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ABSTRACT

In the past two years, the global research in combating COVID-19 pandemic has led to isolation
and characterization of numerous human antibodies to the SARS-CoV-2 spike. This enormous
collection of antibodies provides an unprecedented opportunity to study the antibody response to
a single antigen. From mining information derived from 88 research publications and 13 patents,
we have assembled a dataset of ~8,000 human antibodies to the SARS-CoV-2 spike from >200
donors. Analysis of antibody targeting of different domains of the spike protein reveals a number
of common (public) responses to SARS-CoV-2, exemplified via recurring IGHV/IGK(L)V pairs,
CDR H3 sequences, IGHD usage, and somatic hypermutation. We further present a proof-of-
concept for prediction of antigen specificity using deep learning to differentiate sequences of
antibodies to SARS-CoV-2 spike and to influenza hemagglutinin. Overall, this study not only
provides an informative resource for antibody and vaccine research, but fundamentally advances

our molecular understanding of public antibody responses to a viral pathogen.
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INTRODUCTION

From the beginning of COVID-19 pandemic, many research groups worldwide turned their
attention to SARS-CoV-2 and, in particular, to the immune response to infection and vaccination.
Over the past two years, thousands of human monoclonal antibodies to SARS-CoV-2 have been
isolated and characterized [1, 2]. The major surface antigen to which antibodies are elicited is the
SARS-CoV-2 spike (S) protein, which is a homotrimeric glycoprotein that facilitates virus entry by
first engaging the host receptor ACE2 and then mediating membrane fusion [3, 4]. The S protein
has three major domains, namely the N-terminal domain (NTD), receptor-binding domain (RBD),
and S2 domain [5, 6]. Most studies on SARS-CoV-2 antibodies have focused on the
immunodominant RBD [7], because neutralizing antibodies can be elicited to it with very high
potency [8, 9]. Antibodies to the NTD and the highly conserved S2 domain have also been

discovered, but usually exhibit lower neutralizing potency [10-16].

A common or public antibody response describes antibodies to the same antigen in different
donors that share genetic elements that usually result in similar modes of antigen recognition.
Deciphering public responses to particular antigens is not only critical for uncovering the
molecular features of recurring antibodies within the diverse antibody repertoire at the population
level, but also important for development of effective vaccines [17, 18]. A conventional approach
to study public antibody responses is to identify public clonotypes, which are antibodies from
different donors that share the same immunoglobulin heavy variable (IGHV) gene and with similar
complementarity-determining region (CDR) H3 sequences [19-23]. While this definition of public
clonotypes has improved our understanding of public antibody response, it generally ignores the
contribution of the light chain. Moreover, our recent study has shown that a public antibody
response to influenza hemagglutinin is driven by an IGHD gene with minimal dependence on the
IGHV gene [24]. Therefore, the true extent and molecular characterization of public antibody

responses remain to be explored.
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Although information of many human clonal antibodies to SARS-CoV-2 is now publicly available,
it has been difficult to leverage all available information to investigate public antibody responses
to SARS-CoV-2. One major challenge is that the data from different studies are rarely in the same
format. This inconsistency imposes a huge barrier to data mining. The establishment of the
coronavirus antibody database (CoV-AbDab) has enabled researchers to deposit their antibody
data in a standardized format and has partially resolved the data formatting issue [2]. However,
not every SARS-CoV-2 antibody study has deposited their data to CoV-AbDab. Furthermore,
IGHD gene identities, nucleotide sequences, and donor IDs are not available in CoV-AbDab,
which makes it challenging to study public antibody responses using CoV-AbDab. Thus,
additional efforts must be made to fully synergize the information across many different SARS-

CoV-2 antibody studies to investigate and decipher public antibody responses.

In this study, we performed a systematic literature survey and assembled a large dataset of
human SARS-CoV-2 monoclonal antibodies with donor information. We then analyzed this
dataset and uncovered many previously unknown antibody sequence features that contribute to
public antibody responses to SARS-CoV-2 S. For example, we identified a public antibody
response to RBD that is largely independent of the IGHV gene, as well as involvement of a
particular IGHD gene in a public antibody response to S2. Our analysis also revealed a number

of recurring somatic hypermutations (SHMs) in different public clonotypes.

RESULTS

Collection of SARS-CoV-2 antibody information

Information for 8,048 human antibodies was collected from 88 research publications and 13
patents that described the discovery and characterization of antibodies to SARS-CoV-2 (Figure

S1, Data S1). Among these antibodies, which were isolated from 215 different donors, 7,997


https://doi.org/10.1101/2021.11.26.470157
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.26.470157; this version posted November 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

89  (99.4%) react with SARS-CoV-2, and the remaining 51 react with SARS-CoV or seasonal
90  coronaviruses. While 99.1% (7,923/7,997) SARS-CoV-2 antibodies in our dataset bind to S
91 protein, 49 bind to N and 25 to ORF8. Epitope information was available for most SARS-CoV-2 S
92  antibodies, with 5,002 to RBD, 513 to NTD, and 890 to S2. In addition, information on
93  neutralization activity, germline gene usage, sequence, structure, bait for isolation (e.g. RBD, S),
94  and donor status (e.g. infected patient, vaccinee, etc.), if available, was collected for individual
95  antibodies.

96

97  Epitope-dependent V gene usage bias in SARS-CoV-2 S antibodies

98  Toidentify the sequence features in RBD, NTD, and S2 antibodies, we first performed an analysis
99 on V gene usage. Our analysis identified several commonly used IGHV/IGK(L)V pairs among
100 RBD antibodies (Figure 1A), such as IGHV3-53/IGKV1-9 and IGHV3-53/IGKV3-20, which
101  represent two known public clonotypes [25-30]. We also observed substantial enrichment of
102 IGHV1-24 among NTD antibodies over the naive baseline (Figure 1B), which was established by
103 published datasets of antibody repertoire sequencing from 26 healthy donors [31-33]. IGHV1-24
104  is in fact a known public antibody response that targets an antigenic supersite on NTD [10-13].
105  These observations illustrate that the gene usage pattern in our dataset is consistent with previous
106  findings. Importantly, our dataset also enabled us to discover previously unknown patterns in gene
107  usage. For example, IGHV3-30 and IGHV3-30-3 were highly enriched among S2 antibodies over
108  baseline (Figure 1B). For our subsequent analyses, IGHV3-30-3 was also labeled as IGHV3-30,
109  since IGHV3-30 and IGHV3-30-3 have an identical amino acid sequence in the framework
110  regions, CDR H1 and CDR H2. V gene usage bias was also observed in the light chain. For
111 example, IGKV3-20 and IGKV3-11 were most used among S2 antibodies, whereas IGKV1-33
112 and IGKV1-39 were most used among RBD antibodies (Figure 1C). Overall, these results
113 demonstrated that RBD, NTD, and S2 antibodies have distinct patterns of V gene usage.
114
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115 CDR H3 analysis reveals public antibody response

116  Although heavy and light chain V genes together encode four of the six CDRs, most of the
117  antibody sequence diversity comes from the CDR H3 region due to V(D)J recombination. Since
118  CDR H3 is typically an important determinant for binding and may even dominate the paratope
119  [24, 34-37], characterization of CDR H3 sequences in S antibodies is essential for understanding
120  the antibody response to SARS-CoV-2. Here, we aimed to examine the convergence of CDR H3
121  sequences among S antibodies. Briefly, CDR H3 sequences with the same length were clustered
122 by an 80% sequence identity cutoff. Only those clusters that contained antibodies from at least
123 two different donors were subjected to further analysis. A total of 170 clusters were identified
124  (Figure 2A and Data S1). Interestingly, antibodies within the same cluster often share the same
125  binding region on the S protein (RBD, NTD, or S2), consistent with the notion that the CDR H3
126  sequence has a critical role in determining the epitope that is recognized.

127

128  The largest cluster (cluster 1) consisted of 139 antibodies from 57 donors (Figure 2B). Most of
129  the antibodies in cluster 1 belonged to a well-characterized public clonotype to RBD that is
130 encoded by IGHV3-53/3-66 and IGKV1-9 [25-27, 29, 30]. IGHV3-53/3-66, which is frequently
131  used in RBD antibodies [28], was also enriched among antibodies in several other major CDR H3
132 clusters (e.g. clusters 2, 4, 8, and 14). Antibodies that bind to quaternary epitopes by bridging two
133  RBDs on the same spike are found in clusters 14 and 17 [38] (Figure S2). Notably, both clusters
134 3 and 5, which target the RBD, contained a conserved disulfide bond (Figure 2B). Cluster 3
135 represents another well-characterized public clonotype that is encoded by IGHV1-58/IGKV3-20
136 [8, 9, 39, 40]. On the other hand, antibodies in cluster 5, which are largely encoded by IGHV3-
137  30/IGKV1-33, have not been extensively studied. Most antibodies within cluster 5 had relatively
138  weak neutralizing activity, if any, despite having reasonable binding affinity (Table S1). This result

139  suggests the existence of an RBD-targeting public clonotype that had minimal neutralizing activity.


https://doi.org/10.1101/2021.11.26.470157
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.26.470157; this version posted November 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

140  Similar observation was made with RBD antibodies encoded by IGHV3-13/IGKV1-39, although
141  most of these antibodies did not share a similar CDR H3 (Figure S3 and Table S2).

142

143 Furthermore, we also discovered several S2-specific CDR H3 clusters (clusters 6, 9, and 11) that
144  were predominantly encoded by IGHV3-30 with diverse IGK(L)V genes, suggesting a public
145  heavy chain response to S2 (Figure 2B). Clusters 10 and 15 were also of interest to us. Cluster
146 10 was featured by a very short CDR H3 (6 amino acids, IMGT numbering) and was encoded by
147  IGHV4-59/IGKV3-20, which was a frequent V gene pair among the S2 antibodies. Cluster 15 was
148  encoded by IGHV1-69/IGKV3-11, which was the most used V gene pair among the S2 antibodies.
149  Therefore, clusters 10 and 15 represented two major S2 public clonotypes, despite their minimal
150  neutralizing activity (Table S1). In contrast to RBD- and S2-specific clusters, all NTD-specific CDR
151  H3 clusters had a relatively small size (Figure 2A), suggesting that the paratopes for most NTD
152  antibodies are not dominated by CDR H3.

153

154 A public antibody response dominated by the light chain and CDR H3

155  While most clusters have a dominant IGHV gene, diverse IGHV genes were observed in cluster
156 7 (Figure 2B-C). Most antibodies (42 out of 45) in cluster 7 used IGLV6-57, suggesting their
157  paratopes are mainly composed of CDR H3 and light chain. S2A4, which is encoded by IGHV3-
158  7/IGLV6-57 [41], is an antibody in cluster 7. A previously determined structure of S2A4 in complex
159  with RBD indeed demonstrates that its CDR H3 contributes 38% of the buried surface area (BSA)
160  of the epitope, whereas the light chain contributes 53% (Figure 2D-E). Specifically, IGLV6-57
161  forms an extensive H-bond network with the RBD (Figure 2F), whereas a *WLRG'® motif at the
162  tip of CDR H3 interacts with the RBD through H-bonds, -1 stacking, and hydrophobic
163 interactions (Figure 2G). Although G100 does not participate in binding, it exhibits backbone
164  torsion angles (® = -94°, W = -160°) that are in the preferred region of Ramachandran plot for

165  glycine, but in the allowed region for non-glycine (Figure S4). Consistently, this ”WLRG'® motif
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166 is highly conserved in cluster 7 (Figure 2B). These results illustrate that our CDR H3 clustering
167  analysis not only captured existing knowledge about public SARS-CoV-2 antibody responses, but
168  was able to uncover recurring sequence features among SARS-CoV-2 antibodies that were
169  previously unknown.

170

171  IGHV3-30/IGHD1-26 is a recurring feature in S2 antibodies

172 As a major contributor to CDR H3, the IGHD gene can also drive a public antibody response [24].
173  Consequently, we aimed to understand if there are any signature IGHD genes in SARS-CoV-2 S
174  antibodies. While the frequency of most IGHD genes were within the baseline level, IGHD1-26
175  was highly enriched among S2 antibodies (Figure 3A). These IGHD1-26 S2 antibodies were
176  predominantly encoded by IGHV3-30 (Figure 3B), which is one of the most used IGHV genes
177  among S2 antibodies (Figure 1B). In contrast, the IGK(L)V gene usage was more diverse among
178  these IGHD1-26 S2 antibodies, although several were more frequently used than others (Figure
179  3C), implying that this public antibody response to S2 is mainly driven by the heavy chain.
180 Interestingly, 70% of these IGHD1-26 S2 antibodies had a CDR H3 of 14 amino acids, whereas
181  only <20% of other S antibodies had a CDRH3 of 14 amino acids (Figure 3D). In fact, most
182  members of clusters 6, 9, and 11 in our CDR H3 analysis above (Figure 2B) represented this
183  public antibody response to S2. While CDR H3 is also encoded by the IGHJ gene, the distribution
184  of IGHJ gene usage in these IGHD1-26 S2 antibodies did not show a strong deviation from that
185  of other S antibodies in our dataset (Figure 3E).

186

187  In our dataset, there were 110 IGHD1-26 S2 antibodies from 17 donors with a CDR H3 length of
188 14 amino acids. Sequence logo analysis of these 110 antibodies revealed a conserved
189  %[S/G]G[S/N]Y'® motif in the middle of their CDR H3 sequences (Figure 3F). In-depth analysis
190  of the CDR H3 sequences from three representative IGHD1-26 S2 antibodies, namely PO08_088,

191  G32M4, and ADI-56059, further indicated that the conserved %[S/G]G[S/N]Y'® motif was within
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192  the IGHD1-26-encoded region (Figure 3G). Of note, PO08_088, G32M4, and ADI-56059 were
193  isolated from three different donors by three independent research groups [42-44]. While
194 PO008 088 and G32M4 were from SARS-CoV-2 infected individuals, ADI-56059 was from a
195  SARS-CoV survivor. Although 87 out of these 110 IGHD1-26 S2 antibodies can cross-react with
196 SARS-CoV, they generally have minimal neutralization activity (Table S3). Together, these
197  results show that IGHV3-30/IGHD1-26 represents a public antibody response to a highly
198  conserved epitope in S2.

199

200  Recurring somatic hypermutations in public antibody responses

201 Our recent study has shown that V4 Y58F is a recurring somatic hypermutation (SHM) among
202  IGHV3-53 antibodies to SARS-CoV-2 RBD [25]. Here, we aimed to identify additional recurring
203  SHMs in other public clonotypes to SARS-CoV-2 S. In this analysis, antibodies from at least two
204  donors that had the same IGHV/IGK(L)V genes and CDR H3s from the same CDR H3 cluster
205  were classified as a public clonotype (Figure 4A). SHM that occurred in at least two donors within
206  a public clonotypes was defined as a recurring SHM. Our analysis here only focused on major
207  public clonotypes with antibodies from at least nine donors. This analysis led to the identification
208  of several recurring SHMs in IGHV3-53/3-66-encoded public clonotypes that were previously
209  characterized, including Vu F27V, T28Il, and Y58F [25, 45, 46] (Figure S5). We also identified
210  many other previously unknown recurring SHMs in both heavy and light chains (Figure 4A-B),
211  including VL S29R in a IGHV1-58/IGKV3-20 public clonotype that belongs to cluster 3 of our CDR
212 HS3 clustering analysis (Figure 2A-B). V. S29R emerged in 8 out of 26 (31%) donors that carried
213 this IGHV1-58/IGKV3-20 public clonotype.

214

215  Antibodies of this IGHV1-58/IGKV3-20 public clonotype bind to the ridge region of SARS-CoV-2
216  RBD (Figure 5A), and can be robustly elicited by infection with antigenically distinct variants of

217  SARS-CoV-2 [39, 47] and by vaccination [48, 49]. These antibodies are also able to potently
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218  neutralize multiple variants of concern (VOC) [9, 48, 50]. We compared two previously determined
219  structures of IGHV1-58/IGKV3-20 antibodies in complex with RBD [40, 51], where one has the
220  germline-encoded V. S29 (Figure 5B) and the other carries a somatically mutated V. R29 (Figure
221  5C). While neither V.. S29 nor Vi R29 directly interact with RBD, V.. R29 is able to form a cation-
222 T interaction with Vi Y32, which in turn forms a T-shaped 1r-11 stacking with RBD-F486 and H-
223 bonds with RBD-C480 (Figure 5C). In the absence of SHM V. S29R, the rotamer adopted by V.
224 Y32 does not permit these interactions to be formed. During our structural analysis, we discovered
225  that VL S29R forms a salt bridge with another SHM V. G92D (Figure 5C), which can further
226  stabilize the interactions between V. Y32 and with RBD. In fact, it is likely that V. S29R promoted
227  the emergence of V. G92D, since V. G92D was found in four out of the 67 antibodies and all four
228  that carried VL. S29R (Figure 5D-E). This analysis substantiates the notion that recurring SHM
229  can be found among antibodies within a public clonotype and further suggests the existence of
230  common affinity maturation pathways that involve emergence of multiple SHMs in a defined order.
231

232 Antigen identification by deep learning

233 Since many sequence features of public antibody responses to the S protein can be observed in
234  our dataset, we postulated that the dataset is sufficiently large to train a deep learning model to
235 identify S antibodies. To provide a proof-of-concept, we aimed to train a deep learning model to
236  distinguish between antibodies to S and to influenza hemagglutinin (HA). Among different
237  antigens, HA was chosen here because there are a large number of HA antibodies with published
238  sequences, albeit still lower than the published SARS-CoV-2 S antibodies. Here, 4,736 unique
239  SARS-CoV-2 S antibodies and 2,204 unique influenza HA antibodies with complete information
240  for all six CDR sequences were used (Data S2). Sequences for HA antibodies were retrieved
241  from GenBank [52]. None of these antibodies have identical sequences in all six CDRs. These
242 antibodies to S and HA were divided into a training set (64%), a validation set (16%), and a test

243 set (20%), with no overlap between the three sets. The training set was used to train the deep

10
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244  learning model. The validation set was used to evaluate the model performance during training.
245  The test set was used to evaluate the performance of the final model.

246

247  Our deep learning model has a simple architecture, which consisted of one encoder per CDR
248  followed by three fully connected layers (Figure 6A). To evaluate the model performance on the
249  test set, the area under the curves of receiver operating characteristic (ROC AUC) and precision-
250 recall (PR AUC) were used to measure the model's ability to avoid misclassification. While ROC
251  AUC is popular evaluation metric [53], PR AUC is shown to be more informative for evaluating
252 models that are trained with imbalanced datasets [54]. Model performance was the best when all
253  six CDRs (i.e. H1, H2, H3, L1, L2, and L3) were used to train the model, which resulted in an
254 ROC AUC and an PR AUC of 0.87 and 0.92, respectively (Figure 6B and Table S4). Interesting,
255  asimilar performance was observed when the model was trained by the three heavy-chain CDRs
256  (i.e. H1, H2, and H3) (ROC AUC = 0.86, PR AUC = 0.91), indicating that the heavy chain
257 sequence captures most of the information to distinguish between HA antibodies and S
258 antibodies. A reasonable performance was also observed when the model was trained by the
259  three light-chain CDRs (i.e. L1, L2, and L3) (ROC AUC = 0.77, PR AUC = 0.86). For other types
260  of inputs that we have tested, including CDR H3 only, CDR L3 only, CDR H3+L3, CDR H1+H2,
261  and CDR L1+L2, the ROC AUCs were between 0.72 and 0.83 and the PR AUCs were between
262  0.82 and 0.90. These results imply that IGHV-encoded region (H1+H2), IGK(L)V-encoded region
263  (L1+L2), and the V(D)J junctions (CDR H3 and CDR L3) are all informative for predicting antigen
264  specificity. Overall, while our deep learning model had a relatively simple architecture, it was able
265  to discriminate between antibodies to two different antigens based on primary sequences.

266

267 A recent study reported 81 antibodies to SARS-CoV-2 RBD that were elicited by Beta variant
268 infection [47]. While these 81 antibodies were not included in the dataset that we assembled (Data

269  81), they provided an opportunity to further evaluate the performance of our deep learning model.

11
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270  Our deep learning model that was trained by all six CDRs (see above) successfully predicted that
271 72 of the 81 (89%) antibodies as SARS-CoV-2 S antibodies (Figure 6C and Table S5). This
272  result further demonstrates the possibility of predicting antibody specificity solely based on the
273  primary sequence.

274

275 DISCUSSION

276  Through a systematic survey of published information on SARS-CoV-2 antibodies, we identified
277  many molecular features of public antibody responses to SARS-CoV-2. The large amount of
278  published information has allowed us to explore distinct patterns of germline gene usages in
279  antibodies that target different domains on the S protein (i.e. RBD, NTD, and S2). Notably, the
280  types and nature of public antibody responses to different domains appear to be quite different.
281  For example, convergence of CDR H3 sequences can be readily identified in the public antibody
282  responses to RBD and S2. In contrast, the public antibody response to NTD seems to be largely
283  independent of the CDR H3 sequence. Furthermore, an IGHD-dependent public antibody
284  response was enriched against S2, but not RBD or NTD. Together, our study demonstrates the
285  diversity of sequence features that can constitute a public antibody response against a single
286  antigen.

287

288  The public antibody response to SARS-CoV-2 has also been examined by a recent data mining
289  study that focused on identifying public clonotypes [55]. This previous study defined public
290  clonotypes as antibodies with the same IGHV/IGHJ/IGK(L)V/IGK(L)V genes and high similarity of
291  CDR H3 [55]. While multiple public clonotypes were identified using this stringent definition [55],
292  the characterization of public antibody response is likely far from comprehensive. A public
293  antibody response may not always involve a defined pair of IGHV/IGK(L)V genes, especially when
294  either IGHV or IGK(L)V gene-encoded residues only make a minimal contribution to the paratope.

295 In fact, a well-characterized public antibody response to the highly conserved stem region of
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296 influenza hemagglutinin has a paratope that is entirely attributed to the IGHV1-69 heavy chain
297  [56-59]. IGHV3-30/IGHD1-26 antibodies to S2 in our study may represent a similar type of
298  IGK(L)V-independent public antibody response, although it still needs to be confirmed by
299  structural analysis. On the other extreme, RBD antibodies that are encoded by IGLV6-57 with a
300  “"WLRG'"® motif in the CDR H3 represent a public response that is largely independent of IGHV
301  gene usage. Given the diverse types of public antibody responses to SARS-CoV-2 S, we need to
302  acknowledge the limitation of using the conventional strict definition of public clonotype to study
303  public antibody responses.

304

305 Public antibody response to different antigens can have very different sequence features. For
306 example, IGHV6-1 and IGHD3-9 are signatures of public antibody response to influenza virus [24,
307 60-62], whereas IGHV3-23 is frequently used in antibodies to Dengue and Zika viruses [63]. In
308 contrast, these germline genes are seldom used in the antibody response to SARS-CoV-2 as
309  compared to the naive baseline (Figure 1B-C and Figure 3A). Since the binding specificity of an
310 antibody is determined by its structure, which in turn is determined by its amino acid sequence,
311  the antigen specificity of an antibody can theoretically be identified based on its sequence. This
312 study provides a proof-of-concept by training a deep learning model to distinguish between SARS-
313  CoV-2 S antibodies and influenza HA antibodies, solely based on primary sequence information.
314  Technological advancements, such as the development of single-cell high-throughput screen
315  using the Berkeley Lights Beacon optofluidics device [64] and advances in paired B-cell receptor
316 sequencing [65], have been accelerating the speed of antibody discovery and characterization.
317  As more sequence information on antibodies to different antigens is accumulated, we may be
318 able in the future to construct a generalized sequence-based model to accurately predict the
319  antigen specificity of any antibody.

320
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321  Insummary, the amount of publicly available information on SARS-CoV-2 antibodies has provided
322  invaluable biological insights that have not been readily obtained for other pathogens. One reason
323 is that the COVID-19 pandemic has gathered scientists from many fields and around the globe to
324 work intensively on SARS-CoV-2. The parallel efforts by many different research groups have
325 enabled SARS-CoV-2 antibodies to be discovered in unprecedented speed and scale that have
326  not been possible for other pathogens. We anticipate that knowledge of the molecular features of
327  the antibody response to SARS-CoV-2 will keep accumulating as more antibodies are isolated
328 and characterized. Ultimately, the extensive characterization of antibodies to the SARS-CoV-2 S
329  protein may allow us to address some of the most fundamental questions about antigenicity and
330 immunogenicity, as well as how the human immune repertoire has evolved to respond to specific
331 classes of viral pathogens that have coexisted with humans for hundreds to thousands of years.
332

333 MATERIALS AND METHODS

334  Collection of antibody information

335 Information on the monoclonal antibodies is derived from the original papers (Supplementary
336 Table 1). Sequences of each monoclonal antibody are from the original papers and/or NCBI

337 GenBank database (www.ncbi.nlm.nih.gov/genbank) [52]. Putative germline genes were

338 identified by IgBLAST [66]. Some studies isolated antibodies from multiple donors, but the donor
339 identity for each antibody was not always clear. For example, some studies mixed B cells from
340  multiple donors before isolating individual B cell clones. Since the donor identity cannot be
341  distinguished among those antibodies, we considered them from the same donor with “_mix” as
342  the suffix of the donor ID. In addition, the PBMCs of SARS-CoV survivors in three separate studies
343 were all from NIH/VRC [12, 44, 67]. Since it is unclear If they are the same SARS-CoV survivor,
344  the same donor ID “VRC_SARS1” was assigned to them to avoid overestimation of public
345 antibody response. the neutralization activity of a given antibody was only measured at a single

346  concentration, 50% neutralization activity or below was classified as non-neutralizing. We also
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347  downloaded the CoV-AbDab [2] in September 2021 to fill in any additional information. As of
348  September 2021, there were 2,582 human SARS-CoV-2 antibodies in CoV-AbDab. Information
349 in the finalized dataset was manually inspected by three different individuals. For antibodies that
350  were shown to bind to S1 but not RBD, they were classified as NTD antibodies. Due to having
351 identical nucleotide sequences, IGKV1D-39*01 was classified as IGKV1-39*01, IGHV1-68D*02
352  asIGHV1-68*02, IGHV1-69D*01 as IGHV1-69*19, IGHV3-23D*01 as IGHV3-23*01, and IGHV3-
353  29*01 as IGHV3-30-42*01.

354

355 Analysis of germline gene usages

356  Non-functional germline genes were ignored in our germline gene usage analysis. Except for the
357 analysis presented in Figure 1, IGHV3-30-3 was classified as IGHV3-30 since they have identical
358  amino-acid sequence in the framework regions, CDR H1, and CDR H2. To establish the baseline
359  germline usage frequency, published antibody repertoire sequencing datasets from 26 healthy
360  donors [31, 32] were downloaded from cAb-Rep [33]. Putative germline genes for each antibody
361  sequence in these repertoire sequencing datasets from healthy donors were identified by were
362 identified by IgBLAST [66].

363

364 CDR H3 clustering analysis

365  Using a deterministic clustering approach, antibodies with CDR H3 sequences that had the same
366 length and at least 80% amino-acid sequence identity were assigned to the same cluster. As a
367  result, CDR H3 of every antibody in a cluster would have >20% difference in amino-acid sequence
368 identity with that of every antibody in another cluster. A cluster would be discarded if all of its
369 antibody members were from the same donor. The number of antibodies within a cluster was
370  defined as the cluster size. Sequence logos were generated by Logomaker in Python [68]. For
371  each cluster, epitope assignment was performed using the following scoring scheme. Briefly,

372  there were three scoring categories, namely “RBD”, “NTD”, and “S2”.
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373 e 1 point was added to category “RBD” for each antibody with an epitope label equals to
374 “S:RBD” or “S:S1”.

375 e 1 point was added to category “NTD” for each antibody with an epitope label equals to
376 “S:NTD”, “S:S17, “S:non-RBD”, or “S:S1 non-RBD”.

377 e 1 point was added to category “S2” for each antibody with an epitope label equals to
378 “S:82”,” S:S2 Stem Helix”, “S:non-RBD”.

379  The category with >50% of the total points would be classified as the epitope for a given cluster.
380 If no category had >50% of the total points, the epitope for the cluster would be classified as
381  “unknown”.

382

383 Identification of recurring somatic hypermutation (SHM)

384  In this study, a public clonotype was classified as antibodies from at least two donors that had the
385 same IGHV/IGK(L)V genes and CDR H3s from the same CDR H3 cluster (see “CDR H3 clustering
386  analysis” above). For each antibody, ANARCI was used to number the position of each residue
387  according to Kabat numbering [69]. The amino-acid identity at each residue position of an
388 antibody was then compared to that of the putative germline gene. CDR H3, CDR L3, and
389  framework region 4 in both heavy and light chains were not included in this analysis. Insertions
390 and deletions were also ignored in this analysis. SHM that occurred in at least two donors within
391  a public clonotype was defined as a recurring SHM.

392

393  Deep learning model for antigen identification

394  Model construction

395  The deep learning model consisted of two networks, namely multi-encoder (ME) and a stack of
396  multi-layered perceptrons (MLP). The CDR amino-acid sequences were taken as input and
397 passed to ME. Specifically, each CDR amino-acid sequence was described by a 21-letter

398 alphabet vector X = (x4, x,, ..., x,_1,%.),x € RE, where L represented the length of sequence, and
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399  x represented the amino acid category. Each of the 20 canonical amino acids was one category,
400  whereas all the ambiguous amino acids were grouped as the 21%' category. Before passing to
401  ME, inputs were tokenized at the amino-acid level and processed by zero padding, so that the
402 embedding layers represented the character-level tokens (i.e. amino acids) and the size of each
403  input was the same. Subsequently, the inputs were mapped to the embedding vectors with
404  additional dimension d. The sinusoidal positional encoding vectors were added to the embedding
405 vectors to encode the relative position of tokens (i.e. amino acids) in the sequence. Each
406  embedding vector, ¥ € R*4, with size of L X d, was passed into transformer encoder layer by
407  self-attention mechanism to learn the sequence feature [70]. All learned sequence features were
408 then concatenated together and passed to multi-layered perceptron (MLP). Each MLP layer
409 contained leaky rectified linear unit (ReLU) activations to avoid the vanishing gradient. Dropout
410 layers were placed after each MLP block to avoid model overfitting [71]. The final output layer
411  was followed by a sigmoid activation function to predict the probability of different classes. The
412  prediction losses were calculated by binary cross-entropy loss.

413

414  Training detail

415 SARS-CoV-2 S antibodies and influenza HA antibodies with complete information for all six CDR
416  sequences were identified. Sequences of each antibody were from the original papers (Data S2)

417  or NCBI GenBank database (www.ncbi.nIm.nih.gov/genbank) [52]. If all six CDR sequences were

418 the same between two or more antibodies, only one of these antibodies would be retained. After
419 filtering duplicates, there were 4,736 antibodies to SARS-CoV-2 and 2,204 to influenza HA. The
420  CDR sequences were identified by IgBLAST and PyIR [66, 72]. This dataset was randomly split
421 into a training set (64%), a validation set (16%), and a test set (20%). The training set was used
422  to train the deep learning model. The validation set was used to evaluate the model performance
423  during training. The test set was used to evaluate the performance of the final model. There was

424 no overlap of antibody sequences among the training set, validation set, and test set. The Adam
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algorithm was used to optimize the model. The following hyper-parameters were used for model

training:

CDR embedding size: 256

The number of attention heads for self-attention on CDR feature learning: 4
The number of encoder layer for CDR encoder: 4

Size of stacking MLP layers: 512, 128, and 64

Learning rate: 0.0001

Batch size: 256

Using the same training set, validation set and test set, the model performance of using the

following inputs was compared:

1.

2.

CDR H1 + H2
CDR L1+ L2

CDR H3

CDR L3

CDRH3 +L3

CDR H1+H2 + H3
CDRL1+L2+L3

CDRH1+H2+H3+L1+L2+L3

Performance Metrics

For evaluating model performance, S antibodies and HA antibodies were considered “positive”

and “negative”, respectively. False positives (FP) and false negatives (FN) were samples that

were misclassified by the model while true negatives (TN) and true positives (TP) were correctly

classified one. The following metrics were computed to evaluate model performance:
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450 ~ TP + TN .
ACCUarey = Tp Y FN+ FP+ TN (1)

451 ision = — & 2
precision = TP L FP (2)

452 L 3
TeCat = TP ¥ FN )

453  In addition, we also used the receiver operating characteristic (ROC) curve and precision-recall
454  (PR)curve to measure the model's ability to avoid misclassification [53, 54]. Area under the curves
455 of ROC (i.e. ROC AUC) and PR (i.e. PR AUC) were computed using the "keras.metrics" module
456  in TensorFlow [73].

457

458 DATA AVAILABILITY

459  The assembled SARS-CoV-2 antibody dataset is in Data S1. The dataset for constructing and
460  testing the deep learning model is in Data S2.

461

462 CODE AVAILABILITY

463  Custom python scripts for all analyses have been deposited to https://github.com/nicwulab/SARS-

464  CoV-2 Abs.
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Figure 1. Analysis of V gene usage in SARS-CoV-2 S antibodies. (A) The frequency of

different V gene pairings between heavy and light chains are shown for SARS-CoV-2 S antibodies
to RBD, NTD, and S2. The size of each datapoint represents the frequency of the corresponding
IGK(L)V information is available for both heavy and light chains was included in this analysis. (B)
The IGHV gene usage in antibodies to NTD, RBD, and S2 are shown. Only those antibodies with

IGHV/IGK(L)V pair within its epitope category. Only those antibodies where both IGHV and
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780 IGHV information available were included in this analysis. (C) The IGK(L)V gene usage in
781  antibodies to NTD, RBD, and S2 are shown. Only those antibodies with IGK(L)V information
782  available were included in this analysis. (B-C) Error bars represent the frequency range among

783 26 healthy donors [31-33].
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Figure 2. Convergent CDR H3 sequences among SARS-CoV-2 S antibodies. (A) CDR H3
sequences from individual antibodies were clustered using a 20% cutoff (see Materials and
Methods). The epitope of each CDR H3 cluster is classified based on that of its antibody
members. Cluster size represents the number of antibodies within the cluster. (B) The V gene
usage and CDR H3 sequence are shown for each of the 16 CDR H3 clusters of interest. For each
of the CDR H3 cluster of interest, the CDR H3 sequences are shown as a sequence logo, where
the height of each letter represents the frequency of the corresponding amino-acid variant (single-
letter amino-acid code) at the indicated position. The dominant germline V genes (>50% usage
among all antibodies within a given CDR H3 cluster) are listed. Diverse: no germline V genes had
>50% frequency among all antibodies within a given CDR H3 cluster. HC: heavy chain. LC: light
chain. (C) IGHV usage in cluster 7 is shown. Different colors represent different donors. Unknown:
IGHV information is not available. (D) An overall view of SARS-CoV-2 RBD in complex with
IGLV6-57 antibody S2A4 (PDB 7JVA) [41], which belongs to cluster 7, is shown. The RBD is in
white with the receptor binding site highlighted in green. The heavy and light chains of S2A4 are

in orange and yellow, respectively. (E) Percentages of the S2A4 epitope that are buried by the
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light chain, heavy chain (without CDR H3), and CDR H3 are shown as a pie chart. Buried surface
area (BSA) was calculated by PISA (Proteins, Interfaces, Structures and Assemblies) at the
European Bioinformatics Institute (https://www.ebi.ac.uk/pdbe/prot_int/pistart.html) [74]. (F-G)
Detailed interactions between the (F) light and (G) heavy chains of S2A4 and SARS-CoV-2 RBD.
Hydrogen bonds and salt bridges are represented by black dashed lines. The color coding is the

same as panel D.
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Figure 3. Enrichment of IGHD1-26 in SARS-CoV-2 S2 antibodies. (A) The IGHD gene usage
in NTD, RBD, S2 antibodies is shown. Error bars represent the frequency range among 26 healthy
donors. (B) IGHV gene usage and (C) IGK(L)V gene usage among IGHD1-26 S2 antibodies is
shown (n = 157). (D) The distribution of CDR H3 length (IMGT numbering) in IGHD1-26 S2
antibodies (n = 157), non-IGHD1-26 S2 antibodies (n = 533), and other non-S2 S antibodies that
do not target S2 (n = 5,090), are shown. (E) The IGHJ gene usage among IGHD1-26 S2
antibodies (n = 157) and other S antibodies with well-defined epitopes (n = 5,623) is shown. (F)
The CDR H3 sequences for IGHD1-26 S2 antibodies (n = 110) are shown as a sequence logo.
(G) Amino acid and nucleotide sequences of the V-D-J junction are shown for three IGHD1-26
S2 antibodies [42-44]. Putative germline sequences and segments were identified by IgBlast [66]
and are indicated. Somatically mutated nucleotides are underlined. Intervening spaces at the V-

D and D-J junctions are N-nucleotide additions.
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819
820  Figure 4. Recurring somatic hypermutations (SHMs) in SARS-CoV-2 S antibodies. (A-B) For

821  each public clonotype, if the exact same SHM emerged in at least two donors, such SHM is
822  classified as a recurring SHM. Only those public clonotypes that can be observed in at least nine
823  donors are shown. (A) Recurring SHMs in heavy chain V genes. (B) Recurring SHMs in light
824  chainV genes. X-axis represents the position on the V gene (Kabat numbering). Y-axis represents
825  the percentage of donors who carry a given recurring SHM among those who carry the public
826  clonotype of interest. For example, V. S29R emerged in 8 donors out of 26 donors that carry an
827  public clonotype that is encoded by IGHV1-58/IGKV3-20. As a result, VL. S29R (IGHV1-58/IGKV3-
828  20)is 31% (8/26) within the corresponding clonotype. Of note, since each public clonotype is also
829  defined by the similarity of CDR H3 (see Materials and Methods), there could be multiple
830  clonotypes with the same heavy and light chain V genes (e.g. IGHV3-53/IGKV1-9). The CDR H3

831  cluster ID for each clonotype is indicated with a prefix “c”, following the information of the V genes.
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832  For heavy chain, SHMs that emerged in at least 40% of the donors of the corresponding clonotype
833  arelabeled. For light chain, SHMs that emerged in at least 20% of the donors of the corresponding

834  clonotype are labeled.
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835
836  Figure 5. Structural analysis of a recurring SHM in the IGHV1-58/IGKV3-20 public

837  clonotype. (A) An overall view of SARS-CoV-2 RBD in complex with the IGHV1-58/IGKV3-20
838  antibody PDI 222 (PDB 7RR0) [51]. The RBD is shown in white, while the heavy and light chains
839  of the antibody are in dark and light green, respectively. The ridge region (residues 471-491) is
840  shown in pink, with F486 highlighted as sticks. (B-C) Structural comparison between two IGHV1-
841  58/IGKV3-20 antibodies that either (B) carry germline residues V. S29/G92 (COVOX-253, PDB
842  7BEN) [40] and (C) somatically hypermutated residues V. R29/D92 (PDI 222, PDB 7RRO0) [51].
843  SARS-CoV-2 RBD is in white, while antibodies are in yellow (COVOX-253) and green (PDI 222).
844  Somatically mutated residues are labeled with bold and italic letters. The T-shaped -1 stacking
845  between RBD-F486 and V. Y32 is indicated by a purple dashed line. Hydrogen bond and salt
846  bridge are represented by black dashed lines. (D) Sequence logo of V. residues 29, 32, and 92
847 among 67 IGHV1-58/IGKV3-20 RBD antibodies are shown. (E) Numbers of antibodies in the
848  IGHV1-58/IGKV3-20 public clonotype carrying the germline-encoded variant at V. residues 29
849  and 92 (S29, G92), as well as V. SHM S29R and G92D (red) are listed. Of note, one antibody in
850  this IGHV1-58/IGKV3-20 public clonotype carries S29/N92 and another carries S29/V92.

851  However, they are not listed in the table here.
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852
853  Figure 6. Antigen identification by deep learning. (A) A schematic overview of the deep
854  learning model architecture. (B) For evaluating model performance, S antibodies and HA
855  antibodies were considered “positive” and “negative”, respectively. Model performance on the
856 test set was compared when different input types were used. Of note, the test set has no
857  overlap with the training set and the validation set, both of which were used to construct the
858  deep learning model. True positive (TP) represents the number of S antibodies being correctly
859 classified as S antibodies. False positive (FP) represents the number of HA antibodies being
860  misclassified as S antibodies. True negative (TN) represents the number of HA antibodies being
861  correctly classified as HA antibodies. False negative (FN) represents the number of S
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862  antibodies being misclassified as HA antibodies. See Materials and Methods for the calculations
863  of accuracy, precision, recall, ROC AUC, and PR AUC for the training and test sets. (C) The
864  antigen specificity of 81 RBD antibodies from Reincke et al. [47] were predicted by a deep

865 learning model that was trained to distinguish between S antibodies and HA antibodies.
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