

1

2

3 **The Delta variant of SARS-CoV-2 maintains high sensitivity
4 to interferons in human lung cells**

5

6 Rayhane Nchioua¹, Annika Schundner², Susanne Klute¹, Sabrina Noettger¹, Fabian Zech¹,
7 Lennart Koepke¹, Alexander Graf³, Stefan Krebs³, Helmut Blum³, Dorota Kmiec¹, Manfred
8 Frick², Frank Kirchhoff^{1*} and Konstantin M.J. Sparrer^{1*}

9 ¹Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm,
10 Germany

11 ²Institute of General Physiology, Ulm University Medical Center, Albert-Einstein-Allee 11,
12 89081 Ulm, Germany

13 ³Laboratory for Functional Genome Analysis, Gene Center, LMU München, Feodor-Lynen Str.
14 25, 81377 Munich, Germany.

15

16

17 *Corresponding authors: Konstantin.Sparrer@uni-ulm.de, Frank.Kirchhoff@uni-ulm.de

18 **Keywords:** Interferon, COVID-19, SARS-CoV-2, innate immunity, variants of concern

19 **Running title:** IFN susceptibility of SARS-CoV-2 variants of concern

20 Abstract

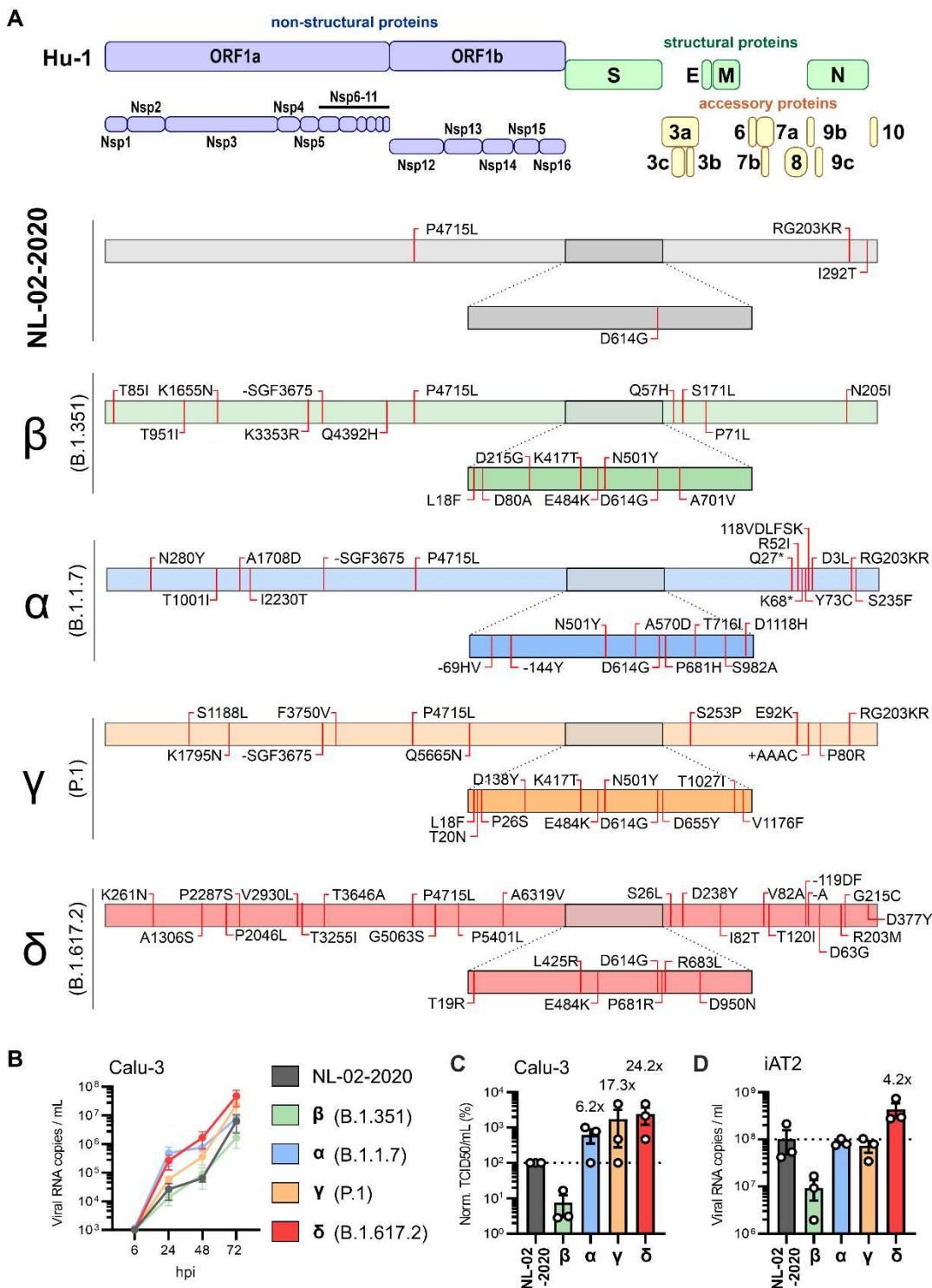
21 Interferons are a major part of the anti-viral innate defense system. Successful pathogens, including
22 the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), need to overcome these
23 defenses to establish an infection. Early induction of interferons (IFNs) protects against severe
24 coronavirus disease 2019 (COVID-19). In line with this, SARS-CoV-2 is inhibited by IFNs *in*
25 *vitro*, and IFN-based therapies against COVID-19 are investigated in clinical trials. However,
26 SARS-CoV-2 continues to adapt to the human population resulting in the emergence of variants
27 characterized by increased transmission fitness and/or decreased sensitivity to preventive or
28 therapeutic measures. It has been suggested that the efficient spread of these so-called “Variants
29 of Concern” (VOCs) may also involve reduced sensitivity to IFNs. Here, we examined whether
30 the four current VOCs (Alpha, Beta, Gamma and Delta) differ in replication efficiency or IFN
31 sensitivity from an early isolate of SARS-CoV-2. All viruses replicated in a human lung cell line
32 and in iPSC-derived alveolar type II cells (iAT2). The Delta variant showed accelerated replication
33 kinetics and higher infectious virus production compared to the early 2020 isolate. Replication of
34 all SARS-CoV-2 VOCs was reduced in the presence of exogenous type I, II and III IFNs. On
35 average, the Alpha variant was the least susceptible to IFNs and the Alpha, Beta and Gamma
36 variants show increased resistance against type III IFN. Although the Delta variant has
37 outcompeted all other variants in humans it remained as sensitive to IFNs as an early 2020 SARS-
38 CoV-2 isolate. This suggests that increased replication fitness rather than IFN resistance may be a
39 reason for its dominance. Our results may help to understand changes in innate immune
40 susceptibility of VOCs, and inform clinical trials exploring IFN-based COVID-19 therapies.

41 **Introduction**

42 The IFN system constitutes a potent barrier against viral infections [1–3]. After recognition
43 of viral pathogen-associated molecular patterns by germ-line encoded pattern recognition
44 receptors, signaling cascades are activated. This results in the induction and secretion of IFNs as
45 well as other pro-inflammatory cytokines [1]. The secreted IFNs can act in an autocrine or
46 paracrine fashion. Upon binding to their respective receptors, the expression of hundreds of so-
47 called interferon stimulated genes (ISGs) is induced, among them many well-known anti-viral
48 factors [4,5]. IFNs are classified into three major types, based on the type of their receptor [6].
49 Human type I IFNs, including 13 subtypes of IFN α and IFN β , bind to the IFN α / β receptor
50 (IFNAR). Type II IFNs, such as IFN γ , interact with the IFN-gamma receptor (IFNGR). The Type
51 III IFN family comprises four members (IFN λ 1-4) which act via a complex composed of the
52 Interleukin 10 receptor β -subunit (IL10R2) and the Interleukin 28 receptor α -subunit (IFNLR1).
53 Type I and III IFNs may be secreted by almost any cell type, whereas type II IFN production is
54 restricted to immune cells, particularly T and Natural Killer (NK) cells. Innate immunity plays a
55 major role in defending against emerging pathogens like SARS-CoV-2, the causative agent of
56 COVID-19 [7–11]. This respiratory virus has a profound global impact both on a socioeconomic
57 level and as a major threat to human health. To date (November 4th, 2021), more than 240 million
58 SARS-CoV-2 infections were reported worldwide, resulting in over 4.9 million deaths.

59 To be able to replicate in the presence of a functioning innate immune system, SARS-CoV-
60 2 utilizes more than half of its about 30 proteins to suppress IFN induction and signaling [12–15].
61 However, despite these evasion mechanisms SARS-CoV-2 still remains sensitive towards all types
62 of IFNs, with types II and III being most effective [12,16–19]. Importantly, early induction of high
63 levels of IFNs in patients were reported to prevent severe COVID-19 [8,9]. Conversely, inborn

64 defects in the IFN system or auto-antibodies against type I IFNs are frequently associated with
65 severe disease [10,11]. Thus, IFN is currently evaluated in clinical trials as a therapeutic approach
66 [20].


67 The efficient worldwide spread of the virus was associated with the emergence of novel,
68 fitter variants that may show an increased ability to avoid innate immune control[21–23].
69 Currently, there are four recognized SARS-CoV-2 “Variants of Concern” (VOCs): B.1.1.7,
70 B.1.351, P.1 and B.1.617.2 (World Health Organization, 2021). For simplification, these are also
71 referred to as Alpha, Beta, Gamma and Delta variants, respectively. The order of their appearance
72 in the human population is Beta, Alpha, Gamma and Delta. While the population spread of the
73 Beta and Gamma variants was limited to certain regions, the Alpha variant rapidly overtook other
74 strains in most countries in early 2021. However, within months it was outcompeted by the Delta
75 VOC, which is currently (November 2021) responsible for about 90% of all SARS-CoV-2
76 infections worldwide. The fact that emerging VOCs outcompeted the early pandemic SARS-CoV-
77 2 strains proves their increased fitness. A major hallmark of VOCs is increased escape from
78 neutralizing antibodies [21,24]. However, VOCs also show various alterations outside the region
79 encoding the Spike (S) protein that is the main target of the adaptive humoral immune response.
80 Currently, it is poorly understood whether they also evolved increased resistance towards innate
81 immune defenses.

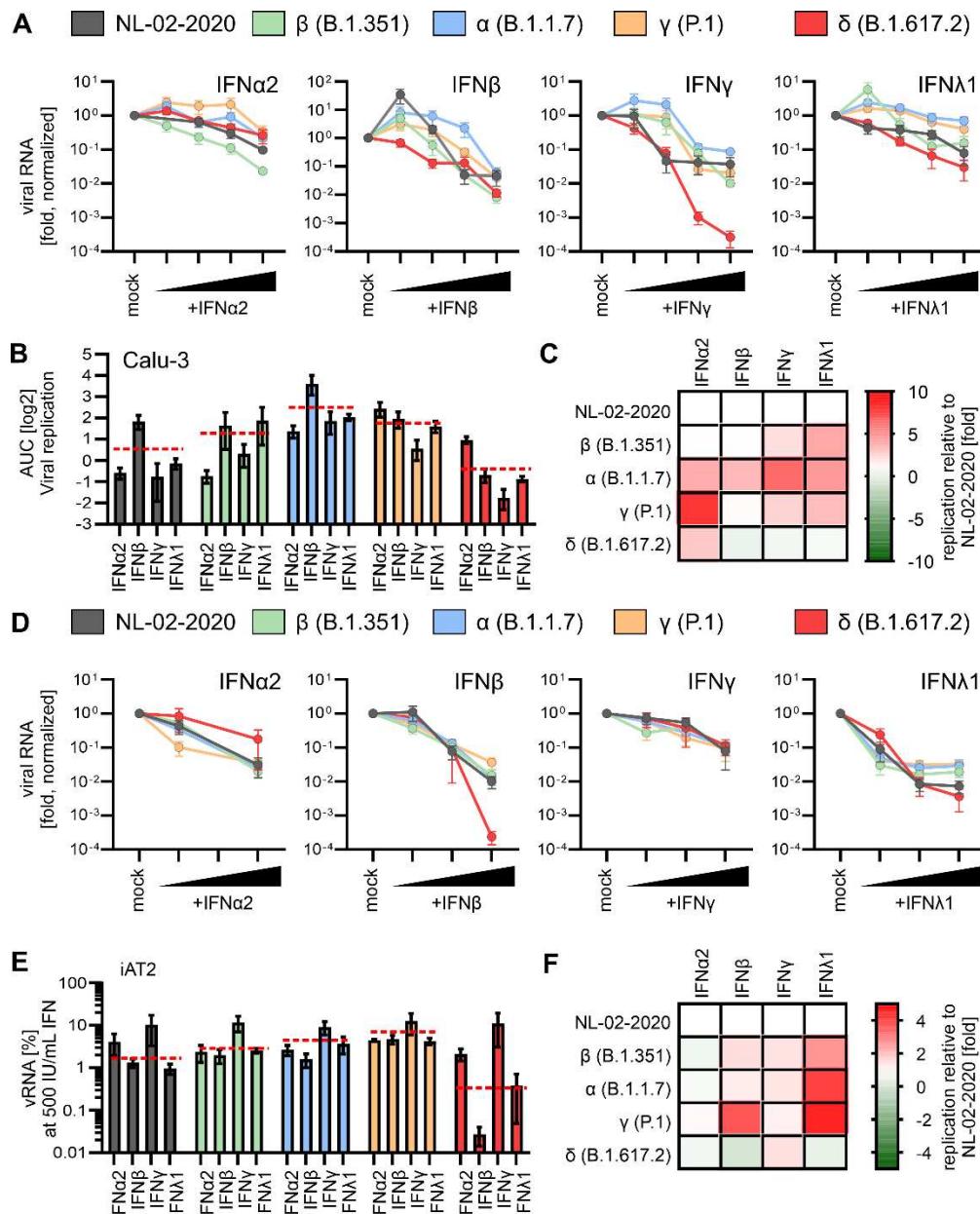
82 **Results and Discussion**

83 Next-generation sequencing of an early SARS-CoV-2 isolate from February 2020 (NL-02-
84 2020) and four VOC isolates revealed amino acid changes in the S glycoprotein, as well as in
85 proteins involved in replication and innate immune escape, compared to the first available
86 sequence of the Wuhan-Hu-1isolate (Fig 1A). The impact of mutations in the S protein of VOCs

87 has been the focus of many studies. Some of them are known to affect the affinity between S and
88 the cellular receptor ACE2 and/or alter proteolytic activation of S, resulting in increased
89 infectivity. In addition, mutations in E484, S477 or L452 in S allow the virus to evade adaptive
90 immune responses [21,22,24]. Thus, for example the Delta variant was reported to be resistant to
91 neutralization by some monoclonal antibodies and less susceptible towards patient sera [21].
92 However, the impact of alterations outside of S is poorly understood. The Delta VOC has
93 accumulated 29 amino acid changes or deletions outside of the S region compared to the Wuhan-
94 Hu-1 reference strain (Fig. 1A). These include mutations in Nsp3, ORF6 and N, which were
95 reported to be crucial for IFN escape [12,25,26]. The consequence of these alterations is, however,
96 unknown.

97 Cells of the respiratory tract are primary targets of SARS-CoV-2 infection. We found that
98 the Delta variant replicated with higher efficiency (Fig 1B, Figs S1A and S1B) and produced ~24-
99 fold higher infectious titers at 3 days post-infection (Fig 1C) compared to the NL-02-2020 isolate
100 in the human lung cell line Calu-3. The Alpha and Gamma variants showed intermediate
101 phenotypes, while the Beta variant replicated with moderately reduced efficiency compared to NL-
102 02-2020. The Delta VOC replicated with ~4-fold higher efficiency than all other SARS-CoV-2
103 isolates analyzed in iPSC-derived alveolar epithelial type II (iAT2) cells (Fig 1D). AT2 cells
104 constitute approximately 60% of the pulmonary alveolar epithelial cells and are the main targets
105 of SARS-CoV2 in the distal lung [27]. Virus-induced loss of AT2 cells is linked to the severity of
106 COVID-19 associated acute respiratory distress syndrome [28] and reduced lung regeneration
107 [27]. Altogether, the Delta variant that currently dominates the COVID-19 pandemic clearly
108 showed the highest replication efficiencies in human lung cells.

109


110 **Fig 1. Amino acid differences and replication kinetics of early SARS-CoV-2 and VOCs. A,**
 111 Schematic depiction of the SARS-CoV-2 genomic arrangement and proteins (top). Outline of the
 112 specific amino acid exchanges compared to the reference Hu-1 sequence in an early European Feb
 113 2020 SARS-CoV-2 isolate (NL-02-2020), and four variants of concern in the order of appearance:

114 Beta (B.1.351), Alpha (B.1.1.7), Gamma (P.1) and Delta (B.1.617.2) as assessed by next-
115 generation sequencing assembly of the full genome. **B**, Viral RNA in the supernatant of Calu-3
116 cells infected with indicated SARS-CoV-2 variants was quantified by qRT-PCR at indicated
117 timepoints post infection (MOI 0.05). Day 0 wash CTRL values were subtracted from data shown
118 in the panel. $n=3\pm\text{SEM}$. **C**, Infectious SARS-CoV-2 particles in the supernatant, corresponding to
119 the 72h post-infection time point shown in (B). $n=3\pm\text{SEM}$. **D**, Viral RNA in the supernatant of
120 iAT2 cells infected with indicated SARS-CoV-2 variants was quantified by qRT-PCR at 2 days
121 post infection (MOI 0.5) day 0 wash control values were subtracted from data shown in the panel.
122 $n=3\pm\text{SEM}$. Related to Fig S1.

123 Consistent with published results [12,29], the NL-02-2020 isolate was more sensitive
124 towards IFN β , IFN γ and IFN $\lambda 1$ than to IFN $\alpha 2$ in Calu-3 cells (Figs 2A and 2B and Fig S2A). IFN
125 treatment did not affect cell viability (Fig S2B). All VOCs were still susceptible towards
126 exogenous IFNs, albeit not to the same extent as NL-02-20 (Figs 2A and 2B). Area under the curve
127 analysis (Fig 2B) as an indicator of virus production in the presence of different concentrations of
128 IFNs revealed that the Beta and Gamma VOC showed moderately increased and the Alpha variant
129 the highest (8-fold) resistance against IFN treatment. Susceptibility of the Alpha, Delta and
130 especially the Gamma variant towards IFN $\alpha 2$ was 3 to 10-fold decreased. The Beta, Alpha and
131 Gamma variants were approximately 5-fold less susceptible towards IFN $\lambda 1$ than the NL-02-2020
132 and Delta isolates (Fig 2C). Notably, the Delta variant remained overall at least as sensitive
133 towards IFN treatment as the NL-02-2020 isolate (Figs 2B and 2C).

134 For the most part, analysis of iAT2 cells confirmed the results obtained in Calu-3 cells (Figs 2D-
135 F, S3A). However, type II IFN was less effective against SARS-CoV-2 in iAT2 cells than in Calu-
136 3 cells, suggesting different receptor expression or pathway activity (Fig. 2D). In comparison,
137 IFN β and IFN $\lambda 1$ remained highly efficient and decreased viral RNA levels by more than two
138 orders of magnitude. Controls showed the metabolic activity of iAT2 cells was not affected by
139 IFN treatment (Fig S3B). Focusing on the viral load at the highest IFN dose compared to the non-

140 treated sample revealed all VOCs remained sensitive towards IFN treatment (Figs 2E and 2F),
 141 with the Gamma and Alpha variant being ~3- and 4-fold less affected by IFN treatment,
 142 respectively. In comparison to the early NL-02-2020 isolate the Beta, Alpha and Gamma VOCs
 143 were 3-5-fold less susceptible to inhibition by type III IFN (Fig 2F). In line with the results in
 144 Calu-3 cells, the Delta variant was still sensitive towards IFN, even more so in the case of IFN β .

145

146 **Fig 2. Interferon sensitivity of NL-02-2020 and VOCs.** A, Normalized amount of viral RNA in
 147 the supernatant of Calu-3 cells infected with indicated SARS-CoV-2 variants was quantified by

148 qRT-PCR at 72h post-infection (MOI 0.05, no IFN set to 100%). Cells were infected 3 days post
149 treatment with indicated IFNs (α 2, β and γ 0.5, 5, 50 and 500 U/ml) or IFN λ 1 (0.1, 1, 10 and 100
150 ng/ml). n=2 \pm SEM. **B**, Area under the curve analysis of the data in (A) representing the replication
151 of the variants in the presence of IFNs. Red lines indicate the average over all IFNs for one variant.
152 **C**, Heatmap displaying differences in viral replication (Area under the curve analysis) of the VOCs
153 compared to the NL-02-2020 variant upon IFN treatment of Calu-3 cells. Red, increased
154 replication, green, decreased replication relative to replication of NL-02-2020. Data from (A). **D**,
155 Normalized amount of viral RNA in the supernatant of iAT2 cells infected with indicated SARS-
156 CoV-2 variants as quantified by qRT-PCR at 48h post-infection (MOI 0.5, no IFN set to 100%).
157 Cells were infected for 2 days post treatment with indicated IFNs (α 2, β and γ : 5, 50 and 500 U/ml)
158 or IFN λ 1 (1, 10 and 100 ng/ml). n=4 \pm SEM. **E**, Percentage of viral RNA in the supernatant of iAT2
159 cells as a fraction between non-treated and IFN treated (500 IU/mL or 100 ng/mL). data from (D).
160 Red lines indicate the average over all IFNs for one variant. **F**, Heatmap displaying fold differences
161 in viral replication of the VOCs in iAT2 cells compared to the NL-02-2020 variant (set to 1) upon
162 treatment with IFN (500 IU/mL or 100 ng/mL). Red, increased replication, green, decreased
163 replication relative to NL-02-2020. Data from (D). Related to Figs S2 and S3.

164 A variety of viral features, including virion infectivity, replication efficiency, and
165 efficiency of immune evasion, may contribute to the emergence of SARS-CoV-2 VOCs. Antibody
166 escape of VOCs has been extensively studied [30–32] and especially the Delta variant showed
167 decreased sensitivity to neutralization [21]. Here, we confirmed [23] that the Alpha variant shows
168 reduced susceptibility to IFNs. However, this VOC showed little if any increase in replication
169 fitness in human lung cells. In comparison, the dominating Delta variant clearly replicates to higher
170 levels but remains highly susceptible to inhibition by IFNs. It is tempting to speculate that the
171 Alpha variant had an advantage over the original SARS-CoV-2 strains because of its reduced IFN
172 sensitivity but was later outcompeted due to the increased replication fitness/transmission of the
173 Delta variant. Coronaviruses are prone to recombination and combination of the IFN resistance of
174 the Alpha variant with the replication advantage of the Delta variant poses a threat for the
175 emergence of a new VOC.

176 Reduced susceptibility towards IFNs is likely determined by mutations outside of S.
177 Notably, the Alpha and Gamma VOCs showing reduced type III IFN sensitivity share a deletion
178 in Nsp6, which was previously implicated in inhibiting innate immune responses [12,14]. SARS-
179 CoV-2 utilizes most of its genes to suppress or counteract innate immune defense mechanisms
180 [12,14]. Thus, these viral countermeasures most likely play a key role in virus transmission.
181 Further studies on the molecular determinants of reduced IFN sensitivity and improved innate
182 immune evasion of emerging SARS-CoV-2 variants are highly warranted.

183 Our results indicate that IFN β and IFN λ 1 are most effective in inhibiting the Delta VOC in
184 human alveolar epithelial type II cells proposed to play a key role in the spread and pathogenesis
185 of SARS-CoV-2. This finding might help to improve IFN-based therapies against the SARS-CoV-
186 2 VOC that currently dominates the pandemic.

187 Materials and Methods

188 **Cell culture.** Calu-3 (human epithelial lung adenocarcinoma) cells were cultured in Minimum
189 Essential Medium Eagle (MEM, Sigma, Cat#M4655) supplemented with 10% (upon and after
190 viral infection) or 20% (during all other times) heat-inactivated fetal bovine serum (FBS, Gibco,
191 Cat#10270106), 100 units/ml penicillin, 100 μ g/ml streptomycin (ThermoFisher, Cat#15140122),
192 1 mM sodium pyruvate (Pan Biotech, Cat#P04-8010), and 1x non-essential amino acids (Sigma,
193 Cat#M7145). Vero E6 cells (*Cercopithecus aethiops* derived epithelial kidney, ATCC) and
194 TMPRSS2-expressing Vero E6 cells (kindly provided by the National Institute for Biological
195 Standards and Control (NIBSC), No. 100978) were grown in Dulbecco's modified Eagle's
196 medium (DMEM, Gibco, Cat#41965039) supplemented with 2.5% (upon and after viral infection)
197 or 10% (during all other times) heat-inactivated FBS (Gibco, Cat#10270106), 100 units/ml
198 penicillin, 100 μ g/ml streptomycin (ThermoFisher, Cat#15140122), 2 mM L-glutamine (Gibco,

199 Cat#25030081), 1 mM sodium pyruvate (Pan Biotech, Cat# P04-8010), 1x non-essential amino
200 acids (Sigma, Cat#M7145) and 1 mg/mL Geneticin (Gibco, Cat#10131-019) (for TMPRSS2-
201 expressing Vero E6 cells). Caco-2 cells (human epithelial colorectal adenocarcinoma, kindly
202 provided by Prof. Holger Barth (Ulm University)) were grown in the same media as Vero E6 cells
203 but with supplementation of 10% heat-inactivated FBS.

204 Human induced Alveolar Type 2 cells (iAT2) were differentiated from BU3 NKX2-
205 1^{GFP};SFTPC^{tdTomato} induced pluripotent stem cells [33] (iPCSSs, kindly provided by Darrell Kotton,
206 Boston University and Boston Medical Center) and maintained as alveolospheres embedded in 3D
207 Matrigel in CK+DCI media, as previously described [34]. For infection studies, iAT2 cells were
208 cultured as 2D cultures on Matrigel-coated plates in CK+DCI medium + 10 µM Y-27632 (Tocris,
209 Cat#1254) for 48 h before switching to CK+DCI medium on day 3.

210 **SARS-CoV-2 stocks.** The SARS-CoV-2 variant B.1.351 (Beta), 2102-cov-IM-r1-164 [35] was
211 provided by Prof. Michael Schindler (University of Tübingen) and the B.1.617.2 (Delta) variant
212 by Prof. Florian Schmidt (University of Bonn). The BetaCoV/Netherlands/01/NL/2020 (NL-02-
213 2020) and B.1.1.7. (Alpha) variants were obtained from the European Virus Archive. The hCoV-
214 19/Japan/TY7-503/2021 (Brazil P.1) (Gamma) (#NR-54982) isolate was obtained from the BEI
215 resources. SARS-CoV-2 strains were propagated on Vero E6 (NL-02-2020, Delta), VeroE6
216 overexpressing TMPRSS2 (Alpha), CaCo-2 (Beta) or Calu-3 (Gamma) cells. To this end, 70-90%
217 confluent cells in 75 cm² cell culture flasks were inoculated with the SARS-CoV-2 isolate
218 (multiplicity of infection (MOI) of 0.03-0.1) in 3.5 ml serum-free medium. The cells were
219 incubated for 2h at 37°C, before adding 20 ml medium containing 15 mM HEPES (Carl Roth,
220 Cat#6763.1). Virus stocks were harvested as soon as strong cytopathic effect (CPE) became
221 apparent. The virus stocks were centrifuged for 5 min at 1,000 g to remove cellular debris,
222 aliquoted, and stored at -80°C until further use.

223 **Sequencing of full-length SARS-CoV-2 genomes.** Virus stocks were inactivated and lysed by
224 adding 0.3 ml TRIzol Reagent (ambion, Cat#132903) to 0.1 ml virus stock. Viral RNA was
225 isolated using the Direct-zol RNA MiniPrep kit (ZymoResearch, Cat#R2050) according to
226 manufacturer's instructions, eluting the RNA in 50 μ l DNase/RNase free water. The protocol to
227 prepare the viral RNA for sequencing was modified from the nCoV-2019 sequencing protocol V.1.
228 For reverse transcription, the SuperScript IV First-Strand Synthesis System (Invitrogen,
229 Cat#18091050) was used with modified manufacturer's instructions. First, 1 μ l random hexamers
230 (50 ng/ μ l), 1 μ l dNTPs mix (10 mM each), and 11 μ l template RNA (diluted 1:10 in DNase/RNase
231 free water) were mixed, incubated at 65°C for 5 min and placed on ice for 1 min. Next, 4 μ l SSIV
232 Buffer, 1 μ l DTT (100 mM), 1 μ l RNaseOUT RNase Inhibitor, and 1 μ l SSIV Reverse
233 Transcriptase were added to the mix, followed by incubation at 24°C for 5 min, 42°C for 50 min,
234 and 70°C for 10 min. To generate 400 nt fragments in PCR, the ARTIC nCoV-2019 V3 Primer set
235 (IDT) and the Q5 Hot Start High-Fidelity 2X Master Mix (NEB, Cat#M0494S) were used with
236 modified manufacturer's instructions. The primers pools 1 and 2 were diluted to a final
237 concentration of 10 μ M and a reaction with each primer pool was set up as follows, 4 μ l respective
238 primer pool, 12.5 μ l Q5 Hot Start High-Fidelity 2X Master Mix, 6 μ l water, and 2.5 μ l cDNA. The
239 PCR was performed as follows, 98°C for 30 s, 30 cycles of 98°C for 15 s and 65°C for 5 min, and
240 hold at 4°C. The PCR products were run on a 1% agarose gel to check for the presence of fragments
241 at the correct size. The products from primer pool 1 and primer pool 2 for each variant were pooled,
242 diluted and quantified by Qubit DNA HS kit (Thermo Fisher, Cat# Q32851). The sequencing
243 amplicon pools were diluted to 0.2 ng/ μ l and tagmented with Nextera XT library prep kit (Illumina,
244 Cat#FC-131-1024). Nextera libraries were dual-barcoded and sequenced on an Illumina
245 NextSeq1000 instrument. The obtained sequenced reads were demultiplexed and mapped against
246 the SARS-CoV-2 reference genome (NC_045512.2) with BWA-MEM[36]. Pileup files were

247 generated from the mapped reads using Samtools[37]. The mapped reads and the pileup file were
248 used to construct the consensus sequence with the iVar package[38] using default settings.

249 **Plaque-forming Unit (PFU) assay.** To determine the infectious titres, SARS-CoV-2 stocks were
250 serially diluted 10-fold. Monolayers of Vero E6 cells in 12-wells were infected with the dilutions
251 and incubated for 1 to 3 h at 37°C with shaking every 15 to 30 min. Afterwards, the cells were
252 overlayed with 1.5 ml of 0.8 % Avicel RC-581 (FMC Corporation) in medium and incubated for
253 3 days. The cells were fixed by adding 1 ml 8 % paraformaldehyde (PFA, Sigma-Aldrich,
254 Cat#158127-100G) in Dulbecco's phosphate buffered saline (DPBS, Gibco, Cat#14190144) and
255 incubated at room temperature for 45 min. After discarding the supernatant, the cells were washed
256 with DPBS (Gibco, Cat#14190144) once, and 0.5 ml of staining solution (0.5% crystal violet (Carl
257 Roth, Cat#42555) and 0.1% triton X-100 (Sigma-Aldrich, Cat#X100-100ML) in water) was
258 added. After 20 min incubation at room temperature, the staining solution was removed using
259 water, virus-induced plaque formation quantified, and plaque forming units per ml (PFU/ml)
260 calculated.

261 **SARS-CoV-2 variants replication kinetics.** 1.5×10^5 Calu-3 cells were seeded in 24-well plates.
262 24 h post-seeding, Calu-3 cells were infected with the different variants of SARS-CoV-2 (MOI
263 0.05). 5h later, supernatant was removed and 1 ml of fresh medium was added. 6h, 24h, 48h and
264 72h post-infection, supernatants were harvested for qRT-PCR analysis.

265 **Effect of IFNs on SARS-CoV-2 replication.** 1.5×10^5 Calu-3 cells were seeded in 24-well plates.
266 24 h and 96 h post-seeding, cells were stimulated with increasing amounts of IFNs (α 2 (R&D
267 Systems, Cat#11101-2), β (R&D Systems, Cat#8499-IF-010/CF) and γ (R&D Systems, Cat#285-
268 IF-100/CF). 0.5, 5, 50 and 500 U/ml) or IFN- λ 1 (R&D Systems, Cat#1598-IL-025/CF) 0.1, 1, 10
269 and 100 ng/ml) in 0.5 ml of medium. 6 to 12 h after the first stimulation, the medium was replaced.

270 2 h after the second stimulation, Calu-3 cells were infected with the indicated SARS-CoV-2
271 variants (MOI 0.05) and 5 to 6h later, supernatant was removed, cells were washed once with
272 DPBS (Gibco, Cat#14190144) and 0.5 ml fresh medium was added. 6 (wash control), 24, 48 and
273 72 h post-infection, supernatants were harvested for qRT-PCR analysis.

274 $1.5 \times 10^4 - 3 \times 10^4$ iAT2 cells were seeded as single cells in 96-well plates coated for 1 h at 37 °C
275 with 0.16 mg/ml Matrigel (Corning, Cat#356238) diluted in DMEM/F12 (Thermo Fisher,
276 Cat#11330032). 48h post-seeding, cells were stimulated with increasing amounts of IFNs (α 2
277 (R&D Systems, Cat#11101-2), β (R&D Systems, Cat#8499-IF-010/CF) and γ (R&D Systems,
278 Cat#285-IF-100/CF). 0.5, 5, 50 and 500 U/ml) or IFN λ 1 (R&D Systems, Cat#1598-IL-025/CF)
279 0.1, 1, 10 and 100 ng/ml) in 150 μ l medium. 24 h post-treatment, iAT2 cells were infected with
280 the indicated SARS-CoV-2 variants (MOI 0.5). 5 to 6 h later, supernatants were removed, cells
281 were washed once with DPBS (Gibco, Cat#14190144) and 200 μ l of fresh medium was added.
282 Supernatants were harvested at 6 h (wash control) and 48 h post-infection for qRT-PCR analysis.

283 **qRT-PCR.** N (nucleoprotein) transcript levels were determined in supernatants collected from
284 SARS-CoV-2 infected Calu-3 or iAT2 cells 6, 24, 48, and 72 h post-infection as previously
285 described [39]. Total RNA was isolated using the Viral RNA Mini Kit (Qiagen, Cat#52906)
286 according to the manufacturer's instructions. qRT-PCR was performed as previously described
287 [39] using TaqMan Fast Virus 1-Step Master Mix (Thermo Fisher, Cat#4444436) and a
288 OneStepPlus Real-Time PCR System (96-well format, fast mode). Primers were purchased
289 from Biomers (Ulm, Germany) and dissolved in RNase free water. Synthetic SARS-CoV-2-RNA
290 (Twist Bioscience, Cat#102024) or RNA isolated from BetaCoV/France/IDF0372/2020 viral
291 stocks quantified via this synthetic RNA (for low Ct samples) was used as a quantitative standard
292 to obtain viral copy numbers. All reactions were run in duplicates. Forward primer (HKU-NF): 5'-
293 TAA TCA GAC AAG GAA CTG ATT A-3'; Reverse primer (HKU-NR): 5'-CGA AGG TGT

294 GAC TTC CAT G-3'; Probe (HKU-NP): 5'-FAM-GCA AAT TGT GCA ATT TGC GG-
295 TAMRA-3'.

296 **Tissue Culture Infection Dose50 (TCID50) endpoint titration.** SARS-CoV-2 stocks or
297 infectious supernatants were serially diluted. 25,000 Caco-2 cells were seeded per well in 96 F-
298 bottom plates in 100 μ l medium and incubated overnight. Next, 50 μ l of diluted SARS-CoV-2
299 stocks or infectious supernatants were used for infection, resulting in final dilutions of 1:101 to
300 1:1012 on the cells in nine technical replicates. Cells were then incubated for 5 days and monitored
301 for CPE. TCID50/ml was calculated according to the Reed and Muench method.

302 **MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide) assay.** 6×10^4
303 Calu-3 cells were seeded in 96-well F-bottom plates. 1.5×10^4 – 3×10^4 iAT2 cells were seeded as
304 single cells in 96-well F-bottom plates, coated for 1h at 37°C with 0.16 mg/ml Matrigel (Corning,
305 Cat#356238) diluted in DMEM/F12 (Thermo Fisher, Cat#11330032). The cells were stimulated
306 with increasing amounts of IFNs (α 2 (R&D Systems, Cat#11101-2), β (R&D Systems, Cat#8499-
307 IF-010/CF) and γ (R&D Systems, Cat#285-IF-100/CF). 0.5, 5, 50 and 500 U/ml) or IFN- λ 1 (R&D
308 Systems, Cat#1598-IL-025/CF) 0.1, 1, 10 and 100 ng/ml) in 100 μ l of medium 24 h and 96 h post-
309 seeding. 6 h after the first stimulation, the medium was replaced. To analyze the cell viability of
310 Calu-3 cells and iAT2 cells after interferon treatment, 100 μ l of MTT solution (0.5 mg/ml in DPBS
311 (Gibco, Cat#14190144)) was added to the cells 2 h after the second stimulation and the cells were
312 incubated for 3 h at 37 °C. Subsequently, the supernatant was discarded and 100 μ l 4% PFA
313 (Sigma-Aldrich, Cat#158127-100G) in DPBS (Gibco, Cat#14190144) was added for 20 min. After
314 washing with 100 μ l DPBS (Gibco, Cat#14190144), the formazan crystals were dissolved in
315 100 μ l of a 1:2 mixture of dimethyl sulfoxide (DMSO, Invitrogen, Cat#D12345) and ethanol.
316 Absorption was measured at 490 nm with baseline corrected at 650 nm by using a Vmax kinetic
317 microplate reader (Molecular Devices) and the SoftMax Pro 7.0.3 software.

318 Acknowledgements

319 We thank Daniela Knavek, Martha Mayer, Kerstin Regensburger, Regina Burger, Jana-
320 Romana Fischer and Birgit Ott for laboratory assistance. We also thank Michael Schindler for
321 providing the B.1.351 (Beta) variant and Florian Schmidt, Beate M. Kümmerer and Hendrick
322 Streeck for providing the B.1.617.2 (Delta) variant. The following reagent was obtained through
323 BEI Resources, NIAID, NIH: SARS-Related Coronavirus 2, Isolate hCoV-19/Japan/TY7-
324 503/2021 (Brazil P.1), NR-54982, contributed by National Institute of Infectious Diseases. hCoV-
325 19/Netherlands/01/NL/2020 and nCoV19 isolate/England/MIG457/2020 were provided via the
326 European Virus archive. The BU3-NGST iPSC line was generated with funding from the National
327 Center for Advancing Translational Sciences (“NCATS”) (grant U01TR001810) and kindly
328 provided by D.N. Kotton, (Center for Regenerative Medicine, Boston Medical Center). This study
329 was supported by DFG grants to F.K., K.M.J.S., D.K. and M.F. (F.K. and K.M.J.S., CRC 1279
330 and SPP1923; D.K., KM 5/1-1; M.F., 278012962 and 458685747), the BMBF to F.K. and K.M.J.S.
331 (Restrict SARS-CoV-2 and IMMUNOMOD) and a COVID-19 research grant from the Ministry
332 of Science, Research and the Arts of Baden-Württemberg (MWK) to F.K.. K.M.J.S. was
333 additionally supported by a COVID-19 emergency grant from the DFG (SP1600/6-1). A joint
334 project (Bay-VOC) from the Bavarian State Ministry of the Environment and Public Health
335 supported A.G, S.K and H.B. L.K., S.K. and A.S. are part of the International Graduate School for
336 Molecular Medicine, Ulm (IGradU).

337 Author Contribution

338 Conceptualization and funding acquisition, F.K., K.M.J.S.; Investigation, R.N., S.K.,
339 A.S., F.Z.; iAT2 cells, A.S., M.F.; NGS preparation, sequencing and analysis, L.K., A.G., S.K.
340 and H.B.; Writing, F.K. and K.M.J.S; Review and editing, all authors.

341 Competing Interests

342 The authors declare no competing interests.

343 Data Availability

344 The source data is available from the corresponding authors upon reasonable request. Full length
345 sequences were deposited to GSAID (IDs will be added once approved).

346 **References**

347 1. Sparrer KMJ, Gack MU. Intracellular detection of viral nucleic acids. *Curr Opin Microbiol.*
348 2015;26: 1–9. doi:10.1016/j.mib.2015.03.001

349 2. Stetson DB, Medzhitov R. Type I Interferons in Host Defense. *Immunity.* 2006;25: 373–
350 381. doi:10.1016/j.immuni.2006.08.007

351 3. Samuel CE. Antiviral Actions of Interferons. *Clin Microbiol Rev.* 2001;14: 778–809.
352 doi:10.1128/CMR.14.4.778-809.2001

353 4. Schoggins JW. Interferon-Stimulated Genes: What Do They All Do? *Annu Rev Virol.*
354 2019;6: 567–584. doi:10.1146/annurev-virology-092818-015756

355 5. Kluge SF, Sauter D, Kirchhoff F. SnapShot: antiviral restriction factors. *Cell.* 2015;163:
356 774-774.e1. doi:10.1016/j.cell.2015.10.019

357 6. Plataniias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. *Nat Rev
358 Immunol.* 2005;5: 375–386. doi:10.1038/nri1604

359 7. Lopez J, Mommert M, Mouton W, Pizzorno A, Brengel-Pesce K, Mezidi M, et al. Early
360 nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with
361 autoantibodies against type I IFNs. *Journal of Experimental Medicine.* 2021;218.
362 doi:10.1084/jem.20211211

363 8. Zanoni I. Interfering with SARS-CoV-2: are interferons friends or foes in COVID-19? *Curr
364 Opin Virol.* 2021;50: 119–127. doi:10.1016/j.coviro.2021.08.004

365 9. Sposito B, Broggi A, Pandolfi L, Crotta S, Ferrarese R, Sisti S, et al. Severity of SARS-
366 CoV-2 infection as a function of the interferon landscape across the respiratory tract of
367 COVID-19 patients. 2021 Mar p. 2021.03.30.437173. doi:10.1101/2021.03.30.437173

368 10. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H, Zhang Y, et al.
369 Autoantibodies against type I IFNs in patients with life-threatening COVID-19. *Science*.
370 2020;370: eabd4585. doi:10.1126/science.abd4585

371 11. Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al. Inborn errors of type
372 I IFN immunity in patients with life-threatening COVID-19. *Science*. 2020;370: eabd4570.
373 doi:10.1126/science.abd4570

374 12. Hayn M, Hirschenberger M, Koepke L, Nchioua R, Straub JH, Klute S, et al. Systematic
375 functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and
376 remaining vulnerabilities. *Cell Reports*. 2021;35: 109126.
377 doi:10.1016/j.celrep.2021.109126

378 13. Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, et al.
379 Structural basis for translational shutdown and immune evasion by the Nsp1 protein of
380 SARS-CoV-2. *Science*. 2020;369: 1249–1255. doi:10.1126/science.abc8665

381 14. Xia H, Cao Z, Xie X, Zhang X, Chen JY-C, Wang H, et al. Evasion of Type I Interferon by
382 SARS-CoV-2. *Cell Reports*. 2020;33: 108234. doi:10.1016/j.celrep.2020.108234

383 15. Sa Ribero M, Jouvenet N, Dreux M, Nisole S. Interplay between SARS-CoV-2 and the type
384 I interferon response. *PLoS Pathog*. 2020;16: e1008737. doi:10.1371/journal.ppat.1008737

385 16. Vanderheiden A, Ralfs P, Chirkova T, Upadhyay AA, Zimmerman MG, Bedoya S, et al.
386 Type I and Type III Interferons Restrict SARS-CoV-2 Infection of Human Airway
387 Epithelial Cultures. *J Virol*. 2020;94: e00985-20. doi:10.1128/JVI.00985-20

388 17. Felgenhauer U, Schoen A, Gad HH, Hartmann R, Schaubmar AR, Failing K, et al.
389 Inhibition of SARS-CoV-2 by type I and type III interferons. *Journal of Biological
390 Chemistry*. 2020;295: 13958–13964. doi:10.1074/jbc.AC120.013788

391 18. Jafarzadeh A, Nemati M, Saha B, Bansode YD, Jafarzadeh S. Protective Potentials of Type
392 III Interferons in COVID-19 Patients: Lessons from Differential Properties of Type I- and
393 III Interferons. *Viral Immunology*. 2021;34: 307–320. doi:10.1089/vim.2020.0076

394 19. Stanifer ML, Kee C, Cortese M, Zumaran CM, Triana S, Mukenhira M, et al. Critical Role
395 of Type III Interferon in Controlling SARS-CoV-2 Infection in Human Intestinal Epithelial
396 Cells. *Cell Rep*. 2020;32: 107863. doi:10.1016/j.celrep.2020.107863

397 20. Saleki K, Yaribash S, Banazadeh M, Hajhosseini E, Gouravani M, Saghazadeh A, et al.
398 Interferon therapy in patients with SARS, MERS, and COVID-19: A systematic review and
399 meta-analysis of clinical studies. *Eur J Pharmacol*. 2021;906: 174248.
400 doi:10.1016/j.ejphar.2021.174248

401 21. Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et al.
402 Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. *Nature*.
403 2021;596: 276–280. doi:10.1038/s41586-021-03777-9

404 22. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al.
405 SARS-CoV-2 variants, spike mutations and immune escape. *Nat Rev Microbiol*. 2021;19:
406 409–424. doi:10.1038/s41579-021-00573-0

407 23. Thorne LG, Bouhaddou M, Reuschl A-K, Zuliani-Alvarez L, Polacco B, Pelin A, et al.
408 Evolution of enhanced innate immune evasion by the SARS-CoV-2 B.1.1.7 UK variant.
409 2021 Jun p. 2021.06.06.446826. doi:10.1101/2021.06.06.446826

410 24. Jangra S, Ye C, Rathnasinghe R, Stadlbauer D, Alshammary H, Amoako AA, et al. SARS-
411 CoV-2 spike E484K mutation reduces antibody neutralisation. *The Lancet Microbe*.
412 2021;2: e283–e284. doi:10.1016/S2666-5247(21)00068-9

413 25. Kimura I, Konno Y, Uriu K, Hopfensperger K, Sauter D, Nakagawa S, et al. Sarbecovirus
414 ORF6 proteins hamper induction of interferon signaling. *Cell Rep*. 2021;34: 108916.
415 doi:10.1016/j.celrep.2021.108916

416 26. Liu G, Lee J-H, Parker ZM, Acharya D, Chiang JJ, van Gent M, et al. ISG15-dependent
417 activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to
418 evade host innate immunity. *Nat Microbiol*. 2021;6: 467–478. doi:10.1038/s41564-021-
419 00884-1

420 27. Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe Å, et al.
421 COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. *Nature*.
422 2021;595: 107–113. doi:10.1038/s41586-021-03570-8

423 28. Gerard L, Lecocq M, Bouzin C, Hoton D, Schmit G, Pereira JP, et al. Increased
424 Angiotensin-Converting Enzyme 2 and Loss of Alveolar Type II Cells in COVID-19
425 Related ARDS. *Am J Respir Crit Care Med*. 2021 [cited 29 Oct 2021].
426 doi:10.1164/rccm.202012-4461OC

427 29. Nchioua R, Kmiec D, Müller JA, Conzelmann C, Groß R, Swanson CM, et al. SARS-CoV-
428 2 Is Restricted by Zinc Finger Antiviral Protein despite Preadaptation to the Low-CpG
429 Environment in Humans. Luban J, Goff SP, editors. *mBio*. 2020;11.
430 doi:10.1128/mBio.01930-20

431 30. Bates TA, Leier HC, Lyski ZL, McBride SK, Coulter FJ, Weinstein JB, et al. Neutralization
432 of SARS-CoV-2 variants by convalescent and BNT162b2 vaccinated serum. *Nat Commun*.
433 2021;12: 5135. doi:10.1038/s41467-021-25479-6

434 31. Garcia-Beltran WF, Lam EC, St. Denis K, Nitido AD, Garcia ZH, Hauser BM, et al.
435 Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral
436 immunity. *Cell*. 2021;184: 2372-2383.e9. doi:10.1016/j.cell.2021.03.013

437 32. Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR, et al. Neutralization of SARS-
438 CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited
439 sera. *Nat Med*. 2021;27: 620–621. doi:10.1038/s41591-021-01270-4

440 33. Jacob A, Morley M, Hawkins F, McCauley KB, Jean JC, Heins H, et al. Differentiation of
441 Human Pluripotent Stem Cells into Functional Lung Alveolar Epithelial Cells. *Cell Stem Cell*. 2017;21: 472-488.e10. doi:10.1016/j.stem.2017.08.014

443 34. Jacob A, Vedaie M, Roberts DA, Thomas DC, Villacorta-Martin C, Alyssandratos K-D, et
444 al. Derivation of self-renewing lung alveolar epithelial type II cells from human pluripotent
445 stem cells. *Nat Protoc*. 2019;14: 3303–3332. doi:10.1038/s41596-019-0220-0

446 35. Becker M, Dulovic A, Junker D, Ruetalo N, Kaiser PD, Pinilla YT, et al. Immune response
447 to SARS-CoV-2 variants of concern in vaccinated individuals. *Nat Commun*. 2021;12:
448 3109. doi:10.1038/s41467-021-23473-6

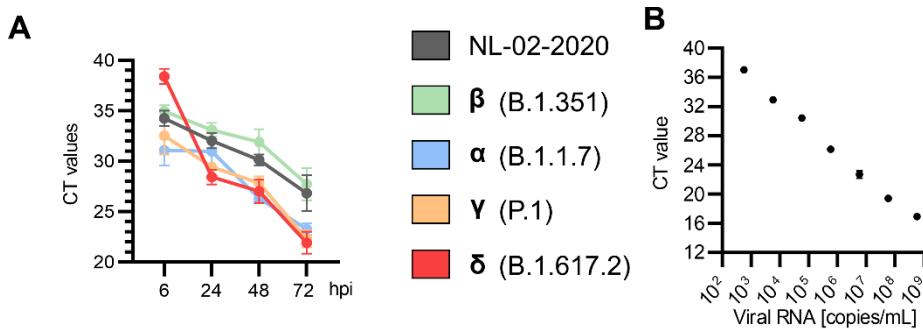
449 36. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
450 arXiv:13033997 [q-bio]. 2013 [cited 11 Oct 2021]. Available:
451 <http://arxiv.org/abs/1303.3997>

452 37. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
453 Alignment/Map format and SAMtools. *Bioinformatics*. 2009;25: 2078–2079.
454 doi:10.1093/bioinformatics/btp352

455 38. Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, et al. An
456 amplicon-based sequencing framework for accurately measuring intrahost virus diversity
457 using PrimalSeq and iVar. *Genome Biology*. 2019;20: 8. doi:10.1186/s13059-018-1618-7

458 39. Nchioua R, Kmiec D, Müller JA, Conzelmann C, Groß R, Swanson CM, et al. SARS-CoV-
459 2 Is Restricted by Zinc Finger Antiviral Protein despite Preadaptation to the Low-CpG
460 Environment in Humans. Luban J, Goff SP, editors. *mBio*. 2020;11: 16.
461 doi:10.1128/mBio.01930-20

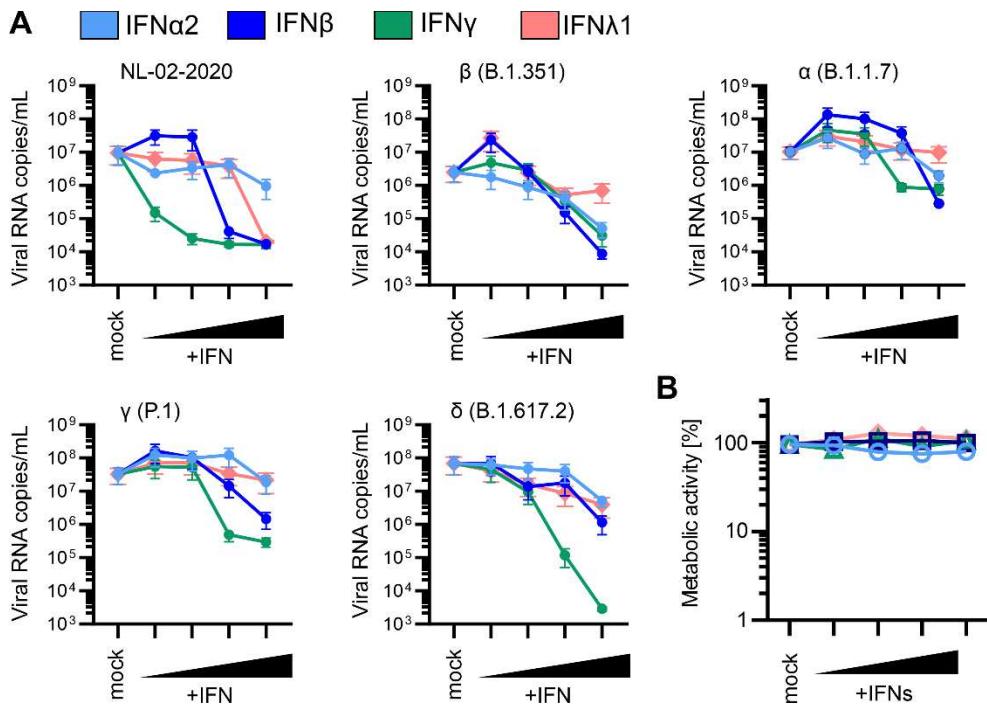
462


463

464

465

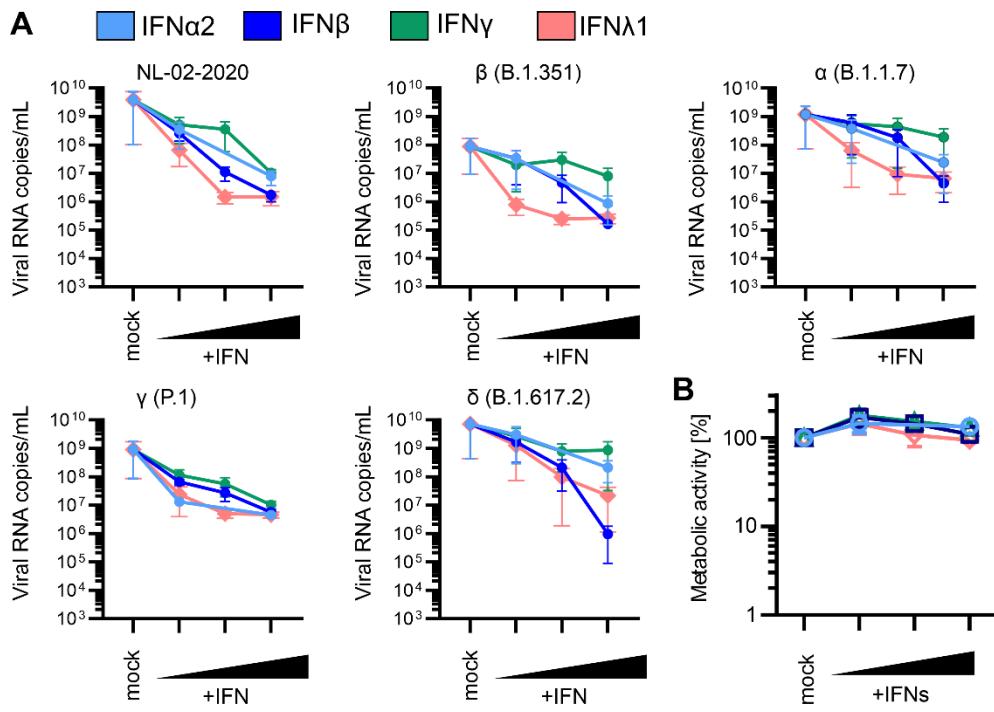
466 **Supporting information**


467

468

469 **S1 Fig. Replication kinetics of NL-02-2020 and VOCs in lung cells. A**, Raw qRT-PCR Ct values
470 obtained from supernatants of Calu-3 cells infected with indicated SARS-CoV-2 variants (MOI
471 0.05), at indicated time points. n=3±SEM. **B**, Exemplary standard curve used for Viral RNA loads
472 quantification.

473


474

475 **S2 Fig. Interferon sensitivity of NL-02-2020 and VOCs in Calu-3 cells. A,** Viral RNA levels in
476 the supernatant of Calu-3 cells infected with indicated SARS-CoV-2 variants and quantified by
477 qRT-PCR at 72h post-infection (MOI 0.05). n=2 \pm SEM. **B,** Metabolic activity of Calu-3 cells after
478 treatment with IFNs as in (A). n=3 \pm SEM.

479

480

481

482

483 **S3 Fig. Interferon sensitivity of NL-02-2020 and VOCs in iAT2 cells. A,** Viral RNA levels in
484 the supernatant of iAT2 cells infected with indicated SARS-CoV-2 variants and quantified by
485 qRT-PCR at 48h post-infection (MOI 0.5). (n=4 \pm SEM). **B,** Metabolic activity of iAT2 cells after
486 treatment with IFNs as indicated in panel (A). n=3 \pm SEM.

487

488