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Abstract 

Although half of human genes use alternative polyadenylation (APA) to generate mRNA 
isoforms that encode the same protein but differ in their 32UTRs, most single cell RNA-
sequencing (scRNA-seq) pipelines only measure gene expression. Here, we describe an open-
access pipeline, called scUTRquant (https://github.com/Mayrlab/scUTRquant), that measures 
gene and 32UTR isoform expression from scRNA-seq data obtained from known cell types in 
any species. scUTRquant-derived gene and 32UTR transcript counts were validated against 
standard methods which demonstrated their accuracy. 32UTR isoform quantification was 
substantially more reproducible than previous methods. scUTRquant provides an atlas of high-
confidence 32 end cleavage sites at single-nucleotide resolution to allow APA comparison across 
mouse datasets. Analysis of 120 mouse cell types revealed that during differentiation genes 
either change their expression or they change their 32UTR isoform usage. Therefore, we 
identified thousands of genes with 32UTR isoform changes that have previously not been 
implicated in specific biological processes. 

  

 

Introduction 

Most transcriptome analyses performed to date quantify gene expression. However, 
approximately half of human genes use alternative cleavage and polyadenylation (APA) to 
generate mRNA isoforms that encode the same protein but that differ in their 32 untranslated 
regions (32UTRs) 1. Moreover, many genes use intronic polyadenylation (IPA) signals to 
generate mRNA isoforms with alternative last exons, thus producing different protein isoforms 2-

5. APA is developmentally regulated and is dysregulated in disease 6,7. Alternative 32UTRs are 
rich in regulatory elements, including binding sites for microRNAs and RNA-binding proteins and 
regulate processes at the mRNA level, including localization, stability, and translation 8-15. They 
also impact processes that occur co-translationally as they facilitate 32UTR-dependent protein 
complex assembly, thus regulating protein localization and protein function 15-20.  

The current gold standard for quantifying alternative 32UTR isoform expression are bulk 32 end 
sequencing methods 1,12,21-28. However, many different library preparation protocols and 
computational pipelines exist that impede cross-dataset comparisons. As these methods require 
substantial amounts of material, they have largely been limited to the analysis of cell lines, 
complex tissues, or primary immune cell populations 1-3,12,21-29. However, there is a great need 
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for APA analysis tools that use publicly available datasets as several programs were developed 
that estimate APA from bulk RNA-seq data 30-32. However, these existing methods have 
substantial limitations, e.g. they are prone to artifacts due to uneven read coverage in 32UTRs 33.  

Single cell RNA sequencing (scRNA-seq) has revolutionized gene expression analysis as it 
allows to dissect gene expression profiles of individual cells. In addition to protocols that 
generate full-length mRNA read coverage, most datasets are generated using droplet-based 
methods that incorporate a unique molecular identifier (UMI) at the mRNA 32 end for transcript 
counting 34. As these protocols are conceptually similar to bulk 32 end sequencing methods, 
several analysis protocols have recently been developed to quantify alternative 32UTR isoform 
expression from scRNA-seq datasets in known cell types 35-44. However, none of the pipelines 
were validated transcriptome-wide with respect to accuracy of the detected 32UTR isoform 
expression. Moreover, nearly all use de novo peak calling from their dataset of interest which is 
prone to internal priming artifacts. 10x Genomics reads do not span cleavage sites, most 
pipelines cannot directly identify the corresponding mRNA 32 ends.  

We present scUTRquant, a reusable open-access Snakemake pipeline that provides single-
nucleotide resolution on 32 end cleavage sites obtained from scRNA-seq data. scUTRquant 
simultaneously measures gene expression and alternative 32UTR isoform expression from given 
cell types or cell states. Gene counts obtained by scUTRquant correlate very well with gene 
counts obtained by CellRanger. scUTRquant-derived 32UTR isoform counts also correlate 
strongly with data obtained from bulk 32 end sequencing methods, demonstrating that 
scUTRquant is accurate. We also demonstrate that scUTRquant-derived 32UTR isoform counts 
obtained from biological replicates are substantially more reproducible than when obtained from 
previous methods. Simultaneous assessment of gene and alternative 32UTR isoform usage 
between cell types revealed that gene and 32UTR isoform usage are independent parameters of 
gene regulation. Correct quantification of APA at high resolution will allow to study the regulation 
and function of alternative 32UTR isoforms in any biological context or species.  

 

Results 

Atlas of functional mRNA 32 end cleavage sites of the mouse transcriptome 

Our goal was to use 32-tagged scRNA-seq datasets to identify cell type- and condition-specific 
changes in 32UTR isoform expression. To compare alternative 32UTR isoform expression in 
individual cell types from different datasets, we set out to generate an atlas of high-confidence 
mRNA 32 end cleavage sites of the mouse transcriptome. Bulk 32 end sequencing methods 
unambiguously identify mRNA 32 ends because the majority of reads traverse the cleavage sites 
and contain adenosines not present in the genome, which are indicative of poly(A) tails 1,12,21-28. 
Although, 32-tagged scRNA-seq protocols are conceptually similar, most of the reads generated 
by the 10x Genomics platform map upstream of 32 end cleavage sites and only a small minority 
of reads contain untemplated adenosines (Fig. 1a). This feature makes it difficult to obtain 
single-nucleotide resolution for mRNA 32 end cleavage sites directly from scRNA-seq data. It is 
therefore currently necessary to develop programs that model read distribution and assign 
upstream reads to the correct cleavage sites 38.  

We observed that Microwell-seq generates longer reads with 40% of them traversing mRNA 32 
end cleavage sites (Fig. 1a and Supplementary Fig. 1a) 45. As Microwell-seq was applied to 
400,000 single cells derived from all major mouse organs, it allowed us to comprehensively 
identify mRNA 32 end cleavage sites at single-nucleotide resolution (Fig. 1a). To generate a 
reference atlas of cleavage sites, we required secondary evidence for the cleavage sites to be 
retained. All cleavage sites that overlapped mRNA 32 ends present in GENCODE version M21 
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or that were present in PolyASite (score >=3), which is the most comprehensive database of 
mRNA 32 ends to date, were kept 29. The remaining cleavage sites were filtered using the 
Bioconductor package cleanUpdTSeq to identify and exclude cleavage sites likely derived from 
mis-priming at internal poly(A) stretches 46. Next, we added the additional cleavage sites to the 
GENCODE annotation if they mapped within 5,000 nucleotides downstream of known mRNA 32 
ends. This strategy added 9,487 cleavage sites belonging to 5,931 protein-coding genes to the 
GENCODE annotation. Overall, our universe of mRNA 32 ends from mouse contains 46,501 
cleavage sites that are present in 21,791 protein-coding genes (Supplementary Table 1). It is 
optional to use our reference atlas of mRNA 32 end cleavage sites, as in the scUTRquant 
pipeline any transcriptome annotation can be used (Fig. 1b). 
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Transcript quantification with a truncated UTRome  

To quantify alternative 32UTR isoforms from scRNA-seq data, we built upon the kallisto-bustools 
toolset 47,48. The kallisto tool pseudoaligns reads to a reference transcriptome and allows us to 
align the data to a given transcriptome rather than to the genome which would require a splice-
aware peak caller for quantification 37. Quantification of alternative transcript isoforms by kallisto 
works best if the transcripts contain unique regions 47. However, within terminal exons, the 
sequences of short 32UTR (SU) isoforms are fully contained within long 32UTR (LU) isoforms, 
thus making these regions ambiguous for quantification. To minimize the overlap between 
alternative 32UTR transcripts, we generated a truncated UTRome that contains 500 nucleotides 
of sequence upstream of all functional mRNA 32 end cleavage sites. 

The cut-off for the truncation was empirically determined (Supplementary Fig. 1b-d). We 
observed that more than 99% of UMIs of tested reference genes map within 500 nucleotides 
upstream of cleavage sites (Supplementary Fig. 1b-d). Next, we performed simulations to 
identify the minimum distance between cleavage sites that allows accurate 32UTR isoform 
quantification if the distance between alternative cleavage sites is smaller than 500 nucleotides. 
This revealed that counts from isoforms that fall within 200 nucleotides may not be quantified 
accurately (Supplementary Fig. 1e). Therefore, when performing 32UTR isoform quantification, 
we have kallisto merge isoforms that fall within 200 nucleotides and report the merged result 
labeled as the most distal cleavage site. This strategy allows us to quantify all 32UTR isoforms 
that are further apart.  

Quantification of gene expression using scUTRquant is accurate  

The scUTRquant pipeline simultaneously quantifies gene expression as well as 32UTR isoform 
expression (Fig. 1b). To test if scUTRquant measures gene expression accurately, we 
compared it to currently used standard methods, such as CellRanger 49. We used six 10x 
Genomics demonstration datasets and correlated the UMI counts per cell obtained by 
CellRanger and by scUTRquant. We obtained near perfect correlations with Spearman9s rank 
correlation coefficients (Ã) of greater than 0.99 (Fig. 1c). When comparing UMI counts per gene 
obtained by the two methods, we again observed strong correlations with Spearman9s Ã of 0.93, 
indicating that scUTRquant is accurate with respect to gene counts (Fig. 1d). Most downstream 
scRNA-seq analyses use clustering to identify groups of cells with similar gene expression 
patterns. Therefore, we compared the Louvain clustering results based on gene counts obtained 
by CellRanger and scUTRquant (Fig. 1e). This revealed highly similar clustering results with 
adjusted RAND index (ARI) values of up to 0.89 (Table 1), thus indicating that scUTRquant and 
CellRanger can be used interchangeably to measure gene expression from scRNA-seq data.   

Quantification of 32UTR isoform expression using scUTRquant is accurate 

The current gold standard for quantifying 32UTR isoform expression are bulk 32 end sequencing 
methods 1,12,21-28. To assess if scUTRquant-derived 32UTR isoform counts reflect the actual 
isoform expression in cells, we compared them to bulk 32 end sequencing counts obtained from 
the same cell type. As 32 end sequencing methods require a lot of material, most available 
datasets contain complex tissues or cell lines 29. Few datasets have quantified 32UTR isoform 
expression in individual well-defined primary cell types, such as embryonic stem cells (ESC) or 
hematopoietic stem cells (HSC), and were amenable for comparison 26-28,50-53. 

When comparing 32UTR transcript counts obtained from bulk 32 end sequencing methods with 
scUTRquant for FACS-sorted HSCs, we observed a strong correlation (Fig. 2a, Spearman9s Ã= 
0.88) 28,50,51. For ESC, the correlation was less strong (Fig. 2b, Spearman9s Ã= 0.72). This was 
likely due to the fact that different conditions were used to keep ESC undifferentiated 26,27,52,53. 
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32UTR isoforms can either be characterized by expression values of the individual isoforms or 
as a single value for each gene such as the long 32UTR index (LUI) which reflects 32UTR 
isoform ratio or isoform usage. LUI is the fraction of reads that map to the LU isoform out of all 
reads that map to the 32UTR. LUI values for a gene range from 0 to 1 and high LUI values 
characterize genes with predominant LU isoform expression. When LUI values were used for 
comparison between 32 end sequencing methods and scUTRquant, slightly lower correlations 
were observed with Spearman9s Ã of up to 0.79 (Supplementary Table 2). Still, we consider the 
level of correlation between the current gold standard method and scUTRquant transcript 
counts as excellent, considering that the procedures were performed by different laboratories 
using vastly different methods 26-28,50-53. 

 

Quantification of 32UTR isoform expression using scUTRquant is highly precise 

Next, we assessed the reproducibility of 32UTR transcript counts in biological replicates. We 
observed a substantially stronger correlation among biological replicate samples when the 
transcript counts were obtained from scRNA-seq samples as when they were obtained from 
bulk 32 end sequencing methods (Fig. 2c-f, Supplementary Table 2). This was true when the 
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replicates were performed by the same laboratory or by different laboratories 26-28,50-53. Strikingly, 
scRNA-seq derived 32UTR isoform counts or isoform usage of biological replicates showed 
Spearman9s Ã= 0.98 and Ã= 0.96 when performed by the same or by different laboratories, 
respectively (Fig. 2e-h, Supplementary Table 2) 50-53. These results demonstrate a substantially 
lower amount of technical variation in 32UTR isoform expression estimates when measured by 
scRNA-seq compared with the bulk 32 end sequencing methods analyzed here. Because of the 
high accuracy and the unprecedented precision, our data suggest that 32UTR isoform 
quantification from scRNA-seq data has the potential to become the new standard.  

Identification of multi-UTR genes across 120 mouse cell types  

After having established that scUTRquant is accurate and precise, we applied it to four scRNA-
seq datasets containing 120 mouse cell types derived from embryonic stem cells, bone marrow, 
and most major organs, including brain 50-52,54,55. The wide range of cell types allowed us to 
comprehensively identify genes that encode identical proteins but generate alternative 32UTRs. 
For 32UTR isoform usage estimation, we pooled all the cells assigned to known cell types as the 
current scRNA-seq data are too sparse to directly compare isoform usage across real single 
cells.  

 

In total, we detected 16,392 expressed protein coding genes (Fig. 3a). We classified a gene as 
multi-UTR gene if it contained at least two cleavage sites in the last exon with each of them 
containing a minimum of 10% of all UMI counts in the last exon in at least one cell type. We 
identified 5,662 multi-UTR genes (Fig. 3a, Supplementary Table 3). When instead using 5% as 
the minimum usage cut-off, we identified 6,395 multi-UTR genes (Supplementary Fig. 3a). The 
analysis of IPA isoforms using the same cut-offs detected 1,756 and 1,998 IPA isoforms, 
respectively (Fig. 3b, Supplementary Fig. 3b, Supplementary Table 3). For alternative 32UTR 
isoforms, we observed that genes expressed in a highly cell type-specific manner had a 

significantly lower fraction of multi-UTR genes (Fig. 3c, c2 = 636, p-value < 10-16). For IPA 
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isoforms, we observed that ubiquitously expressed genes are significantly underrepresented 

among genes with IPA (Fig. 3d, c2 = 42, p-value < 10-11).  

scUTRboot identifies cell type-specific differences in 32UTR isoform usage 

To quantify uncertainty about mean 32UTR isoform usage in a set of cells from a given cell type, 
and to identify statistically significant differences in usage between two or more cell types, we 
applied bootstrap-based statistical procedures, which we have collected together as an R 
package called scUTRboot (see methods). Specifically, we use bootstrapping to estimate 
confidence intervals for mean 32UTR isoform usage. In Figures 4a and 4b, we plot the 
distribution of LUI for two genes across bone marrow cell types 50,51. The width of the confidence 
intervals of the LUI depends on the number of cells in which a gene is expressed. Hence, when 
reporting point estimates or performing differential usage tests, we only calculate the LUI if a 
gene is expressed in at least 50 cells of a given cell type.  

To test for significant differences in 32UTR isoform usage between cell types, the mean LUI is 
computed for each multi-UTR gene within each cell type. A bootstrapping strategy is used to 
calculate a p-value for the difference in mean LUI between the cell types. Among the biological 
replicates shown in Supplementary Fig. 4a and 4b, we only detected a significant difference in 
LUI for Lmo4 expressed in HSC (5% FDR). In contrast, scUTRboot identified significant 
differences in LUI between several cell types, especially in later stages of erythroblast 
differentiation (Fig. 4a, 4b) 50-52,54,55. When comparing differences in 32UTR isoform usage 
across all co-expressed multi-UTR genes (N = 3,153) between HSC and erythroblasts, we 
observed 490 significant LUI changes (Fig. 4c). In addition to requiring a significant p-value, we 
also require a minimum difference of 0.15 in LUI between the two cell types to consider the 
difference in 32UTR isoform usage as significant (Fig. 4c). During erythroblast differentiation, we 
observed shortening of 32UTRs in 436 genes (13.8%) and only observed lengthening of 32UTRs 
in 64 (2.0%) genes (Fig. 4c).   

The analysis of scRNA-seq data allows us to measure 32UTR isoform expression in rare cell 
types. Therefore, in addition to comparing the end points of differentiation pathways, we are 
now able to determine the LUI in intermediate cell types (Fig. 4d). Of the 4,423 multi-UTR genes 
coexpressed in at least two cell types along the erythroblast differentiation pathway, we found 
884 genes (20.0%) with significant LUI changes (Fig. 4d). When plotting the LUI in eight cell 
types during erythroblast differentiation, we observed that most genes show a gradual and 
coordinated change in 32UTR isoform usage during differentiation (Fig. 4d).  

When performing a similar analysis for IPA isoform expression during erythroblast 
differentiation, we detected a significant change in IPA isoform usage in 277 genes (Fig. 4e). 
However, in contrast to the predominant shortening observed for 32UTRs, we detected similar 
fractions of genes with increased (N = 143) or decreased (N = 134) usage of the intronic 
isoform, suggesting that IPA isoforms and alternative 32UTRs in the terminal exon are regulated 
independently during erythroblast differentiation. 

Gene expression and 32UTR isoform usage are independent parameters of gene 
regulation 

As scUTRquant allows us to simultaneously measure gene and 32UTR isoform expression, we 
set out to better understand the relationship between them. We used pairwise Welch t-tests to 
determine the significant gene expression changes between HSC and erythroblasts and 
intersected them with the changes in 32UTR isoform usage (Fig. 4c) 56. This analysis revealed 
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that in most cases, a gene either changed its gene expression or it changed its 32UTR isoform 
usage (Fig. 4f). Only 54 multi-UTR genes simultaneously changed both parameters during 
differentiation from HSC to erythroblasts. To examine if the two parameters are independent, we 
compared the observed over the expected frequency of co-regulated multi-UTR genes and 
found that gene expression and 32UTR isoform usage are indeed independent parameters of 
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gene regulation (c2 = 0.14, p-value = 0.75; Supplementary Table 4). Next, we expanded this 
analysis to a panel of additional differentiation pathways or cell type comparisons. As changes 
in 32UTR isoform usage can only be assessed for genes that are expressed in both tested cell 
types, we restricted the analysis to co-expressed multi-UTR genes. For 15/17 cell type 
comparisons changes in gene expression and changes in 32UTR isoform usage were consistent 
with a null hypothesis of independence (Fig. 4f, Supplementary Fig. 4c, Supplementary Table 
4). These results strongly suggest that gene and 32UTR isoform usage contribute independent 
information on cell type-specific gene regulation. 

However, the most significant gene expression changes are usually observed when a gene is 
absent from one cell type and expressed in the other. When including all genes (single- and 
multi-UTR) in the analysis, we observed roughly similar numbers of gene expression changes 
and 32UTR isoform usage changes when comparing two cell types (Fig. 4g). This result 
indicates that including 32UTR isoform usage in transcriptome analysis identifies hundreds of 
new genes that have previously not been known to be implicated in specific pathways or 
processes, as their gene expression does not significantly change during said process.  

 

txcutr truncates transcriptome annotations and allows 32UTR transcript quantification in 
any species  

We initially developed scUTRquant for the mouse transcriptome. To extend the application of 
scUTRquant to the transcriptomes of other species, we developed a Bioconductor package, 
called txcutr 57, which generates a truncated UTRome from any existing transcriptome 
annotation. The resulting truncated UTRome, together with a scRNA-seq dataset from the same 
species, can then be used as inputs for scUTRquant (Fig. 1b). To demonstrate proof-of-
principle, we used txcutr to truncate (500 nucleotides) the human Ensembl Release version 93, 
which is used by the demonstration datasets on human data supplied by 10x Genomics. Again, 
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we compared gene counts per cell and per gene obtained by scUTRquant with gene counts 
obtained by CellRanger and observed high correlations with Spearman9s Ã= 0.998 and Ã= 0.88, 
respectively (Fig. 5a, 5b) 49. Also, the Louvain clustering analysis on the CellRanger-derived 
gene counts and the scUTRquant-derived gene counts were similar (Fig. 5c, Table 1), thus 
showing that both analysis pipelines can be used to quantify gene expression from scRNA-seq 
data with the advantage that scUTRquant also measures alternative 32UTR isoform expression. 

Finally, we used a truncated GENCODE v38 annotation and applied scUTRquant to a 
melanoma dataset that was generated before and after selection with the BRAF inhibitor PLX-
4720 58. This revealed that 147 genes significantly changed their 32UTR isoform expression (Fig. 
5d, Supplementary Table 5), indicating the genes whose 32UTR isoform changes correlate with 
resistance against the drug. Importantly, again, of the 213 coexpressed multi-UTR genes with 
differential gene expression only three of them also had significant 32UTR isoform changes 
(Supplementary Table 5). This result shows that analysis of differential 32UTR isoform usage 
identifies genes that are otherwise overlooked by standard differential gene expression analysis.    

 

Discussion 

The analysis of alternative 32UTR transcripts from 32-tagged scRNA-seq data will become a 
game changer for the field of APA and alternative 32UTRs. Although the technology was 
developed to measure gene expression, the method is conceptually similar to 32 end 
sequencing protocols, thus enabling the quantification of alternative 32UTR isoform expression 
from different cell types or cell states. The abundant use of the 10x Genomics platform for gene 
expression analysis by researchers from diverse fields will allow re-analysis of the data, thus 
enabling comprehensive quantification of alternative 32UTR isoform expression from basically 
any cell type, condition, or species.  

In addition to being able to measure alternative 32UTRs in any given sample, the biggest 
advance is the high degree of precision obtained by scRNA-seq data for quantifying 32UTR 
transcripts and 32UTR usage (Fig. 2e-h). The high degree of reproducibility observed in 
biological replicates performed on the same cell type by different laboratories is partially due to 
the use of a single experimental platform, the use of UMIs that allow the removal of PCR 
duplicates, and probably due to a more robust chemistry during library preparation 49. The 
unprecedented reproducibility allows the integration of a large number of datasets to obtain a 
more comprehensive picture of alternative 32UTR isoform expression.  

In order to faithfully compare the expression of alternative 32UTR isoforms across large numbers 
of datasets, we developed a predefined, high-confidence atlas of 32 end cleavage sites for 
subsequent quantification of 32UTR isoforms by scUTRquant. Most previously published 
computational pipelines that use scRNA-seq data as input use de novo peak calling on 
individual samples 36-40,42-44. Without the use of a reference atlas some genes are considered 
single-UTR genes in some analyses but classified as multi-UTR genes in others. Our 32 end 
cleavage site atlas uses a recent GENCODE annotation as its basis and adds high-confidence 
32 end cleavage sites that were obtained from pooling the sequencing data from 400,000 single 
cells 45. In our cleavage site atlas, the mRNA 32 ends were mapped from real single cells at 
single-nucleotide resolution. This was accomplished by using data obtained from Microwell-seq, 
a bead and array-based scRNA-seq method whose library preparation protocol generates 
longer reads with 40% of them traversing 32 end cleavage sites 45. The use of Microwell-seq 
data for the mapping of cleavage sites allowed us to overcome the biggest obstacle currently 
faced by other protocols that were also developed for APA quantification from 10x Genomics 
datasets 36-44. Single nucleotide resolution for 32 end cleavage sites is especially important for 
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downstream experimental approaches that require genetic manipulation of APA sites for the 
investigation of potential functions of alternative 32UTR isoforms.  

We provide here a user-friendly reusable open-access Snakemake pipeline that simultaneously 
quantifies gene and 32UTR isoform expression from scRNA-seq data from any species (Fig. 1b). 
As input, any transcriptome annotation can be used. Therefore, the use of our augmented 
GENCODE annotation is optional and new releases of genome annotations can easily be 
incorporated. In addition to quantifying gene and 32UTR isoform expression, we also provide a 
suite of statistical tools to identify genes with significant differences in 32UTR isoform usage. As 
scUTRquant pseudoaligns the reads to a truncated UTRome instead of using genomic 
alignment, the quantification from raw sequencing data to isoform and gene counts can be 
performed in 5-10 mins for a 1,000-cell library on an average laptop.    

scUTRquant is the first scRNA-seq analysis pipeline that was validated transcriptome-wide with 
respect to faithful quantification of 32UTR isoform expression by comparing it to 32 end 
sequencing protocols that are considered the current gold standard for APA quantification 26-

28,33. The validation revealed that scRNA-seq data and 32 end sequencing protocols quantify 
32UTR isoform expression in a highly similar manner (Fig. 2a, 2b, Supplementary Table 2), thus 
indicating that scRNA-seq is accurate with respect to 32UTR isoform expression measured in 
predefined cell types.  

When we compared the clustering results for the human and mouse 10x Genomics 
demonstration datasets that are based on gene counts obtained by scUTRquant and 
CellRanger, we obtained highly similar clusters but not a perfect match (Fig. 1e, 5c, Table 1). 
Our analyses revealed that the largest source of discrepancy is caused by the different 
approaches used by kallisto and CellRanger in dealing with reads that map to more than one 
location in the transcriptome (Table 1, methods). Whereas CellRanger filters out multi-mapping 
reads, kallisto assigns these reads to multiple locations based on additional read evidence from 
surrounding regions 47,49. Furthermore, scRNA-seq data contain many reads that map to internal 
stretches of adenosines 59. The use of a truncated UTRome in scUTRquant removes a large 
fraction of reads that map to these locations. In our opinion, the strategies used by CellRanger 
and kallisto are both valid and it is currently unclear what approach will provide a better 
reflection of true gene and 32UTR isoform expression in cells 60.  

The simultaneous analysis of gene and 32UTR isoform expression between cell types revealed 
that during differentiation a gene either changes its expression or it changes its 32UTR isoform 
usage in most cases (Fig. 4f, 4g). This indicates that analysis of alternative 32UTR isoforms 
identifies large numbers of genes that have never been implicated in specific biological 
processes, meaning that these analyses identify new genes that may be relevant for processes 
in health and disease. Our results further suggest that gene and transcript isoform expression 
are largely independent processes and seem to be associated with different phenotypes, which 
was recently suggested by the observation that genetic variants associated with gene 
expression are largely non-overlapping with genetic variants associated with APA 61. These 
findings, together with previous reports, suggest that the primary role of cell type-specific 
expression of alternative 32UTRs is not the regulation of protein abundance 1,23,25,61-63. It is still 
largely unknown what the biological roles of alternative 32UTRs are. However, the widespread 
quantification of alternative 32UTRs across hundreds of cell types and conditions will have the 
potential to substantially increase our understanding of the regulation and function of alternative 
32UTRs.   
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Table 1. ARI values for Louvain clustering comparisons of mouse and human datasets. 

 Mouse dataset 1 
(Heart_1k_v2) 

Mouse dataset 2 
(Heart_1k_v3) 

Mouse dataset 3 
(Heart_10k_v2) 

Transcriptome 
annotation 

CellR-
clusters 

scUTR-
clusters 

ARI CellR-
clusters 

scUTR-
clusters 

ARI CellR-
clusters 

scUTR-
clusters 

ARI 

Default 8 9 0.80 12 10 0.84 17 15 0.77 
Full-length 8 9 0.74 13 11 0.84 15 19 0.67 

No multi-mapping 9 9 0.89 11 10 0.87 18 15 0.75 

 Human dataset 1 
(PBMC_1k_v2) 

Human dataset 2 
(PBMC_1k_v3) 

Human dataset 3 
(PBMC_10k_v3) 

Transcriptome 
annotation 

CellR-
clusters 

scUTR-
clusters 

ARI CellR-
clusters 

scUTR-
clusters 

ARI CellR-
clusters 

scUTR-
clusters 

ARI 

Ensembl Release v93 8 8 0.72 10 8 0.73 16 15 0.71 

CellR, CellRanger; scUTR, scUTRquant 
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Methods 

mRNA 32 end cleavage site identification from scRNA-seq data 

FASTQ files for adult mouse Microwell-seq data of the Mouse Cell Atlas 45 were downloaded 
and then assembled using PEAR v0.9.6 with settings `-n 75 -p 0.0001`. Cell and UMI barcodes 
were extracted from assembled reads and placed into read headers using umi_tools v0.5.3; 
remaining poly-T regions at the 52 end of assembled reads were trimmed using cutadapt v1.16, 
retaining only sequences with minimum length of 21 nucleotides (nts). Reads were aligned to 
the mm10 genome with HISAT v2.1.0. Per sample strand-specific coverage at the 52 ends of 
aligned reads was computed using the `genomecov -dz -5` command of BEDTools v2.26.0; all 
sample coverages per strand were subsequently merged with GNU2s datamash v1.3. All entries 
within 3 nt radius were merged to the local mode and merge sites with at least 200 reads were 
classified as cleavage site candidates.  

Cleavage site filtering 

Candidate cleavage sites were intersected with 40 nt intervals centered at 32 ends of GENCODE 
vM21 protein-coding transcripts with positively identified 32 ends (no tag `mRNA_end_NF`). 
Intersecting sites (N = 31,196) were classified as <validated=; non-intersecting sites were 
subsequently intersected with 40 nt intervals centered at cluster centers in the PolyASite v1.0 
mm10 Atlas supported by 3 or more experiments 29. Intersecting sites (N = 25,361) were 
classified as <supported=; non-intersecting sites were filtered through cleanUpdTSeq v1.18.0 
with maximum posterior probability of 0.0001 of being an internal priming site 46. Passing sites 
(N = 9,214) were classified as <likely=. The union of <supported= and <likely= cleavage sites was 
formed and each site was annotated according to the GENCODE vM21 annotation with one of 
the ordered labels: <three_prime_UTR=, <five_prime_UTR=, <exon=, <intron=, 
<extended_five_prime_UTR=, <extended_three_prime_UTR=, or <intergenic=, where the existing 
52 ends of transcripts were extended 1 kb upstream and existing 32 ends of transcripts were 
extended 5 kb downstream. 

Transcriptome augmentation and truncation 

The GENCODE vM21 annotation was filtered for protein-coding transcripts with known 32 ends. 
Cleavage sites with a <three_prime_UTR= label were intersected with these transcripts and new 
transcript versions ending at the cleavage sites were generated (<upstream=). All protein-coding 
transcripts with known 32 ends were extended by 5 kb downstream, intersected with the 
<extended_three_prime_UTR= set of cleavage sites, and new transcript versions ending at the 
cleavage sites were generated (<downstream=). All transcripts (GENCODE, upstream, 
downstream) were truncated to include 500 nts from their 32 end. Truncated transcripts with 
fewer than 50 nts difference were reduced to a single representative copy, with prioritization for 
downstream sites. The collection of remaining truncated transcripts was exported to GTF and 
the corresponding sequences to FASTA. This resulted in augmenting the GENCODE annotation 
with 9,487 additional 32UTR isoforms belonging to 5,931 protein-coding genes. 

Empirical distributions of 10x Genomics peak width 

A set of 56 peaks located at the 32 ends of transcripts was manually curated by examining the 
genomic alignments of 10x Genomics Chromium v2 samples from the Tabula Muris dataset 54. 
Peaks were selected for absence of splice sites, potential internal priming sites (A-rich regions), 
and nearby alternative cleavage sites in the immediate 800 nts upstream of the annotated 
cleavage site. The coverage of 52 ends of reads was extracted with the `bedtools genomecov -5` 
command for each sample from the Tabula Muris dataset and the distance from the annotated 
cleavage site of the corresponding transcript was computed. For each gene-sample 
combination, the 95th percentile for distance from the 32 end was computed. Additionally, 95th 
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percentiles were computed for each gene and sample, aggregating across samples and genes, 
respectively (Supplementary Fig. 1b-d). 

Kallisto transcript quantification resolution 

The sequence of the Ensembl transcript Rac1-201 (ENSMUST00000080537) was used as the 
basis for a two-isoform transcript expression simulation. The first simulated isoform (<distal=) 
used the annotated 32 end; the second (<proximal=) was created by removing specified intervals 
from the 32 end. For each round of simulation, samples of read distances from the 32 end of each 
transcript were generated according to a discretized gamma distribution with mean 300 and 
standard deviation of 100. Reads of 100 nts were generated using the respective transcript 
sequences and the randomly sampled positions. The `kallisto quant` command was used to 
estimate transcript abundance, using the parameters `--single -l1 -s1 --fr-stranded --
pseudobam` and truncated versions of the transcripts as index. Relative error for each transcript 
was computed using estimated and true abundances. A parameter sweep was performed with 
all combinations of the following parameters: (a) cleavage site distances between [50-700] with 
50 nt steps; (b) truncated transcript lengths [350-600] with 50 nt steps; (c) proximal counts 
{50,100}; (d) distal counts {50,100}. Each parameter combination was simulated for 10 
replicates. Final resolution was selected based on mean relative errors approaching zero 
(Supplementary Fig. 1e). 

Kallisto customization and scUTRquant settings 

The `kallisto bus` command of kallisto version 0.46.2 was extended to support strand-specific 
pseudoalignment for both FASTQ and BAM input files (ref: 
https://github.com/mfansler/kallisto/releases/tag/v0.46.2sq). All 10x Genomics 32 end datasets 
were pseudoaligned with `kallisto bus --fr-stranded`. Cell barcodes for the corresponding 
technology version (v2 or v3) were used as whitelists for the `bustools correct` command. 
Truncated isoforms in the same gene with 32 ends nearer than 200 nts apart (N = 7,022) were 
merged in the `bustools count` step. 

Additional scUTRquant indices generated with txcutr 

The default target for scUTRquant uses the mouse UTRome described above. Additional 
scUTRquant targets were created with `txcutr` v0.99.0 (functionally equivalent to the 
Bioconductor release v1.0.0) to generate truncated GTF annotations, FASTA sequences, and 
merge tables 57. All indices used a 500 nt truncation length and a merge distance of 200 nts. In 
brief, all GENCODE annotations were first pre-filtered with an AWK script to remove any entries 
with the `mRNA_end_NF` tag (indicating unvalidated 32 ends) and then restricted to protein-
coding transcripts. The txcutr method `truncateTxome` clips all transcripts longer than the 
specified length, anchored at the 32 end, intersects the truncated transcripts with the child exons 
of that transcript, and then redefines the genomic range of the gene to the union of all child 
transcripts. Transcripts that are identical after truncation are deduplicated to retain only one 
representative copy, which is annotated with the transcript ID of the transcript with 
lexicographical priority. The resulting TxDb object is then exported as a GTF and a FASTA file 
using txcutr9s `exportGTF` and `exportFASTA` methods, respectively. Finally, a merge table is 
generated with txcutr9s `generateMergeTable` by further truncating transcripts to the specified 
merge distance, anchored at the 32 end, intersecting within the parent gene, and recording the 
most downstream transcript with which each intersects. Additional specification and 
implementation details are found in the txcutr documentation. All indices used in these results 
are reproducible from the Snakemake pipeline available at https://github.com/Mayrlab/txcutr-db. 

CellRanger and sqUTRquant UMI count correlations 
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Six 10x Genomics 32 end mouse demonstration datasets were downloaded as FASTQ files from 
the 10x Genomics website (`heart_1k_v2`, `heart_1k_v3`, `heart_10k_v3`, `neuron_1k_v2`, 
`neuron_1k_v3`, and `neuron_10k_v3`) and processed through the scUTRquant pipeline using 
default settings. The corresponding filtered HDF5 UMI counts from CellRanger 3.0.0 were also 
downloaded and loaded as SingleCellExperiment objects in R 49. For each dataset, only cells (or 
genes) present in both the CellRanger and scUTRquant results were plotted and used to 
compute Spearman correlations. 

Similarly, three 10x Genomics 32 end human demonstration datasets (`pbmc_1k_v2`, 
`pbmc_1k_v3`, and `pbmc_10k_v3`) were processed using scUTRquant with the Ensembl 
Release 93 annotation preprocessed according to the CellRanger 3.0.0 pipeline and truncated 
to 500 nts using txcutr. Comparisons were performed against CellRanger UMI counts in the 
same manner as above. 

CellRanger and sqUTRquant clustering comparisons 

For each 10x Genomics dataset, the CellRanger and scUTRquant counts were filtered to 
common cells. Clustering was performed following Amezquita et al., (2019) 64. In brief, size 
factors were computed with the `computeSumFactors` from the `scran` Bioconductor package 
65, and then used to compute normalized log counts. The top 1000 high-variance genes were 
used to compute the first 20 principal components. Louvain clustering was performed on the 
cells in this reduced representation. The Adjusted RAND Index (ARI) between the CellRanger 
and scUTRquant clusters was computed using the `aricode` R package 66. 

CellRanger versus scUTRquant clustering diagnostic analyses: 

In order to identify sources of difference in the clustering of gene counts obtained from 
CellRanger and scUTRquant, two additional comparisons were made. To test whether the 
differences were due to exclusion of reads from internal priming sites that are excluded a priori 
by truncation, a full-length version of the UTRome annotation was used as the target in 
scUTRquant (<Full-length=; Table 1). Clustering was then performed following identical 
procedures as described above. 

Another possible source of difference we considered was multimapping reads. These are 
excluded in the CellRanger 3.0.0 pipeline but are retained in the scUTRquant pipeline. To 
assess this, each kallisto equivalence class was checked for whether all transcripts overlapping 
in the equivalence class belonged to the same gene. When this was not true, the genes 
involved were marked as having multimapping reads. All such genes were then filtered out at 
the start of the clustering analysis, preventing their consideration in the PCA reduction step (<No 
multi-mapping=; Table 1). 

Classification of single- and multi-UTR genes from 120 mouse cell types 

Samples from embryonic stem cells (ESCs; GEO:GSM3629847-8), Tabula Muris 
(GEO:GSM3040890-917), bone marrow (GEO:GSM2877127-32), and brain datasets 
(GEO:GSM3722100-115) were quantified for transcript usage following the default settings of 
scUTRquant and cells were annotated with published cell type annotations 50-52,54,55. Cell type 
labels for bone marrow cell types were obtained by combining publicly available transcriptome 
and proteome information for erythroblast differentiation 51,67. Cells not previously annotated in 
published analyses were excluded.  

All datasets were merged into one SingleCellExperiment object and counts were size-factor 
normalized using the `computeSumFactors` method from Bioconductor package `scran` 65. UMI 
counts were aggregated by cell type and the percentage of isoform usage per gene was 
computed, excluding isoforms whose 32 ends were located within a GENCODE-annotated intron 
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of the corresponding gene. For each gene, the number of isoforms with at least 10% usage in at 
least one cell type were counted. Genes with two or more such isoforms were classified as 
multi-UTR genes; otherwise, they were classified as single-UTR genes. To identify intronic 
polyadenylation (IPA) genes, all mRNA 32 ends of a transcription unit were included. IPA 
isoforms were counted if they contained at least 10% of reads of a gene in at least one cell type. 
The Snakemake pipeline for classification is available at https://github.com/Mayrlab/atlas-mm. 

Comparison of 32UTR isoform counts obtained by scUTRquant with bulk 32 end 
sequencing methods 

FACS-sorted hematopoietic stem cells (HSCs): 

FASTQ files from FACS-sorted HSC samples of Sommerkamp et al., (2020) were downloaded 
from ArrayExpress (E-MTAB-7391) and 32UTR isoforms were quantified by pseudoalignment of 
R2 using the UTRome annotation and `kallisto quant` 28. This was compared to scRNA-seq from 
Dahlin et al., (2018) using the annotations of Wolf et al., (2019) to filter for early HSCs (clusters 
0 and 1) 50,51. The scRNA-seq UMI counts were aggregated by sample, and transcript per 
million (TPM) per sample was computed by normalizing to UMIs per million. LUI values were 
computed for all multi-UTR genes expressing exactly two 32UTR isoforms present in the last 
exon of all samples. 

ESC datasets: 

32UTR isoform UMI counts were quantified for scRNA-seq ESC datasets using the scUTRquant 
pipeline with default settings and the mouse UTRome 52,53. TPM values and cleavage site 
locations for bulk ESC 32 end sequencing datasets 26,27 were obtained from the PolyASite v2.0 
database 29. Bulk cleavage sites were intersected with the UTRome annotation using a 50 nt 
interval around PolyASite cluster centers. The corresponding TPM values for all PolyASite 
clusters intersecting a given UTRome transcript were summed to yield a translation of PolyASite 
quantifications to UTRome quantifications. The scRNA-seq data was summarized to TPM per 
sample by aggregating counts across all cells in each sample and normalizing to UMIs per 
million. LUI values were computed for all multi-UTR genes expressing exactly two 32UTR 
isoforms present in the last exon of all samples. 

Bootstrap mean LUI estimates 

For each cell type (Fig. 4a, 4b) or library (Supplementary Fig. 4a, 4b), 2000 bootstrap samples 
were generated by resampling with replacement from the pool of all cells with that cell type or 
library annotation. The LUI was computed for each bootstrap sample. Percentile statistics were 
then calculated for these values across the bootstrap samples to determine the confidence 
interval on the mean LUI. 

Two-sample bootstrap test with scUTRboot 

The R package `scutrboot` implements two-sample hypothesis testing with a bootstrap strategy 
for estimating p-values. The `twoSampleTest` function provides two general modes of tests 
based on the statistic computed across the samples: either a Usage Index (UI) or a Wasserstein 
Distance (WD), also called the Earth Mover2s Distance.  

For the UI statistic, users provide a feature (`featureIndex`), such as short 32UTR isoform (SU), 
long 32UTR isoform (LU), or intronic polyadenylation isoform (IPA), for each gene. The UI 
statistic per gene is computed as the difference in the fraction of usage of this isoform in the 
gene across the two sets of cells. This characterizes the difference across sets of cells for a 
single feature. 

Alternatively, the WD statistic per gene is computed as half the total difference in all isoform 
usages in the gene across the two sets of cells. When a gene has exactly two isoforms, the UI 
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and WD statistics are identical in magnitude. However, the WD statistic is sensitive to changes 
in any isoform, including cases when there are more than two isoforms. 

For either statistic, p-values per gene are estimated using bootstrap resampling under the null 
hypothesis that the two samples of cells came from identically distributed populations. 
Specifically, the union of the two samples of cells is used to sample with replacement sets of 
cells of the same size as the original samples. For each bootstrap sample, the statistic is 
computed for each gene and the p-value is estimated as the fraction of bootstrap statistics as 
extreme or greater than the observed statistic, with a pseudocount of 1 included to provide a 
conservative upper bound for rare events. 

scUTRboot includes a `minCellsPerGene` option to exclude genes that are not sufficiently 
coexpressed in the samples to compare with confidence. When this is set, bootstrap samples 
that do not satisfy this minimum are discarded and the p-value will only be computed from the 
retained samples. The number of bootstraps samples used to estimate the p-value is included in 
the test results. 

Pairwise two-sample bootstrap tests on HSC to erythroblasts differentiation trajectory: 

All tests were performed on size-factor normalized UMI counts. scUTRboot was used to perform 
a two-sample LUI test (`featureIndex==is_distal=`) and IPA (`featureIndex==is_ipa=`) tests on all 
pairs of all cell types (8 cell types, 28 unique pairs) along the HSC to erythroblast trajectory from 
the bone marrow dataset 50,51 using 10,000 bootstrap samples on all co-expressed genes 
(minimum 50 cells expressing each gene) and corrected for multiple testing using Benjamini-
Hochberg procedure. Genes with at least a LUI difference > 0.15 and q-value < 0.05 were 
classified as significant. 

Comparing differential gene expression with differential 32UTR isoform usage 

Differential gene expression was performed on pairs of cell types following Amezquita et al., 
(2019) 64. In brief, gene-level UMI counts were log-normalized using size factors and a 
pseudocount of 1 and differential expression was tested with a Welch t-test 56. All p-values were 
corrected using the Benjamini-Hochberg procedure and genes were classified as significant if 
fold-changes exceeded 1.5 in either direction and q-value < 0.05. To check against an alternate 
differential gene expression pipeline procedure, we converted gene-level UMI counts to Seurat 
objects, normalized with SCTransform, and performed pairwise tests with MAST 68. We 
observed comparable numbers of significant genes when either using MAST or Welch t-test. 
We report the Welch t-test results. 

To identify genes with differential 32UTR isoform usage, two-sample WD tests were performed 
on all cell type pairs shown in Fig. 4f using scUTRboot on size-factor normalized UMI counts. All 
p-values were corrected using the Benjamini-Hochberg procedure and genes were classified as 
significant if WD > 0.15 and q-value < 0.05.  

To test if gene expression and 32UTR isoform usage are independent, for each comparison, all 
coexpressed multi-UTR genes were classified as either non-significant, DGE only, DTU only, or 
both. A Chi-Square test for independence was performed on the resulting tabulation. 

BRAF inhibitor-resistant melanoma data set analysis: 

The 10x Genomics Chromium single cell 32 samples (GEO: GSM2897333-4) were processed 
using scUTRquant with the GENCODE v38 annotation truncated to 500 nts using txcutr 58. Cells 
with more than 10% of UMIs coming from mitochondrial genes and those with low transcript 
diversity, as measured by Shannon2s diversity index < log2(500), were excluded as low quality. 
UMI counts were size factor-normalized. A two-sample LUI test between 451Lu-resistant and 
451Lu-parental samples was performed using scUTRboot, p-values corrected with the 
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Benjamini-Hochberg procedure, and genes with a LUI difference > 0.15 and q-value < 0.05 
were classified as significant. Log-normalized UMI counts at the gene-level were used to test 
differential gene expression with a Welch t-test, as above. 
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