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Abstract

When listening to spoken narratives, we must integrate information over multiple,
concurrent timescales, building up from words to sentences to paragraphs to a coherent
narrative. Recent evidence suggests that the brain relies on a chain of hierarchically
organized areas with increasing temporal receptive windows to process naturalistic
narratives. We hypothesized that the structure of this cortical processing hierarchy
should result in an observable sequence of response lags between networks comprising
the hierarchy during narrative comprehension. This study uses functional MRI to
estimate the response lags between functional networks during narrative
comprehension. We use inter-subject cross-correlation analysis to capture network
connectivity driven by the shared stimulus. We found a fixed temporal sequence of
response lags—on the scale of several seconds—starting in early auditory areas,
followed by language areas, the attention network, and lastly the default mode network.
This gradient is consistent across eight distinct stories but absent in data acquired
during rest or using a scrambled story stimulus, supporting our hypothesis that narrative
construction gives rise to inter-network lags. Finally, we build a simple computational
model for the neural dynamics underlying the construction of nested narrative features.
Our simulations illustrate how the gradual accumulation of information within the
boundaries of nested linguistic events, accompanied by increased activity at each level

of the processing hierarchy, can give rise to the observed lag gradient.
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Significance Statement

Our findings reveal a consistent, stimulus-driven gradient of lags in connectivity along
the cortical processing hierarchy—from early auditory cortex to the language network,
then to the default mode network—during the comprehension of naturalistic, spoken
narratives. We provide a simple computational model for the neural dynamics
underlying the construction of nested narrative features, allowing us to systematically
explore the conditions under which the lag gradient emerges and synthesize our results
with previous findings based on simple well-controlled language stimuli. Our results
illustrate the isomorphism between hierarchically structured neural dynamics and

hierarchically structured, real-world narrative inputs.

Introduction

Narratives are composed of nested elements that must be continuously integrated to
construct a meaningful whole, building up from words to phrases to sentences to a
coherent narrative (1). Recent evidence suggests that the human brain relies on a chain
of hierarchically organized brain areas with increasing temporal receptive windows
(TRWSs) to process this temporally evolving, nested structure (Fig. 1A). This cortical
hierarchy was first revealed by studies manipulating the temporal coherence of
naturalistic narratives (2, 3). These studies reported a topography of processing
timescales where early auditory areas respond reliably to rapidly-evolving acoustic
features, adjacent areas along the superior temporal gyrus respond reliably to

information at the word level, and nearby language areas respond reliably only to
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coherent sentences. Finally, areas at the top of the processing hierarchy in the default
mode network (DMN) integrate slower-evolving semantic information over many

minutes (4).

This cortical hierarchy of increasing temporal integration windows is thought to be a
fundamental organizing principle of the brain (5, 6). The cortical hierarchy of TRWs in
humans has been described using fMRI (2, 3, 7, 8) and ECoG (9). Recent work has
shown that deep language models also learn a gradient or hierarchy of increasing
TRWSs (10-12), and that manipulating the temporal coherence of narrative input to a
deep language model yields representations closely matching the cortical hierarchy of
TRWs in the human brain (13). Furthermore, the cortical hierarchy of TRWs matches
the intrinsic processing timescales observed during rest in humans (9, 14, 15) and
monkeys (16). This cortical topography also coincides with anatomical and functional
gradients such as long-range connectivity and local circuitry (17—19), which have been

shown to yield varying TRWs (20, 21).
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Fig. 1. Narrative construction in the hierarchical processing framework. (A) The
proposed cortical hierarchy of increasing temporal receptive windows (adapted from
(5)). (B) Each level of the processing hierarchy continuously accumulates information
over inputs from the preceding level. For example, phrases built over words are
constructed into sentences. The accumulated information is flushed out at structural
boundaries. (C) Each level of the processing hierarchy provides the building blocks for
the next level, which naturally leads to longer temporal receptive windows,
corresponding to linguistic units of increasing sizes. This model of narrative construction
along the cortical processing hierarchy implies a gradient of response lags across the

cortical hierarchy.

The proposal that the cortex is organized according to a hierarchy of increasing TRWs
implies that each area “chunks” and integrates information at its preferred temporal

window and that narrative construction proceeds along the cortical hierarchy. For
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example, an area that processes phrases receives information from areas that process
words (Fig. 1B), which are further transmitted to areas that integrate phrases into
sentences. At the end of each phrase, information is rapidly cleared to allow for real-
time processing of the next phrase (1, 7). The chunking of information at varying
granularity is supported by recent studies that used data-driven methods to detect

boundaries as shifts between stable patterns of brain activity (22, 23).

This model of narrative construction (Fig. 1C) predicts a gradient of response lags
across the cortical processing hierarchy; namely, shorter temporal lags among adjacent
areas along the processing hierarchy than regions further apart in the cortical hierarchy.
In the current study, we test this prediction by comparing response fluctuations elicited
by spoken narratives in different brain areas using lag-correlation. We extract the lag
with the peak correlation to estimate inter-region temporal difference. To focus on
neural responses to linguistic and narrative information, we used inter-subject functional
connectivity (ISFC) analysis (24, 25). Unlike traditional within-subject functional
connectivity (WSFC), ISFC effectively filters out the idiosyncratic fluctuations that drive
intrinsic functional correlations within subjects. Isolating stimulus-locked neural activity
from intrinsic neural activity allows us for the first time to observe the temporal dynamics
of narrative construction across the cortical hierarchy. We predicted that ISFC analysis
would reveal an inter-region lag gradient during the comprehension of intact narrative,
but not during scrambled-story or rest, which do not involve narrative construction.
Finally, we provide a computational model to clearly illustrate how the construction of
nested narrative features could give rise to the observed lag gradient, and how the lag

gradient deteriorates without naturalistic inputs.
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Results

To test the hypothesis that narrative construction will yield a gradient of response lags
across brain regions, we first divided the neural signals into six networks by applying k-
means clustering to WSFC measured during rest (SI Appendix, Fig. S1). We labeled
these networks based on anatomical correspondence with previously defined functional
regions following Simony and colleagues (25), including the auditory (AUD), ventral
language (VLAN), dorsal language (dLAN), default mode network (DMN), and attention
(ATT) networks, aligning with the previously documented TRW hierarchy (SI Appendix,

Fig. S2).

We computed lag-ISFC (i.e. cross-correlation) at varying temporal lags between all
pairs of networks (Fig. 2A and SI Appendix, Fig. S3). The lags with maximum ISFC (i.e.
“‘peak lag”) for each seed-target pair were extracted as an index for the temporal gaps in
the stimulus-driven processing between each pair of networks. The extracted peak lags
were color-coded to construct the network x network peak lag matrix (Fig. 2B and 2C).
In the following, we describe the observed lag gradient in detail and several control
analyses. Finally, we simulated the nested narrative structure and the corresponding
brain responses to explore how different integration functions at different timescales

could give rise to the observed lag gradient.
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134  Fig. 2. Construction of the inter-network peak lag matrix. (A) Lag-ISFC (cross-

135 correlation) between seed-target network pairs were computed using the leave-one-
136  subject out method. The dLAN network is used as an example seed network for

137  llustrative purposes. (B) The matrix depicts ISFC between the dLAN seed and all six
138  target networks at varying lags. The lag with the peak correlation value (colored vertical
139  bars) was extracted and color-coded according to lag. For visualization, the lag-ISFCs
140  were z-scored across lags. (C) The network x network peak lag matrix (p < .05, FDR
141  corrected). Warm colors represent peak lags following the seed network, while cool
142  colors represent peak lags preceding the seed network; zeros along the diagonal

143  capture the intra-network ISC. An example story (“Sherlock”) is shown for illustrative

144  purposes.

145  Fixed lag gradient across cortical networks
146  The average lag-ISFC across stories was computed for each seed network (Fig. 3A,
147  left). The lag-ISFC between a seed network and the same network in other subjects

148 always peaked at lag 0, reflecting the strong stimulus-locked within-network
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synchronization reported in the ISC literature (3, 26, 27) (S| Appendix, Fig. S3).
Interestingly, however, non-zero peak lags were found between different networks.
Relative to a low-level seed, putatively higher-level networks showed peak connectivity
at increasing lags. For example, the stimulus-induced activity in dLAN lagged 1 TR (1.5
s) behind activity in AUD, whereas the activity in DMNDb lagged 4 TRs (6 s) behind
activity in dLAN. Importantly, regardless of the choice of seed, the target networks
showed peak connectivity in a fixed order progressing through AUD, vLAN, dLAN,

DMNa, ATT, and DMNb.

To summarize the findings, we color-coded the peak lags and collated them into a peak
lag matrix where each row corresponds to a seed network and each column
corresponds to a target network (Fig. 3A, right; see SI Appendix, Fig. S4 for the lag-
ISFC waveforms). The white diagonal indicates a peak at zero lag within each area,
reflecting the intra-network synchronization across subjects (i.e. ISC) (S| Appendix, Fig.
S3), while the cool-to-warm color gradient indicates a fixed order of peak lags. For
example, the first row shows a white-to-warm gradient, reflecting that when AUD served
as the seed, other networks were either synchronized with or followed AUD, but never
preceded it. Conversely, the cool-to-white gradient of the last row indicates that all other
networks preceded the DMNDb seed. The lag gradient can also be observed in individual
stories (S| Appendix, Fig. S5), although these patterns are noisier than the averaged
results. The lag gradient proceeded in a fixed order across all networks, suggesting that
bottom-up narrative construction is reflected in lagged connectivity between stages
along the cortical hierarchy from AUD up to DMNb. Similar results were obtained when

we defined the ROls using the TRW hierarchy (S| Appendix, Fig. S2D).
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173  Fig. 3. The peak lag matrix across eight stories reveals a fixed lag gradient across
174  networks, which is abolished during scrambled narratives and rest. (A) The network x
175  network peak lag matrix is based on the averaged lag-ISFC across eight stories. For
176  visualization, lag-ISFC curves at left were z-scored across lags. (B) Peak lag matrix
177  based on responses to a scrambled story stimulus (scrambled words). (C) Peak lag
178  matrix based on resting-state data. Peak lag matrices are thresholded at p < .05 (FDR

179  corrected).

180 Temporal scrambling abolishes the lag gradient

181  We hypothesized that the lag gradient reflects the emergence of macroscopic story

182 features (e.g. narrative situations or events) integrated over longer periods of time in
183  higher-level cortical networks (22, 23). To support this point, we next used the same
184  procedure to compute the peak lag matrix for a temporally scrambled version of one
185 story (“Pie Man”; as for the results of intact “Pie Man”, please see S/ Appendix, Fig. S5).

186 In this dataset, the story stimulus was spliced at the word level and scrambled, thus

10
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maintaining similar low-level sensory statistics while abolishing the slower-evolving
narrative content. The peak lag matrix for the scrambled story revealed synchronized
responses at lag 0 both within and between the AUD and vLAN networks, but no
significant peaks within or between other networks (Fig. 3B). This reflects low-level
speech processing limited to the word level and indicates that disrupting the narrative
structure of a story abolishes the temporal propagation of information to higher-level

cortical areas.

No lag gradient during rest

As an additional control, we also examined whether the lag gradient observed during
the intact story could be detected during rest. The resting state is dominated by intrinsic
fluctuations and there is no external stimulus to drive synchronized brain activity across
subjects as well as propagation of activity across cortical areas. As expected, no
significant ISFC peaks were found (Fig. 3B). This provides further evidence that the

observed lag gradient is driven by the stimulus itself.

Idiosyncratic within-subject fluctuations obscure the lag gradient

We next asked whether the inter-network lag gradient observed during spoken stories
can be observed using traditional WSFC. As expected, WSFC analysis revealed a
strong peak correlation at lag zero within each network, but also a peak correlation at
lag zero across all networks such that no gradient was observed (S| Appendix, Fig. S6).
This result supports the claim that ISFC analysis filters out intrinsic signal fluctuations
that propagate across brain areas, revealing the propagation of shared story information

across networks (24, 25). This result also verifies that intrinsic, inter-network differences

11
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209 in hemodynamic responses cannot account for the lag gradient; otherwise, WSFC

210  should show a similar lag pattern as ISFC.

211 Lag gradient across fine-grained subnetworks

212  To verify that the peak lag gradient could also be observed at a finer spatial scale, we
213  further divided each of the six networks into ten subnetworks, again by applying k-

214 means clustering to resting-state WSFC (k = 10 within each network). The peak lag

215  matrix between the sixty subnetworks was generated using the same methods as in the
216  network analysis (S| Appendix, Fig. S7A). We also visualized the brain map of lags

217  between one selected seed (posterior superior/middle temporal gyrus) and all the target
218 subnetworks (S| Appendix, Fig. S7B). Similar to the network level analysis, the peak lag
219  between the subnetworks revealed a gradient from the early auditory cortex to the

220 language network (auditory association cortex), then to the DMN.

221  Dominant bottom-up lag gradient across networks

222  We adopted a method introduced by Mitra and colleagues (28) to discern whether there
223 are multiple parallel lag sequences between networks. We applied principal component
224  analysis (PCA) to the inter-network peak lag matrix (Fig. 3A) and examined the

225 cumulative variance accounted for across principal components. Our results revealed
226 that, at the coarse level of the cortical networks used here, the first principle component
227  explains 88.8% of the variance in our lag matrix (S| Appendix, Fig. S8). This suggests

228 that there is a single, unidirectional lag gradient across networks.

12
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The lag gradient is not driven by transient linguistic boundary effects

Prior work has reported that scene/situation boundaries in naturalistic stimuli elicit
transient brain responses that vary across regions (29-34). To test whether this
transient effect could drive the gradient observed in our lag matrix, we computed lag-
ISFC after regressing out the effects of word, sentence, and paragraph boundaries in
two stories with time-stamped annotations. As shown in S| Appendix, Fig. S9, the
regression model successfully removed transient effects of the boundaries from the
fMRI time series. Critically, however, the lag gradient remained qualitatively similar
when accounting for boundaries, indicating that the observed lag gradient does not

result from transient responses to linguistic boundaries in the story stimulus.

Reproducing the lag gradient by simulating narrative construction

Narratives have a multi-level nested hierarchical structure (35) and are reported to elicit
neural processing at increasingly long timescales along the cortical hierarchy (22, 23).
To better understand how the construction of nested narrative features could give rise to
the long inter-network lag gradient we observed, with up to 9-second lags, we created a
simulation capturing the hierarchically nested temporal structure of real-world narratives

and the corresponding hierarchy of cortical responses.

13


https://www.zotero.org/google-docs/?vpVfnS
https://www.zotero.org/google-docs/?712aBM
https://www.zotero.org/google-docs/?fbdcS1
https://doi.org/10.1101/2021.12.01.470825
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.01.470825; this version posted May 30, 2022. The copyright holder for this preprint (which

246

247

248

249

250

251

252

253

254

255

256

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

A Simulated bottom-up B Simulated information C Simulated
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Fig. 4. Simulating narrative construction and the corresponding brain responses. (A)
The construction of the nested narrative structure, simulated by sampling boundary
intervals from actual word durations and recursively integrating them to obtain structural
boundaries at higher levels. (B) Information accumulation at different levels is generated
by a linearly increasing temporal integration function. We postulated that information
accumulation is accompanied by increased activity. (C) BOLD responses generated by
HRF convolution. This visualization is based on parameters estimated from a spoken

story stimulus (Table S1).

To match the six networks discussed so far, we simulated story features emerging
across six distinct timescales, which roughly correspond to words, phrases, sentences,

14
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2-3 sentences, and paragraphs. The initial level of the simulated narrative hierarchy
was populated with relatively brief low-level units, with boundary intervals sampled from
actual word durations in a spoken story (S| Appendix, Fig. S10). These simulated
“‘words” were integrated into “phrases” of varying lengths with a mean length of three
words to obtain second-level boundaries (Fig. 4A). All “phrase”-level boundaries were
also “word”-level boundaries. A six-level structure was ultimately generated by
recursively applying this procedure. Since paragraphs are often separated in real stories
by longer silent periods (SI Appendix, Fig. S11), we inserted pauses at top-level (sixth-
level) boundaries. The bottom-up construction of narrative structure gives rise to inter-
level alignment and increasing processing timescales at higher levels, as proposed in

the hierarchical processing framework (5, 6, 18).

The simulated response amplitudes were generated using a linearly increasing temporal
integration function (Fig. 4B), based on prior work showing that information
accumulation is accompanied by gradually increasing activation within
phrases/sentences (36—41) and paragraphs (29, 32) (a similar sentence/paragraph
length effect was also observed in our data; see Sl Appendix, Fig. S12). The linearly
increasing temporal integration function accumulates activity derived from lower-level
units within the interval between unit boundaries at the current levels and flushes out
the accumulated activity at unit boundaries of the current level. To account for
hemodynamic lag in the fMRI signal, we applied a canonical hemodynamic response
function (HRF) to the simulated response amplitudes (Fig. 4C). We averaged the inter-

level lag correlations across thirty different simulated structures (equivalent to 30
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different stories) and extracted the peak lags. This peak-lag analysis parallels the

analysis previously applied to the fMRI data.

The simulation allows us to systematically manipulate the narrative structure and the
temporal integration function to reveal the conditions under which the lag gradient
emerges. We first performed the simulation with a set of “natural” parameters roughly
motivated by the temporal properties of our narrative stimuli and a simple temporal

integration function reflecting linear temporal accumulation (Table S1).

This simple simulation is sufficient to reproduce the inter-network lag gradient observed
in the fMRI data (Fig. 5A; as well as the ISFC at lag zero; S| Appendix, Fig. S13). In
addition, we also compared the spectral properties of the simulated and real BOLD
signals (S| Appendix, Fig. S14). We first computed the average power spectral density
(PSD) across stories. Replicating results reported by Stephens and colleagues (15), we
found stronger low-frequency fluctuations in regions with longer TRWs. Computing the
PSD of the simulated brain responses similarly revealed increased low-frequency power
in responses to high-level structures with longer intervals between boundaries. We then
adjusted one parameter at a time to explore the parameter space constrained by natural

speech.
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Simulated peak lag matrix

A Intact B Scrambled C Non-nested

before seed after seed
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Level 3 'Sl o o015 3 6
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1. connectivity

Fig. 5. Simulated peak lag matrix. (A) Simulating the peak lag matrix observed during
story-listening fMRI data (Fig. 3A) using parameters derived from a story stimulus (the
same parameters as in Fig. 4 and Table S1). (B) Simulating the lag matrix observed
during scrambled story (scrambled words) (Fig. 3B), by setting mean unit length = 1 and
unit length variance = 0. (C) Lag matrix from the non-nested structure, created by
combining levels extracted from independently generated nested structures, which
disrupts the nesting relationship between different levels, similar to the scrambled story,
while preserving the spectral properties of individual time series (p < .05, FDR

correction).

Key parameters for the emergence of a lag gradient

Within the bounds of natural speech (S| Appendix, Fig. S15), we observed that the
simulated inter-network lag gradient is robust to varying lengths of linguistic/narrative
units (mean: 2—4; variance: 0.1-1; longer length generated longer units, often with the

top layers exceeding the length of the simulated story, i.e. 3000 words). The duration of
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inter-paragraph pauses was estimated from two stories (“Sherlock” and “Merlin”; S
Appendix, Fig. S11) (mean length: 1.5-4.5 sec; pause effect size: 0.01-1 SD of
simulated activity). We also found that the model, similar to neural responses as
observed by Lerner and colleagues (42), was robust to variations in speech rate (0.5—
1.5, relative to “Sherlock” speech rate). However, the lag gradient deteriorates with
parameters outside of the bounds of natural speech, for example, when the inter-
paragraph pause is set to 0 sec. We also simulated brain responses to word-scrambled
stories by setting mean unit length = 1 and unit length variance = 0. With this setting,
word-level units are never integrated into larger units (the units at each level correspond
to individual words from the first level). No information integration is involved, resulting
in flat activations and eliminating the difference in spectral properties of time series from

different levels. No lag gradient is observed in this case (Fig. 5B).

Next, we computed inter-level lag-correlation using simulated responses to different
nested structures (similar to responses to different stories), which preserves the spectral
properties of individual time series while disrupting their nesting relationship. No
significant lag-correlation was found when violating the nested structure of naturalistic
narrative (Fig. 5C). In addition to the aforementioned linearly increasing integration
function, we also explored several other temporal integration functions. We found that
linearly and logarithmically increasing functions both yielded the inter-network lag
gradient, but not the symmetric triangular or boxcar functions. The linearly decreasing
function resulted in a reversed lag gradient (Fig. 6). These results suggest that the

hierarchically nested structure that naturally arises from bottom-up narrative
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334  construction and a monotonically increasing integration function are key to the

335 emergence of the lag gradient.

Simulated peak lag matrix
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337  Fig. 6. Lag matrices generated using different temporal integration functions (p < .05,
338 FDR correction). The linearly and logarithmically increasing temporal integration

339 functions yield a simulated peak lag matrix similar to the one observed in fMRI data; the
340 symmetric triangle and boxcar functions, as well as the linearly decreasing function, do

341 not.

342

343 Discussion
344 By applying lag-ISFC to a collection of fMRI datasets acquired while subjects listened to
345 spoken stories, we revealed a temporal progression of story-driven brain activity along a
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cortical hierarchy for narrative comprehension (Fig. 3A). The temporal cascade of
cortical responses summarized by the inter-network lag gradient was consistent across
stories as well as at coarse- and fine-grained functional network definitions (Sl
Appendix, Fig. S7). The results are in line with the hierarchical processing framework,
which proposes a gradual emergence of narrative features of increasing duration and
complexity along the processing hierarchy, from early sensory areas into higher-order
cortical areas (Fig. 1). In support of our interpretation, we found that the lag gradient is
absent during rest when there is no stimulus-evoked processing (Fig. 3B), and also

when the temporal structure of the story is disrupted due to word scrambling (Fig. 3C).

We observed inter-network lags on the scale of several seconds (up to 9 seconds),
reflecting the temporal structure of real-world narratives, which integrate sounds into
words, sentences, and ideas over many seconds. Such long lags cannot be explained
by regional variations in neurovascular coupling (43) or transient activity impulses at
event boundaries. If the lag gradient only reflects variations in neurovascular coupling
across regions, it should be present both when we isolate stimulus-driven activity using
ISFC and when we examine idiosyncratic neural responses using WSFC. Instead,
however, the lag gradient was detected only with ISFC, but not WSFC (S| Appendix,
Fig. S6). Furthermore, differences in the hemodynamic response function across brain
areas are usually reported at shorter timescales (e.g. ~1-2 seconds) (44, 45) than the
0-9-second inter-network lag differences observed here in the context of narrative
comprehension (Fig. 3). In addition, we found that transient event boundaries (29-34)

did not account for the lag gradient (S| Appendix, Fig. S9).
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Our simulation illustrates how narrative construction can give rise to the inter-network
lag gradient by identifying three necessary conditions: (a) a cortical hierarchy of
increasing processing timescales (Fig. 1 & Fig. 4) (5); (b) hierarchically nested
linguistic/narrative events of increasing size along the processing hierarchy (Fig. 5B &
5C) (22, 23); and (c) gradual increasing brain activity, along with information
accumulation, within the boundaries of events at each processing level (29, 32, 36—41),
combined with a reset of activity (buffer clearing) at event boundaries (7) (see temporal
integration function in Fig. 1B and Fig. 6). In this simple model, information integration at
varying granularity (e.g. word, sentence, and paragraph) is sufficient to yield the inter-
network lag gradient (Fig. 5) and spectral properties observed in the fMRI data (Sl
Appendix, Fig. S14). Minor adjustments to other parameters within the bounds of
natural speech (i.e. speech rate, silent pause, and length of linguistic/narrative unit) did

not change the gradient pattern (S| Appendix, Fig. S15).

The simulation provides a simple model which bridges the discovery of TRWs using
natural stimuli (2, 42) and the accumulation of activity within linguistic units found using
simple, well-controlled stimuli (e.g. sentences with similar structures) (36—41).
Importantly, we note that our model is not the only one that could generate the predicted
lag gradient. Our aim is to combine separate findings that point to the same cortical
hierarchy with the simplest model possible. In addition, narrative processing is unlikely
to be purely unidirectional (46). The lag gradient only captures the dominant process of
bottom-up narrative construction (S| Appendix, Fig. S8). More studies are needed to
examine recurrent or bidirectional connectivity, causal relations between networks, and

nonstationary information flow over time.
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Our results are also consistent with reports on the spatiotemporal dynamics of brain
responses to naturalistic stimuli. A hierarchically nested spatial activation pattern has
been revealed using movie, spoken story, and music stimuli (22, 23, 47). Chien and
colleagues (7) reported a gradual alignment of context-specific spatial activation
patterns, which was rapidly flushed at event boundaries, similar to the temporal
integration function we adopted here. Taken together, the empirical findings, combined
with our simulation, indicate that the spatiotemporal neural dynamics reflect the
structure of naturalistic, ecologically-relevant inputs (6) and that such information is
preserved even with the poor temporal resolution of fMRI. Although the current findings
are derived from listener-listener coupling, the inter-regional dynamics may shed light
on the lags observed in speaking-listener coupling (48-53). Given a particular seed
region in the speaker’s brain, we would expect to observe coupling at differing lags for
different target regions in the listener’s brain, and these lags may vary based on the

temporal structure of the speaker’s narrative.

Our results demonstrate both the importance of using inter-subject methods to isolate
stimulus-driven signals and the value of data aggregation. The fact that we obtained
non-zero inter-network lag only with ISFC but not WSFC (Sl Appendix, Fig. S6)
indicates that stimulus-driven network configuration may be masked by the idiosyncratic
fluctuations that dominate WSFC analyses (24, 25). Furthermore, although the inter-
network lags could be observed within individual stories (SI Appendix, Fig. S5), the
gradient pattern is much clearer after aggregating across stories (Fig. 3). Data
aggregation is particularly important when using naturalistic stimuli because it is

impossible to control the structure of each narrative (e.g. speaking style, duration,
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complexity, and content) (35, 54-56, 56). With these methods, we are able to reveal the
inter-network lag gradient driven by naturalistic narratives, as predicted by the model
shared information flow along the cortical processing hierarchy. Further work will be
needed to examine recurrent or bidirectional information flow and to decode the content
of narrative representations—specific to each story—as they are transformed along the

cortical hierarchy.

Materials and Methods

fMRI datasets

This study relied on eight openly available spoken story datasets. Seven datasets were
used from the "Narratives" collection (OpenNeuro:
https://openneuro.org/datasets/ds002245) (57), including “Sherlock” and “Merlin” (18
participants, 11 females) (52), “The 215t year” (25 participants, 14 females) (58), “Pie
Man (PNI)”, “I Knew You Were Black”, “The Man Who Forgot Ray Bradbury”, and
“‘Running from the Bronx (PNI)” (48 participants, 34 females). One dataset was used
from Princeton Dataspace: “Pie Man” (36 participants, 25 females)

(https://dataspace.princeton.edu/jspui’/handle/88435/dsp015d86p269k) (25).

Two non-story datasets were also included as controls: a word-scrambled “Pie Man”
(36, participants, 20 females) dataset and a resting-state dataset (36 participants, 15

females) (see the Princeton DataSpace URL above) (25).
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All participants reported fluency in English and were 18-40 years in age. The criteria of
participant exclusion have been described in previous studies for

“Sherlock”, "Merlin”, "The 215! year”, and “Pie Man.” For “Pie Man (PNI)”, “I Knew You
Were Black”, “The Man Who Forgot Ray Bradbury”, and “Running from the Bronx
(PNI),” participants with comprehension scores 1.5 standard deviations lower than the
group means were excluded. One participant was excluded from “Pie Man (PNI)” for

excessive movement (translation along the z-axis exceeding 3 mm).

All participants provided informed, written consent, and the experimental protocol was

approved by the institutional review board of Princeton University.

fMRI preprocessing

fMRI data were preprocessed using FSL (https:/fsl.fmrib.ox.ac.uk/), including slice time
correction, motion correction, and high-pass filtering (140 s cutoff). All data were aligned
to standard 3 x 3 x 4 mm Montreal Neurological Institute space (MNI152). A gray matter

mask was applied.

Functional networks

Following Simony and colleagues (25), we defined 6 intrinsic connectivity networks
within regions showing reliable responses to spoken stories. Voxels showing top 30%
ISC in at least 6 out of the 8 stories were included. Using the k-means method (L1
distance measure), these voxels were clustered according to their group-averaged
within-subject functional connectivity with all the voxels during resting. We refer to these
functional networks as the auditory (AUD), ventral language (vVLAN), dorsal language

(dLAN), attention (ATT), and default mode (DMNa and DMNb) networks (S Appendix,
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Fig. S1A). To ensure that our results hold for finer-grained functional networks, we
further divided each of the six networks into ten subnetworks, again by applying k-

means clustering to resting-state WSFC (k=10 within each superordinate network).

To compare these intrinsic functional networks to the TRW hierarchy, we computed the
TRW index (i.e. intact > word-scrambled story ISC) following (8) for voxels within
regions showing reliable responses to spoken stories, using the intact and word-
scrambled Pie Man. Six TRW networks were then generated by splitting the TRW

indices into six bins by five quantiles (SI Appendix, Fig. S2).

WSFC, ISFC, and ISC

In this study, within-subject functional connectivity (WSFC) refers to within-subject inter-
region correlation, while inter-subject functional connectivity (ISFC) refers to inter-
subject inter-region correlation. Inter-subject correlation (ISC) refers to a subset of
ISFC, namely, ISFC between homologous regions (S| Appendix, Fig. S3). ISFC and
ISC were computed using the leave-one-subject-out method, i.e. correlation between
the time series from each subject and the average time series of all the other subjects

(24).

Before computing the correlation, the first 25 and last 20 volumes of fMRI data were
discarded to remove large signal fluctuations at the beginning and end of time course
due to signal stabilization and stimulus onset/offset. We then averaged voxelwise time
series across voxels within network/region masks and z-scored the resulting time

series.
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Lag-correlations were computed by circularly shifting the time series such that the non-
overlapping edge of the shifted time series was concatenated to the beginning or end.
The left-out subject was shifted while the average time series of the other subjects
remained stationary. Fisher’s z transformation was applied to the resulting correlation

values prior to further statistical analysis.

ISFC lag matrix

We computed the network x network x lag-ISFC matrix (S| Appendix, Fig. S3) and
extracted the lag with peak ISFC (correlation) value for each network pair (Fig. 2). The
peak ISFC value was defined as the maximal ISFC value within the window of lags from
-15 to +15 TRs; we required that the peak ISFC be larger than the absolute value of any

negative peak and excluded any peaks occurring at the edge of the window.

To obtain the mean ISFC across stories, we applied two statistical tests. Only ISFC that
passed both tests were considered significant. First, we performed a parametric one-
tailed one-sample t-test to compare the mean ISFC against zero (N = 8 stories) and
corrected for multiple comparisons by controlling the false discovery rate (FDR; (59); 6

seed x 6 target x 31 lags; q < .05).

Second, to exclude ISFC peaks that only reflected shared spectral properties, we
generated surrogates with the same mean and autocorrelation as the original time
series by time-shifting and time-reversing. We computed the correlation between the
original seed and time-reversed target with time-shifts of -100 to +100 TRs. The
resulting ISFC values were averaged across stories and served as a null distribution. A

one-tailed z-test was applied to compare ISFCs within the window of lag -15to +15 TRs
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against this null distribution. The FDR method was used to control for multiple
comparisons (seed x target x lags; q < .05). When assessing ISFC for each story, only
this second test was applied and all possible time-shifts were used to generate the null

distribution.

Principal component analysis of the lag matrix

We examined whether multiple lag sequences similarly contributed to the lag matrix,
using the method introduced by Mitra and colleagues (28). We applied PCA to the lag
matrix obtained from the averaged ISFC across stories, after transposing the matrix and
zero-centering each column. Each principal component represents a pattern of relative
lags, in other words, lag sequences. We computed the proportion of overall variance in
the lag matrix accounted for by each component in order to determine whether more

than one component played an important role.

Word/sentence/paragraph boundary effect

To test the transient effect of linguistic boundaries on inter-network lag, we computed
the lag-ISFC after regressing out activity impulses at boundaries. A multiple regression
model was built for each subject. The dependent variable was the averaged time series
of each network, removing the first 25 scans and the last 20 scans as in the ISFC
analysis. The regressors included an intercept, the audio envelope, and three sets of
finite impulse functions (-5 to +15 TRs relative to boundary onset), corresponding to
word, sentence, and paragraph (event) boundaries. We then recomputed lag-ISFC

based on the residuals of the regression model.
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Word/sentence/paragraph length effect

We replicated the sentence length (36—41) and paragraph length (29, 32) effect with the
“Sherlock” and “Merlin” datasets, which were collected from the same group of
participants. The onsets and offsets of each word, sentence, and paragraph (event)
were manually time-stamped. Given the low temporal resolution of fMRI (TR = 1.5 sec)
and the difficulty of labeling the onset/offset of each syllable, they were estimated by

dividing the duration of each word by the number of syllables it contains.

We built individual GLM models that included regressors corresponding to the presence
of syllable, word, sentence, and paragraph respectively, accompanied by three
parametric modulators: accumulated syllable number within words, accumulated word
number within sentences, and accumulated sentence number within paragraphs. These
parametric regressors were included to test whether brain activations accumulate
toward the end of word/sentence/paragraph; the longer the word/sentence/paragraph
the stronger the activations. In addition to the regressors of interest, one regressor was
included for speech segments without clear paragraph labels. We did not orthogonalize

the regressors to each other.

Effect maps of the three parametric modulators (i.e. word length, sentence length, and
paragraph length) from the individual level models of both stories were smoothed with a
Gaussian kernel (FWHM = 8 mm) and input to three group-level models to test the
word, sentence, and paragraph length effects respectively (flexible factorial design
including the main effects of story and participant; p < .005, not corrected). We
observed sentence and paragraph length effects. Using the same threshold, no word

length effect was observed,
28
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543 Power-spectral density analysis

544  We performed spectral analyses following (15). We estimated the power spectrum of
545  the primary auditory area and a DMN area (precuneus). As for the connectivity analysis,
546  we cropped the first 25 and last 20 scans and z-scored the time series. For each story,
547  the resulting time series were averaged across subjects and normalized across time.
548  The power spectrum of the group-mean time series was estimated using Welch’s

549  method with a Hamming window of width 99 sec (66 TRs) and 50% overlap (based on
550 the parameters from (15)). The power spectra of individual voxels were averaged within
551 the anatomical masks of left Heschl's gyrus and left precuneus from the AAL atlas. The

552  mean spectra across stories were then computed.

553  Simulating the construction of nested narrative structures and the corresponding
554  BOLD responses

555 Toillustrate how information accumulation at different timescales could account for the
556 inter-network lag gradient during story-listening, we simulated the construction of nested
557 narrative structures closely following the statistical structure of real spoken stories and
558 generated BOLD responses at each processing level. To build the first level of a nested
559  structure, we sampled a sequence of 3000 word durations with replacement from

560 “Sherlock,” which is the longest example of spontaneous speech among our datasets,
561 recorded from a non-professional speaker without rehearsal or script (S| Appendix, Fig.

562 S10). Boundaries between units at the first level were set up accordingly.

563  Unit length
564  First-level units were integrated into units of the next level with a lognormal distributed

565 unit length; e.g. integrating three words into a phrase (unit length = 3) (S| Appendix, Fig.
29


https://www.zotero.org/google-docs/?QC2YY3
https://www.zotero.org/google-docs/?ePPP53
https://doi.org/10.1101/2021.12.01.470825
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.01.470825; this version posted May 30, 2022. The copyright holder for this preprint (which

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

S10). Boundaries between second-level units were inserted accordingly. Second-level
units were integrated into the third-level units following the same method. A nested

structure of six levels was thus generated.

Temporal integration function

Postulating that information accumulation is accompanied by increased activity, brain
responses within each level of the nested structure were generated as a function of unit
length. For example, a linear temporal integration function generates activity [1 2 3] for a
“‘phrase” (i.e. a Level 2 unit) consisting of three "words" (i.e. Level 1 units). The first
(word) level integration was computed based on syllable numbers sampled from

“Sherlock” along with word durations.

Pause length and pause effect size

In naturalistic narratives, boundaries between high-level units are often accompanied by
silent pauses (S| Appendix, Fig. S11). Therefore, we inserted pauses with normally
distributed lengths at the boundaries of the highest level units (SI Appendix, Fig. S10).
Activity during the pause period was set as 0.1 standard deviations below the minimum

activity of each level.

To account for HRF delay in fMRI signals, we applied the canonical hemodynamic
response function provided by the software SPM (https://www.fil.ion.ucl.ac.uk/spm/) (60)
and resampled the output time series from a temporal resolution of 0.001 sec to 1.5 sec
to match the TR in our data. We ran 30 simulations for each set of simulation

parameters. Each simulation produced different narrative structures (equivalent to
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587  different stories). The peak lag of the mean inter-level correlation across simulations

588 was extracted and thresholded using the same method as in the ISFC analysis (Fig. 2).

589 To examine whether the simulated and real fMRI signals shared similar power spectra,
590 we also applied the power-spectral density analysis to the simulated BOLD responses

591  at each of the six levels and averaged across thirty simulations.

592  We started with a set of reasonable parameters (S| Appendix, Table 1) (speech rate =
593 1, relative to “Sherlock”; unit length mean = 3; unit length variance = 0.5; temporal

594  integration function = linearly increasing; mean pause length = 3 sec; pause effect size
595 =0.1 SD of the simulated activity) and explored alternative parameter sets within the
596 bound of natural speech to test whether inter-level lag was robust to parameter

597 changes.

598

599 Data availability

600 This study relied on eight openly available spoken story datasets. Seven datasets were
601  used from the "Narratives" collection (OpenNeuro:

602 https://openneuro.org/datasets/ds002245) (57), One dataset was used from Princeton
603 Dataspace: “Pie Man” (36 participants, 25 females)

604 (https://dataspace.princeton.edu/jspui/handle/88435/dsp015d86p269k) (25).
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775  Fig. S1. Averaged fMRI response time series for six intrinsic functional networks while
776  subjects listened to a spoken story. (A) Functional networks defined by applying k-

777  means clustering to WSFC measured during rest and labeled based on anatomical
778  correspondence with previously defined functional regions following (25) (AUD:

779 auditory; vLAN: ventral language; dLAN: dorsal language; DMN: default mode network;
780  ATT: attention network). (B) Averaged fMRI responses time series in the “Sherlock”
781  dataset, extracted from the predefined network masks. Two example segments of the
782  response time series are highlighted at the bottom right. The peaks of the fluctuations in
783 agiven window are indicated by colored vertical lines. Note the stereotyped lag in both
784  positive and negative BOLD fluctuations across networks; e.g. signal deflections in the
785  dark blue auditory network tend to precede deflections in the cyan/green language

786  networks, which tend to precede deflections in the yellow/red default mode networks.
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787

788  Fig. S2. Lag gradient between networks defined by TRW indices. (A) Networks

789  generated by splitting the TRW indices (intact > scrambled story ISC) into 6 bins by five
790 quantiles. (B) networks defined by applying k-mean clustering to resting WSFC (Sl

791 Appendix, Fig. S1). (C) Networks defined by TRW index show a similar topographic
792  gradient as the networks defined by resting-state WSFC, from the auditory areas to
793 DMN, which is manifested by the significant correlation between the two sets of

794  networks index. Random jitters are added to better show the overlapped data points.
795 (D) Peak lag matrix between networks defined by TRW index across seven stories (p
796 < .05, FDR corrected). “Pie Man” was excluded from this analysis since it was used to

797  compute the TRW index.
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799

800 Fig. S3. The relationship between inter-subject functional connectivity (ISFC), inter-
801  subject-correlation (ISC), and lag-ISFC. This figure shows real data from the “Sherlock"

802  story.
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Fig. S4. Lag-ISFC curves between the six functional networks, corresponding to the left
panel of Fig. 3A. Fisher’s z transformation was applied to the R-values before

averaging. Vertical lines indicate significant R peaks (p < .05, FDR correction).
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808 Fig. S5. The network x network peak lag matrix based on the lag-ISFC in each

809 individual story (p < .05, FDR corrected).
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812  Fig. S6. The network x network peak lag matrix based on the averaged lag-WSFC

813 across eight stories (p < .05, FDR corrected).
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Seed subnéfwork

814

815  Fig. S7. Subnetwork x subnetwork peak lags based on the averaged lag-ISFC across
816  eight stories (p < .05, FDR corrected). The subnetworks were created by dividing each
817  of the six main functional networks (SI Appendix, Fig. S1) into 10 subnetworks, applying
818 k-means clustering to resting-state WSFC (k = 10 within each network). (A) The peak
819 lag matrix. (B) The brain map of significant peak lags between one seed subnetwork

820 (posterior superior/middle temporal gyrus) and all the sixty subnetworks.
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821

822  Fig. S8. Principal component analysis of the inter-network lag matrix across eight
823  stories (Fig. 3A). (A) The percentage of variance explained by each principal
824  component. (B) Relative-lag values from each principal component. Line thickness

825 indicates the percentage of variance explained by that component.
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Fig. S9. Boundary effect on the network x network peak lag matrix across stories. (A)
The fMRI signals around word, sentence, and paragraph boundaries before and after
regressing out the boundary effects. Shaded areas indicate 95% confidence intervals
across subjects. (B) The peak lag matrix before and after regressing out the boundary

effects (p < .05, FDR corrected).
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832

833 Fig. S10. The distributions of word duration, unit length, and pause length with the

834  simulation parameters described in Table S1.
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835

836 Fig. S11. The silent pause between paragraphs shown in real spoken stories. Shaded

837 areas indicate 95% confidence intervals.
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839 Fig. S12. Sentence and paragraph length effects in two time-stamped stories

838

840 (“Sherlock” & “Merlin”) (p < .005, uncorrected). Significant length effect indicates

841 activation accumulation from the start toward the end of sentences or paragraphs.
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842

843 Fig. S13. ISFC matrices at lag 0 in real and simulated stories (the same simulation

844  parameters as in Table S1).
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845

846  Fig. S14. Power spectral densities of real (left) and simulated (right, the same
847  parameter set as Table S1) BOLD responses to stories. PSD of the actual BOLD data
848  exhibited stronger low-frequency fluctuations at regions with longer temporal receptive

849  windows. Simulated BOLD responses show a similar pattern.
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851  Fig. S15. Robust lag gradient within the parameter space bound by natural speech (the

852 same parameters as in Table S1 unless otherwise indicated) (p < .05, FDR correction).
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853 Table S1. A set of exemplar stimulation parameters motivated by a spoken story

854  (“Sherlock”). SD: standard deviation.

Exemplar simulation parameters

speech rate (relative to “Sherlock”) 1

mean unit length 3

unit length variance 0.5
temporal integration function linearly increasing
mean pause length 3 sec
pause length effect size 0.1

(in SD of the simulated activity)

855
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