

Information flow across the cortical timescales hierarchy during narrative construction

Claire H. C. Chang^{1,*}, Samuel A. Nastase^{1,*}, and Uri Hasson¹

5 1. Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey,
6 08540, USA.

7 * To whom correspondence should be addressed:

8 Claire H. C. Chang, claire.hc.chang@gmail.com; Samuel A. Nastase,
9 sam.nastase@gmail.com

10

11

12 **Competing Interest Statement:** The authors declare no competing financial interests.

13 Classification: biological science, neuroscience

14 **Keywords:** cortical hierarchy, naturalistic stimuli, fMRI, functional connectivity,
15 language processing

16

17

18

Abstract

19 When listening to spoken narratives, we must integrate information over multiple,
20 concurrent timescales, building up from words to sentences to paragraphs to a coherent
21 narrative. Recent evidence suggests that the brain relies on a chain of hierarchically
22 organized areas with increasing temporal receptive windows to process naturalistic
23 narratives. We hypothesized that the structure of this cortical processing hierarchy
24 should result in an observable sequence of response lags between networks comprising
25 the hierarchy during narrative comprehension. This study uses functional MRI to
26 estimate the response lags between functional networks during narrative
27 comprehension. We use inter-subject cross-correlation analysis to capture network
28 connectivity driven by the shared stimulus. We found a fixed temporal sequence of
29 response lags—on the scale of several seconds—starting in early auditory areas,
30 followed by language areas, the attention network, and lastly the default mode network.
31 This gradient is consistent across eight distinct stories but absent in data acquired
32 during rest or using a scrambled story stimulus, supporting our hypothesis that narrative
33 construction gives rise to inter-network lags. Finally, we build a simple computational
34 model for the neural dynamics underlying the construction of nested narrative features.
35 Our simulations illustrate how the gradual accumulation of information within the
36 boundaries of nested linguistic events, accompanied by increased activity at each level
37 of the processing hierarchy, can give rise to the observed lag gradient.

38

39 **Significance Statement**

40 Our findings reveal a consistent, stimulus-driven gradient of lags in connectivity along
41 the cortical processing hierarchy—from early auditory cortex to the language network,
42 then to the default mode network—during the comprehension of naturalistic, spoken
43 narratives. We provide a simple computational model for the neural dynamics
44 underlying the construction of nested narrative features, allowing us to systematically
45 explore the conditions under which the lag gradient emerges and synthesize our results
46 with previous findings based on simple well-controlled language stimuli. Our results
47 illustrate the isomorphism between hierarchically structured neural dynamics and
48 hierarchically structured, real-world narrative inputs.

49

50 **Introduction**

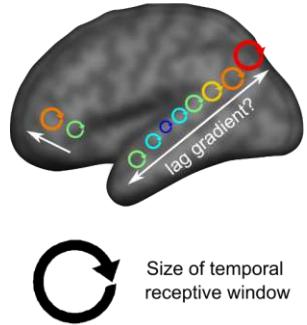
51 Narratives are composed of nested elements that must be continuously integrated to
52 construct a meaningful whole, building up from words to phrases to sentences to a
53 coherent narrative (1). Recent evidence suggests that the human brain relies on a chain
54 of hierarchically organized brain areas with increasing temporal receptive windows
55 (TRWs) to process this temporally evolving, nested structure (Fig. 1A). This cortical
56 hierarchy was first revealed by studies manipulating the temporal coherence of
57 naturalistic narratives (2, 3). These studies reported a topography of processing
58 timescales where early auditory areas respond reliably to rapidly-evolving acoustic
59 features, adjacent areas along the superior temporal gyrus respond reliably to
60 information at the word level, and nearby language areas respond reliably only to

61 coherent sentences. Finally, areas at the top of the processing hierarchy in the default
62 mode network (DMN) integrate slower-evolving semantic information over many
63 minutes (4).

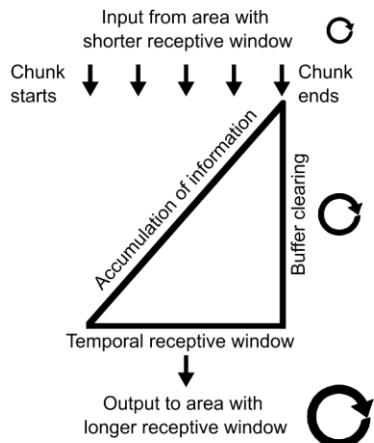
64 This cortical hierarchy of increasing temporal integration windows is thought to be a
65 fundamental organizing principle of the brain (5, 6). The cortical hierarchy of TRWs in
66 humans has been described using fMRI (2, 3, 7, 8) and ECoG (9). Recent work has
67 shown that deep language models also learn a gradient or hierarchy of increasing
68 TRWs (10–12), and that manipulating the temporal coherence of narrative input to a
69 deep language model yields representations closely matching the cortical hierarchy of
70 TRWs in the human brain (13). Furthermore, the cortical hierarchy of TRWs matches
71 the intrinsic processing timescales observed during rest in humans (9, 14, 15) and
72 monkeys (16). This cortical topography also coincides with anatomical and functional
73 gradients such as long-range connectivity and local circuitry (17–19), which have been
74 shown to yield varying TRWs (20, 21).

75

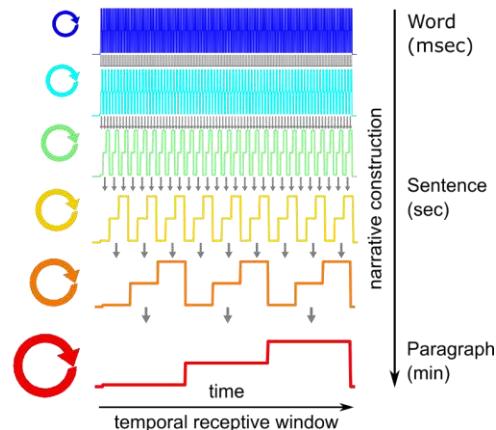
A Cortical hierarchy of timescales



B Temporal integration function



C Narrative construction along the processing hierarchy



76

77 *Fig. 1. Narrative construction in the hierarchical processing framework. (A) The*
78 *proposed cortical hierarchy of increasing temporal receptive windows (adapted from*
79 *(5)). (B) Each level of the processing hierarchy continuously accumulates information*
80 *over inputs from the preceding level. For example, phrases built over words are*
81 *constructed into sentences. The accumulated information is flushed out at structural*
82 *boundaries. (C) Each level of the processing hierarchy provides the building blocks for*
83 *the next level, which naturally leads to longer temporal receptive windows,*
84 *corresponding to linguistic units of increasing sizes. This model of narrative construction*
85 *along the cortical processing hierarchy implies a gradient of response lags across the*
86 *cortical hierarchy.*

87

88 The proposal that the cortex is organized according to a hierarchy of increasing TRWs
89 implies that each area “chunks” and integrates information at its preferred temporal
90 window and that narrative construction proceeds along the cortical hierarchy. For

91 example, an area that processes phrases receives information from areas that process
92 words (Fig. 1B), which are further transmitted to areas that integrate phrases into
93 sentences. At the end of each phrase, information is rapidly cleared to allow for real-
94 time processing of the next phrase (1, 7). The chunking of information at varying
95 granularity is supported by recent studies that used data-driven methods to detect
96 boundaries as shifts between stable patterns of brain activity (22, 23).

97 This model of narrative construction (Fig. 1C) predicts a gradient of response lags
98 across the cortical processing hierarchy; namely, shorter temporal lags among adjacent
99 areas along the processing hierarchy than regions further apart in the cortical hierarchy.
100 In the current study, we test this prediction by comparing response fluctuations elicited
101 by spoken narratives in different brain areas using lag-correlation. We extract the lag
102 with the peak correlation to estimate inter-region temporal difference. To focus on
103 neural responses to linguistic and narrative information, we used inter-subject functional
104 connectivity (ISFC) analysis (24, 25). Unlike traditional within-subject functional
105 connectivity (WSFC), ISFC effectively filters out the idiosyncratic fluctuations that drive
106 intrinsic functional correlations within subjects. Isolating stimulus-locked neural activity
107 from intrinsic neural activity allows us for the first time to observe the temporal dynamics
108 of narrative construction across the cortical hierarchy. We predicted that ISFC analysis
109 would reveal an inter-region lag gradient during the comprehension of intact narrative,
110 but not during scrambled-story or rest, which do not involve narrative construction.
111 Finally, we provide a computational model to clearly illustrate how the construction of
112 nested narrative features could give rise to the observed lag gradient, and how the lag
113 gradient deteriorates without naturalistic inputs.

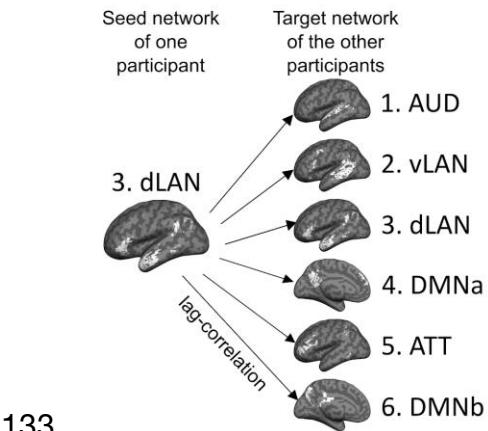
114

115 **Results**

116 To test the hypothesis that narrative construction will yield a gradient of response lags
117 across brain regions, we first divided the neural signals into six networks by applying k-
118 means clustering to WSFC measured during rest (SI Appendix, Fig. S1). We labeled
119 these networks based on anatomical correspondence with previously defined functional
120 regions following Simony and colleagues (25), including the auditory (AUD), ventral
121 language (vLAN), dorsal language (dLAN), default mode network (DMN), and attention
122 (ATT) networks, aligning with the previously documented TRW hierarchy (SI Appendix,
123 Fig. S2).

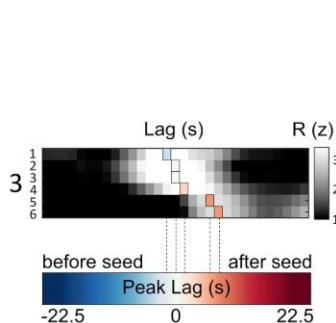
124 We computed lag-ISFC (i.e. cross-correlation) at varying temporal lags between all
125 pairs of networks (Fig. 2A and SI Appendix, Fig. S3). The lags with maximum ISFC (i.e.
126 “peak lag”) for each seed-target pair were extracted as an index for the temporal gaps in
127 the stimulus-driven processing between each pair of networks. The extracted peak lags
128 were color-coded to construct the network \times network peak lag matrix (Fig. 2B and 2C).
129 In the following, we describe the observed lag gradient in detail and several control
130 analyses. Finally, we simulated the nested narrative structure and the corresponding
131 brain responses to explore how different integration functions at different timescales
132 could give rise to the observed lag gradient.

A Compute inter-subject functional connectivity



133

B Color-code the lag with the maximum correlation



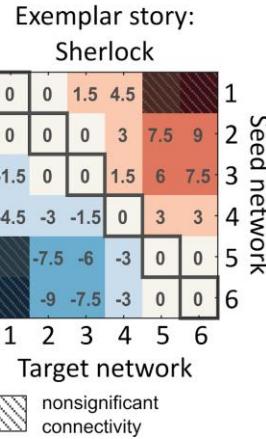
134

Fig. 2. Construction of the inter-network peak lag matrix. (A) Lag-ISFC (cross-correlation) between seed-target network pairs were computed using the leave-one-subject out method. The dLAN network is used as an example seed network for illustrative purposes. (B) The matrix depicts ISFC between the dLAN seed and all six target networks at varying lags. The lag with the peak correlation value (colored vertical bars) was extracted and color-coded according to lag. For visualization, the lag-ISFCs were z-scored across lags. (C) The network × network peak lag matrix ($p < .05$, FDR corrected). Warm colors represent peak lags following the seed network, while cool colors represent peak lags preceding the seed network; zeros along the diagonal capture the intra-network ISC. An example story (“Sherlock”) is shown for illustrative purposes.

145 **Fixed lag gradient across cortical networks**

146 The average lag-ISFC across stories was computed for each seed network (Fig. 3A, 147 left). The lag-ISFC between a seed network and the same network in other subjects 148 always peaked at lag 0, reflecting the strong stimulus-locked within-network

C Construct the peak lag matrix

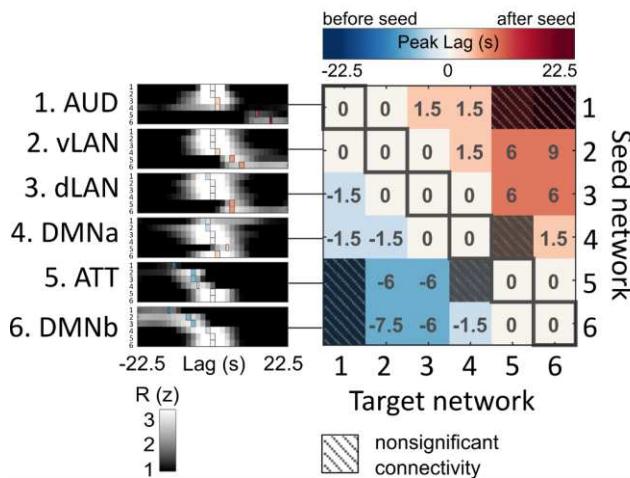


149 synchronization reported in the ISC literature (3, 26, 27) (SI Appendix, Fig. S3).
150 Interestingly, however, non-zero peak lags were found between different networks.
151 Relative to a low-level seed, putatively higher-level networks showed peak connectivity
152 at increasing lags. For example, the stimulus-induced activity in dLAN lagged 1 TR (1.5
153 s) behind activity in AUD, whereas the activity in DMNb lagged 4 TRs (6 s) behind
154 activity in dLAN. Importantly, regardless of the choice of seed, the target networks
155 showed peak connectivity in a fixed order progressing through AUD, vLAN, dLAN,
156 DMNa, ATT, and DMNb.

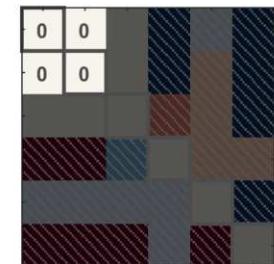
157 To summarize the findings, we color-coded the peak lags and collated them into a peak
158 lag matrix where each row corresponds to a seed network and each column
159 corresponds to a target network (Fig. 3A, right; see SI Appendix, Fig. S4 for the lag-
160 ISFC waveforms). The white diagonal indicates a peak at zero lag within each area,
161 reflecting the intra-network synchronization across subjects (i.e. ISC) (SI Appendix, Fig.
162 S3), while the cool-to-warm color gradient indicates a fixed order of peak lags. For
163 example, the first row shows a white-to-warm gradient, reflecting that when AUD served
164 as the seed, other networks were either synchronized with or followed AUD, but never
165 preceded it. Conversely, the cool-to-white gradient of the last row indicates that all other
166 networks preceded the DMNb seed. The lag gradient can also be observed in individual
167 stories (SI Appendix, Fig. S5), although these patterns are noisier than the averaged
168 results. The lag gradient proceeded in a fixed order across all networks, suggesting that
169 bottom-up narrative construction is reflected in lagged connectivity between stages
170 along the cortical hierarchy from AUD up to DMNb. Similar results were obtained when
171 we defined the ROIs using the TRW hierarchy (SI Appendix, Fig. S2D).

A Intact story

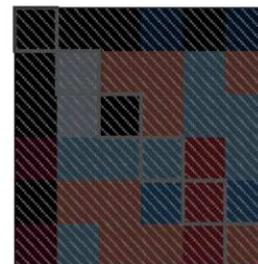
(averaged ISFC across stories; N = 8)



B Scrambled story



C Resting



172

173 *Fig. 3. The peak lag matrix across eight stories reveals a fixed lag gradient across*
174 *networks, which is abolished during scrambled narratives and rest. (A) The network ×*
175 *network peak lag matrix is based on the averaged lag-ISFC across eight stories. For*
176 *visualization, lag-ISFC curves at left were z-scored across lags. (B) Peak lag matrix*
177 *based on responses to a scrambled story stimulus (scrambled words). (C) Peak lag*
178 *matrix based on resting-state data. Peak lag matrices are thresholded at p < .05 (FDR*
179 *corrected).*

180 **Temporal scrambling abolishes the lag gradient**

181 We hypothesized that the lag gradient reflects the emergence of macroscopic story
182 features (e.g. narrative situations or events) integrated over longer periods of time in
183 higher-level cortical networks (22, 23). To support this point, we next used the same
184 procedure to compute the peak lag matrix for a temporally scrambled version of one
185 story ("Pie Man"; as for the results of intact "Pie Man", please see *SI Appendix, Fig. S5*).
186 In this dataset, the story stimulus was spliced at the word level and scrambled, thus

187 maintaining similar low-level sensory statistics while abolishing the slower-evolving
188 narrative content. The peak lag matrix for the scrambled story revealed synchronized
189 responses at lag 0 both within and between the AUD and vLAN networks, but no
190 significant peaks within or between other networks (Fig. 3B). This reflects low-level
191 speech processing limited to the word level and indicates that disrupting the narrative
192 structure of a story abolishes the temporal propagation of information to higher-level
193 cortical areas.

194 ***No lag gradient during rest***

195 As an additional control, we also examined whether the lag gradient observed during
196 the intact story could be detected during rest. The resting state is dominated by intrinsic
197 fluctuations and there is no external stimulus to drive synchronized brain activity across
198 subjects as well as propagation of activity across cortical areas. As expected, no
199 significant ISFC peaks were found (Fig. 3B). This provides further evidence that the
200 observed lag gradient is driven by the stimulus itself.

201 ***Idiosyncratic within-subject fluctuations obscure the lag gradient***

202 We next asked whether the inter-network lag gradient observed during spoken stories
203 can be observed using traditional WSFC. As expected, WSFC analysis revealed a
204 strong peak correlation at lag zero within each network, but also a peak correlation at
205 lag zero across all networks such that no gradient was observed (SI Appendix, Fig. S6).
206 This result supports the claim that ISFC analysis filters out intrinsic signal fluctuations
207 that propagate across brain areas, revealing the propagation of shared story information
208 across networks (24, 25). This result also verifies that intrinsic, inter-network differences

209 in hemodynamic responses cannot account for the lag gradient; otherwise, WSFC
210 should show a similar lag pattern as ISFC.

211 ***Lag gradient across fine-grained subnetworks***

212 To verify that the peak lag gradient could also be observed at a finer spatial scale, we
213 further divided each of the six networks into ten subnetworks, again by applying k-
214 means clustering to resting-state WSFC (k = 10 within each network). The peak lag
215 matrix between the sixty subnetworks was generated using the same methods as in the
216 network analysis (SI Appendix, Fig. S7A). We also visualized the brain map of lags
217 between one selected seed (posterior superior/middle temporal gyrus) and all the target
218 subnetworks (SI Appendix, Fig. S7B). Similar to the network level analysis, the peak lag
219 between the subnetworks revealed a gradient from the early auditory cortex to the
220 language network (auditory association cortex), then to the DMN.

221 ***Dominant bottom-up lag gradient across networks***

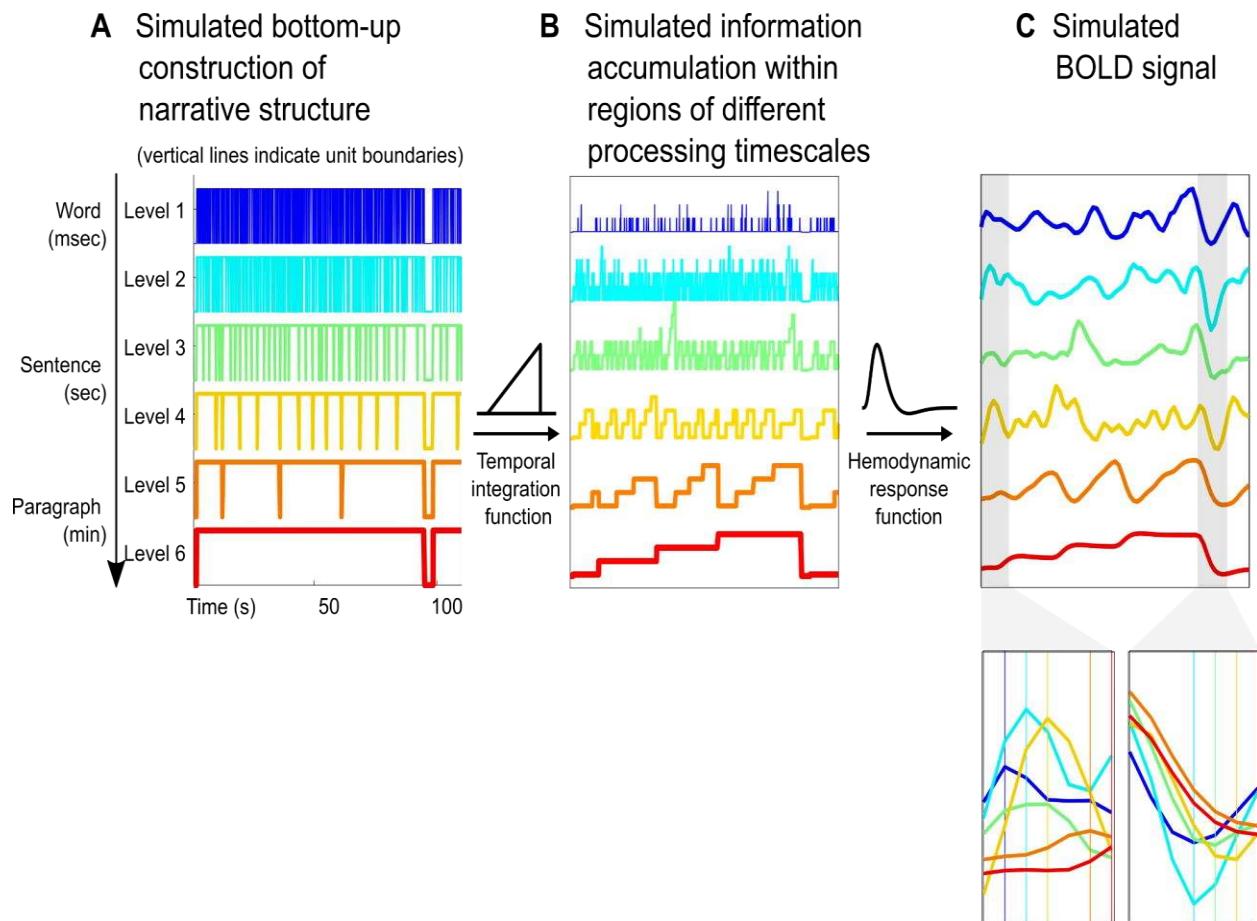
222 We adopted a method introduced by Mitra and colleagues (28) to discern whether there
223 are multiple parallel lag sequences between networks. We applied principal component
224 analysis (PCA) to the inter-network peak lag matrix (Fig. 3A) and examined the
225 cumulative variance accounted for across principal components. Our results revealed
226 that, at the coarse level of the cortical networks used here, the first principle component
227 explains 88.8% of the variance in our lag matrix (SI Appendix, Fig. S8). This suggests
228 that there is a single, unidirectional lag gradient across networks.

229 ***The lag gradient is not driven by transient linguistic boundary effects***

230 Prior work has reported that scene/situation boundaries in naturalistic stimuli elicit
231 transient brain responses that vary across regions (29–34). To test whether this
232 transient effect could drive the gradient observed in our lag matrix, we computed lag-
233 ISFC after regressing out the effects of word, sentence, and paragraph boundaries in
234 two stories with time-stamped annotations. As shown in SI Appendix, Fig. S9, the
235 regression model successfully removed transient effects of the boundaries from the
236 fMRI time series. Critically, however, the lag gradient remained qualitatively similar
237 when accounting for boundaries, indicating that the observed lag gradient does not
238 result from transient responses to linguistic boundaries in the story stimulus.

239 ***Reproducing the lag gradient by simulating narrative construction***

240 Narratives have a multi-level nested hierarchical structure (35) and are reported to elicit
241 neural processing at increasingly long timescales along the cortical hierarchy (22, 23).
242 To better understand how the construction of nested narrative features could give rise to
243 the long inter-network lag gradient we observed, with up to 9-second lags, we created a
244 simulation capturing the hierarchically nested temporal structure of real-world narratives
245 and the corresponding hierarchy of cortical responses.



247 *Fig. 4. Simulating narrative construction and the corresponding brain responses. (A)*
248 *The construction of the nested narrative structure, simulated by sampling boundary*
249 *intervals from actual word durations and recursively integrating them to obtain structural*
250 *boundaries at higher levels. (B) Information accumulation at different levels is generated*
251 *by a linearly increasing temporal integration function. We postulated that information*
252 *accumulation is accompanied by increased activity. (C) BOLD responses generated by*
253 *HRF convolution. This visualization is based on parameters estimated from a spoken*
254 *story stimulus (Table S1).*

255 To match the six networks discussed so far, we simulated story features emerging
256 across six distinct timescales, which roughly correspond to words, phrases, sentences,

257 2–3 sentences, and paragraphs. The initial level of the simulated narrative hierarchy
258 was populated with relatively brief low-level units, with boundary intervals sampled from
259 actual word durations in a spoken story (SI Appendix, Fig. S10). These simulated
260 “words” were integrated into “phrases” of varying lengths with a mean length of three
261 words to obtain second-level boundaries (Fig. 4A). All “phrase”-level boundaries were
262 also “word”-level boundaries. A six-level structure was ultimately generated by
263 recursively applying this procedure. Since paragraphs are often separated in real stories
264 by longer silent periods (SI Appendix, Fig. S11), we inserted pauses at top-level (sixth-
265 level) boundaries. The bottom-up construction of narrative structure gives rise to inter-
266 level alignment and increasing processing timescales at higher levels, as proposed in
267 the hierarchical processing framework (5, 6, 18).

268 The simulated response amplitudes were generated using a linearly increasing temporal
269 integration function (Fig. 4B), based on prior work showing that information
270 accumulation is accompanied by gradually increasing activation within
271 phrases/sentences (36–41) and paragraphs (29, 32) (a similar sentence/paragraph
272 length effect was also observed in our data; see SI Appendix, Fig. S12). The linearly
273 increasing temporal integration function accumulates activity derived from lower-level
274 units within the interval between unit boundaries at the current levels and flushes out
275 the accumulated activity at unit boundaries of the current level. To account for
276 hemodynamic lag in the fMRI signal, we applied a canonical hemodynamic response
277 function (HRF) to the simulated response amplitudes (Fig. 4C). We averaged the inter-
278 level lag correlations across thirty different simulated structures (equivalent to 30

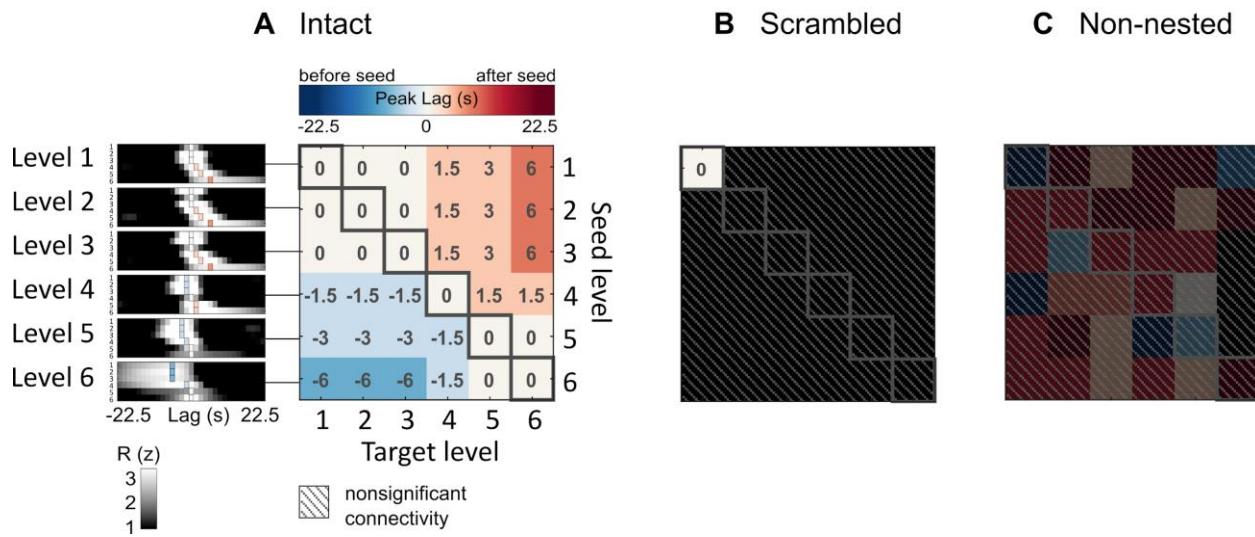
279 different stories) and extracted the peak lags. This peak-lag analysis parallels the
280 analysis previously applied to the fMRI data.

281 The simulation allows us to systematically manipulate the narrative structure and the
282 temporal integration function to reveal the conditions under which the lag gradient
283 emerges. We first performed the simulation with a set of “natural” parameters roughly
284 motivated by the temporal properties of our narrative stimuli and a simple temporal
285 integration function reflecting linear temporal accumulation (Table S1).

286 This simple simulation is sufficient to reproduce the inter-network lag gradient observed
287 in the fMRI data (Fig. 5A; as well as the ISFC at lag zero; SI Appendix, Fig. S13). In
288 addition, we also compared the spectral properties of the simulated and real BOLD
289 signals (SI Appendix, Fig. S14). We first computed the average power spectral density
290 (PSD) across stories. Replicating results reported by Stephens and colleagues (15), we
291 found stronger low-frequency fluctuations in regions with longer TRWs. Computing the
292 PSD of the simulated brain responses similarly revealed increased low-frequency power
293 in responses to high-level structures with longer intervals between boundaries. We then
294 adjusted one parameter at a time to explore the parameter space constrained by natural
295 speech.

296

Simulated peak lag matrix



297

298 *Fig. 5. Simulated peak lag matrix. (A) Simulating the peak lag matrix observed during*
299 *story-listening fMRI data (Fig. 3A) using parameters derived from a story stimulus (the*
300 *same parameters as in Fig. 4 and Table S1). (B) Simulating the lag matrix observed*
301 *during scrambled story (scrambled words) (Fig. 3B), by setting mean unit length = 1 and*
302 *unit length variance = 0. (C) Lag matrix from the non-nested structure, created by*
303 *combining levels extracted from independently generated nested structures, which*
304 *disrupts the nesting relationship between different levels, similar to the scrambled story,*
305 *while preserving the spectral properties of individual time series ($p < .05$, FDR*
306 *correction).*

307 **Key parameters for the emergence of a lag gradient**

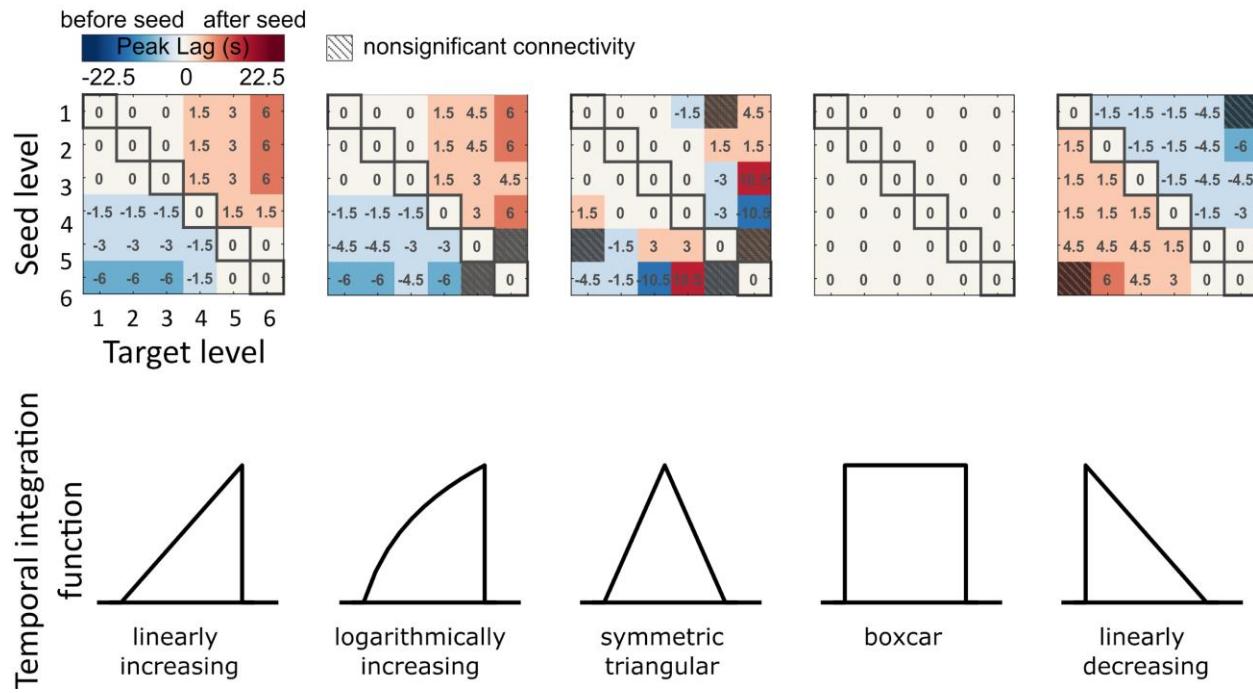
308 Within the bounds of natural speech (SI Appendix, Fig. S15), we observed that the
309 simulated inter-network lag gradient is robust to varying lengths of linguistic/narrative
310 units (mean: 2–4; variance: 0.1–1; longer length generated longer units, often with the
311 top layers exceeding the length of the simulated story, i.e. 3000 words). The duration of

312 inter-paragraph pauses was estimated from two stories (“Sherlock” and “Merlin”; SI
313 Appendix, Fig. S11) (mean length: 1.5–4.5 sec; pause effect size: 0.01–1 SD of
314 simulated activity). We also found that the model, similar to neural responses as
315 observed by Lerner and colleagues (42), was robust to variations in speech rate (0.5–
316 1.5, relative to “Sherlock” speech rate). However, the lag gradient deteriorates with
317 parameters outside of the bounds of natural speech, for example, when the inter-
318 paragraph pause is set to 0 sec. We also simulated brain responses to word-scrambled
319 stories by setting mean unit length = 1 and unit length variance = 0. With this setting,
320 word-level units are never integrated into larger units (the units at each level correspond
321 to individual words from the first level). No information integration is involved, resulting
322 in flat activations and eliminating the difference in spectral properties of time series from
323 different levels. No lag gradient is observed in this case (Fig. 5B).

324 Next, we computed inter-level lag-correlation using simulated responses to different
325 nested structures (similar to responses to different stories), which preserves the spectral
326 properties of individual time series while disrupting their nesting relationship. No
327 significant lag-correlation was found when violating the nested structure of naturalistic
328 narrative (Fig. 5C). In addition to the aforementioned linearly increasing integration
329 function, we also explored several other temporal integration functions. We found that
330 linearly and logarithmically increasing functions both yielded the inter-network lag
331 gradient, but not the symmetric triangular or boxcar functions. The linearly decreasing
332 function resulted in a reversed lag gradient (Fig. 6). These results suggest that the
333 hierarchically nested structure that naturally arises from bottom-up narrative

334 construction and a monotonically increasing integration function are key to the
335 emergence of the lag gradient.

Simulated peak lag matrix



337 *Fig. 6. Lag matrices generated using different temporal integration functions ($p < .05$,*
338 *FDR correction). The linearly and logarithmically increasing temporal integration*
339 *functions yield a simulated peak lag matrix similar to the one observed in fMRI data; the*
340 *symmetric triangle and boxcar functions, as well as the linearly decreasing function, do*
341 *not.*

342

343 Discussion

344 By applying lag-ISFC to a collection of fMRI datasets acquired while subjects listened to
345 spoken stories, we revealed a temporal progression of story-driven brain activity along a

346 cortical hierarchy for narrative comprehension (Fig. 3A). The temporal cascade of
347 cortical responses summarized by the inter-network lag gradient was consistent across
348 stories as well as at coarse- and fine-grained functional network definitions (SI
349 Appendix, Fig. S7). The results are in line with the hierarchical processing framework,
350 which proposes a gradual emergence of narrative features of increasing duration and
351 complexity along the processing hierarchy, from early sensory areas into higher-order
352 cortical areas (Fig. 1). In support of our interpretation, we found that the lag gradient is
353 absent during rest when there is no stimulus-evoked processing (Fig. 3B), and also
354 when the temporal structure of the story is disrupted due to word scrambling (Fig. 3C).

355 We observed inter-network lags on the scale of several seconds (up to 9 seconds),
356 reflecting the temporal structure of real-world narratives, which integrate sounds into
357 words, sentences, and ideas over many seconds. Such long lags cannot be explained
358 by regional variations in neurovascular coupling (43) or transient activity impulses at
359 event boundaries. If the lag gradient only reflects variations in neurovascular coupling
360 across regions, it should be present both when we isolate stimulus-driven activity using
361 ISFC and when we examine idiosyncratic neural responses using WSFC. Instead,
362 however, the lag gradient was detected only with ISFC, but not WSFC (SI Appendix,
363 Fig. S6). Furthermore, differences in the hemodynamic response function across brain
364 areas are usually reported at shorter timescales (e.g. ~1–2 seconds) (44, 45) than the
365 0–9-second inter-network lag differences observed here in the context of narrative
366 comprehension (Fig. 3). In addition, we found that transient event boundaries (29–34)
367 did not account for the lag gradient (SI Appendix, Fig. S9).

368 Our simulation illustrates how narrative construction can give rise to the inter-network
369 lag gradient by identifying three necessary conditions: (a) a cortical hierarchy of
370 increasing processing timescales (Fig. 1 & Fig. 4) (5); (b) hierarchically nested
371 linguistic/narrative events of increasing size along the processing hierarchy (Fig. 5B &
372 5C) (22, 23); and (c) gradual increasing brain activity, along with information
373 accumulation, within the boundaries of events at each processing level (29, 32, 36–41),
374 combined with a reset of activity (buffer clearing) at event boundaries (7) (see temporal
375 integration function in Fig. 1B and Fig. 6). In this simple model, information integration at
376 varying granularity (e.g. word, sentence, and paragraph) is sufficient to yield the inter-
377 network lag gradient (Fig. 5) and spectral properties observed in the fMRI data (SI
378 Appendix, Fig. S14). Minor adjustments to other parameters within the bounds of
379 natural speech (i.e. speech rate, silent pause, and length of linguistic/narrative unit) did
380 not change the gradient pattern (SI Appendix, Fig. S15).

381 The simulation provides a simple model which bridges the discovery of TRWs using
382 natural stimuli (2, 42) and the accumulation of activity within linguistic units found using
383 simple, well-controlled stimuli (e.g. sentences with similar structures) (36–41).
384 Importantly, we note that our model is not the only one that could generate the predicted
385 lag gradient. Our aim is to combine separate findings that point to the same cortical
386 hierarchy with the simplest model possible. In addition, narrative processing is unlikely
387 to be purely unidirectional (46). The lag gradient only captures the dominant process of
388 bottom-up narrative construction (SI Appendix, Fig. S8). More studies are needed to
389 examine recurrent or bidirectional connectivity, causal relations between networks, and
390 nonstationary information flow over time.

391 Our results are also consistent with reports on the spatiotemporal dynamics of brain
392 responses to naturalistic stimuli. A hierarchically nested spatial activation pattern has
393 been revealed using movie, spoken story, and music stimuli (22, 23, 47). Chien and
394 colleagues (7) reported a gradual alignment of context-specific spatial activation
395 patterns, which was rapidly flushed at event boundaries, similar to the temporal
396 integration function we adopted here. Taken together, the empirical findings, combined
397 with our simulation, indicate that the spatiotemporal neural dynamics reflect the
398 structure of naturalistic, ecologically-relevant inputs (6) and that such information is
399 preserved even with the poor temporal resolution of fMRI. Although the current findings
400 are derived from listener-listener coupling, the inter-regional dynamics may shed light
401 on the lags observed in speaking-listener coupling (48–53). Given a particular seed
402 region in the speaker’s brain, we would expect to observe coupling at differing lags for
403 different target regions in the listener’s brain, and these lags may vary based on the
404 temporal structure of the speaker’s narrative.

405 Our results demonstrate both the importance of using inter-subject methods to isolate
406 stimulus-driven signals and the value of data aggregation. The fact that we obtained
407 non-zero inter-network lag only with ISFC but not WSFC (SI Appendix, Fig. S6)
408 indicates that stimulus-driven network configuration may be masked by the idiosyncratic
409 fluctuations that dominate WSFC analyses (24, 25). Furthermore, although the inter-
410 network lags could be observed within individual stories (SI Appendix, Fig. S5), the
411 gradient pattern is much clearer after aggregating across stories (Fig. 3). Data
412 aggregation is particularly important when using naturalistic stimuli because it is
413 impossible to control the structure of each narrative (e.g. speaking style, duration,

414 complexity, and content) (35, 54–56, 56). With these methods, we are able to reveal the
415 inter-network lag gradient driven by naturalistic narratives, as predicted by the model
416 shared information flow along the cortical processing hierarchy. Further work will be
417 needed to examine recurrent or bidirectional information flow and to decode the content
418 of narrative representations—specific to each story—as they are transformed along the
419 cortical hierarchy.

420

421 **Materials and Methods**

422 ***fMRI datasets***

423 This study relied on eight openly available spoken story datasets. Seven datasets were
424 used from the "Narratives" collection (OpenNeuro:
425 <https://openneuro.org/datasets/ds002245>) (57), including "Sherlock" and "Merlin" (18
426 participants, 11 females) (52), "The 21st year" (25 participants, 14 females) (58), "Pie
427 Man (PNI)", "I Knew You Were Black", "The Man Who Forgot Ray Bradbury", and
428 "Running from the Bronx (PNI)" (48 participants, 34 females). One dataset was used
429 from Princeton Dataspace: "Pie Man" (36 participants, 25 females)
430 (<https://dataspace.princeton.edu/jspui/handle/88435/dsp015d86p269k>) (25).

431 Two non-story datasets were also included as controls: a word-scrambled "Pie Man"
432 (36, participants, 20 females) dataset and a resting-state dataset (36 participants, 15
433 females) (see the Princeton DataSpace URL above) (25).

434 All participants reported fluency in English and were 18–40 years in age. The criteria of
435 participant exclusion have been described in previous studies for
436 “Sherlock”, “Merlin”, “The 21st year”, and “Pie Man.” For “Pie Man (PNI)”, “I Knew You
437 Were Black”, “The Man Who Forgot Ray Bradbury”, and “Running from the Bronx
438 (PNI),” participants with comprehension scores 1.5 standard deviations lower than the
439 group means were excluded. One participant was excluded from “Pie Man (PNI)” for
440 excessive movement (translation along the z-axis exceeding 3 mm).

441 All participants provided informed, written consent, and the experimental protocol was
442 approved by the institutional review board of Princeton University.

443 ***fMRI preprocessing***

444 fMRI data were preprocessed using FSL (<https://fsl.fmrib.ox.ac.uk/>), including slice time
445 correction, motion correction, and high-pass filtering (140 s cutoff). All data were aligned
446 to standard 3 × 3 × 4 mm Montreal Neurological Institute space (MNI152). A gray matter
447 mask was applied.

448 ***Functional networks***

449 Following Simony and colleagues (25), we defined 6 intrinsic connectivity networks
450 within regions showing reliable responses to spoken stories. Voxels showing top 30%
451 ISC in at least 6 out of the 8 stories were included. Using the k-means method (L1
452 distance measure), these voxels were clustered according to their group-averaged
453 within-subject functional connectivity with all the voxels during resting. We refer to these
454 functional networks as the auditory (AUD), ventral language (vLAN), dorsal language
455 (dLAN), attention (ATT), and default mode (DMNa and DMNb) networks (SI Appendix,

456 Fig. S1A). To ensure that our results hold for finer-grained functional networks, we
457 further divided each of the six networks into ten subnetworks, again by applying k-
458 means clustering to resting-state WSFC (k=10 within each superordinate network).

459 To compare these intrinsic functional networks to the TRW hierarchy, we computed the
460 TRW index (i.e. intact > word-scrambled story ISC) following (8) for voxels within
461 regions showing reliable responses to spoken stories, using the intact and word-
462 scrambled Pie Man. Six TRW networks were then generated by splitting the TRW
463 indices into six bins by five quantiles (SI Appendix, Fig. S2).

464 **WSFC, ISFC, and ISC**

465 In this study, within-subject functional connectivity (WSFC) refers to within-subject inter-
466 region correlation, while inter-subject functional connectivity (ISFC) refers to inter-
467 subject inter-region correlation. Inter-subject correlation (ISC) refers to a subset of
468 ISFC, namely, ISFC between homologous regions (SI Appendix, Fig. S3). ISFC and
469 ISC were computed using the leave-one-subject-out method, i.e. correlation between
470 the time series from each subject and the average time series of all the other subjects
471 (24).

472 Before computing the correlation, the first 25 and last 20 volumes of fMRI data were
473 discarded to remove large signal fluctuations at the beginning and end of time course
474 due to signal stabilization and stimulus onset/offset. We then averaged voxelwise time
475 series across voxels within network/region masks and z-scored the resulting time
476 series.

477 Lag-correlations were computed by circularly shifting the time series such that the non-
478 overlapping edge of the shifted time series was concatenated to the beginning or end.
479 The left-out subject was shifted while the average time series of the other subjects
480 remained stationary. Fisher's z transformation was applied to the resulting correlation
481 values prior to further statistical analysis.

482 ***ISFC lag matrix***

483 We computed the network \times network \times lag-ISFC matrix (SI Appendix, Fig. S3) and
484 extracted the lag with peak ISFC (correlation) value for each network pair (Fig. 2). The
485 peak ISFC value was defined as the maximal ISFC value within the window of lags from
486 -15 to +15 TRs; we required that the peak ISFC be larger than the absolute value of any
487 negative peak and excluded any peaks occurring at the edge of the window.

488 To obtain the mean ISFC across stories, we applied two statistical tests. Only ISFC that
489 passed both tests were considered significant. First, we performed a parametric one-
490 tailed one-sample t-test to compare the mean ISFC against zero ($N = 8$ stories) and
491 corrected for multiple comparisons by controlling the false discovery rate (FDR; (59); 6
492 seed \times 6 target \times 31 lags; $q < .05$).

493 Second, to exclude ISFC peaks that only reflected shared spectral properties, we
494 generated surrogates with the same mean and autocorrelation as the original time
495 series by time-shifting and time-reversing. We computed the correlation between the
496 original seed and time-reversed target with time-shifts of -100 to +100 TRs. The
497 resulting ISFC values were averaged across stories and served as a null distribution. A
498 one-tailed z-test was applied to compare ISFCs within the window of lag -15 to +15 TRs

499 against this null distribution. The FDR method was used to control for multiple
500 comparisons (seed \times target \times lags; $q < .05$). When assessing ISFC for each story, only
501 this second test was applied and all possible time-shifts were used to generate the null
502 distribution.

503 ***Principal component analysis of the lag matrix***

504 We examined whether multiple lag sequences similarly contributed to the lag matrix,
505 using the method introduced by Mitra and colleagues (28). We applied PCA to the lag
506 matrix obtained from the averaged ISFC across stories, after transposing the matrix and
507 zero-centering each column. Each principal component represents a pattern of relative
508 lags, in other words, lag sequences. We computed the proportion of overall variance in
509 the lag matrix accounted for by each component in order to determine whether more
510 than one component played an important role.

511 ***Word/sentence/paragraph boundary effect***

512 To test the transient effect of linguistic boundaries on inter-network lag, we computed
513 the lag-ISFC after regressing out activity impulses at boundaries. A multiple regression
514 model was built for each subject. The dependent variable was the averaged time series
515 of each network, removing the first 25 scans and the last 20 scans as in the ISFC
516 analysis. The regressors included an intercept, the audio envelope, and three sets of
517 finite impulse functions (-5 to +15 TRs relative to boundary onset), corresponding to
518 word, sentence, and paragraph (event) boundaries. We then recomputed lag-ISFC
519 based on the residuals of the regression model.

520 **Word/sentence/paragraph length effect**

521 We replicated the sentence length (36–41) and paragraph length (29, 32) effect with the
522 “Sherlock” and “Merlin” datasets, which were collected from the same group of
523 participants. The onsets and offsets of each word, sentence, and paragraph (event)
524 were manually time-stamped. Given the low temporal resolution of fMRI (TR = 1.5 sec)
525 and the difficulty of labeling the onset/offset of each syllable, they were estimated by
526 dividing the duration of each word by the number of syllables it contains.

527 We built individual GLM models that included regressors corresponding to the presence
528 of syllable, word, sentence, and paragraph respectively, accompanied by three
529 parametric modulators: accumulated syllable number within words, accumulated word
530 number within sentences, and accumulated sentence number within paragraphs. These
531 parametric regressors were included to test whether brain activations accumulate
532 toward the end of word/sentence/paragraph; the longer the word/sentence/paragraph
533 the stronger the activations. In addition to the regressors of interest, one regressor was
534 included for speech segments without clear paragraph labels. We did not orthogonalize
535 the regressors to each other.

536 Effect maps of the three parametric modulators (i.e. word length, sentence length, and
537 paragraph length) from the individual level models of both stories were smoothed with a
538 Gaussian kernel (FWHM = 8 mm) and input to three group-level models to test the
539 word, sentence, and paragraph length effects respectively (flexible factorial design
540 including the main effects of story and participant; $p < .005$, not corrected). We
541 observed sentence and paragraph length effects. Using the same threshold, no word
542 length effect was observed,

543 ***Power-spectral density analysis***

544 We performed spectral analyses following (15). We estimated the power spectrum of
545 the primary auditory area and a DMN area (precuneus). As for the connectivity analysis,
546 we cropped the first 25 and last 20 scans and z-scored the time series. For each story,
547 the resulting time series were averaged across subjects and normalized across time.
548 The power spectrum of the group-mean time series was estimated using Welch's
549 method with a Hamming window of width 99 sec (66 TRs) and 50% overlap (based on
550 the parameters from (15)). The power spectra of individual voxels were averaged within
551 the anatomical masks of left Heschl's gyrus and left precuneus from the AAL atlas. The
552 mean spectra across stories were then computed.

553 ***Simulating the construction of nested narrative structures and the corresponding***

554 ***BOLD responses***

555 To illustrate how information accumulation at different timescales could account for the
556 inter-network lag gradient during story-listening, we simulated the construction of nested
557 narrative structures closely following the statistical structure of real spoken stories and
558 generated BOLD responses at each processing level. To build the first level of a nested
559 structure, we sampled a sequence of 3000 word durations with replacement from
560 "Sherlock," which is the longest example of spontaneous speech among our datasets,
561 recorded from a non-professional speaker without rehearsal or script (SI Appendix, Fig.
562 S10). Boundaries between units at the first level were set up accordingly.

563 *Unit length*

564 First-level units were integrated into units of the next level with a lognormal distributed
565 unit length; e.g. integrating three words into a phrase (unit length = 3) (SI Appendix, Fig.

566 S10). Boundaries between second-level units were inserted accordingly. Second-level
567 units were integrated into the third-level units following the same method. A nested
568 structure of six levels was thus generated.

569 *Temporal integration function*

570 Postulating that information accumulation is accompanied by increased activity, brain
571 responses within each level of the nested structure were generated as a function of unit
572 length. For example, a linear temporal integration function generates activity [1 2 3] for a
573 "phrase" (i.e. a Level 2 unit) consisting of three "words" (i.e. Level 1 units). The first
574 (word) level integration was computed based on syllable numbers sampled from
575 "Sherlock" along with word durations.

576 *Pause length and pause effect size*

577 In naturalistic narratives, boundaries between high-level units are often accompanied by
578 silent pauses (SI Appendix, Fig. S11). Therefore, we inserted pauses with normally
579 distributed lengths at the boundaries of the highest level units (SI Appendix, Fig. S10).
580 Activity during the pause period was set as 0.1 standard deviations below the minimum
581 activity of each level.

582 To account for HRF delay in fMRI signals, we applied the canonical hemodynamic
583 response function provided by the software SPM (<https://www.fil.ion.ucl.ac.uk/spm/>) (60)
584 and resampled the output time series from a temporal resolution of 0.001 sec to 1.5 sec
585 to match the TR in our data. We ran 30 simulations for each set of simulation
586 parameters. Each simulation produced different narrative structures (equivalent to

587 different stories). The peak lag of the mean inter-level correlation across simulations
588 was extracted and thresholded using the same method as in the ISFC analysis (Fig. 2).

589 To examine whether the simulated and real fMRI signals shared similar power spectra,
590 we also applied the power-spectral density analysis to the simulated BOLD responses
591 at each of the six levels and averaged across thirty simulations.

592 We started with a set of reasonable parameters (SI Appendix, Table 1) (speech rate =
593 1, relative to "Sherlock"; unit length mean = 3; unit length variance = 0.5; temporal
594 integration function = linearly increasing; mean pause length = 3 sec; pause effect size
595 = 0.1 SD of the simulated activity) and explored alternative parameter sets within the
596 bound of natural speech to test whether inter-level lag was robust to parameter
597 changes.

598

599 **Data availability**

600 This study relied on eight openly available spoken story datasets. Seven datasets were
601 used from the "Narratives" collection (OpenNeuro:
602 <https://openneuro.org/datasets/ds002245>) (57), One dataset was used from Princeton
603 Dataspace: "Pie Man" (36 participants, 25 females)
604 (<https://dataspace.princeton.edu/jspui/handle/88435/dsp015d86p269k>) (25).

605 **Acknowledgment**

606 This study is supported by the National Institute of Mental Health (R01-MH112357 and
607 DP1-HD091948).

608 References

- 609 1. M. H. Christiansen, N. Chater, The Now-or-Never bottleneck: A fundamental
610 constraint on language. *Behav. Brain Sci.* **39** (2015).
- 611 2. U. Hasson, E. Yang, I. Vallines, D. J. Heeger, N. Rubin, A hierarchy of temporal
612 receptive windows in human cortex. *J. Neurosci.* **28**, 2539–2550 (2008).
- 613 3. Y. Lerner, C. J. Honey, L. J. Silbert, U. Hasson, Topographic mapping of a
614 hierarchy of temporal receptive windows using a narrated story. *J. Neurosci.* **31**,
615 2906–2915 (2011).
- 616 4. Y. Yeshurun, M. Nguyen, U. Hasson, The default mode network: where the
617 idiosyncratic self meets the shared social world. *Nat. Rev. Neurosci.* **22**, 181–192
618 (2021).
- 619 5. U. Hasson, J. Chen, C. J. Honey, Hierarchical process memory: Memory as an
620 integral component of information processing. *Trends Cogn. Sci.* **19**, 304–313
621 (2015).
- 622 6. S. J. Kiebel, J. Daunizeau, K. J. Friston, A hierarchy of time-scales and the brain.
623 *PLoS Comput. Biol.* **4**, e1000209 (2008).
- 624 7. H. Y. S. Chien, C. J. Honey, Constructing and forgetting temporal context in the
625 human cerebral cortex. *Neuron* **106**, 675–686.e11 (2020).
- 626 8. Y. Yeshurun, M. Nguyen, U. Hasson, Amplification of local changes along the
627 timescale processing hierarchy. *Proc. Natl. Acad. Sci.*, 201701652 (2017).
- 628 9. C. J. Honey, *et al.*, Slow cortical dynamics and the accumulation of information
629 over long timescales. *Neuron* **76**, 423–434 (2012).
- 630 10. M. E. Peters, M. Neumann, L. Zettlemoyer, W. T. Yih, Dissecting contextual word
631 embeddings: Architecture and representation. *Proc. 2018 Conf. Empir. Methods
632 Nat. Lang. Process. EMNLP 2018*, 1499–1509 (2018).
- 633 11. J. Vig, Y. Belinkov, Analyzing the structure of attention in a transformer language
634 model. *Proc. 2019 ACL Workshop BlackboxNLP Anal. Interpret. Neural Netw.
635 NLP*, 63–76 (2019).
- 636 12. P. F. Dominey, Narrative event segmentation in the cortical reservoir. *PLOS
637 Comput. Biol.* **17**, e1008993–e1008993 (2021).
- 638 13. C. Caucheteux, A. Gramfort, J.-R. King, Model-based analysis of brain activity
639 reveals the hierarchy of language in 305 subjects in *Conference on Empirical
640 Methods in Natural Language Processing*, (2021).
- 641 14. R. V. Raut, A. Z. Snyder, M. E. Raichle, Hierarchical dynamics as a macroscopic
642 organizing principle of the human brain. *Proc. Natl. Acad. Sci.* **117**, 20890–20897
643 (2020).
- 644 15. G. J. Stephens, C. J. Honey, U. Hasson, A place for time: The spatiotemporal
645 structure of neural dynamics during natural audition. *J. Neurophysiol.* **110**, 2019–
646 2026 (2013).
- 647 16. J. D. Murray, *et al.*, A hierarchy of intrinsic timescales across primate cortex. *Nat.
648 Neurosci.* **17**, 1661–1663 (2014).

649 17. A. T. Baria, *et al.*, Linking human brain local activity fluctuations to structural and
650 functional network architectures. *NeuroImage* **73**, 144–155 (2013).

651 18. J.-P. Changeux, A. Goulas, C. C. Hilgetag, A connectomic hypothesis for the
652 hominization of the brain. *Cereb. Cortex*, 1–25 (2020).

653 19. J. M. Huntenburg, P. L. Bazin, D. S. Margulies, Large-scale gradients in human
654 cortical organization. *Trends Cogn. Sci.* **22**, 21–31 (2018).

655 20. R. Chaudhuri, K. Knoblauch, M. A. Gariel, H. Kennedy, X.-J. Wang, A large-scale
656 circuit mechanism for hierarchical dynamical processing in the primate cortex.
Neuron **88**, 419–431 (2015).

657 21. M. Demirtaş, *et al.*, Hierarchical heterogeneity across human cortex shapes large-
658 scale neural dynamics. *Neuron* **101**, 1181–1194.e13 (2019).

659 22. C. Baldassano, *et al.*, Discovering event structure in continuous narrative
660 perception and memory. *Neuron* **95**, 709–721.e5 (2017).

661 23. L. Geerligs, M. van Gerven, K. L. Campbell, U. Güçlü, A nested cortical hierarchy
662 of neural states underlies event segmentation in the human brain. *bioRxiv*,
663 2021.02.05.429165 (2021).

664 24. S. A. Nastase, V. Gazzola, U. Hasson, C. Keysers, Measuring shared responses
665 across subjects using intersubject correlation. *Soc. Cogn. Affect. Neurosci.* **14**,
666 667–685 (2019).

667 25. E. Simony, *et al.*, Dynamic reconfiguration of the default mode network during
668 narrative comprehension. *Nat. Commun.* **7**, 12141 (2016).

669 26. U. Hasson, Y. Nir, I. Levy, G. Fuhrmann, R. Malach, Intersubject synchronization of
670 cortical activity during natural vision. *Science* **303**, 1634–1640 (2004).

671 27. J. P. Kauppi, I. P. Jääskeläinen, M. Sams, J. Tohka, Inter-subject correlation of
672 brain hemodynamic responses during watching a movie: Localization in space and
673 frequency. *Front. Neuroinformatics* **4**, 5 (2010).

674 28. A. Mitra, A. Z. Snyder, T. Blazey, M. E. Raichle, Lag threads organize the brain's
675 intrinsic activity. *Proc. Natl. Acad. Sci. U. S. A.* **112**, E7307 (2015).

676 29. Y. Ezzyat, L. Davachi, What constitutes an episode in episodic memory? *Psychol.*
677 *Sci.* **22**, 243–252 (2011).

678 30. N. K. Speer, J. M. Zacks, J. R. Reynolds, Human brain activity time-locked to
679 narrative event boundaries. *Psychol. Sci.* **18**, 449–455 (2007).

680 31. C. Whitney, *et al.*, Neural correlates of narrative shifts during auditory story
681 comprehension. *NeuroImage* **47**, 360–366 (2009).

682 32. T. Yarkoni, N. K. Speer, J. M. Zacks, Neural substrates of narrative
683 comprehension and memory. *NeuroImage* **41**, 1408–1425 (2008).

684 33. J. M. Zacks, *et al.*, Human brain activity time-locked to perceptual event
685 boundaries. *Nat. Neurosci.* **4**, 651–655 (2001).

686 34. J. M. Zacks, N. K. Speer, K. M. Swallow, C. J. Maley, The brain's cutting-room
687 floor: Segmentation of narrative cinema. *Front. Hum. Neurosci.* **4**, 1–15 (2010).

688 35. R. M. Willems, S. A. Nastase, B. Milivojevic, Narratives for neuroscience. *Trends*
689 *Neurosci.* **43**, 271–273 (2020).

690

691 36. C. H. C. Chang, S. Dehaene, D. H. Wu, W. J. Kuo, C. Pallier, Cortical encoding of
692 linguistic constituent with and without morphosyntactic cues. *Cortex* **129**, 281–295
693 (2020).

694 37. E. Fedorenko, *et al.*, Neural correlate of the construction of sentence meaning.
695 *Proc. Natl. Acad. Sci.* **113**, E6256–E6262 (2016).

696 38. L. Giglio, M. Ostarek, K. Weber, P. Hagoort, Commonalities and asymmetries in
697 the neurobiological infrastructure for language production and comprehension.
698 *Cereb. Cortex* (2021) <https://doi.org/10.1093/cercor/bhab287>.

699 39. W. Matchin, C. Hammerly, E. Lau, The role of the IFG and pSTS in syntactic
700 prediction: Evidence from a parametric study of hierarchical structure in fMRI.
701 *Cortex* **88**, 106–123 (2017).

702 40. M. J. Nelson, *et al.*, Neurophysiological dynamics of phrase-structure building
703 during sentence processing. *Proc. Natl. Acad. Sci. U. S. A.* **114**, E3669–E3678
704 (2017).

705 41. C. Pallier, A.-D. A. Devauchelle, S. Dehaene, Cortical representation of the
706 constituent structure of sentences. *Proc. ...* **108**, 2522–2527 (2011).

707 42. Y. Lerner, C. J. Honey, M. Katkov, U. Hasson, Temporal scaling of neural
708 responses to compressed and dilated natural speech. *J. Neurophysiol.* **111**, 2433–
709 2444 (2014).

710 43. D. Rangaprakash, G. R. Wu, D. Marinazzo, X. Hu, G. Deshpande, Hemodynamic
711 response function (HRF) variability confounds resting-state fMRI functional
712 connectivity. *Magn. Reson. Med.* **80**, 1697–1713 (2018).

713 44. M. G. Bright, D. P. Bulte, P. Jezzard, J. H. Duyn, Characterization of regional
714 heterogeneity in cerebrovascular reactivity dynamics using novel hypocapnia task
715 and BOLD fMRI. *NeuroImage* **48**, 166–175 (2009).

716 45. D. A. Handwerker, J. M. Ollinger, M. D'Esposito, Variation of BOLD hemodynamic
717 responses across subjects and brain regions and their effects on statistical
718 analyses. *NeuroImage* **21**, 1639–1651 (2004).

719 46. M. J. Pickering, C. Gambi, Predicting while comprehending language: A theory
720 and review. *Psychol. Bull.* **144**, 1002–1044 (2018).

721 47. J. A. Williams, *et al.*, High-order areas and auditory cortex both represent the high-
722 level event structure of music. *bioRxiv*, 2021.01.26.428291 (2021).

723 48. L. Liu, *et al.*, The “two-brain” approach reveals the active role of task-deactivated
724 default mode network in speech comprehension. *Cereb. Cortex* (2022)
725 <https://doi.org/10.1093/cercor/bhab521>.

726 49. M. Nguyen, *et al.*, Teacher–student neural coupling during teaching and learning.
727 *Soc. Cogn. Affect. Neurosci.* **17**, 367–376 (2022).

728 50. G. J. Stephens, L. J. Silbert, U. Hasson, Speaker-listener neural coupling underlies
729 successful communication. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 14425–14430
730 (2010).

731 51. P. D. Antonenko, R. Davis, J. Wang, M. Celepkolu, On the Same Wavelength:
732 Exploring Team Neurosynchrony in Undergraduate Dyads Solving a Cyberlearning

733 Problem With Collaborative Scripts. *Mind Brain Educ.* **13**, 4–13 (2019).

734 52. A. Zadbood, J. Chen, Y. C. Leong, K. A. Norman, U. Hasson, How we transmit
735 memories to other brains: constructing shared neural representations via
736 communication. *Cereb. Cortex* **27**, 4988–5000 (2017).

737 53. L. J. Silbert, C. J. Honey, E. Simony, D. Poeppel, U. Hasson, Coupled neural
738 systems underlie the production and comprehension of naturalistic narrative
739 speech. *Proc. Natl. Acad. Sci. U. S. A.* **111**, E4687–E4696 (2014).

740 54. L. S. Hamilton, A. G. Huth, The revolution will not be controlled: natural stimuli in
741 speech neuroscience. *Lang. Cogn. Neurosci.* **35**, 573–582 (2020).

742 55. H. Lee, B. Bellana, J. Chen, What can narratives tell us about the neural bases of
743 human memory? *Curr. Opin. Behav. Sci.* **32**, 111–119 (2020).

744 56. S. Sonkusare, M. Breakspear, C. Guo, Naturalistic stimuli in neuroscience:
745 Critically acclaimed. *Trends Cogn. Sci.* **23**, 699–714 (2019).

746 57. S. A. Nastase, *et al.*, The “Narratives” fMRI dataset for evaluating models of
747 naturalistic language comprehension. *Sci. Data* **8**, 250–250 (2021).

748 58. C. H. C. Chang, C. Lazaridi, Y. Yeshurun, K. A. Norman, U. Hasson, Relating the
749 past with the present: Information integration and segregation during ongoing
750 narrative processing. *J. Cogn. Neurosci.* **33**, 1106–1128 (2021).

751 59. Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate: A Practical and
752 Powerful Approach to Multiple Testing. *J. R. Stat. Soc. Ser. B Methodol.* **57** (1995).

753 60. W. Penny, K. Friston, J. Ashburner, S. Kiebel, T. Nichols, *Statistical parametric
754 mapping: The analysis of functional brain images* (2007)
755 <https://doi.org/10.1016/B978-0-12-372560-8.X5000-1>.

756

757

758 **Supplementary Information for**

759 **Narrative construction drives a gradient of response lags across the cortical**
760 **timescales hierarchy**

761

762 Claire H. C. Chang^{1,*}, Samuel A. Nastase^{1,*}, and Uri Hasson¹

763 1. Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, 08540, USA.

764

765 * To whom correspondence should be addressed:

766 Claire H. C. Chang, claire.hc.chang@gmail.com

767 Samuel A. Nastase, sam.nastase@gmail.com

768

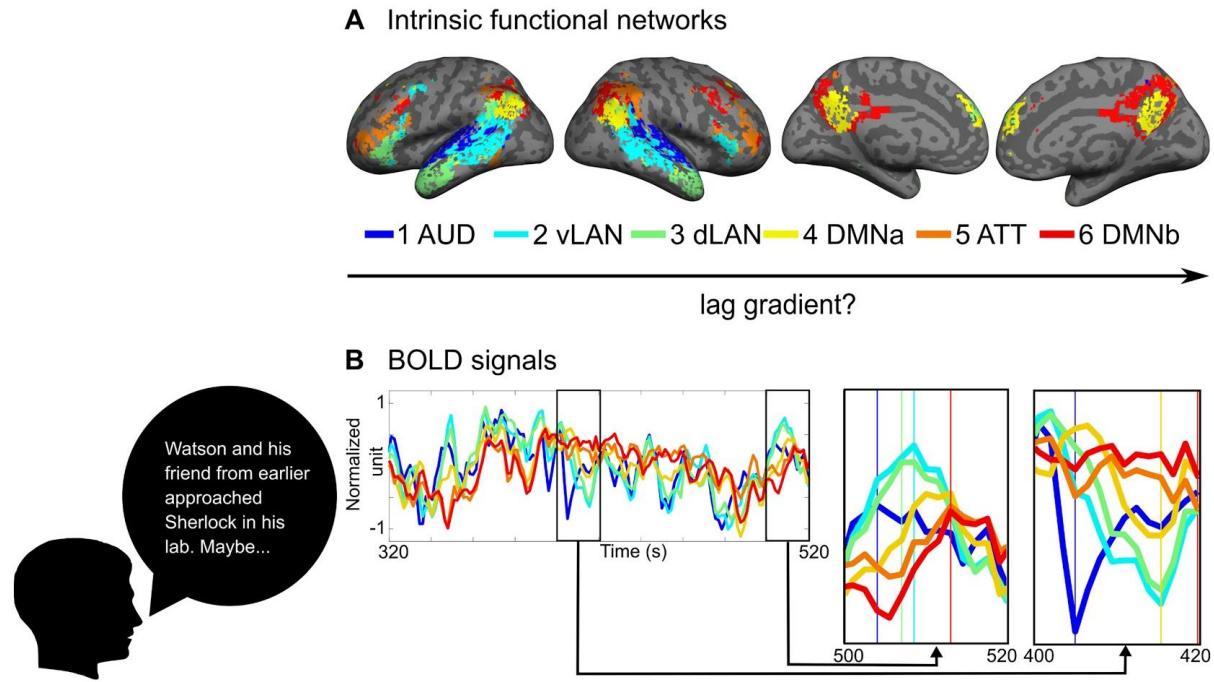
769

770 **This PDF file includes:**

771 Figures S1 to S15

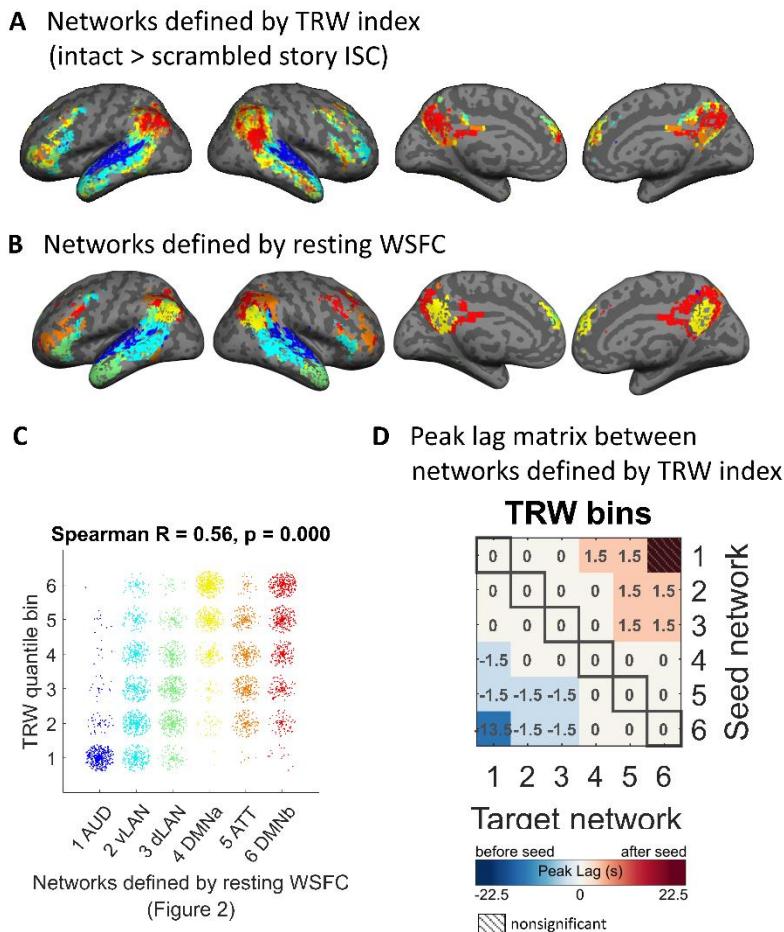
772 Tables S1

773



774

775 Fig. S1. Averaged fMRI response time series for six intrinsic functional networks while
776 subjects listened to a spoken story. (A) Functional networks defined by applying k-
777 means clustering to WSFC measured during rest and labeled based on anatomical
778 correspondence with previously defined functional regions following (25) (AUD:
779 auditory; vLAN: ventral language; dLAN: dorsal language; DMN: default mode network;
780 ATT: attention network). (B) Averaged fMRI responses time series in the "Sherlock"
781 dataset, extracted from the predefined network masks. Two example segments of the
782 response time series are highlighted at the bottom right. The peaks of the fluctuations in
783 a given window are indicated by colored vertical lines. Note the stereotyped lag in both
784 positive and negative BOLD fluctuations across networks; e.g. signal deflections in the
785 dark blue auditory network tend to precede deflections in the cyan/green language
786 networks, which tend to precede deflections in the yellow/red default mode networks.

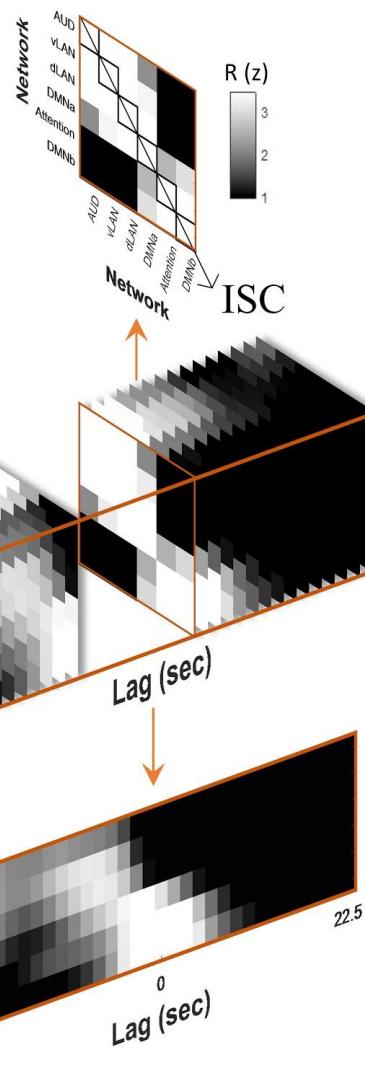


787

788 Fig. S2. Lag gradient between networks defined by TRW indices. (A) Networks
789 generated by splitting the TRW indices (intact > scrambled story ISC) into 6 bins by five
790 quantiles. (B) networks defined by applying k-mean clustering to resting WSFC (SI
791 Appendix, Fig. S1). (C) Networks defined by TRW index show a similar topographic
792 gradient as the networks defined by resting-state WSFC, from the auditory areas to
793 DMN, which is manifested by the significant correlation between the two sets of
794 networks index. Random jitters are added to better show the overlapped data points.
795 (D) Peak lag matrix between networks defined by TRW index across seven stories (p
796 < .05, FDR corrected). “Pie Man” was excluded from this analysis since it was used to
797 compute the TRW index.

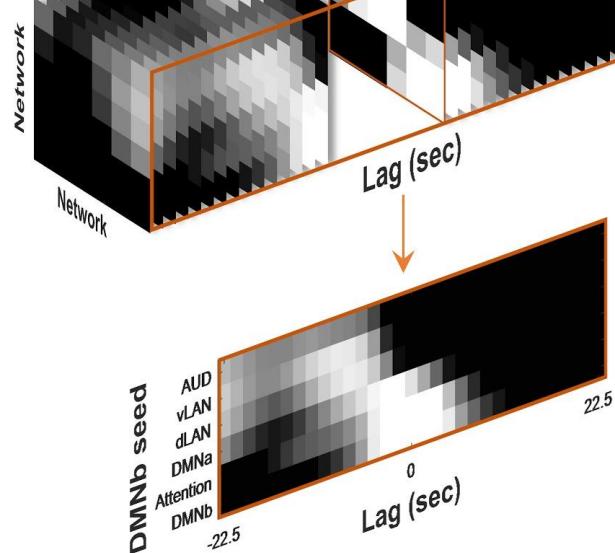
ISFC:

seed x target network at lag 0



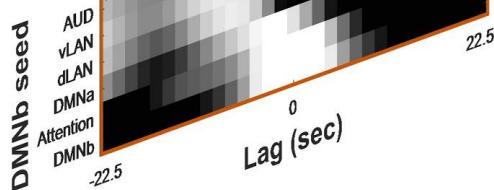
Lag-ISFC:

seed x target x lag



One seed lag-ISFC:

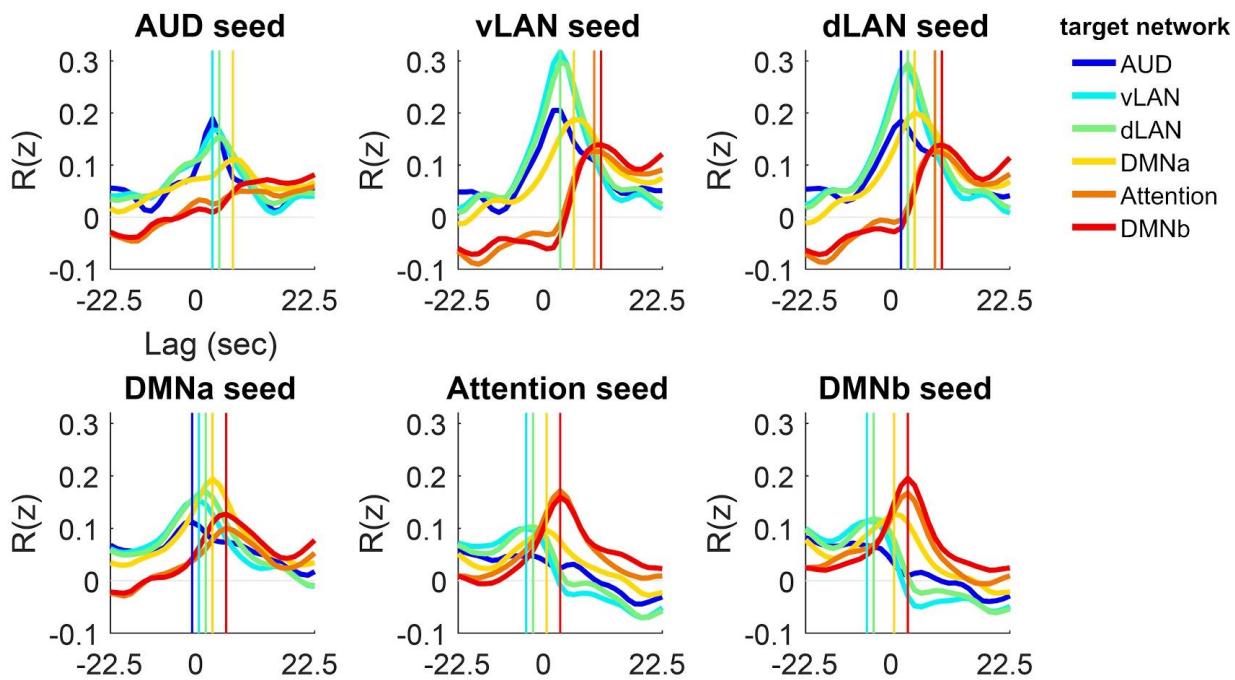
target x lag



798

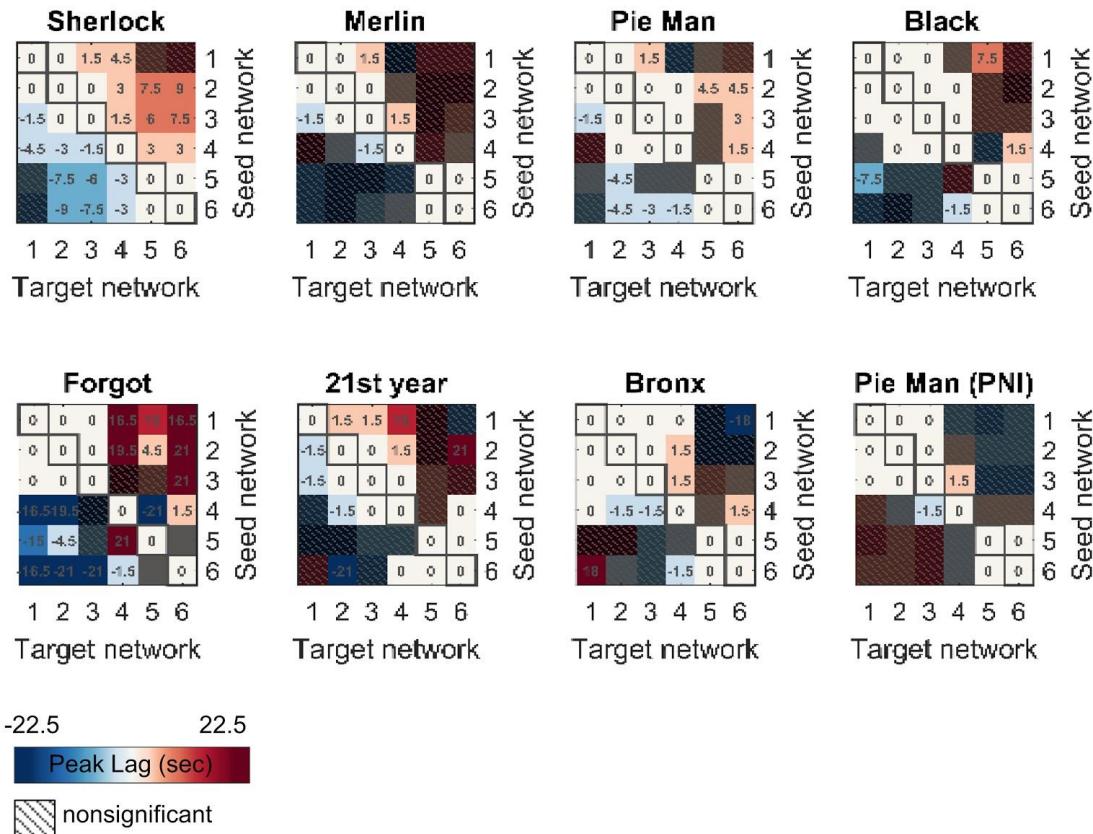
799

800 Fig. S3. The relationship between inter-subject functional connectivity (ISFC), inter-
801 subject-correlation (ISC), and lag-ISFC. This figure shows real data from the "Sherlock"
802 story.



803

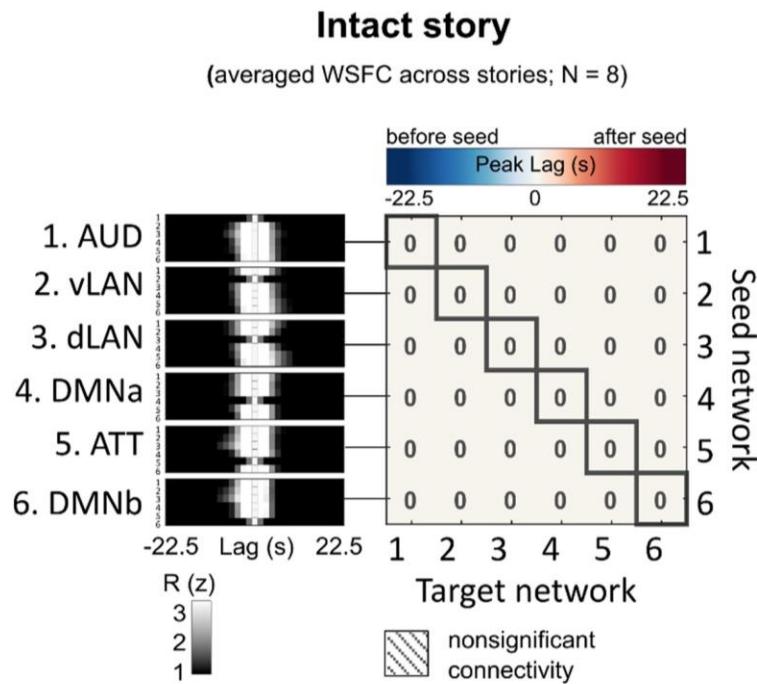
804 Fig. S4. Lag-ISFC curves between the six functional networks, corresponding to the left
805 panel of Fig. 3A. Fisher's z transformation was applied to the R-values before
806 averaging. Vertical lines indicate significant R peaks ($p < .05$, FDR correction).



807

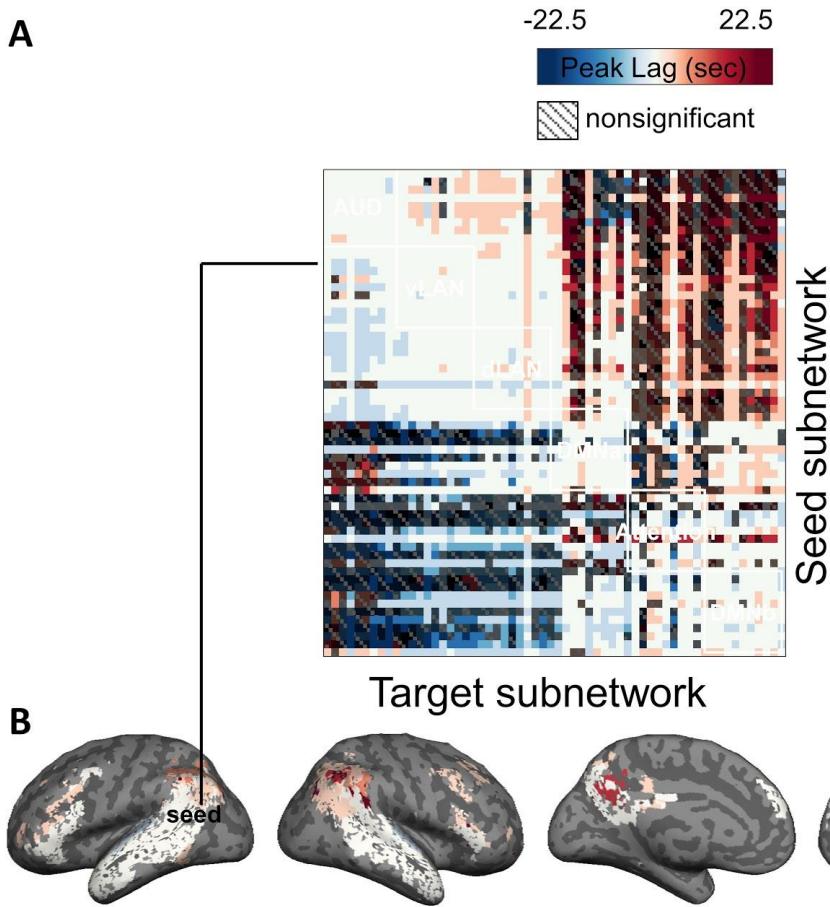
808 Fig. S5. The network × network peak lag matrix based on the lag-ISFC in each
 809 individual story ($p < .05$, FDR corrected).

810



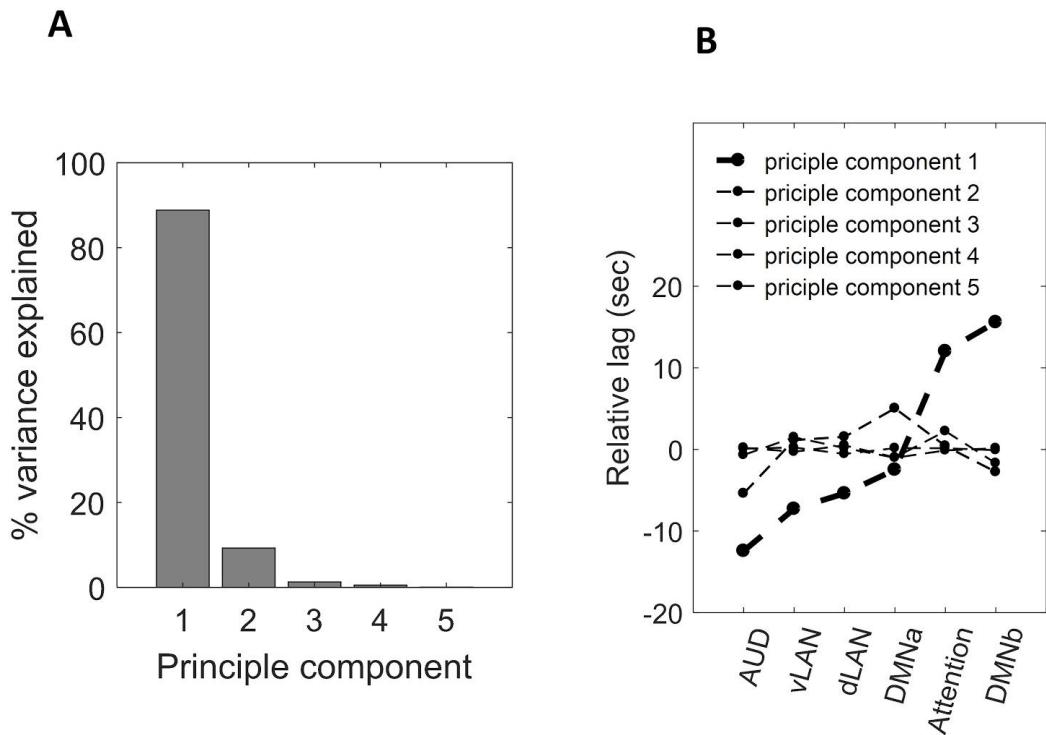
811

812 Fig. S6. The network \times network peak lag matrix based on the averaged lag-WSFC
813 across eight stories ($p < .05$, FDR corrected).



814

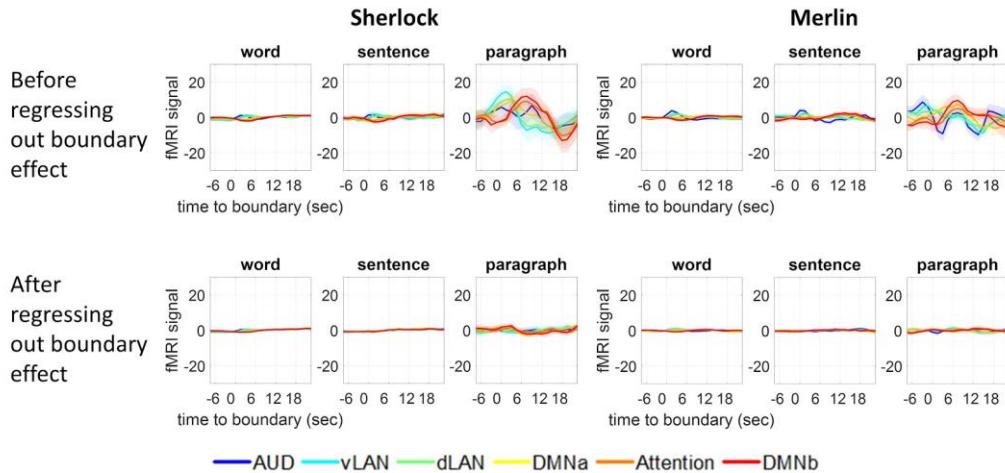
815 Fig. S7. Subnetwork \times subnetwork peak lags based on the averaged lag-ISFC across
816 eight stories ($p < .05$, FDR corrected). The subnetworks were created by dividing each
817 of the six main functional networks (SI Appendix, Fig. S1) into 10 subnetworks, applying
818 k-means clustering to resting-state WSFC ($k = 10$ within each network). (A) The peak
819 lag matrix. (B) The brain map of significant peak lags between one seed subnetwork
820 (posterior superior/middle temporal gyrus) and all the sixty subnetworks.



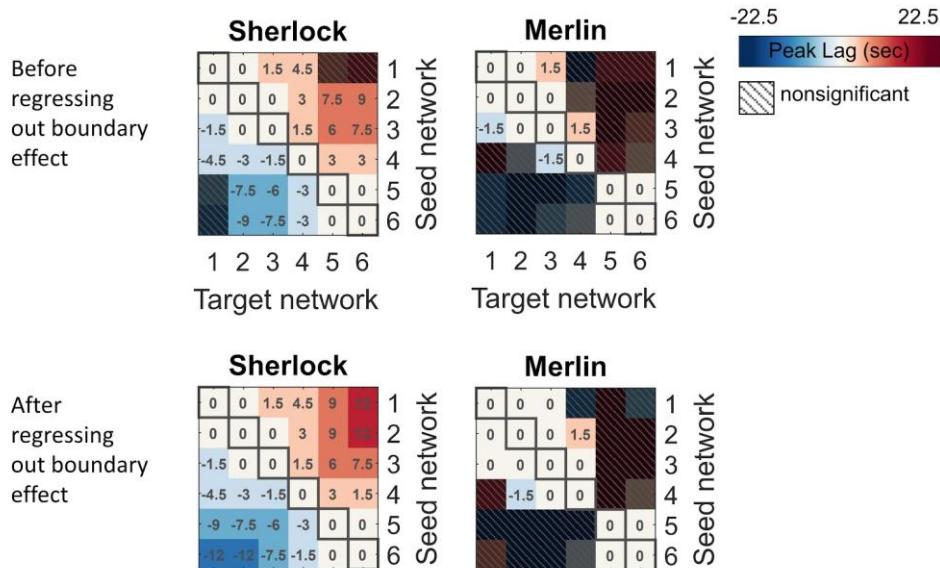
821

822 Fig. S8. Principal component analysis of the inter-network lag matrix across eight
823 stories (Fig. 3A). (A) The percentage of variance explained by each principal
824 component. (B) Relative-lag values from each principal component. Line thickness
825 indicates the percentage of variance explained by that component.

A Transient activity impulse at boundaries

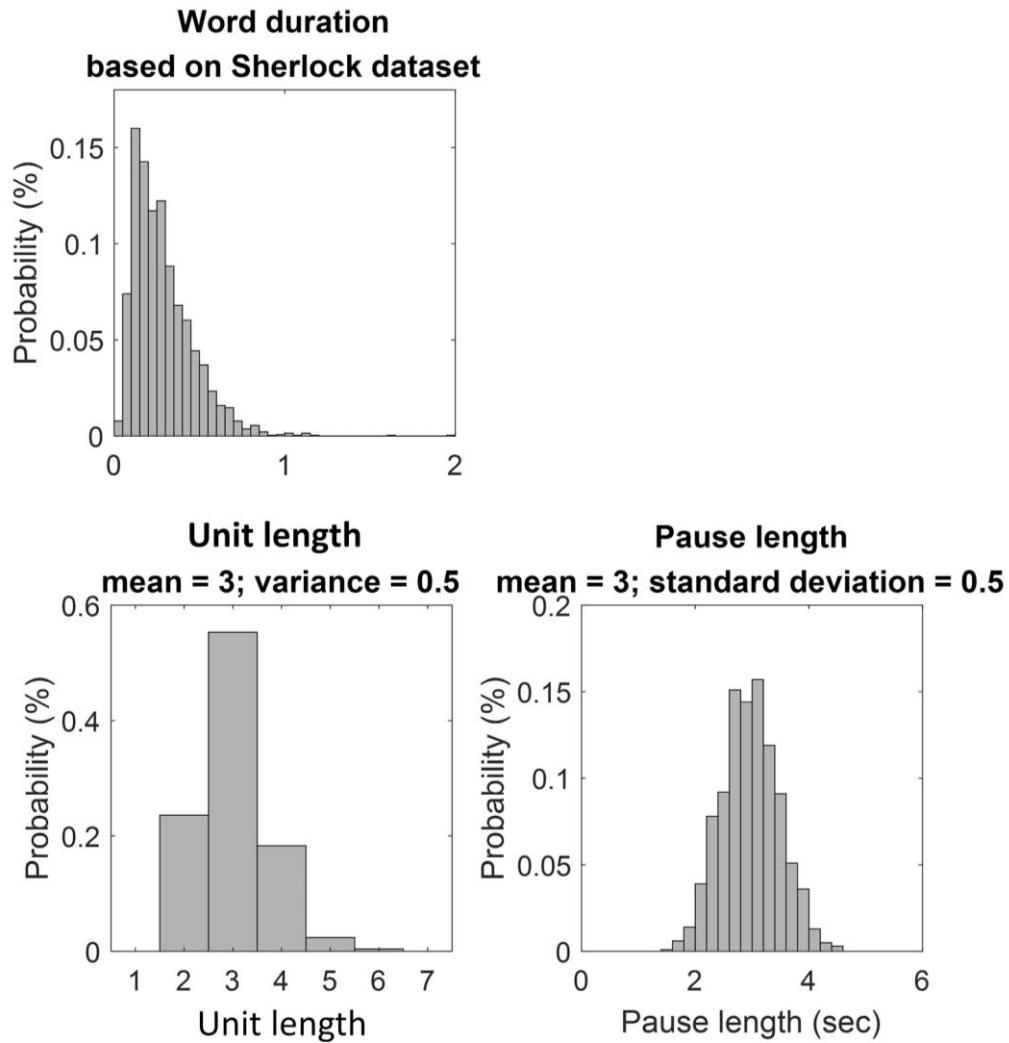


B Boundary effect on inter-network ISFC lag matrix



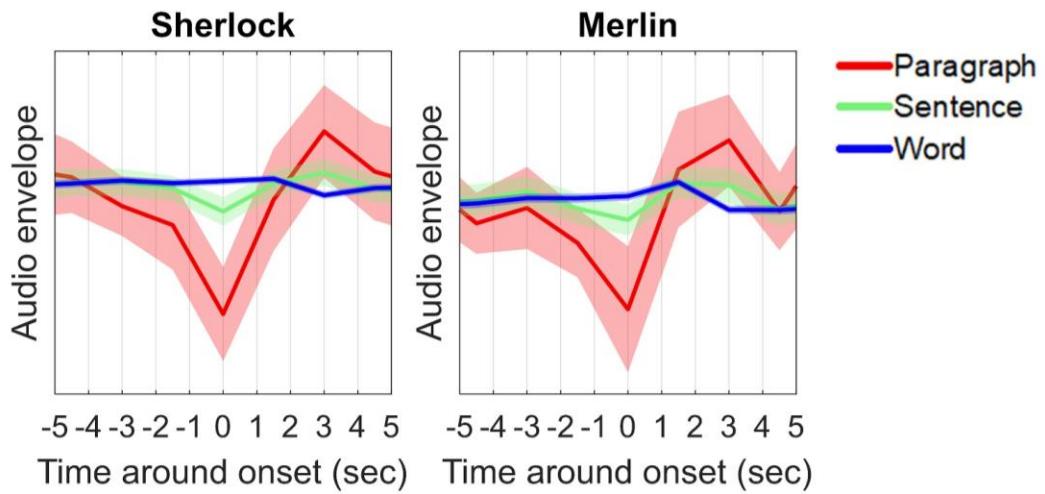
826

827 Fig. S9. Boundary effect on the network x network peak lag matrix across stories. (A)
 828 The fMRI signals around word, sentence, and paragraph boundaries before and after
 829 regressing out the boundary effects. Shaded areas indicate 95% confidence intervals
 830 across subjects. (B) The peak lag matrix before and after regressing out the boundary
 831 effects ($p < .05$, FDR corrected).



832

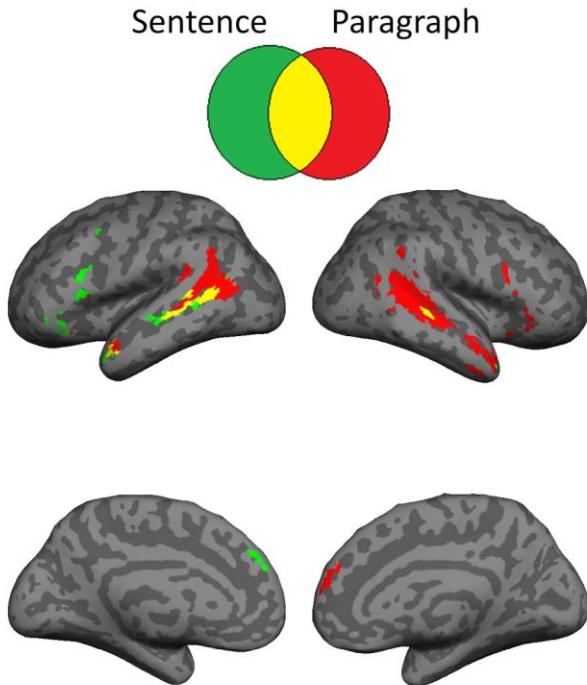
833 Fig. S10. The distributions of word duration, unit length, and pause length with the
834 simulation parameters described in Table S1.



835

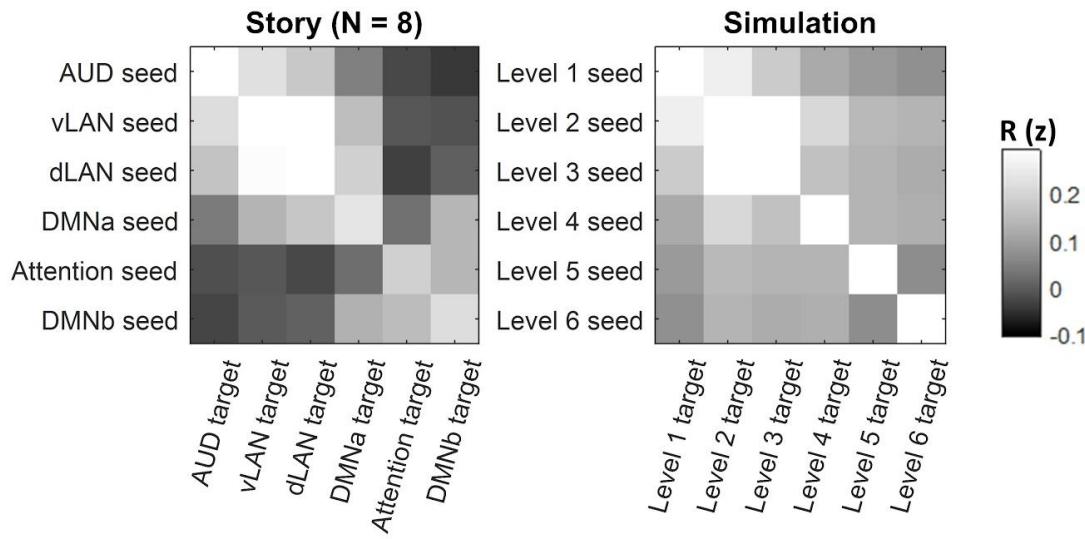
836 Fig. S11. The silent pause between paragraphs shown in real spoken stories. Shaded
837 areas indicate 95% confidence intervals.

Sentence/Paragraph length effect



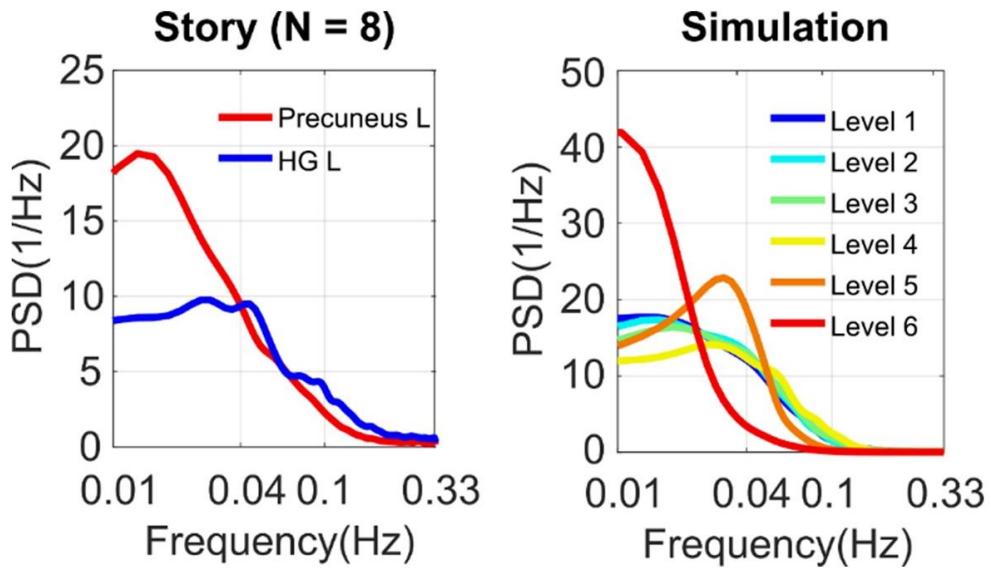
838

839 Fig. S12. Sentence and paragraph length effects in two time-stamped stories
840 ("Sherlock" & "Merlin") ($p < .005$, uncorrected). Significant length effect indicates
841 activation accumulation from the start toward the end of sentences or paragraphs.



842

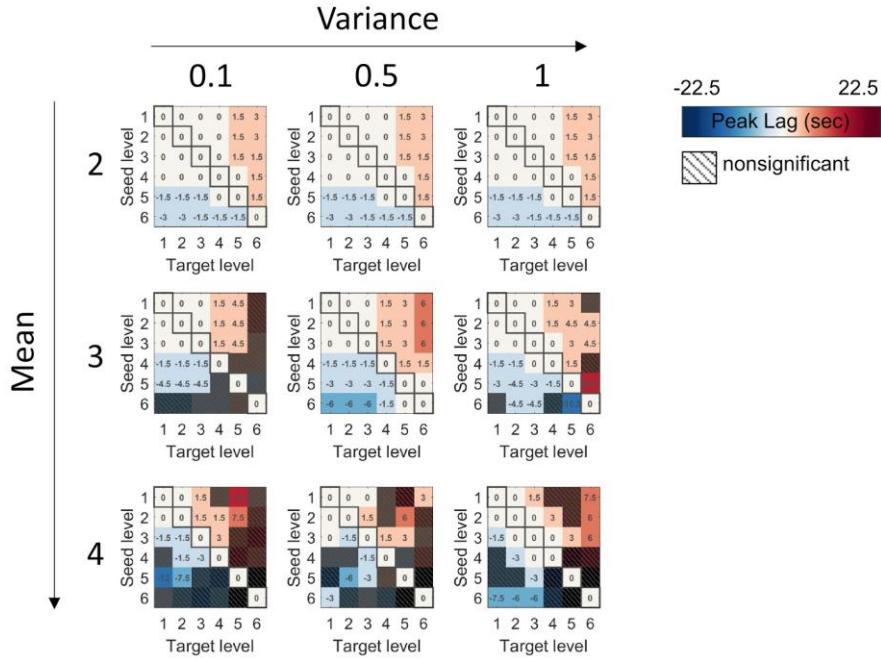
843 Fig. S13. ISFC matrices at lag 0 in real and simulated stories (the same simulation
844 parameters as in Table S1).



845

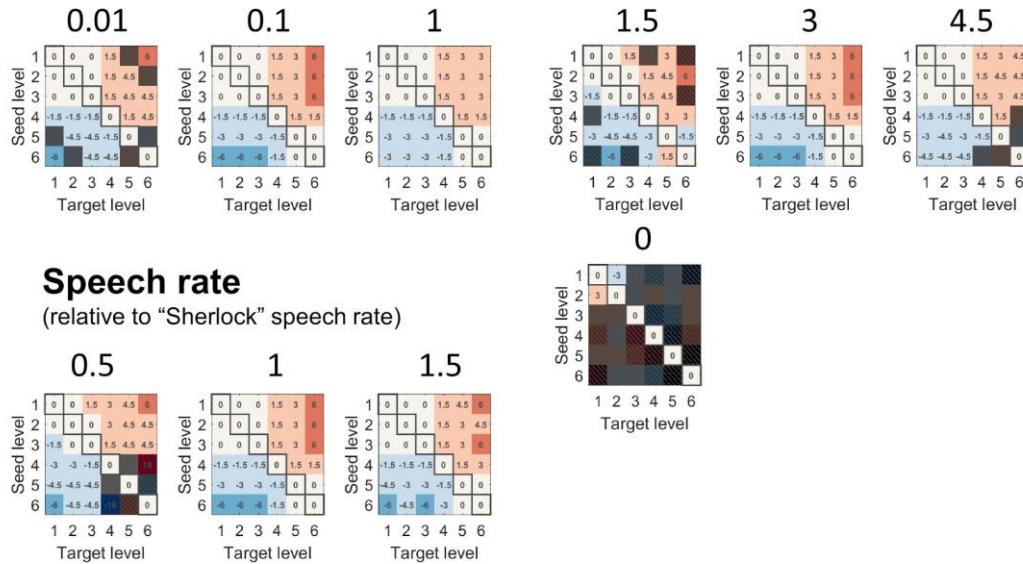
846 Fig. S14. Power spectral densities of real (left) and simulated (right, the same
847 parameter set as Table S1) BOLD responses to stories. PSD of the actual BOLD data
848 exhibited stronger low-frequency fluctuations at regions with longer temporal receptive
849 windows. Simulated BOLD responses show a similar pattern.

Unit length



Pause effect size

(SD of the simulated activity)



850

851 Fig. S15. Robust lag gradient within the parameter space bound by natural speech (the

852 same parameters as in Table S1 unless otherwise indicated) ($p < .05$, FDR correction).

853 Table S1. A set of exemplar stimulation parameters motivated by a spoken story
854 (“Sherlock”). SD: standard deviation.

Exemplar simulation parameters	
speech rate (relative to “Sherlock”)	1
mean unit length	3
unit length variance	0.5
temporal integration function	linearly increasing
mean pause length	3 sec
pause length effect size (in SD of the simulated activity)	0.1

855