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2 

Abstract 18 

When listening to spoken narratives, we must integrate information over multiple, 19 

concurrent timescales, building up from words to sentences to paragraphs to a coherent 20 

narrative. Recent evidence suggests that the brain relies on a chain of hierarchically 21 

organized areas with increasing temporal receptive windows to process naturalistic 22 

narratives. We hypothesized that the structure of this cortical processing hierarchy 23 

should result in an observable sequence of response lags between networks comprising 24 

the hierarchy during narrative comprehension. This study uses functional MRI to 25 

estimate the response lags between functional networks during narrative 26 

comprehension. We use inter-subject cross-correlation analysis to capture network 27 

connectivity driven by the shared stimulus. We found a fixed temporal sequence of 28 

response lags4on the scale of several seconds4starting in early auditory areas, 29 

followed by language areas, the attention network, and lastly the default mode network. 30 

This gradient is consistent across eight distinct stories but absent in data acquired 31 

during rest or using a scrambled story stimulus, supporting our hypothesis that narrative 32 

construction gives rise to inter-network lags. Finally, we build a simple computational 33 

model for the neural dynamics underlying the construction of nested narrative features. 34 

Our simulations illustrate how the gradual accumulation of information within the 35 

boundaries of nested linguistic events, accompanied by increased activity at each level 36 

of the processing hierarchy, can give rise to the observed lag gradient. 37 

 38 
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Significance Statement 39 

Our findings reveal a consistent, stimulus-driven gradient of lags in connectivity along 40 

the cortical processing hierarchy4from early auditory cortex to the language network, 41 

then to the default mode network4during the comprehension of naturalistic, spoken 42 

narratives. We provide a simple computational model for the neural dynamics 43 

underlying the construction of nested narrative features, allowing us to systematically 44 

explore the conditions under which the lag gradient emerges and synthesize our results 45 

with previous findings based on simple well-controlled language stimuli. Our results 46 

illustrate the isomorphism between hierarchically structured neural dynamics and 47 

hierarchically structured, real-world narrative inputs. 48 

 49 

Introduction 50 

Narratives are composed of nested elements that must be continuously integrated to 51 

construct a meaningful whole, building up from words to phrases to sentences to a 52 

coherent narrative (1). Recent evidence suggests that the human brain relies on a chain 53 

of hierarchically organized brain areas with increasing temporal receptive windows 54 

(TRWs) to process this temporally evolving, nested structure (Fig. 1A). This cortical 55 

hierarchy was first revealed by studies manipulating the temporal coherence of 56 

naturalistic narratives (2, 3). These studies reported a topography of processing 57 

timescales where early auditory areas respond reliably to rapidly-evolving acoustic 58 

features, adjacent areas along the superior temporal gyrus respond reliably to 59 

information at the word level, and nearby language areas respond reliably only to 60 
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coherent sentences. Finally, areas at the top of the processing hierarchy in the default 61 

mode network (DMN) integrate slower-evolving semantic information over many 62 

minutes (4).  63 

This cortical hierarchy of increasing temporal integration windows is thought to be a 64 

fundamental organizing principle of the brain (5, 6). The cortical hierarchy of TRWs in 65 

humans has been described using fMRI (2, 3, 7, 8) and ECoG (9). Recent work has 66 

shown that deep language models also learn a gradient or hierarchy of increasing 67 

TRWs (10312), and that manipulating the temporal coherence of narrative input to a 68 

deep language model yields representations closely matching the cortical hierarchy of 69 

TRWs in the human brain (13). Furthermore, the cortical hierarchy of TRWs matches 70 

the intrinsic processing timescales observed during rest in humans (9, 14, 15) and 71 

monkeys (16). This cortical topography also coincides with anatomical and functional 72 

gradients such as long-range connectivity and local circuitry (17319), which have been 73 

shown to yield varying TRWs (20, 21). 74 

 75 
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 76 

Fig. 1. Narrative construction in the hierarchical processing framework. (A) The 77 

proposed cortical hierarchy of increasing temporal receptive windows (adapted from 78 

(5)). (B) Each level of the processing hierarchy continuously accumulates information 79 

over inputs from the preceding level. For example, phrases built over words are 80 

constructed into sentences. The accumulated information is flushed out at structural 81 

boundaries. (C) Each level of the processing hierarchy provides the building blocks for 82 

the next level, which naturally leads to longer temporal receptive windows, 83 

corresponding to linguistic units of increasing sizes. This model of narrative construction 84 

along the cortical processing hierarchy implies a gradient of response lags across the 85 

cortical hierarchy.  86 

 87 

The proposal that the cortex is organized according to a hierarchy of increasing TRWs 88 

implies that each area <chunks= and integrates information at its preferred temporal 89 

window and that narrative construction proceeds along the cortical hierarchy. For 90 
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example, an area that processes phrases receives information from areas that process 91 

words (Fig. 1B), which are further transmitted to areas that integrate phrases into 92 

sentences. At the end of each phrase, information is rapidly cleared to allow for real-93 

time processing of the next phrase (1, 7). The chunking of information at varying 94 

granularity is supported by recent studies that used data-driven methods to detect 95 

boundaries as shifts between stable patterns of brain activity (22, 23). 96 

This model of narrative construction (Fig. 1C) predicts a gradient of response lags 97 

across the cortical processing hierarchy; namely, shorter temporal lags among adjacent 98 

areas along the processing hierarchy than regions further apart in the cortical hierarchy. 99 

In the current study, we test this prediction by comparing response fluctuations elicited 100 

by spoken narratives in different brain areas using lag-correlation. We extract the lag 101 

with the peak correlation to estimate inter-region temporal difference. To focus on 102 

neural responses to linguistic and narrative information, we used inter-subject functional 103 

connectivity (ISFC) analysis (24, 25). Unlike traditional within-subject functional 104 

connectivity (WSFC), ISFC effectively filters out the idiosyncratic fluctuations that drive 105 

intrinsic functional correlations within subjects. Isolating stimulus-locked neural activity 106 

from intrinsic neural activity allows us for the first time to observe the temporal dynamics 107 

of narrative construction across the cortical hierarchy. We predicted that ISFC analysis 108 

would reveal an inter-region lag gradient during the comprehension of intact narrative, 109 

but not during scrambled-story or rest, which do not involve narrative construction. 110 

Finally, we provide a computational model to clearly illustrate how the construction of 111 

nested narrative features could give rise to the observed lag gradient, and how the lag 112 

gradient deteriorates without naturalistic inputs. 113 
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 114 

Results 115 

To test the hypothesis that narrative construction will yield a gradient of response lags 116 

across brain regions, we first divided the neural signals into six networks by applying k-117 

means clustering to WSFC measured during rest (SI Appendix, Fig. S1). We labeled 118 

these networks based on anatomical correspondence with previously defined functional 119 

regions following Simony and colleagues (25), including the auditory (AUD), ventral 120 

language (vLAN), dorsal language (dLAN), default mode network (DMN), and attention 121 

(ATT) networks, aligning with the previously documented TRW hierarchy (SI Appendix, 122 

Fig. S2). 123 

We computed lag-ISFC (i.e. cross-correlation) at varying temporal lags between all 124 

pairs of networks (Fig. 2A and SI Appendix, Fig. S3). The lags with maximum ISFC (i.e. 125 

<peak lag=) for each seed-target pair were extracted as an index for the temporal gaps in 126 

the stimulus-driven processing between each pair of networks. The extracted peak lags 127 

were color-coded to construct the network × network peak lag matrix (Fig. 2B and 2C). 128 

In the following, we describe the observed lag gradient in detail and several control 129 

analyses. Finally, we simulated the nested narrative structure and the corresponding 130 

brain responses to explore how different integration functions at different timescales 131 

could give rise to the observed lag gradient.  132 
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 133 

Fig. 2. Construction of the inter-network peak lag matrix. (A) Lag-ISFC (cross-134 

correlation) between seed-target network pairs were computed using the leave-one-135 

subject out method. The dLAN network is used as an example seed network for 136 

illustrative purposes. (B) The matrix depicts ISFC between the dLAN seed and all six 137 

target networks at varying lags. The lag with the peak correlation value (colored vertical 138 

bars) was extracted and color-coded according to lag. For visualization, the lag-ISFCs 139 

were z-scored across lags. (C) The network × network peak lag matrix (p < .05, FDR 140 

corrected). Warm colors represent peak lags following the seed network, while cool 141 

colors represent peak lags preceding the seed network; zeros along the diagonal 142 

capture the intra-network ISC. An example story (<Sherlock=) is shown for illustrative 143 

purposes. 144 

Fixed lag gradient across cortical networks 145 

The average lag-ISFC across stories was computed for each seed network (Fig. 3A, 146 

left). The lag-ISFC between a seed network and the same network in other subjects 147 

always peaked at lag 0, reflecting the strong stimulus-locked within-network 148 
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synchronization reported in the ISC literature (3, 26, 27) (SI Appendix, Fig. S3). 149 

Interestingly, however, non-zero peak lags were found between different networks. 150 

Relative to a low-level seed, putatively higher-level networks showed peak connectivity 151 

at increasing lags. For example, the stimulus-induced activity in dLAN lagged 1 TR (1.5 152 

s) behind activity in AUD, whereas the activity in DMNb lagged 4 TRs (6 s) behind 153 

activity in dLAN. Importantly, regardless of the choice of seed, the target networks 154 

showed peak connectivity in a fixed order progressing through AUD, vLAN, dLAN, 155 

DMNa, ATT, and DMNb. 156 

To summarize the findings, we color-coded the peak lags and collated them into a peak 157 

lag matrix where each row corresponds to a seed network and each column 158 

corresponds to a target network (Fig. 3A, right; see SI Appendix, Fig. S4 for the lag-159 

ISFC waveforms). The white diagonal indicates a peak at zero lag within each area, 160 

reflecting the intra-network synchronization across subjects (i.e. ISC) (SI Appendix, Fig. 161 

S3), while the cool-to-warm color gradient indicates a fixed order of peak lags. For 162 

example, the first row shows a white-to-warm gradient, reflecting that when AUD served 163 

as the seed, other networks were either synchronized with or followed AUD, but never 164 

preceded it. Conversely, the cool-to-white gradient of the last row indicates that all other 165 

networks preceded the DMNb seed. The lag gradient can also be observed in individual 166 

stories (SI Appendix, Fig. S5), although these patterns are noisier than the averaged 167 

results. The lag gradient proceeded in a fixed order across all networks, suggesting that 168 

bottom-up narrative construction is reflected in lagged connectivity between stages 169 

along the cortical hierarchy from AUD up to DMNb. Similar results were obtained when 170 

we defined the ROIs using the TRW hierarchy (SI Appendix, Fig. S2D).  171 
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 172 

Fig. 3. The peak lag matrix across eight stories reveals a fixed lag gradient across 173 

networks, which is abolished during scrambled narratives and rest. (A) The network × 174 

network peak lag matrix is based on the averaged lag-ISFC across eight stories. For 175 

visualization, lag-ISFC curves at left were z-scored across lags. (B) Peak lag matrix 176 

based on responses to a scrambled story stimulus (scrambled words). (C) Peak lag 177 

matrix based on resting-state data. Peak lag matrices are thresholded at p < .05 (FDR 178 

corrected). 179 

Temporal scrambling abolishes the lag gradient 180 

We hypothesized that the lag gradient reflects the emergence of macroscopic story 181 

features (e.g. narrative situations or events) integrated over longer periods of time in 182 

higher-level cortical networks (22, 23). To support this point, we next used the same 183 

procedure to compute the peak lag matrix for a temporally scrambled version of one 184 

story (<Pie Man=; as for the results of intact <Pie Man=, please see SI Appendix, Fig. S5). 185 

In this dataset, the story stimulus was spliced at the word level and scrambled, thus 186 
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maintaining similar low-level sensory statistics while abolishing the slower-evolving 187 

narrative content. The peak lag matrix for the scrambled story revealed synchronized 188 

responses at lag 0 both within and between the AUD and vLAN networks, but no 189 

significant peaks within or between other networks (Fig. 3B). This reflects low-level 190 

speech processing limited to the word level and indicates that disrupting the narrative 191 

structure of a story abolishes the temporal propagation of information to higher-level 192 

cortical areas. 193 

No lag gradient during rest 194 

As an additional control, we also examined whether the lag gradient observed during 195 

the intact story could be detected during rest. The resting state is dominated by intrinsic 196 

fluctuations and there is no external stimulus to drive synchronized brain activity across 197 

subjects as well as propagation of activity across cortical areas. As expected, no 198 

significant ISFC peaks were found (Fig. 3B). This provides further evidence that the 199 

observed lag gradient is driven by the stimulus itself. 200 

Idiosyncratic within-subject fluctuations obscure the lag gradient 201 

We next asked whether the inter-network lag gradient observed during spoken stories 202 

can be observed using traditional WSFC. As expected, WSFC analysis revealed a 203 

strong peak correlation at lag zero within each network, but also a peak correlation at 204 

lag zero across all networks such that no gradient was observed (SI Appendix, Fig. S6). 205 

This result supports the claim that ISFC analysis filters out intrinsic signal fluctuations 206 

that propagate across brain areas, revealing the propagation of shared story information 207 

across networks (24, 25). This result also verifies that intrinsic, inter-network differences 208 
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in hemodynamic responses cannot account for the lag gradient; otherwise, WSFC 209 

should show a similar lag pattern as ISFC. 210 

Lag gradient across fine-grained subnetworks 211 

To verify that the peak lag gradient could also be observed at a finer spatial scale, we 212 

further divided each of the six networks into ten subnetworks, again by applying k-213 

means clustering to resting-state WSFC (k = 10 within each network). The peak lag 214 

matrix between the sixty subnetworks was generated using the same methods as in the 215 

network analysis (SI Appendix, Fig. S7A). We also visualized the brain map of lags 216 

between one selected seed (posterior superior/middle temporal gyrus) and all the target 217 

subnetworks (SI Appendix, Fig. S7B). Similar to the network level analysis, the peak lag 218 

between the subnetworks revealed a gradient from the early auditory cortex to the 219 

language network (auditory association cortex), then to the DMN. 220 

Dominant bottom-up lag gradient across networks 221 

We adopted a method introduced by Mitra and colleagues (28) to discern whether there 222 

are multiple parallel lag sequences between networks. We applied principal component 223 

analysis (PCA) to the inter-network peak lag matrix (Fig. 3A) and examined the 224 

cumulative variance accounted for across principal components. Our results revealed 225 

that, at the coarse level of the cortical networks used here, the first principle component 226 

explains 88.8% of the variance in our lag matrix (SI Appendix, Fig. S8). This suggests 227 

that there is a single, unidirectional lag gradient across networks. 228 
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The lag gradient is not driven by transient linguistic boundary effects 229 

Prior work has reported that scene/situation boundaries in naturalistic stimuli elicit 230 

transient brain responses that vary across regions (29334). To test whether this 231 

transient effect could drive the gradient observed in our lag matrix, we computed lag-232 

ISFC after regressing out the effects of word, sentence, and paragraph boundaries in 233 

two stories with time-stamped annotations. As shown in SI Appendix, Fig. S9, the 234 

regression model successfully removed transient effects of the boundaries from the 235 

fMRI time series. Critically, however, the lag gradient remained qualitatively similar 236 

when accounting for boundaries, indicating that the observed lag gradient does not 237 

result from transient responses to linguistic boundaries in the story stimulus. 238 

Reproducing the lag gradient by simulating narrative construction 239 

Narratives have a multi-level nested hierarchical structure (35) and are reported to elicit 240 

neural processing at increasingly long timescales along the cortical hierarchy (22, 23). 241 

To better understand how the construction of nested narrative features could give rise to 242 

the long inter-network lag gradient we observed, with up to 9-second lags, we created a 243 

simulation capturing the hierarchically nested temporal structure of real-world narratives 244 

and the corresponding hierarchy of cortical responses. 245 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2022. ; https://doi.org/10.1101/2021.12.01.470825doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?vpVfnS
https://www.zotero.org/google-docs/?712aBM
https://www.zotero.org/google-docs/?fbdcS1
https://doi.org/10.1101/2021.12.01.470825
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 246 

Fig. 4. Simulating narrative construction and the corresponding brain responses. (A) 247 

The construction of the nested narrative structure, simulated by sampling boundary 248 

intervals from actual word durations and recursively integrating them to obtain structural 249 

boundaries at higher levels. (B) Information accumulation at different levels is generated 250 

by a linearly increasing temporal integration function. We postulated that information 251 

accumulation is accompanied by increased activity. (C) BOLD responses generated by 252 

HRF convolution. This visualization is based on parameters estimated from a spoken 253 

story stimulus (Table S1). 254 

To match the six networks discussed so far, we simulated story features emerging 255 

across six distinct timescales, which roughly correspond to words, phrases, sentences, 256 
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233 sentences, and paragraphs. The initial level of the simulated narrative hierarchy 257 

was populated with relatively brief low-level units, with boundary intervals sampled from 258 

actual word durations in a spoken story (SI Appendix, Fig. S10). These simulated 259 

<words= were integrated into <phrases= of varying lengths with a mean length of three 260 

words to obtain second-level boundaries (Fig. 4A). All <phrase=-level boundaries were 261 

also <word=-level boundaries. A six-level structure was ultimately generated by 262 

recursively applying this procedure. Since paragraphs are often separated in real stories 263 

by longer silent periods (SI Appendix, Fig. S11), we inserted pauses at top-level (sixth-264 

level) boundaries. The bottom-up construction of narrative structure gives rise to inter-265 

level alignment and increasing processing timescales at higher levels, as proposed in 266 

the hierarchical processing framework (5, 6, 18).  267 

The simulated response amplitudes were generated using a linearly increasing temporal 268 

integration function (Fig. 4B), based on prior work showing that information 269 

accumulation is accompanied by gradually increasing activation within 270 

phrases/sentences (36341) and paragraphs (29, 32) (a similar sentence/paragraph 271 

length effect was also observed in our data; see SI Appendix, Fig. S12). The linearly 272 

increasing temporal integration function accumulates activity derived from lower-level 273 

units within the interval between unit boundaries at the current levels and flushes out 274 

the accumulated activity at unit boundaries of the current level. To account for 275 

hemodynamic lag in the fMRI signal, we applied a canonical hemodynamic response 276 

function (HRF) to the simulated response amplitudes (Fig. 4C). We averaged the inter-277 

level lag correlations across thirty different simulated structures (equivalent to 30 278 
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different stories) and extracted the peak lags. This peak-lag analysis parallels the 279 

analysis previously applied to the fMRI data. 280 

The simulation allows us to systematically manipulate the narrative structure and the 281 

temporal integration function to reveal the conditions under which the lag gradient 282 

emerges. We first performed the simulation with a set of <natural= parameters roughly 283 

motivated by the temporal properties of our narrative stimuli and a simple temporal 284 

integration function reflecting linear temporal accumulation (Table S1).  285 

This simple simulation is sufficient to reproduce the inter-network lag gradient observed 286 

in the fMRI data (Fig. 5A; as well as the ISFC at lag zero; SI Appendix, Fig. S13). In 287 

addition, we also compared the spectral properties of the simulated and real BOLD 288 

signals (SI Appendix, Fig. S14). We first computed the average power spectral density 289 

(PSD) across stories. Replicating results reported by Stephens and colleagues (15), we 290 

found stronger low-frequency fluctuations in regions with longer TRWs. Computing the 291 

PSD of the simulated brain responses similarly revealed increased low-frequency power 292 

in responses to high-level structures with longer intervals between boundaries. We then 293 

adjusted one parameter at a time to explore the parameter space constrained by natural 294 

speech. 295 

 296 
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 297 

Fig. 5. Simulated peak lag matrix. (A) Simulating the peak lag matrix observed during 298 

story-listening fMRI data (Fig. 3A) using parameters derived from a story stimulus (the 299 

same parameters as in Fig. 4 and Table S1). (B) Simulating the lag matrix observed 300 

during scrambled story (scrambled words) (Fig. 3B), by setting mean unit length = 1 and 301 

unit length variance = 0. (C) Lag matrix from the non-nested structure, created by 302 

combining levels extracted from independently generated nested structures, which 303 

disrupts the nesting relationship between different levels, similar to the scrambled story, 304 

while preserving the spectral properties of individual time series (p < .05, FDR 305 

correction).  306 

Key parameters for the emergence of a lag gradient 307 

Within the bounds of natural speech (SI Appendix, Fig. S15), we observed that the 308 

simulated inter-network lag gradient is robust to varying lengths of linguistic/narrative 309 

units (mean: 234; variance: 0.131; longer length generated longer units, often with the 310 

top layers exceeding the length of the simulated story, i.e. 3000 words). The duration of 311 
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inter-paragraph pauses was estimated from two stories (<Sherlock= and <Merlin=; SI 312 

Appendix, Fig. S11) (mean length: 1.534.5 sec; pause effect size: 0.0131 SD of 313 

simulated activity). We also found that the model, similar to neural responses as 314 

observed by Lerner and colleagues (42), was robust to variations in speech rate (0.53315 

1.5, relative to <Sherlock= speech rate). However, the lag gradient deteriorates with 316 

parameters outside of the bounds of natural speech,  for example, when the inter-317 

paragraph pause is set to 0 sec. We also simulated brain responses to word-scrambled 318 

stories by setting mean unit length = 1 and unit length variance = 0. With this setting, 319 

word-level units are never integrated into larger units (the units at each level correspond 320 

to individual words from the first level). No information integration is involved, resulting 321 

in flat activations and eliminating the difference in spectral properties of time series from 322 

different levels. No lag gradient is observed in this case (Fig. 5B).  323 

Next, we computed inter-level lag-correlation using simulated responses to different 324 

nested structures (similar to responses to different stories), which preserves the spectral 325 

properties of individual time series while disrupting their nesting relationship. No 326 

significant lag-correlation was found when violating the nested structure of naturalistic 327 

narrative (Fig. 5C). In addition to the aforementioned linearly increasing integration 328 

function, we also explored several other temporal integration functions. We found that 329 

linearly and logarithmically increasing functions both yielded the inter-network lag 330 

gradient, but not the symmetric triangular or boxcar functions. The linearly decreasing 331 

function resulted in a reversed lag gradient (Fig. 6). These results suggest that the 332 

hierarchically nested structure that naturally arises from bottom-up narrative 333 
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construction and a monotonically increasing integration function are key to the 334 

emergence of the lag gradient. 335 

 336 

Fig. 6. Lag matrices generated using different temporal integration functions (p < .05, 337 

FDR correction). The linearly and logarithmically increasing temporal integration 338 

functions yield a simulated peak lag matrix similar to the one observed in fMRI data; the 339 

symmetric triangle and boxcar functions, as well as the linearly decreasing function, do 340 

not. 341 

 342 

Discussion  343 

By applying lag-ISFC to a collection of fMRI datasets acquired while subjects listened to 344 

spoken stories, we revealed a temporal progression of story-driven brain activity along a 345 
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cortical hierarchy for narrative comprehension (Fig. 3A). The temporal cascade of 346 

cortical responses summarized by the inter-network lag gradient was consistent across 347 

stories as well as at coarse- and fine-grained functional network definitions (SI 348 

Appendix, Fig. S7). The results are in line with the hierarchical processing framework, 349 

which proposes a gradual emergence of narrative features of increasing duration and 350 

complexity along the processing hierarchy, from early sensory areas into higher-order 351 

cortical areas (Fig. 1). In support of our interpretation, we found that the lag gradient is 352 

absent during rest when there is no stimulus-evoked processing (Fig. 3B), and also 353 

when the temporal structure of the story is disrupted due to word scrambling (Fig. 3C).  354 

We observed inter-network lags on the scale of several seconds (up to 9 seconds), 355 

reflecting the temporal structure of real-world narratives, which integrate sounds into 356 

words, sentences, and ideas over many seconds. Such long lags cannot be explained 357 

by regional variations in neurovascular coupling (43) or transient activity impulses at 358 

event boundaries. If the lag gradient only reflects variations in neurovascular coupling 359 

across regions, it should be present both when we isolate stimulus-driven activity using 360 

ISFC and when we examine idiosyncratic neural responses using WSFC. Instead, 361 

however, the lag gradient was detected only with ISFC, but not WSFC (SI Appendix, 362 

Fig. S6). Furthermore, differences in the hemodynamic response function across brain 363 

areas are usually reported at shorter timescales (e.g. ~132 seconds) (44, 45) than the 364 

039-second inter-network lag differences observed here in the context of narrative 365 

comprehension (Fig. 3). In addition, we found that transient event boundaries (29334) 366 

did not account for the lag gradient (SI Appendix, Fig. S9). 367 
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Our simulation illustrates how narrative construction can give rise to the inter-network 368 

lag gradient by identifying three necessary conditions: (a) a cortical hierarchy of 369 

increasing processing timescales (Fig. 1 & Fig. 4) (5); (b) hierarchically nested 370 

linguistic/narrative events of increasing size along the processing hierarchy (Fig. 5B & 371 

5C) (22, 23); and (c) gradual increasing brain activity, along with information 372 

accumulation, within the boundaries of events at each processing level (29, 32, 36341), 373 

combined with a reset of activity (buffer clearing) at event boundaries (7) (see temporal 374 

integration function in Fig. 1B and Fig. 6). In this simple model, information integration at 375 

varying granularity (e.g. word, sentence, and paragraph) is sufficient to yield the inter-376 

network lag gradient (Fig. 5) and spectral properties observed in the fMRI data (SI 377 

Appendix, Fig. S14). Minor adjustments to other parameters within the bounds of 378 

natural speech (i.e. speech rate, silent pause, and length of linguistic/narrative unit) did 379 

not change the gradient pattern (SI Appendix, Fig. S15).  380 

The simulation provides a simple model which bridges the discovery of TRWs using 381 

natural stimuli (2, 42) and the accumulation of activity within linguistic units found using 382 

simple, well-controlled stimuli (e.g. sentences with similar structures) (36341). 383 

Importantly, we note that our model is not the only one that could generate the predicted 384 

lag gradient. Our aim is to combine separate findings that point to the same cortical 385 

hierarchy with the simplest model possible. In addition, narrative processing is unlikely 386 

to be purely unidirectional (46). The lag gradient only captures the dominant process of 387 

bottom-up narrative construction (SI Appendix, Fig. S8). More studies are needed to 388 

examine recurrent or bidirectional connectivity, causal relations between networks, and 389 

nonstationary information flow over time. 390 
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Our results are also consistent with reports on the spatiotemporal dynamics of brain 391 

responses to naturalistic stimuli. A hierarchically nested spatial activation pattern has 392 

been revealed using movie, spoken story, and music stimuli (22, 23, 47). Chien and 393 

colleagues (7) reported a gradual alignment of context-specific spatial activation 394 

patterns, which was rapidly flushed at event boundaries, similar to the temporal 395 

integration function we adopted here. Taken together, the empirical findings, combined 396 

with our simulation, indicate that the spatiotemporal neural dynamics reflect the 397 

structure of naturalistic, ecologically-relevant inputs (6) and that such information is 398 

preserved even with the poor temporal resolution of fMRI. Although the current findings 399 

are derived from listener-listener coupling, the inter-regional dynamics may shed light 400 

on the lags observed in speaking-listener coupling (48353). Given a particular seed 401 

region in the speaker’s brain, we would expect to observe coupling at differing lags for 402 

different target regions in the listener’s brain, and these lags may vary based on the 403 

temporal structure of the speaker’s narrative. 404 

Our results demonstrate both the importance of using inter-subject methods to isolate 405 

stimulus-driven signals and the value of data aggregation. The fact that we obtained 406 

non-zero inter-network lag only with ISFC but not WSFC (SI Appendix, Fig. S6) 407 

indicates that stimulus-driven network configuration may be masked by the idiosyncratic 408 

fluctuations that dominate WSFC analyses (24, 25). Furthermore, although the inter-409 

network lags could be observed within individual stories (SI Appendix, Fig. S5), the 410 

gradient pattern is much clearer after aggregating across stories (Fig. 3). Data 411 

aggregation is particularly important when using naturalistic stimuli because it is 412 

impossible to control the structure of each narrative (e.g. speaking style, duration, 413 
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complexity, and content) (35, 54356, 56). With these methods, we are able to reveal the 414 

inter-network lag gradient driven by naturalistic narratives, as predicted by the model 415 

shared information flow along the cortical processing hierarchy. Further work will be 416 

needed to examine recurrent or bidirectional information flow and to decode the content 417 

of narrative representations4specific to each story4as they are transformed along the 418 

cortical hierarchy.  419 

 420 

Materials and Methods 421 

fMRI datasets  422 

This study relied on eight openly available spoken story datasets. Seven datasets were 423 

used from the "Narratives" collection (OpenNeuro: 424 

https://openneuro.org/datasets/ds002245) (57), including <Sherlock= and <Merlin= (18 425 

participants, 11 females) (52), <The 21st year= (25 participants, 14 females) (58), <Pie 426 

Man (PNI)=, <I Knew You Were Black=, <The Man Who Forgot Ray Bradbury=, and 427 

<Running from the Bronx (PNI)= (48 participants, 34 females). One dataset was used 428 

from Princeton Dataspace: <Pie Man= (36 participants, 25 females) 429 

(https://dataspace.princeton.edu/jspui/handle/88435/dsp015d86p269k) (25). 430 

Two non-story datasets were also included as controls: a word-scrambled <Pie Man= 431 

(36, participants, 20 females) dataset and a resting-state dataset (36 participants, 15 432 

females) (see the Princeton DataSpace URL above) (25). 433 
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All participants reported fluency in English and were 18340 years in age. The criteria of 434 

participant exclusion have been described in previous studies for 435 

<Sherlock=, =Merlin=, =The 21st year=, and <Pie Man.= For <Pie Man (PNI)=, <I Knew You 436 

Were Black=, <The Man Who Forgot Ray Bradbury=, and <Running from the Bronx 437 

(PNI),= participants with comprehension scores 1.5 standard deviations lower than the 438 

group means were excluded. One participant was excluded from <Pie Man (PNI)= for 439 

excessive movement (translation along the z-axis exceeding 3 mm). 440 

All participants provided informed, written consent, and the experimental protocol was 441 

approved by the institutional review board of Princeton University. 442 

fMRI preprocessing 443 

fMRI data were preprocessed using FSL (https://fsl.fmrib.ox.ac.uk/), including slice time 444 

correction, motion correction, and high-pass filtering (140 s cutoff). All data were aligned 445 

to standard 3 × 3 × 4 mm Montreal Neurological Institute space (MNI152). A gray matter 446 

mask was applied. 447 

Functional networks 448 

Following Simony and colleagues (25), we defined 6 intrinsic connectivity networks 449 

within regions showing reliable responses to spoken stories. Voxels showing top 30% 450 

ISC in at least 6 out of the 8 stories were included. Using the k-means method (L1 451 

distance measure), these voxels were clustered according to their group-averaged 452 

within-subject functional connectivity with all the voxels during resting. We refer to these 453 

functional networks as the auditory (AUD), ventral language (vLAN), dorsal language 454 

(dLAN), attention (ATT), and default mode (DMNa and DMNb) networks (SI Appendix, 455 
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Fig. S1A). To ensure that our results hold for finer-grained functional networks, we 456 

further divided each of the six networks into ten subnetworks, again by applying k-457 

means clustering to resting-state WSFC (k=10 within each superordinate network). 458 

To compare these intrinsic functional networks to the TRW hierarchy, we computed the 459 

TRW index (i.e. intact > word-scrambled story ISC) following (8) for voxels within 460 

regions showing reliable responses to spoken stories, using the intact and word-461 

scrambled Pie Man. Six TRW networks were then generated by splitting the TRW 462 

indices into six bins by five quantiles (SI Appendix, Fig. S2).  463 

WSFC, ISFC, and ISC 464 

In this study, within-subject functional connectivity (WSFC) refers to within-subject inter-465 

region correlation, while inter-subject functional connectivity (ISFC) refers to inter-466 

subject inter-region correlation. Inter-subject correlation (ISC) refers to a subset of 467 

ISFC, namely, ISFC between homologous regions (SI Appendix, Fig. S3). ISFC and 468 

ISC were computed using the leave-one-subject-out method, i.e. correlation between 469 

the time series from each subject and the average time series of all the other subjects 470 

(24).  471 

Before computing the correlation, the first 25 and last 20 volumes of fMRI data were 472 

discarded to remove large signal fluctuations at the beginning and end of time course 473 

due to signal stabilization and stimulus onset/offset. We then averaged voxelwise time 474 

series across voxels within network/region masks and z-scored the resulting time 475 

series. 476 
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Lag-correlations were computed by circularly shifting the time series such that the non-477 

overlapping edge of the shifted time series was concatenated to the beginning or end. 478 

The left-out subject was shifted while the average time series of the other subjects 479 

remained stationary. Fisher’s z transformation was applied to the resulting correlation 480 

values prior to further statistical analysis. 481 

ISFC lag matrix 482 

We computed the network × network × lag-ISFC matrix (SI Appendix, Fig. S3) and 483 

extracted the lag with peak ISFC (correlation) value for each network pair (Fig. 2). The 484 

peak ISFC value was defined as the maximal ISFC value within the window of lags from 485 

-15 to +15 TRs; we required that the peak ISFC be larger than the absolute value of any 486 

negative peak and excluded any peaks occurring at the edge of the window. 487 

To obtain the mean ISFC across stories, we applied two statistical tests. Only ISFC that 488 

passed both tests were considered significant. First, we performed a parametric one-489 

tailed one-sample t-test to compare the mean ISFC against zero (N = 8 stories) and 490 

corrected for multiple comparisons by controlling the false discovery rate (FDR; (59); 6 491 

seed × 6 target × 31 lags; q < .05). 492 

Second, to exclude ISFC peaks that only reflected shared spectral properties, we 493 

generated surrogates with the same mean and autocorrelation as the original time 494 

series by time-shifting and time-reversing. We computed the correlation between the 495 

original seed and time-reversed target with time-shifts of -100 to +100 TRs. The 496 

resulting ISFC values were averaged across stories and served as a null distribution. A 497 

one-tailed z-test was applied to compare ISFCs within the window of lag -15 to +15 TRs 498 
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against this null distribution. The FDR method was used to control for multiple 499 

comparisons (seed × target × lags; q < .05). When assessing ISFC for each story, only 500 

this second test was applied and all possible time-shifts were used to generate the null 501 

distribution. 502 

Principal component analysis of the lag matrix 503 

We examined whether multiple lag sequences similarly contributed to the lag matrix, 504 

using the method introduced by Mitra and colleagues (28). We applied PCA to the lag 505 

matrix obtained from the averaged ISFC across stories, after transposing the matrix and 506 

zero-centering each column. Each principal component represents a pattern of relative 507 

lags, in other words, lag sequences. We computed the proportion of overall variance in 508 

the lag matrix accounted for by each component in order to determine whether more 509 

than one component played an important role. 510 

Word/sentence/paragraph boundary effect 511 

To test the transient effect of linguistic boundaries on inter-network lag, we computed 512 

the lag-ISFC after regressing out activity impulses at boundaries. A multiple regression 513 

model was built for each subject. The dependent variable was the averaged time series 514 

of each network, removing the first 25 scans and the last 20 scans as in the ISFC 515 

analysis. The regressors included an intercept, the audio envelope, and three sets of 516 

finite impulse functions (-5 to +15 TRs relative to boundary onset), corresponding to 517 

word, sentence, and paragraph (event) boundaries. We then recomputed lag-ISFC 518 

based on the residuals of the regression model. 519 
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Word/sentence/paragraph length effect 520 

We replicated the sentence length (36341) and paragraph length (29, 32) effect with the 521 

<Sherlock= and <Merlin= datasets, which were collected from the same group of 522 

participants. The onsets and offsets of each word, sentence, and paragraph (event) 523 

were manually time-stamped. Given the low temporal resolution of fMRI (TR = 1.5 sec) 524 

and the difficulty of labeling the onset/offset of each syllable, they were estimated by 525 

dividing the duration of each word by the number of syllables it contains. 526 

We built individual GLM models that included regressors corresponding to the presence 527 

of syllable, word, sentence, and paragraph respectively, accompanied by three 528 

parametric modulators: accumulated syllable number within words, accumulated word 529 

number within sentences, and accumulated sentence number within paragraphs. These 530 

parametric regressors were included to test whether brain activations accumulate 531 

toward the end of word/sentence/paragraph; the longer the word/sentence/paragraph 532 

the stronger the activations. In addition to the regressors of interest, one regressor was 533 

included for speech segments without clear paragraph labels. We did not orthogonalize 534 

the regressors to each other. 535 

Effect maps of the three parametric modulators (i.e. word length, sentence length, and 536 

paragraph length) from the individual level models of both stories were smoothed with a 537 

Gaussian kernel (FWHM = 8 mm) and input to three group-level models to test the 538 

word, sentence, and paragraph length effects respectively (flexible factorial design 539 

including the main effects of story and participant; p < .005, not corrected). We 540 

observed sentence and paragraph length effects. Using the same threshold, no word 541 

length effect was observed,  542 
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Power-spectral density analysis 543 

We performed spectral analyses following (15). We estimated the power spectrum of 544 

the primary auditory area and a DMN area (precuneus). As for the connectivity analysis, 545 

we cropped the first 25 and last 20 scans and z-scored the time series. For each story, 546 

the resulting time series were averaged across subjects and normalized across time. 547 

The power spectrum of the group-mean time series was estimated using Welch’s 548 

method with a Hamming window of width 99 sec (66 TRs) and 50% overlap (based on 549 

the parameters from (15)). The power spectra of individual voxels were averaged within 550 

the anatomical masks of left Heschl’s gyrus and left precuneus from the AAL atlas. The 551 

mean spectra across stories were then computed.  552 

Simulating the construction of nested narrative structures and the corresponding 553 

BOLD responses 554 

To illustrate how information accumulation at different timescales could account for the 555 

inter-network lag gradient during story-listening, we simulated the construction of nested 556 

narrative structures closely following the statistical structure of real spoken stories and 557 

generated BOLD responses at each processing level. To build the first level of a nested 558 

structure, we sampled a sequence of 3000 word durations with replacement from 559 

<Sherlock,= which is the longest example of spontaneous speech among our datasets, 560 

recorded from a non-professional speaker without rehearsal or script (SI Appendix, Fig. 561 

S10). Boundaries between units at the first level were set up accordingly. 562 

Unit length 563 

First-level units were integrated into units of the next level with a lognormal distributed 564 

unit length; e.g. integrating three words into a phrase (unit length = 3) (SI Appendix, Fig. 565 
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S10). Boundaries between second-level units were inserted accordingly. Second-level 566 

units were integrated into the third-level units following the same method. A nested 567 

structure of six levels was thus generated. 568 

Temporal integration function 569 

Postulating that information accumulation is accompanied by increased activity, brain 570 

responses within each level of the nested structure were generated as a function of unit 571 

length. For example, a linear temporal integration function generates activity [1 2 3] for a 572 

<phrase" (i.e. a Level 2 unit) consisting of three "words" (i.e. Level 1 units). The first 573 

(word) level integration was computed based on syllable numbers sampled from 574 

<Sherlock= along with word durations. 575 

Pause length and pause effect size 576 

In naturalistic narratives, boundaries between high-level units are often accompanied by 577 

silent pauses (SI Appendix, Fig. S11). Therefore, we inserted pauses with normally 578 

distributed lengths at the boundaries of the highest level units (SI Appendix, Fig. S10). 579 

Activity during the pause period was set as 0.1 standard deviations below the minimum 580 

activity of each level. 581 

To account for HRF delay in fMRI signals, we applied the canonical hemodynamic 582 

response function provided by the software SPM (https://www.fil.ion.ucl.ac.uk/spm/) (60) 583 

and resampled the output time series from a temporal resolution of 0.001 sec to 1.5 sec 584 

to match the TR in our data. We ran 30 simulations for each set of simulation 585 

parameters. Each simulation produced different narrative structures (equivalent to 586 
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different stories). The peak lag of the mean inter-level correlation across simulations 587 

was extracted and thresholded using the same method as in the ISFC analysis (Fig. 2).  588 

To examine whether the simulated and real fMRI signals shared similar power spectra, 589 

we also applied the power-spectral density analysis to the simulated BOLD responses 590 

at each of the six levels and averaged across thirty simulations. 591 

We started with a set of reasonable parameters (SI Appendix, Table 1) (speech rate = 592 

1, relative to <Sherlock=; unit length mean = 3; unit length variance = 0.5; temporal 593 

integration function = linearly increasing; mean pause length = 3 sec; pause effect size 594 

= 0.1 SD of the simulated activity) and explored alternative parameter sets within the 595 

bound of natural speech to test whether inter-level lag was robust to parameter 596 

changes. 597 

 598 

Data availability 599 

This study relied on eight openly available spoken story datasets. Seven datasets were 600 

used from the "Narratives" collection (OpenNeuro: 601 

https://openneuro.org/datasets/ds002245) (57), One dataset was used from Princeton 602 

Dataspace: <Pie Man= (36 participants, 25 females) 603 

(https://dataspace.princeton.edu/jspui/handle/88435/dsp015d86p269k) (25). 604 
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774 

Fig. S1. Averaged fMRI response time series for six intrinsic functional networks while 775 

subjects listened to a spoken story. (A) Functional networks defined by applying k-776 

means clustering to WSFC measured during rest and labeled based on anatomical 777 

correspondence with previously defined functional regions following (25) (AUD: 778 

auditory; vLAN: ventral language; dLAN: dorsal language; DMN: default mode network; 779 

ATT: attention network). (B) Averaged fMRI responses time series in the <Sherlock= 780 

dataset, extracted from the predefined network masks. Two example segments of the 781 

response time series are highlighted at the bottom right. The peaks of the fluctuations in 782 

a given window are indicated by colored vertical lines. Note the stereotyped lag in both 783 

positive and negative BOLD fluctuations across networks; e.g. signal deflections in the 784 

dark blue auditory network tend to precede deflections in the cyan/green language 785 

networks, which tend to precede deflections in the yellow/red default mode networks. 786 
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 787 

Fig. S2. Lag gradient between networks defined by TRW indices. (A) Networks 788 

generated by splitting the TRW indices (intact > scrambled story ISC) into 6 bins by five 789 

quantiles. (B) networks defined by applying k-mean clustering to resting WSFC (SI 790 

Appendix, Fig. S1). (C) Networks defined by TRW index show a similar topographic 791 

gradient as the networks defined by resting-state WSFC, from the auditory areas to 792 

DMN, which is manifested by the significant correlation between the two sets of 793 

networks index. Random jitters are added to better show the overlapped data points. 794 

(D) Peak lag matrix between networks defined by TRW index across seven stories (p 795 

< .05, FDR corrected). <Pie Man= was excluded from this analysis since it was used to 796 

compute the TRW index.  797 
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 798 

 799 

Fig. S3. The relationship between inter-subject functional connectivity (ISFC), inter-800 

subject-correlation (ISC), and lag-ISFC. This figure shows real data from the <Sherlock'' 801 

story.  802 
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 803 

Fig. S4. Lag-ISFC curves between the six functional networks, corresponding to the left 804 

panel of Fig. 3A. Fisher’s z transformation was applied to the R-values before 805 

averaging. Vertical lines indicate significant R peaks (p < .05, FDR correction).  806 
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 807 

Fig. S5. The network × network peak lag matrix based on the lag-ISFC in each 808 

individual story (p < .05, FDR corrected).  809 

  810 
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 811 

Fig. S6. The network × network peak lag matrix based on the averaged lag-WSFC 812 

across eight stories (p < .05, FDR corrected).  813 
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 814 

Fig. S7. Subnetwork × subnetwork peak lags based on the averaged lag-ISFC across 815 

eight stories (p < .05, FDR corrected). The subnetworks were created by dividing each 816 

of the six main functional networks (SI Appendix, Fig. S1) into 10 subnetworks, applying 817 

k-means clustering to resting-state WSFC (k = 10 within each network). (A) The peak 818 

lag matrix. (B) The brain map of significant peak lags between one seed subnetwork 819 

(posterior superior/middle temporal gyrus) and all the sixty subnetworks.  820 
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 821 

Fig. S8. Principal component analysis of the inter-network lag matrix across eight 822 

stories (Fig. 3A). (A) The percentage of variance explained by each principal 823 

component. (B) Relative-lag values from each principal component. Line thickness 824 

indicates the percentage of variance explained by that component.  825 
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  826 

Fig. S9. Boundary effect on the network x network peak lag matrix across stories. (A) 827 

The fMRI signals around word, sentence, and paragraph boundaries before and after 828 

regressing out the boundary effects. Shaded areas indicate 95% confidence intervals 829 

across subjects. (B) The peak lag matrix before and after regressing out the boundary 830 

effects (p < .05, FDR corrected).  831 
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  832 

Fig. S10. The distributions of word duration, unit length, and pause length with the 833 

simulation parameters described in Table S1.  834 
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 835 

Fig. S11. The silent pause between paragraphs shown in real spoken stories. Shaded 836 

areas indicate 95% confidence intervals.  837 
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 838 

Fig. S12. Sentence and paragraph length effects in two time-stamped stories 839 

(<Sherlock= & <Merlin=) (p < .005, uncorrected). Significant length effect indicates 840 

activation accumulation from the start toward the end of sentences or paragraphs. 841 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2022. ; https://doi.org/10.1101/2021.12.01.470825doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470825
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 

842 

Fig. S13. ISFC matrices at lag 0 in real and simulated stories (the same simulation 843 

parameters as in Table S1).  844 
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845 

Fig. S14. Power spectral densities of real (left) and simulated (right, the same 846 

parameter set as Table S1) BOLD responses to stories. PSD of the actual BOLD data 847 

exhibited stronger low-frequency fluctuations at regions with longer temporal receptive 848 

windows. Simulated BOLD responses show a similar pattern.  849 
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  850 

Fig. S15. Robust lag gradient within the parameter space bound by natural speech (the 851 

same parameters as in Table S1 unless otherwise indicated) (p < .05, FDR correction). 852 
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Table S1. A set of exemplar stimulation parameters motivated by a spoken story 853 

(<Sherlock=). SD: standard deviation.  854 

Exemplar simulation parameters 

speech rate (relative to <Sherlock=) 1 

mean unit length  3 

unit length variance 0.5 

temporal integration function linearly increasing 

mean pause length 3 sec 

pause length effect size  
(in SD of the simulated activity) 

0.1 

 855 
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