeq 2K (P2 flow cell) using the 100-cycle kit (Read 1 = 28, Read 2 =
628 96, Index 1 = 10, and Index 2 = 10) for the heart samples. Fiducial frames around the
629 capture area on the Visium slide were aligned manually and spots covering the tissue were
630 selected using Loupe Browser 4.0.0 software (10x Genomics). Sequencing data was then
631 aligned to a combined mouse and reovirus reference genome (described below) using the
632 Space Ranger 1.0.0 (10x Genomics) pipeline to derive a feature spot-barcode expression
633 matrix. Visium slide number V19B23-046 was used for spatial transcriptomics experiment on
634 mice hearts (mock-infected 4 dpi: capture area D1, reovirus-infected 4 dpi: capture area B1,
635 mock-infected 7 dpi: capture area C1, and reovirus-infected 7 dpi: capture area A1). Visium
636 slide number V19B23-045 was used for spatial transcriptomics experiment on mice ileum

637 tissue (mock-infected 1 dpi: capture area D1, reovirus-infected 1 dpi: capture area B1, mock-
638 infected 4 dpi: capture area C1, and reovirus-infected 4 dpi: capture area A1).

639 **Sample preparation for Slide-seq spatial transcriptomics.**

640 Whole hearts were isolated using aseptic technique and placed in ice cold sterile Hank's
641 Balanced Salt Solution, HBSS (without calcium and magnesium chloride; Gibco 14175-095).
642 Blood and other contamination were carefully removed by perfusing the tissues with fresh
643 HBSS. Fresh tissues were immediately embedded in Optimal Cutting Compound (OCT) media
644 (SAKURA 25608-930) and frozen in a liquid-nitrogen-cooled isopentane (EMD Millipore,
645 MX0760) bath for spatial transcriptomics experiments. The tissue blocks were cut into 10 μ m
646 sections using Thermo Scientific CryoStar NX50 cryostat and mounted on a "Curio Seeker Tile
647 (Tile ID #A0004_043, Curio Bioscience). A barcode whitelist and a barcode position file for the
648 corresponding tile were provided by Curio Bioscience.

649 **Slide-seq spatial transcriptomics library preparation.**

650 Slide-seq spatial transcriptomics experiment was performed using the Curio Seeker Kit (Curio
651 Bioscience) according to manufacturer's instructions. Briefly, a tissue section from a fresh-
652 frozen reovirus-infected heart at 7 dpi was mounted on a 3mmx3mm spatially indexed bead
653 surface (Curio Seeker Kit, Tile ID #A0004_043, Curio Bioscience). After RNA hybridization and
654 reverse transcription, the tissue section was digested, and the beads were removed from the
655 glass tile and resuspended. Second strand synthesis was then performed by semi-random
656 priming followed by cDNA amplification. A sequencing library was then prepared using the
657 Nextera XT DNA sample preparation kit. The library was sequenced on an Illumina NextSeq
658 2K (P3 flow cell) using the 100-cycle kit (Read 1 = 50 bp, Read 2 = 80, Index 1 = 10). The
659 data was aligned to a combined mouse and reovirus reference genome (described below)
660 using the STAR Solo (version=2.7.9a) pipeline to derive a feature x bead barcode expression
661 matrix.

662 **Slide-seq data preprocessing and analysis**

663 Slide-seq count matrix and the position information for every bead barcode were loaded into
664 an AnnData object using scanpy (v1.9.1). After filtering the beads with less than 50 transcripts
665 detected and after removing genes detected in less than ten beads, we log-normalized the
666 slide-seq expression data and computed principal components using highly variable genes
667 (minimum dispersion = 0.2, minimum mean expression = 1.0). The transcriptomes were then
668 clustered, and differential gene expression analysis (two-sided wilcoxon test) was performed to
669 label bead clusters. Neighborhood enrichment permutation test was performed using
670 Squidpy⁵⁰ (v1.2.2). Cell2location⁵¹ (v0.1) was used for deconvolution of the Slide-seq
671 transcriptomes using the scRNASeq as a reference. Genes in the reference were filtered with
672 cell_count_cutoff=5, cell_percent_cutoff=0.03, and nonz_mean_cutoff=1.12 to select for highly
673 expressed markers of rare cell types while removing most uninformative genes. Cell type

674 signatures were determined using NB regression and used for spatial mapping of scRNAseq
675 cell types on Slide-seq data with hyperparameters N_cells_per_location=1 and
676 detection_alpha=20.

677 **Reference genome and annotation**

678 *Mus musculus* genome and gene annotations (assembly: GRCm38) were downloaded from
679 the Ensembl genome browser, and reovirus strain Type-1-Lang genome and gene annotations
680 were downloaded and compiled from the NCBI browser. We have shared reovirus genome
681 sequence and annotation files on figshare with the identifier
682 <https://doi.org/10.6084/m9.figshare.c.5726372>. Genomes were processed using the Cell
683 Ranger v-3.0.0 (10x Genomics) pipeline's mkref command.

684 **Single-cell RNAseq data processing and visualization**

685 Cells with fewer than 200 unique genes or more than 25 percent of transcripts aligning to
686 mitochondrial genes were removed. After quality control, we captured 6596, 7096, and 3483
687 single-cell transcriptomes from mock-infected hearts, 5970, 5086, and 3453 single cell
688 transcriptomes from reovirus wild-type (WT)-infected hearts, and 5354, 7462, and 3955 cells
689 from reovirus mutant K287T-infected hearts at 4, 7, and 10 dpi respectively. The single-cell
690 transcriptomes were log-transformed and normalized using the Scanpy package verison-
691 1.8.1⁵². We used Scanpy to choose the highly variable genes with min_disp=0.5 and
692 max_mean=3 thresholds. We then performed mean centering and scaling while regressing out
693 total UMI counts, percent mitochondrial transcripts, S score, and G2M score, followed by
694 principal component analysis (PCA) to reduce the dimensions of the data to the top 20
695 principal components (PCs). Uniform Manifold Approximation and Projection (UMAP) and the
696 Nearest Neighbor (NN) graph were initialized in this PCA space using the first 20 PCs. The
697 cells were then clustered using the Leiden method with multiple values of clustering resolution
698 to get fine (resolution=0.5) and broad (resolution=0.3) celltype clusters. Cell-type-specific
699 canonical gene markers along with differentially expressed genes (wilcoxon method) for each
700 cluster were used to assign cell type labels. Normalized gene expression was visualized on
701 DotPlots, UMAP plots, and Violin plots across cell type groups. A few cell type clusters
702 representing cell states of the same cell type were grouped into broad cell type groups using
703 cell type marker genes and then used for downstream analysis. Differential gene expression
704 analysis (DGEA) was performed using the rank_gene_groups function in Scanpy with the
705 Wilcoxon statistical method. All gene module scores were calculated using the score_genes
706 function in scanpy.

707 **Reclustering and analysis of endothelial cells, T cells, fibroblasts, and cardiomyocytes**

708 Normalized gene expression for a specific cell type group was extracted from the combined
709 scRNA-seq dataset. We used Scanpy to reselect the highly variable genes within that cell type
710 group with min_disp=0.5 and max_mean=3 thresholds. We then performed mean centering

711 and scaling while regressing out total UMI counts, percent mitochondrial transcripts, S score,
712 and G2M score, followed by principal component analysis (PCA) to reduce the dimensions of
713 the data to the top 20 principal components (PCs). Uniform Manifold Approximation and
714 Projection (UMAP) and the Nearest Neighbor (NN) graph were initialized in this PCA space
715 using the first 20 PCs. The cells were then reclustered using the Leiden method
716 (resolution=0.5 for endothelial cells, resolution=0.3 for T cells, resolution=0.2 for fibroblasts,
717 and resolution=0.3 for cardiomyocytes) to get cell type subclusters. Differentially expressed
718 genes (wilcoxon method) for each subcluster were then used to assign cell subtype labels.
719 Subclusters representing doublets and expressing markers of multiple cell types were then
720 removed from the analysis. Normalized gene expression for differentially expressed genes and
721 genes of interest was visualized on DotPlots and UMAP plots across celltype subgroups.
722 Differential gene expression analysis (DGEA) was performed using the rank_gene_groups
723 function in Scanpy with the Wilcoxon statistical method. All gene module scores were
724 calculated using the score_genes function in Scanpy.

725 **Spatial transcriptomics data processing, integration, analysis, and visualization**

726 Spatial transcriptomics data from barcoded spatial spots from four heart sections were log-
727 normalized using the Scanpy package (v1.8.1). Scanpy package was then used to select
728 highly variable genes for spatial transcriptomics data with min_disp=0.5 and max_mean=3
729 thresholds. We then performed mean centering and scaling while regressing out total UMI
730 counts, percent mitochondrial UMIs, S score, and G2M score, followed by PCA on the spot
731 gene expression matrix, and reduced the dimensions of the data to the top 20 principal
732 components. UMAP and the NN graph were initialized in this PCA space. The spots were then
733 clustered using the Leiden method with multiple values of clustering resolution. The method
734 returned spot clusters representing different tissue regions, which were then visualized on H&E
735 images as spatial transcriptomics maps for individual samples to assign anatomical regions.
736 Normalized gene expression was visualized on spatial transcriptomics maps for all tissue
737 sections. Spot clusters representing the same tissue regions were grouped into broad
738 anatomical region groups using marker genes and then used for downstream analysis.
739 cell2location (version=0.1) deconvolution method compatible with scanpy and scvi-tools⁵³
740 (v0.16.4) package was used for integration of spatial transcriptomics data with time-matched
741 scRNA-seq data and cell type prediction values for spatial transcriptomics spots were
742 estimated for the infected heart at 7 dpi. DGEA for anatomical regions was performed using
743 the rank_gene_groups function in Scanpy with the Wilcoxon statistical method.

744 **Viral transcript sequencing data processing, filtering, and visualization**

745 Enriched viral transcript data were aligned to a combined mouse and reovirus Type-1-Lang
746 genome for all infected samples. Viral unique molecule (UMI) counts were taken from the
747 combined expression matrices and added as metadata in the host gene expression data. Viral
748 UMI counts in empty droplets, droplets with low-quality cells (< 200 host UMI counts), droplets
749 with viable cells (>=200 host UMI counts) were sorted by viral UMI and visualized on a

750 histogram to filter out the cell-free ambient viral RNA enriched in the hybridization protocol.
751 Using the distribution of viral UMI counts in empty droplets, thresholds of two viral UMIs and
752 five viral UMIs were used to identify infected cells in the heart and ileum respectively. Viral
753 transcripts in the infected cells were then visualized on a DotPlot to determine viral tropism in
754 tissues.

755 **Gene Ontology term enrichment analysis for scRNA-seq and spatial transcriptomics**

756 Gene Ontology (GO) term enrichment analysis was performed on differentially expressed
757 genes using gseapy (v0.10.4) wrapper package⁵⁴. Differentially expressed genes (two-sided
758 Wilcoxon test, log fold-change threshold = 2.0, p-value < 10⁻⁴ for scRNA-seq cells, and log
759 fold-change threshold = 0.5, p-value < 10⁻² for spatial transcriptomics spots) were selected and
760 used for GO term enrichment analysis using GO_Biological_Processes_2021 gene sets in
761 enrichr command⁵⁵. The enriched GO terms of interest were selected and visualized on a
762 BarPlot. The genes associated with GO terms of interested were used to calculate module
763 scores using score_genes command in Scanpy.

764 **Sample preparation for RNA fluorescence in-situ hybridization (FISH),**
765 **immunofluorescence, and histology**

766 Whole hearts were isolated using aseptic technique and placed in ice cold sterile Hank's
767 Balanced Salt Solution and then blood was carefully removed by perfusing the hearts with
768 fresh HBSS through the apex. Fresh tissues were immediately embedded in Optimal Cutting
769 Compound (OCT) media and frozen in liquid nitrogen cooled isopentane, cut into 10 µm
770 sections using a Thermo Scientific Microm 550 cryostat, and mounted on -20°C cooled
771 histological glass slides which were then stored at -80°C until used.

772 **RNA fluorescence in-situ hybridization (FISH) split probe design and Signal**
773 **Amplification using Hybridization Chain Reaction HCR-V3**

774 Two-step hybridization strategy with split probe design and Hybridization Chain Reaction
775 (HCR)-V3⁵⁶ was used to label up to three transcripts in a single tissue section. Probes were
776 designed using NCBI primer-blast which uses primer3 for designing internal hybridization oligo
777 and BLASTn to check for binding specificity. We designed 20-21 bp primer pairs for an
778 amplicon length of 40-42 bp (2 x primer length), primer melting temperature between 57°C and
779 63°C, and primer GC content between 35% and 65%. 7-10 sets of reverse complemented
780 forward primers and reverse primers were then concatenated to flanking initiator sequence for
781 HCR, ordered from Integrated DNA Technologies (IDT) with standard desalting purification
782 (**Supp Data 4**). Split probes for each gene target, mixed and diluted in nuclease-free water to
783 create a split probe pool stock solution at 10µM total probe concentration for every target.
784 Hairpin pairs labeled with three different fluorophores namely Alexa-488, Alexa-546, and
785 Alexa-647 (Molecular Instruments, **Supp Data 5**) were used for HCR V3.

786 **RNA fluorescence in-situ hybridization (FISH) experiments**

787 Slides with tissue sections were then brought to room temperature until the OCT melts and
788 were then immediately fixed in 4% paraformaldehyde for 12 minutes at room temperature.
789 Post fixation, the sections were washed for 5 mins in 1x PBS twice, incubated for 1 hour in
790 70% ethanol for tissue permeabilization, washed again for 5 mins in 1x PBS, and then used for
791 primary hybridization. Hybridization Buffer (HB) mix was prepared with 2x SSC, 5x of Denhart
792 Solution, 10% Ethylene Carbonate, 10% Dextran Sulfate, 0.01% SDS, 1uM of probe pool mix
793 per target for the hybridization reaction. 20 μ l of HB mix (with probes) per section was then put
794 on each slide to cover the tissue section, covered with parafilm, and incubated overnight at
795 37°C inside a humidifying chamber for primary hybridization. After primary hybridization,
796 parafilm was removed and slides were washed in Hybridization Wash Buffer-1 (0.215M NaCl,
797 0.02M Tris HCl pH 7.5, and 0.005M EDTA) for 20-30 minutes at 48°C. Amplification Buffer
798 (AB) mix was prepared with 2x SSC, 5x of Denhart Solution, 10% Dextran Sulfate, 0.01%
799 SDS, 0.06 μ M of HCR hairpins for the amplification reaction. 2ul of each fluorophore labeled
800 hairpins at 3 μ M corresponding to the target genes were mixed, incubated at 95°C for 1.5
801 minutes, covered in aluminum foil, and left to cool down at room temperature for 30 minutes to
802 form hairpins before adding it to AB mix. 20 μ l of AB mix per section was then put on each
803 slide to cover the tissue section, covered with parafilm, and incubated overnight at room
804 temperature in dark for signal amplification. After signal amplification, parafilm was removed,
805 and slides were washed in 5x SSCT buffer twice for 30-40 minutes and then twice for 10 mins.
806 The slides were then carefully cleaned with Kimwipe and treated with Ready Probes Auto-
807 fluorescence Quenching Reagent Mix (Thermo Fisher, R37630) for 5 minutes and washed
808 three times in 1X PBS. Last, tissue sections were then counter stained with DAPI for 10
809 minutes at room temperature, washed for 5 minutes in 1x PBS twice, excess PBS cleaned
810 using Kimwipe, immediately mounted on coverslips using Slowfade antifade media, left
811 overnight for treatment, and imaged the next day on a Zeiss Axio Observer Z1 Microscope
812 using a Hamamatsu ORCA Fusion Gen III Scientific CMOS camera. smFISH images were
813 shading corrected, stitched, rotated, thresholded, and exported as TIFF files using Zen 3.1
814 software (Blue edition).

815 Immunofluorescence Assays

816 Slides with tissue sections were brought from -80°C freezer and heated for 1 minute at 37°C
817 until the OCT melts and were then immediately dipped in prechilled methanol at -20°C for 30
818 minutes. After fixation, the slides were then rehydrated to Milli-Q water for 2 minutes and then
819 washed twice in 1X PBS. Samples then underwent an antigen retrieval step via incubation in
820 1X citrate buffer for 10-15 minutes at 95°C. Samples were then permeabilized in 0.1% Triton
821 X-100 in 1X PBS for fifteen minutes, washed three times in 0.05% Tween-20 in PBS (TBST),
822 blocked for one hour at room temperature in blocking buffer (1% bovine serum albumin and
823 10% normal donkey serum in PBS. 20ul of primary antibodies diluted in antibody solution (1%
824 bovine serum albumin in PBS) were then added on to the slides, covered with parafilm, then
825 incubated in a humidifying chamber overnight at 4°C. Primary antibodies used were rabbit anti-
826 reovirus VM1:VM6 polyclonal sera (1:30000), rat anti-Caspase1 monoclonal antibody (1:200,

827 #14-9832-82, Invitrogen), rabbit anti-cleaved Caspase1 (Asp297) (1:200, #4199T, Cell
828 Signaling Technology), and rabbit anti-cleaved Gasdermin D (Asp275) (1:200, #36425S, Cell
829 Signaling Technology). Cleaved Caspase1 and cleaved Gasdermin D antibodies were
830 purchased as a part of Pyroptosis Antibody Sampler Kit (#43811T, Cell Signaling Technology).
831 After overnight primary incubation, samples were washed three times in PBS and then
832 incubated in secondary antibodies diluted in blocking solution for two hours at room
833 temperature. The secondary antibodies were donkey anti-rabbit alexa-488 (1:500, 711-545-
834 152, Jackson Immuno Research), donkey anti-rabbit alexa-647 (1:500, 711-605-152, Jackson
835 Immuno Research), and donkey anti-rat alexa-647 (1:500, ab150155, Abcam). Lastly, samples
836 were washed thrice in PBS for 10 minutes with shaking, counter stained with DAPI, and
837 mounted in Prolong antifade mounting media. Images were acquired on a Zeiss Axio Observer
838 Z1 Microscope using a Hamamatsu ORCA Fusion Gen III Scientific CMOS camera.
839 Immunostaining images were shading corrected, stitched, rotated, thresholded, and exported
840 as TIFF files using Zen 3.1 software (Blue edition).

841 **Processing and quantification of Histology, RNA FISH, and immunofluorescence
842 images**

843 Image analysis and processing for histology, immunofluorescence, and RNA FISH images was
844 done manually in Zen 3.1 software (Blue edition) and Fiji ImageJ. Whole heart Hematoxylin
845 and Eosin (H&E) images were thresholded using non-linear adjustments (gamma = 0.45)
846 applied across entire images using Zen 3.1 Blue software. For area quantifications from
847 Hematoxylin and Eosin (H&E) stained histology images, 3-color RGB images were opened in
848 ImageJ. The images were converted to greyscale 8-bit images and thresholded to detect the
849 entire tissue section area. Sites of inflammation were manually selected for calculating the
850 inflammation percentage in the tissue. For RNA FISH images, the images with DAPI
851 counterstain channel were manually thresholded to segment nuclei. Holes in nuclei
852 segmentation mask were filled and morphological opening was performed to remove noise.
853 The segmentation was enhanced using watershed algorithm followed by a morphological
854 opening operation. For RNA FISH images, individual channels TIFF files exported from Zen
855 3.1 software were opened in ImageJ and converted to 8-bit images. Images were manually
856 thresholded using linear adjustments (gamma = 1.0) applied across entire images to detect
857 RNA-labelled cells and morphological opening was performed to remove noise. The nuclei and
858 cells were counted in all images using the Analyze Particle function in ImageJ. For
859 immunofluorescence images, individual channels were thresholded using linear adjustments
860 (gamma = 1.0) applied across entire images. Thresholded images were loaded in Fiji ImageJ
861 and converted to 8-bit images. The greyscale images for individual channels were then used to
862 segment signal using same thresholds across all tissue sections to get selections for area
863 quantifications. The tissue border was manually removed from the fluorescence channels
864 when calculating the area of interest. Entire hearts were manually selected using DAPI
865 channel to calculate total area of the tissue. Any changes to brightness and contrast were
866 applied equally across the entire image for visibility of fluorescence signal.

867 **ACKNOWLEDGEMENTS**

868 We would like to thank Peter Schweitzer and the Cornell Genomics Center for help with single-
869 cell and spatial sequencing assays, Cornell Bioinformatics facility for assistance with
870 bioinformatics, and Dr. Danica M. Sutherland from the lab of Dr. Terence S. Dermody at
871 University of Pittsburgh for assistance with animal experiments and for providing the anti-
872 reovirus polyclonal sera. We also thank the members of the Parker and De Vlaminck labs for
873 many valuable discussions. This work was supported by R21AI144557 (to J.S.P. and I.D.V.),
874 and DP2AI138242 (to I.D.V.). M.M. was supported by Distinguished Scholar Award from
875 Center for Vertebrate Genomics, Cornell University. S.T.C. was supported by the National
876 Institutes of Health and National Institute of Allergy and Infectious Diseases Award
877 T32AI145821.

878 **AUTHOR CONTRIBUTIONS**

879 M.M., J.S.P., and I.D.V. designed the study. M.M., M.M.H., and S.T.C. performed the animal
880 experiments. M.M. and M.M.H. performed the scRNA-seq and spatial transcriptomics
881 experiments. M.M., D.W.M., and M.F.Z.W. analyzed the data. M.M. performed histology, RNA
882 FISH, and immunostaining experiments and analyzed the images. M.M., J.S.P., and I.D.V.
883 wrote the manuscript. All authors provided feedback and comments.

884 **DATA AVAILABILITY**

885 The authors declare that all sequencing data supporting the findings of this study have been
886 deposited in NCBI's Gene Expression Omnibus (GEO)⁵⁷ with GEO series accession number
887 [GSE189636](https://www.ncbi.nlm.nih.gov/geo/study/GSE189636). Raw and processed H&E-stained tissue images and tissue-spot alignment files
888 matched to spatial transcriptomics datasets have been made publicly available on figshare
889 with identifier <https://doi.org/10.6084/m9.figshare.c.5726372>⁵⁸. Scripts to reproduce the
890 analysis presented in this study have been deposited on GitHub
891 (https://github.com/madhavmantri/reovirus_induced_myocarditis).

892 **CONFLICTS**

893 The authors declare no conflicts.

894 **REFERENCES**

- 895 1. Pollack, A., Kontorovich, A. R., Fuster, V. & Dec, G. W. Viral myocarditis—diagnosis, treatment
896 options, and current controversies. *Nat. Rev. Cardiol.* **2015** *12*, 670–680 (2015).
- 897 2. Rose, N. R. Viral Myocarditis. *Curr. Opin. Rheumatol.* **28**, 383 (2016).
- 898 3. Yajima, T. & Knowlton, K. U. Viral myocarditis from the perspective of the virus. *Circulation* **119**,
899 2615–2624 (2009).
- 900 4. Tschöpe, C. *et al.* Myocarditis and inflammatory cardiomyopathy: current evidence and future

901 directions. *Nat. Rev. Cardiol.* **18**, 169–193 (2021).

902 5. Woodruff, J. F. Viral myocarditis. A review. *Am. J. Pathol.* **101**, 425 (1980).

903 6. Lasrado, N. & Reddy, J. An overview of the immune mechanisms of viral myocarditis. *Rev. Med. Virol.* **30**, 1–14 (2020).

904

905 7. Sherry, B., Schoen, F. J., Wenske, E. & Fields, B. N. Derivation and characterization of an
906 efficiently myocarditic reovirus variant. *J. Virol.* **63**, 4840–4849 (1989).

907 8. Boehme, K. W., Lai, C. M. & Dermody, T. S. Mechanisms of reovirus bloodstream dissemination.
908 *Adv. Virus Res.* **87**, 1–35 (2013).

909 9. Guo, Y. *et al.* The multi-functional reovirus σ 3 protein is a virulence factor that suppresses stress
910 granule formation and is associated with myocardial injury. *PLOS Pathog.* **17**, e1009494 (2021).

911 10. Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis
912 and disease. *Nat. Rev. Immunol.* **2018 1812** **18**, 733–744 (2018).

913 11. Sherry, B., Li, X. Y., Tyler, K. L., Cullen, J. M. & Virgin, H. W. Lymphocytes protect against and
914 are not required for reovirus-induced myocarditis. *J. Virol.* **67**, 6119–6124 (1993).

915 12. Phillips, M. B., Dina Zita, M., Howells, M. A., Weinkopff, T. & Boehme, K. W. Lymphatic Type 1
916 Interferon Responses Are Critical for Control of Systemic Reovirus Dissemination. *J. Virol.* **95**,
917 (2021).

918 13. Holm, G. H. *et al.* Interferon Regulatory Factor 3 Attenuates Reovirus Myocarditis and
919 Contributes to Viral Clearance. *J. Virol.* (2010). doi:10.1128/jvi.01742-09

920 14. Schaum, N. *et al.* Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. *Nat.*
921 **2018 5627727** **562**, 367–372 (2018).

922 15. Kalucka, J. *et al.* Single-Cell Transcriptome Atlas of Murine Endothelial Cells. *Cell* **180**, 764–
923 779.e20 (2020).

924 16. Tokunaga, R. *et al.* CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - a target for
925 novel cancer therapy. *Cancer Treat. Rev.* **63**, 40 (2018).

926 17. Woudstra, L., Juffermans, L. J. M., van Rossum, A. C., Niessen, H. W. M. & Krijnen, P. A. J.
927 Infectious myocarditis: the role of the cardiac vasculature. *Heart Fail. Rev.* **23**, 583–595 (2018).

928 18. Mai, J., Virtue, A., Shen, J., Wang, H. & Yang, X. F. An evolving new paradigm: endothelial cells
929 – conditional innate immune cells. *J. Hematol. Oncol.* **2013 61** **6**, 1–13 (2013).

930 19. Chávez-Galán, L., Arenas-Del Angel, M. C., Zenteno, E., Chávez, R. & Lascurain, R. Cell death
931 mechanisms induced by cytotoxic lymphocytes. *Cell. Mol. Immunol.* **6**, 15–25 (2009).

932 20. Leuschner, F. *et al.* Silencing of CCR2 in myocarditis. *Eur. Heart J.* **36**, 1478–1488 (2015).

933 21. Miteva, K. *et al.* Mesenchymal Stromal Cells Modulate Monocytes Trafficking in Coxsackievirus
934 B3-Induced Myocarditis. *Stem Cells Transl. Med.* **6**, 1249–1261 (2017).

935 22. Barton, P. J. R. *et al.* Increased expression of extracellular matrix regulators TIMP1 and MMP1 in
936 deteriorating heart failure. *J. Heart Lung Transplant.* **22**, 738–744 (2003).

937 23. Yang, X., Bam, M., Becker, W., Nagarkatti, P. S. & Nagarkatti, M. Long Noncoding RNA
938 AW112010 Promotes the Differentiation of Inflammatory T Cells by Suppressing IL-10
939 Expression through Histone Demethylation. *J. Immunol.* **205**, 987–993 (2020).

940 24. Swertfeger, D. K., Witte, D. P., Stuart, W. D., Rockman, H. A. & Harmony, J. A. K. Apolipoprotein
941 J/clusterin induction in myocarditis: A localized response gene to myocardial injury. *Am. J.*
942 *Pathol.* **148**, 1971–1983 (1996).

943 25. Szalay, G. *et al.* Ongoing Coxsackievirus Myocarditis Is Associated with Increased Formation
944 and Activity of Myocardial Immunoproteasomes. *Am. J. Pathol.* **168**, 1542–1552 (2006).

945 26. Van Der Borght, K. *et al.* Myocarditis elicits dendritic cell and monocyte infiltration in the heart
946 and self-antigen presentation by conventional type 2 dendritic cells. *Front. Immunol.* **9**, 2714
947 (2018).

948 27. Stewart, M. J., Smoak, K., Blum, M. A. & Sherry, B. Basal and Reovirus-Induced Beta Interferon
949 (IFN- β) and IFN- β -Stimulated Gene Expression Are Cell Type Specific in the Cardiac Protective
950 Response. *J. Virol.* **79**, 2979–2987 (2005).

951 28. Duerr, G. D. *et al.* Metallothioneins 1 and 2 Modulate Inflammation and Support Remodeling in
952 Ischemic Cardiomyopathy in Mice. *Mediators Inflamm.* **2016**, (2016).

953 29. Bogomolovas, J. *et al.* Induction of Ankrd1 in dilated cardiomyopathy correlates with the heart
954 failure progression. *Biomed Res. Int.* **2015**, (2015).

955 30. Yamada, S. *et al.* Spatiotemporal single-cell analysis reveals critical roles of mechano-sensing
956 genes at the border zone in remodeling after myocardial infarction. doi:10.21203/rs.3.rs-
957 620498/v1

958 31. Rodrigues, S. G. *et al.* Slide-seq: A scalable technology for measuring genome-wide expression
959 at high spatial resolution. *Science (80-.)* **363**, 1463–1467 (2019).

960 32. Stickels, R. R. *et al.* Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-
961 seqV2. *Nat. Biotechnol.* **2020** *39*, 313–319 (2020).

962 33. Jun, H. O. *et al.* Clusterin protects H9c2 cardiomyocytes from oxidative stress-induced apoptosis
963 via Akt/GSK-3 β signaling pathway. *Exp. Mol. Med.* **2011** *43*, 53–61 (2010).

964 34. Yan, Y., Song, D., Song, X. & Song, C. The role of lncRNA MALAT1 in cardiovascular disease.
965 *IUBMB Life* **72**, 334–342 (2020).

966 35. Witt, E. *et al.* Correlation of gene expression and clinical parameters identifies a set of genes
967 reflecting LV systolic dysfunction and morphological alterations. *Physiol Genomics* **51**, 356–367
968 (2019).

969 36. Houweling, A. C., Van Borren, M. M., Moorman, A. F. M. & Christoffels, V. M. Expression and
970 regulation of the atrial natriuretic factor encoding gene Nppa during development and disease.
971 *Cardiovasc. Res.* **67**, 583–593 (2005).

972 37. Buyandelger, B. *et al.* MLP (muscle LIM protein) as a stress sensor in the heart. *Pflugers Arch.*
973 **462**, 135 (2011).

974 38. Gupta, S., Markham, D. W., Drazner, M. H. & Mammen, P. P. A. Fulminant myocarditis. *Nat.*

975 *Clin. Pract. Cardiovasc. Med.* 2008 511 **5**, 693–706 (2008).

976 39. Mantri, M. *et al.* Spatiotemporal single-cell RNA sequencing of developing chicken hearts
977 identifies interplay between cellular differentiation and morphogenesis. *Nat. Commun.* 2021 121
978 **12**, 1–13 (2021).

979 40. Asp, M. *et al.* A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing
980 Human Heart. *Cell* **179**, 1647–1660.e19 (2019).

981 41. Kuppe, C. *et al.* Spatial multi-omic map of human myocardial infarction. *bioRxiv*
982 2020.12.08.411686 (2020). doi:10.1101/2020.12.08.411686

983 42. Lindner, D. *et al.* Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19
984 Autopsy Cases. *JAMA Cardiol.* **5**, 1281–1285 (2020).

985 43. Bräuninger, H. *et al.* Cardiac SARS-CoV-2 infection is associated with pro-inflammatory
986 transcriptomic alterations within the heart. *Cardiovasc. Res.* (2021). doi:10.1093/CVR/CVAB322

987 44. Onyimba, J. A. *et al.* The innate immune response to coxsackievirus B3 predicts progression to
988 cardiovascular disease and heart failure in male mice. *Biol. Sex Differ.* **2**, (2011).

989 45. Coronado, M. J. *et al.* Testosterone and interleukin-1 β increase cardiac remodeling during
990 coxsackievirus B3 myocarditis via serpin A 3n. *Am. J. Physiol. Heart Circ. Physiol.* **302**, (2012).

991 46. Lasrado, N., Borcherding, N., Arumugam, R., Starr, T. K. & Reddy, J. Dissecting the Cellular
992 Landscape and Transcriptome Network in Viral Myocarditis by Single-Cell RNA Sequencing.
993 *bioRxiv* 2021.05.16.444367 (2021). doi:10.1101/2021.05.16.444367

994 47. Baty, C. J. & Sherry, B. Cytopathogenic effect in cardiac myocytes but not in cardiac fibroblasts
995 is correlated with reovirus-induced acute myocarditis. *J. Virol.* **67**, 6295–6298 (1993).

996 48. Stewart, M. J., Blum, M. A. & Sherry, B. PKR's protective role in viral myocarditis. *Virology* **314**,
997 92–100 (2003).

998 49. Miyamoto, S. D. *et al.* Cardiac Cell-specific Apoptotic and Cytokine Responses to Reovirus
999 Infection: Determinants of Myocarditic Phenotype. *J. Card. Fail.* **15**, 529–539 (2009).

1000 50. Palla, G. *et al.* Squidpy: a scalable framework for spatial omics analysis. *Nat. Methods* 2022 192
1001 **19**, 171–178 (2022).

1002 51. Kleshchevnikov, V. *et al.* Cell2location maps fine-grained cell types in spatial transcriptomics.
1003 *Nat. Biotechnol.* 2022 405 **40**, 661–671 (2022).

1004 52. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: Large-scale single-cell gene expression data
1005 analysis. *Genome Biol.* **19**, 1–5 (2018).

1006 53. Gayoso, A. *et al.* scvi-tools: a library for deep probabilistic analysis of single-cell omics data.
1007 *bioRxiv* 2021.04.28.441833 (2021). doi:10.1101/2021.04.28.441833

1008 54. Subramanian, A. *et al.* Gene set enrichment analysis: A knowledge-based approach for
1009 interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci.* **102**, 15545–15550 (2005).

1010 55. Xie, Z. *et al.* Gene Set Knowledge Discovery with Enrichr. *Curr. Protoc.* **1**, e90 (2021).

1011 56. Choi, H. M. T. *et al.* Third-generation in situ hybridization chain reaction: multiplexed,
1012 quantitative, sensitive, versatile, robust. *Development* **145**, (2018).

1013 57. Edgar, R. Gene Expression Omnibus: NCBI gene expression and hybridization array data
1014 repository. *Nucleic Acids Res.* (2002). doi:10.1093/nar/30.1.207

1015 58. Mantri, M. Reovirus-induced-myocarditis. (2021).
1016 doi:<https://doi.org/10.6084/m9.figshare.c.5726372>

1017