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Abstract

Aging is a process of progressive change. In order to develop biological models of aging,
longitudinal datasets with high temporal resolution are needed. Here we report a multi-omic
longitudinal dataset for cultured primary human fibroblasts measured across their replicative
lifespans. Fibroblasts were sourced from both healthy donors (n=6) and individuals with lifespan-
shortening mitochondrial disease (n=3). The dataset includes cytological, bioenergetic, DNA
methylation, gene expression, secreted proteins, mitochondrial DNA copy number and mutations,
cell-free DNA, telomere length, and whole-genome sequencing data. This dataset enables the
bridging of mechanistic processes of aging as outlined by the "hallmarks of aging", with the
descriptive characterization of aging such as epigenetic age clocks. Here we focus on bridging
the gap for the hallmark mitochondrial metabolism. Our dataset includes measurement of healthy
cells, and cells subjected to over a dozen experimental manipulations targeting oxidative
phosphorylation (OxPhos), glycolysis, and glucocorticoid signaling, among others. These
experiments provide opportunities to test how cellular energetics affect the biology of cellular
aging. All data are publicly available at our webtool: https://columbia-
picard.shinyapps.io/shinyapp-Lifespan_Study/

Keywords: aging, longitudinal, time-series, modeling, energetics, mitochondrial metabolism,
transcriptome, epigenome, cf-mtDNA, DNAmAge, clocks


https://doi.org/10.1101/2021.11.12.468448
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.12.468448; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Background & Summary

Aging is the major risk factor for all major diseases . In biological terms, aging involves
progressive changes at multiple levels of molecular organization, including the genome 27,
epigenome *~', transcriptome 8, proteome °, secretome '°, and organs and organ-systems .
Advances in aging biology have identified a set of molecular “hallmarks” or “pillars” thought to
represent the root causes of aging-related declines in cellular- and organ-system integrity and
subsequent disease, disability, and mortality '>'. In parallel, recent expansion of omics
technologies have enabled researchers to generate high-dimensional datasets across multiple
modalities that illuminate the complex molecular landscape of biological aging. These data have
been combined with machine-learning methods to develop molecular “clocks” that track
chronological age and mortality risk with remarkable accuracy '*'°, and to model complex
systems-level processes '®'". The clocks and related measures make possible measurements of
biological processes of aging in free-living humans. But their connections to the hallmarks of aging
remain unclear. Research is needed to elucidate fundamental mechanisms that cause aging-
related changes, and that drive aging-related declines in resilience and increased vulnerability to
disease, disability, and mortality.

The ideal approach to meeting this research need would be to longitudinally monitor a population
of individuals over their entire lifespan, taking regular measures of many metrics at frequent
intervals. Such studies represent an important frontier in aging science '®'°. However, in addition
to resource-constraints and participant-burden concerns that limit the frequency and depth of
measurements, following a cohort of humans over their lifespan requires multiple generations of
scientists and faces challenges of ever-changing techniques and technology for sample collection
and analysis. One complementary strategy is to conduct lifespan studies of shorter-lived animals
2021 ‘although these too require substantial time, and may be limited in their translability to humans
22 Here we present a further complementary strategy: a “lifespan” study of cultured fibroblasts.

One contribution from cross-species work has been to delineate conserved genes, pathways, and
hallmarks of aging across multiple experimental modalites '?. One major pathway surfacing as a
critical and possibly primary driver of aging biology is mitochondrial metabolism 23. Omics-based
discovery studies consistently converge on mitochondria as a major molecular signature of
biological aging ®%*. Beyond providing ATP for all basic cellular functions, mitochondria produce
signals that can trigger multiple hallmarks of aging . In humans 22’ and animals 2%,
mitochondrial respiratory chain dysfunction dramatically shortens lifespan, further suggesting a
primary causal role of mitochondria as a “timekeeper” and driver of the biological aging process.

To examine longitudinal aging trajectories and quantify the influence of mitochondria on canonical
and exploratory aging markers in a human system, we generated a multi-omic, longitudinal
dataset across the replicative lifespan of primary human fibroblasts from several healthy and
disease donors (Figure 1). These data include genomic, epigenomic, transcriptomics, and
protein-based measures along with bioenergetic and mitochondrial OxPhos measures. The
relatively high temporal resolution of measurements allows for non-linear modeling of molecular
recalibrations in primary human cells, as recently shown for DNA methylation in a pilot cellular
lifespan study *'. In this cellular lifespan system, the rate of biological aging appears to proceed
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at a rate ~40-140x faster than in vivo (i.e., in the human body), such that 200-300 days in vitro
corresponds to multiple decades of human life ®'. In addition to the rich descriptive data in multiple
donors, this dataset includes experimental conditions with metabolic manipulations targeted to
mitochondria, allowing investigators to directly test the influence of mitochondrial metabolism on
human molecular aging signatures.
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Figure 1. Biological and conceptual rationale for the Cellular Lifespan Study. (A) Primary human
fibroblasts aged in culture (i.e., in vitro) recapitulate several, although not all, molecular hallmarks of human
aging. Previous work with this replicative lifespan system showed that canonical age-related changes in
DNA methylation (DNAm) in human tissues, such as hypermethylation of the ELOVL2 gene promoter
(cg16867657), global hypomethylation, and the rate of epigenetic aging captured by epigenetic clocks, are
conserved, but occur at an accelerated rate in cultured primary human fibroblasts *'. This model provides
a system to recapitulate and model some of the longitudinal changes in the cells of the same individuals,
at high temporal resolution across the replicative lifespan. (B) Electron micrograph of a human cultured cell
(left) and higher magnification view of the surface of the nucleus and nuclear envelope (yellow), with a
neighboring mitochondrion. Arrows illustrate the diffusion path for soluble metabolic signals to reach the
(epi)genome. lllustration modified from 32. (C) Micrograph of a whole fibroblast (HC2, P22, 103 days grown)
with fluorescently-labeled mitochondria (MitoTracker green) surrounding the nucleus, from which DNA
methylation can be measured using the EPIC array, quantified either at the single CpG level, or integrating
data from multiple CpGs via different DNAm clocks. (D) lllustration of the experimental segment of the
Cellular Lifespan Study, where specific signaling pathways (glucocorticoid signaling), OxPhos (oligomycin)
and glycolytic pathways (no glucose, galactose, 2-deoxyglucose), respiratory chain defects (donors with
SURF1 mutations), and other single and combinations of treatments were used to perturb selected
metabolic pathways.
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Methods
Tissue culture

Primary human dermal fibroblasts were obtained from commercial distributors or in our
local clinic from 6 healthy control donors, and 3 donors with lethal SURF1 mutations (IRB
#AAAB0483) that alter mitochondrial respiratory chain complex IV assembly and function 3334,
and lead to early death in affected patients ** (see Table 1 for descriptive information and
distributor). SURF1-mutant fibroblasts were isolated from dermal punch biopsies of the forearm
skin using standard procedures. After isolation, fibroblasts were cryopreserved in 10% DMSO
(Sigma-Aldrich #D4540), 90% fetal bovine serum (FBS, Life Technologies #10437036) in liquid
nitrogen. To avoid freeze-shock necrosis cells were frozen gradually in an isopropanol container
(Thermofisher #5100-0001) at -80°C overnight before storage in liquid nitrogen. Cells were
thawed at 37°C (<4min) and immediately transferred to 20ml of pre-warmed DMEM (Invitrogen
#10567022).

For replicative lifespan studies, cells were cultured in T175 flasks (Eppendorf #0030712129) at
standard 5% CO2 and atmospheric Oz at 37°C in DMEM (5.5 mM glucose) supplemented with
10% FBS (Thermofisher #10437010), 50 pyg/ml uridine (Sigma-Aldrich #U6381), 1% MEM non-
essential amino acids (Life Technologies #11140050), 10 uM palmitate (Sigma-Aldrich #P9767)
conjugated to 1.7 uM BSA (Sigma-Aldrich #A8806), and 0.001% DMSO (treatment-matched,
Sigma-Aldrich #D4540). Cells were passaged approximately every 6 days (+/- 1 day), with
decreasing passaging frequency as cells enter quiescence, for up to 270 days.

Brightfield microscopy images at 10x and 20x magnification were taken before each passaged
using inverted phase-contrast microscope (Fisher Scientific #11350119). All images except those
of Phase v can be downloaded at:
https://figshare.com/articles/dataset/Brightfield Images for_Cellular_Lifespan_Study/18444731.

Cell counts, volume and proportion of cell death were determined in duplicates (CV <10%) and
averaged at each passage using the Countess Il Automated Cell Counter (Thermofisher
#A27977). To determine the number of cells to plate at each passage, growth rates from the
previous passage were used, pre-calculating the expected number cells needed to reach ~90%
confluency (~2.5 million cells) by the next passage, ensuring relatively similar confluence at the
time of harvesting for molecular analyses. Cells were never plated below 200,000 cells or above
2.5 million cells to avoid plating artifacts of isolation or contact inhibition, respectively. However,
some differences in cell density between early and late passages were unavoidable. Study
measurements and treatment began after 15-days of culturing post-thaw to allow for adjustment
to the in vitro environment. Individual cell lines from each donor were grown until they exhibited
less than one population doubling over a 30-day period, at which point the cell line was terminated,
reflecting the end of the lifespan. The hayflick limit was calculated as the total number of
population doublings reached by the end of each experiment.

Mycoplasma testing
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Mycoplasma testing was performed according to the manufacturer's instructions (R&D
Systems #CUL001B) on 100 media samples at the end of lifespan for each treatment and cell
line used. All tests were negative.

Bioenergetic parameters and calculations of metabolic rate

Bioenergetic parameters were measured using the XFe96 Seahorse extracellular flux
analyzer (Agilent) 337, Oxygen consumption rate (OCR) and extracellular acidification rate
(ECAR, i.e. pH change, was measured over a confluent cell monolayer. Cells were plated for
Seahorse measurement every 3 passages (~15 days) with 10-12 wells plated per a treatment
group. Each well of the Seahorse 96-well plate was plated with 20,000 cells and incubated
overnight under standard growth conditions, following the manufacturer’s instructions, including
a plate wash with complete Seahorse XF Assay media. The complete XF media contains no pH
buffers and was supplemented with 5.5 mM glucose, 1 mM pyruvate, 1 mM glutamine, 50 pg/ml
uridine, 10 uM palmitate conjugated to 1.7 uM BSA, to ensure that cells have access to a variety
of energetic substrates. After a wash with XF media, the plate was incubated with XF media in a
non-CO- incubator for one hour to equilibrate temperature and atmospheric gases before the
assay.

Different respiratory states were assessed using the MitoStress Test *%. Basal respiration, ATP
turnover, proton leak, coupling efficiency, maximum respiration rate, respiratory control ratio,
spare respiratory capacity, and non-mitochondrial respiration were all determined by the
sequential additions of the ATP synthase inhibitor oligomycin (final concentration: 1 uM), the
protonophore uncoupler FCCP (4 pM), and the electron transport chain Complex | and llI
inhibitors, rotenone and antimycin A (1 uM). The optimal concentration for the uncoupler FCCP
yielding maximal uncoupled respiration was determined based on a titration performed on young
healthy fibroblasts (data not shown). The final injection included Hoechst nuclear fluorescent stain
(Thermofisher #62249) to allow for automatic cell counting. After each run, cell nuclei density in
each well were counted using the Cytation1 Cell Imager (BioTek) and raw bioenergetic
measurements were normalized to relative cell counts on a per-well basis. This normalization
method was selected due to reduced well-to-well variability by approximately half compared to
other normalization techniques (e.g., normalization to ug of protein).

ATP production rates from oxidative phosphorylation (OxPhos, Jatr-oxphos) and glycolysis (Jate-
alyc), @s well as total cellular ATP production and consumption (Jate-otal) Were estimated using the
method described by Mookerjee et al. °. Briefly, the method relies on the phosphate-to-oxygen
(P/O) ratios of OxPhos and glycolysis, using oxygen consumption and proton production rates
(PPR) as input variables. The same constants were used for all estimations, assuming glucose
as the predominant carbon source, and constant coupling efficiency. Changes in substrate
consumption along the lifespan would require parallel assessments of metabolic flux to resolve,
and assuming the same major substrate across the lifespan and treatment conditions could have
a minor influence on calculated ATP production rates that are not reflected in the ATP-related
metrics in this bioenergetics data. All raw seahorse data files and analysis scripts are available at
https://github.com/gav-sturm/Cellular_Lifespan_Study/tree/main/Seahorse.

mtDNA next-generation sequencing and eKLIPse analysis
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The entire mtDNA was amplified in two overlapping fragments using a combination of
mtDNA primers. The primer pairs used for PCR amplicons were tested first on Rho zero cells
devoid of mtDNA to remove nuclear-encoded mitochondrial pseudogene (NUMTS) amplification

o PCR1: 5-AACCAAACCCCAAAGACACC-3 and 5'-
GCCAATAATGACGTGAAGTCC-3’
o PCR2: 5-TCCCACTCCTAAACACATCC-3 and 5’-
TTTATGGGGTGATGTGAGCC-3’
Long-range PCR was performed with the Kapa Long Range DNA polymerase according to the
manufacturer’'s recommendations (Kapa Biosystems, Boston, MA, USA), with 0.5uM of each
primer and 20ng of DNA. The PCR products were analyzed on a 1% agarose gel electrophoresis.

NGS Libraries were generated using an enzymatic DNA fragmentation approach using lon Xpress
Plus Fragment Library Kit. Library were diluted at 100 pM before sequencing and pooled by a
maximum of 25 samples.

Sequencing was performed using an lon Torrent S5XL platform using lon 540 chip™. Signal
processing and base calling were done by the pre-processing embedded pipeline. Demultiplexed
reads were mapped according to the mtDNA reference sequence (NC_012920.1) before being
analysed with a dedicated homemade  pipeline including eKLIPse  *°
(https://github.com/dooguypapua/eKLIPse) using the following settings:

o Read threshold: min Quality=20 | min length =100bp

o Soft-Clipping threshold: Read threshold: Min soft-clipped length =25pb | Min

mapped Part=20 bp
o BLAST thresholds: min=1 | id=80 | cov=70 | gapopen=0 | gapext=2
o Downsampling: No

mtDNA copy number

Cellular mtDNA content was quantified by gPCR on the same genomic material used for
other DNA-based measurements. Duplex gPCR reactions with Tagman chemistry were used to
simultaneously quantify mitochondrial (mtDNA, ND1) and nuclear (nDNA, B2M) amplicons, as
described previously *°. The reaction mixture included TagMan Universal Master mix fast (life
technologies #4444964), 300nM of custom design primers and 100nM probes:

ND1-Fwd: 5-GAGCGATGGTGAGAGCTAAGGT-3

ND1-Rev: 5-CCCTAAAACCCGCCACATCT-3’

ND1-Probe: 5’-HEX-CCATCACCCTCTACATCACCGCCC-3IABKFQ-3’
B2M-Fwd: 5-CCAGCAGAGAATGGAAAGTCAA-3’

B2M-Rev: 5-TCTCTCTCCATTCTTCAGTAAGTCAACT-3

B2M-Probe: 5’-FAM-ATGTGTCTGGGTTTCATCCATCCGACA-3IABKFQ-3’

o 0O O O O ©O

The samples were cycled in a QuantStudio 7 flex gqPCR instrument (Applied Biosystems) at 50°C
for 2 min, 95°C for 20 sec, 95°C for 1min, 60°C for 20 sec, for 40 cycles. gPCR reactions were
setup in ftriplicates in 384 well gPCR plates using a liquid handling station (epMotion5073,
Eppendorf), in volumes of 20ul (12ul mastermix, 8ul template). Triplicate values for each sample
were averaged for mtDNA and nDNA. Ct values >33 were discarded. For triplicates with a
coefficient of variation (C.V.) > 0.02, the triplicates were individually examined and outlier values
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removed where appropriate (e.g., >2 standard deviations above the mean), with the remaining
duplicates were used. The final cutoff for acceptable values was setata C.V.= 0.1 (10%); samples
with a C.V. > 0.1 were discarded. A standard curve along with positive and negative controls were
included on each of the seven plates to assess plate-to-plate variability and ensure that values
fell within measurement range. The final mMtDNAcn was derived using the ACt method, calculated
by subtracting the average mtDNA Ct from the average nDNA Ct. mtDNAcn was calculated as
2% x 2 (to account for the diploid nature of the reference nuclear genome), yielding the estimated
number of mtDNA copies per cell.

RNA sequencing

Total genomic RNA was isolated for 360 samples every ~11 days across the cellular
lifespan for control lines and selected treatments. RNA was stabilized using TRIzol (Invitrogen
#15596026) and stored at -80°C until extraction as a single batch. RNA was extracted on-column
using a RNeasy kit (Qiagen #74104), DNase treated according to the manufacturer’s instructions,
and quantified using the QUBIT high sensitivity kit (Thermofisher #Q32852). RNA integrity was
quantified on Bioanalyzer (Agilent RNA nano kit 6000, #5067-1511) and Nanodrop 2000. Of the
360 samples, 352 had an RNA integrity number (RIN) score >8.0, a A260/A280 ratio between
1.8-2.2, and no detectable levels of DNA. For cDNA library preparation, 1,500ng of RNA at
50ng/ul was processed using Ribo-Zero Gold purification (QlAseq FastSelect -rRNA HMR Kit
#334387) and NEBNext® Ultra™ Il RNA Library Prep Kit (lllumina #E7770L). cDNA was
sequenced using paired-end 150bp chemistry on a HiSeq 4000 instrument (lllumina, single index,
10 samples/lane, Genewiz Inc). Sequencing depth was on average 40 million reads per sample.
Post-sequencing QC (multiQC, v1.8) excluded 6 more samples, for a final sample set of 345.
Sequenced reads were then aligned using the pseudoalignment tool kallisto v0.44.0 *'. This data
was imported using txi import (‘tximport’, v1.18.0, length-scaled TPM), and vst normalized
(‘DEseq2’, v1.30.1).

DNA methylation

Global DNA methylation was measured on 512 samples using the lllumina EPIC
microarray (lllumina, San Diego). Arrays were run at the UCLA Neuroscience Genomic Core
(UNGC). DNA was extracted using the DNeasy kit (Qiagen #69506) according to the
manufacturer’s protocol and quantified using QUBIT broad range kit (Thermofisher #Q32852). At
least 375 ng of DNA was submitted in 30 pl of ddH2.O to UNGC for bisulfite conversion and
hybridization using the Infinium Methylation EPIC BeadChip kit. Samples with DNA below 12.5
ng/ul (~90 of 512 samples) were concentrated using SpeedVac Vacuum Concentrator
(Thermofisher #SPD1030A-115) for <1 hour. Sample positions were randomized across six assay
plates to avoid systematic batch variation effects on group or time-based comparisons.

All DNA methylation data was processed in R (v4.0.2), using the ‘minfi’ package (v1.36.0). Quality
control preprocessing was applied by checking for correct sex prediction, probe quality, sample
intensities, and excluding SNPs and non-CpG probes. Of the 512 samples, 22 failed quality
control and were excluded from further analysis, yielding a final analytical sample of n=479. Data
was then normalized using functional normalization (Fun Norm). Using the R package ‘sva’
(v3.12.0), both RCP and ComBat adjustments were applied to correct for probe-type and plate
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bias, respectively. After quality control, DNAm levels were quantified as beta values for 865,817
CpG sites.

DNA methylation clocks and related measures

We used DNA methylation data to calculate a series of measures broadly known as
epigenetic clocks . We computed four clocks designed to predict the chronological age of the
donor, Horvath1 (i.e. PanTissue clock) °, Horvath2 (i.e. Skin&Blood clock) “2, Hannum **, and
PedBE * clocks; two clocks designed to predict mortality, the PhenoAge *° and GrimAge *° clocks;
a clock to measure telomere length, DNAMTL #’; a clock designed to measure mitotic age, MiAge
48 a clock trained to predict cellular senescence, DNAmSen *°, and two DNA methylation measure
of the rate of deterioration in physiological integrity, DunedinPoAm '’, and DundedinPACE *°.

For the Horvath, Hannum, PhenoAge, GrimAge, and DNAmMTL clocks, this dataset
includes both the original versions of these clocks, calculated using the online calculator hosted
by the Horvath Lab (https://dnamage.genetics.ucla.edu/new) and versions developed using the
methods proposed in Higgins-Chen et al. (https:/github.com/MorganLevineLab/PC-Clocks) °'.
Briefly, this method replaces the clock’s individual illumina probe measurements (5-500 CpGs)
with the shared extracted variances among genome-wide CpGs from principal components (PC),
yielding the PC-adjusted DNAmAges for each clock. Chronological age values used in the
calculations of these clocks were the ages of the donors at the time of sampling. The MiAge clock
was computed using the software published by in 8
(http://www.columbia.edu/~sw2206/softwares.htm). The Pace of Aging clocks, DunedinPoAm
and DunedinPACE, were computed using the software published in 17
(https://github.com/danbelsky/DunedinPACE).

Whole genome sequencing (WGS)

Total genomic DNA was isolated for 94 samples across cellular lifespan using column
based DNeasy blood and tissue kit (Qiagen #69504) and quantified using Qubit dsBR assay
(ThermoFisher #Q32850). Sample quality assessment, library preparation, whole genome
sequencing and data pre-processing was performed by Genewiz using standard lllumina
workflow. Briefly, WGS paired-end (PE) reads with 2x150bp configuration were obtained from
lllumina HiSeq platform and processed using SAMtools (v1.2) and BaseSpace workflow (v7.0).
PE reads were aligned to hg19 genome reference (UCSC) using Isaac aligner (v04.17.06.15) and
BAM files were generated. Duplicate reads were identified and filtered using Picard tools (GATK).
More than 80% of the bases were of high quality with a score >Q30. Mean depth of sequencing
coverage was >20x with more than 90% of the genome covered at least 10 times. Variant calling
from the entire genome was performed using Strelka germline variant caller (v2.8) for small
variants including single nucleotide variants (SNVs) and insertion/deletion (Indels) and structural
variants (SVs) were identified using Manta (v1.1.1). WGS data is available from the authors upon
request.

Telomere Length
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Relative telomere length was evaluated on the same genomic material used for other
DNA-based measurements. Measurements were performed by gPCR and expressed as the ratio
of telomere to single-copy gene abundance (T/S ratio), as previously described °*°3. The reaction
mixture included 20 mM Tris-HCI, pH 8.4; 50 mM KCI; 200 uM each dNTP; 1% DMSO; 0.4x Syber
Green |; 22 ng E. coli DNA; 0.4 units of Platinum Tag DNA polymerase (Thermo Fisher Scientific
#10966018) with custom design primers. The primers utilized were the following: i) For the
telomere (T) PCR: tel1b [5'-CGGTTT(GTTTGG)5GTT-3"], used at a final concentration of 100 nM,
and tel2b [5-GGCTTG(CCTTAC)5CCT-3", used at a final concentration of 900 nM; ii) For the
single-copy gene (S, human beta-globin) PCR: HBG1 Fwd:[5'
GCTTCTGACACAACTGTGTTCACTAGC-31, used at a final concentration of 300 nM, and HBG2
Rev: [5'-CACCAACTTCATCCACGTTCACC-3], used at a final concentration of 700 nM.
Approximately 6.6 ng of DNA template was added per 11 pL of the reaction mixture. A standard
curve of human genomic DNA from buffy coat (Sigma-Aldrich #11691112001) along with positive
and negative controls were included on each of plates to assess plate-to-plate variability and
ensure that values fell within measurement range. The qPCR reactions were performed in
triplicate using a LightCycler 480 qPCR instrument (Roche) using the following thermocycling
conditions: i) For the telomere PCR: 96°C for 1 min, one cycle; 96°C for 1 sec, 54°C for 60 sec
with fluorescence data collection, 30 cycles; ii) For the single-copy gene PCR: 96°C for 1 min,
one cycle; 95°C for 15 sec, 58°C for 1 sec, 72°C for 20 sec, 8 cycles; 96°C for 1 sec, 58°C for 1
sec, 72°C for 20 sec, 83°C for 5 sec with data collection, 35 cycles. Triplicate values for each
sample were averaged of T and S were used to calculate the T/S ratios after a Dixon’s Q test for
outlier removal. T/S ratio for each sample was measured twice. For duplicates with C.V. > 0.07
(7%), the sample was run a third time and the two closest values were used. Only 5% of the
samples (25 of 512 samples) had a C.V. > 0.01 after the third measurement, and the inter-assay
C.V. =0.03 £ 0.043. Telomere length assay for the entire study were performed using the same
lots of reagents. Lab personnel who performed the assays were provided with de-identified
samples and were blind to other data.

Cytokines

Two multiplex fluorescence-based arrays were custom-designed with selected cytokines
and chemokines based on human age-related proteins. Analytes were selected based on
reported correlations of their levels in human plasma with chronological age **, and based on their
availability on R&D custom Luminex arrays (R&D, Luminex Human Discovery Assay (33-Plex)
LXSAHM-33 and LXSAHM-15, http://biotechne.com/l/rl/YyZYM7n3). Cell media samples were
collected at selected passages across cellular lifespan and frozen at -80°C until analysed as a
single batch. Thawed samples were centrifuged at 500g for 5 min and supernatant transferred to
a new tube. Media samples were ran undiluted, and the plates were incubated, washed, and
signal intensity quantified on a Luminex 200 instrument (Luminex, USA) as per the manufacturer’s
instructions. Positive (>200 days aged healthy fibroblast) and negative controls (fresh untreated
media) samples were used in duplicates on each plate to quantify and adjust for batch variations.
Data was fitted and final values interpolated from a standard curve in xPONENT v4.2. Cytokine
concentrations were then normalized to the number of cells counted at the time of collection to
produce estimates of cytokine production on a per-cell basis.
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Quantification of two selected cytokines, interleukin 6 (IL-6, Abcam#ab229434) and growth
differentiation factor 15 (GDF15, R&D#DGD150), were repeated using enzyme-linked
immunosorbent assays (ELISAs), according to the manufacturer’s instructions.

Automated cell-free DNA isolation from cell culture media

Total cell-free DNA (cf-DNA) was isolated from cell culture media using a previously
published automated, high throughput methodology %°. In brief, thawed cell culture media was
centrifued at 1000g for 5min. 75 pL of supernatant was then dispensed into a clean 96 deep-well
plate (Thermo Fisher, cat#95040450) using a Freedom EVO 150 automated liquid handler
(Tecan, cat#10641150). 5.7 pL of 20 mg/mL Proteinase K (VWR, cat#97062-242) and 7.5 pL of
20% sodium dodecyl sulfate (Boston BioProducts, cat#¥BM-230) were subsequently dispensed
into each well using a HandyStep digital repeater pipette (BrandTech Scientific, cat#705002). The
plate was sealed with an adhesive PCR seal (Thermo Fisher Scientific, cat#AB0558) and covered
with generic packaging tape. The plate was centrifuged at 500 x g for 1 minute (min), then
incubated in an New Brunswick Innova 44 incubator shaker (Eppendorf, cat#M1282-0000) at
70°C for 16 hours. Following the overnight incubation, the plate was left at room temperature for
15 min and centrifuged again. After the seal was removed, 125 uL of MagMAX Cell Free DNA
Lysis/Binding Solution (Thermo Fisher cat#AM8500) and 5 uL of Dynabeads MyOne Silane
magnetic beads (Thermo Fisher cat#37002D) were dispensed into each well using the repeater
pipette. The plate was loaded onto a KingFisher Presto (Thermo Fisher, cat#5400830) magnetic
particle processor to begin the extraction process. The DNA-bound magnetic beads were washed
three times with the following solutions: 1) 265 pL of MagMAX Cell Free DNA Wash Solution
(Thermo Fisher, cat#A33601), 2) 475 L of 80% ethanol, and 3) 200 yL of 80% ethanol. The cf-
DNA was resuspended in 60 yL of MagMAX Cell Free DNA Elution Solution (Thermo Fisher,
cat#33602) and stored at -20°C in a sealed 96-well PCR plate (Genesee Scientific, cat#24-302).

Quantification of cf-mtDNA and cf-nDNA abundance

gPCR: cf-mtDNA and cf-nDNA levels were measured simultaneously by gPCR. Tagman-
based duplex gPCR reactions targeted mitochondrial-encoded ND1 and nuclear-encoded B2M
sequences as described previously 5°°’. Each gene assay contained two primers and a
fluorescent probe and were assembled as a 20X working solution according to the manufacturer’s
recommendations (Integrated DNA Technologies). The assay sequences are:

ND1-Fwd: 5-GAGCGATGGTGAGAGCTAAGGT-3

ND1-Rev: 5-CCCTAAAACCCGCCACATCT-3’

ND1-Probe: 5-5HEX/CCATCACCC/ZEN/TCTACATCACCGCCC/2IABKGQ-3’
B2M-Fwd: 5’-TCTCTCTCCATTCTTCAGTAAGTCAACT-3’

B2M-Rev: 5-CCAGCAGAGAATGGAAAGTCAA-3’

B2M-Probe: 5’-56FAM-ATGTGTCTG-ZEN-GGTTTCATCCATCCGACCA-
3IABkFQ-3’

o O 0O O O ©O

Each reaction contained 4 pL of 2X Luna Universal gPCR Master Mix (New England Biolabs,
cat#¥M3003E), 0.4 uL of each 20X primer assay, and 3.2 pL of template cf-DNA for a final volume
of 8 uL. The gPCR reactions were performed in triplicate using a QuantStudio 5 Real-time PCR
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System (Thermo Fisher, cat#A34322) using the following thermocycling conditions: 95°C for 20 s
followed by 40 cycles of 95°C for 1's, 63°C for 20 s, and 60°C for 20 s. Serial dilutions of pooled
human placenta DNA were used as a standard curve.

Digital PCR (dPCR): mtDNA and nDNA copy number (copies/uL) of the standard curve used in
cf-mtDNA/cf-nDNA assessment were measured separately using singleplex ND1 and B2M
assays using a QuantStudio 3D Digital PCR System and associated reagents (Thermo Fisher,
cat#A29154) according to the manufacturer’s protocol. The values obtained for the standard curve
were used to calculate the copy number for the experimental samples. All reactions were
performed in duplicate (two chips). Because the same standard curve was used on all plates, its
copy number was applied uniformly to all gPCR plates.

Data Records

This multi-omics cellular lifespan dataset includes longitudinal data across 13 major
biological outcomes, including cytological measures (growth rate, cell size), cellular bioenergetics
(respiratory capacity, total energy consumption), transcriptomics (bulk RNA-seq), DNA
methylation (EPIC array), whole genome sequencing (WGS), secreted factors (cytokines, cell-
free DNA), and others (Figure 2-3 and Table 3). These outcomes differ by the number of samples,
repeat experiments, and length of timecourses for each donor line and treatment group
(Supplementary File 2 and Table 4). All expected hallmarks of cellular aging were observed in
this model, including the upregulation of quiescence and senescence markers, and
downregulation of genes associated with cell division (Figure 4).

\Q . Up to 42 time points
A Passage 1 Passage n
Healthy control J?( g 3 g § § % 3 § §
n =6 donors
d.,w ® Cytology Cell count & size @
Seahorse Metabolic rate @ ' . '.
| Q ® DNA methylation @ ® L —@
) : Telomere length @ @ @ @
SURF1 y d - S mtDNAcn
n=3 donors - mtDNA deletions
e \ C@ WGS
—_— 7 RNA RNAseq @ O @® —@
h S (0) o L6 @ @ L ® @ @ o] o ——©
n G s W& & & & O 0 O O
; Q\./ A Q - factors Cytokine array @ @ @ @ L 4 @ @

Cell-free mtDNA

Figure 2. Overview of the study design and temporality of outcome measures. The outcome measures
listed on the left were collected longitudinally at multiple time points following different periodicity,
determined by resource or cell number constraints. The duration and periodicity of measurements vary by
experimental conditions and cell line. See Tables 1 and 2 for details.
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Figure 3. Data availability for each measured parameter. Heatmap of sample availability for each
parameter (columns) associated with a given donor cell line and treatment (rows).
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Figure 4. Intersection between the Cellular Lifespan Study conditions and the hallmarks of aging.
Schematic of the hallmarks of aging adapted from Lépez-Otin et al. '2, annotated with the treatments and
datasets that directly or indirectly enable to longitudinally investigate their interplay with molecular features
of cellular aging in aging cultured primary human fibroblasts.

Table 1 contains information about all cell lines used, including the biopsy site, sex and age of
the donor, as well as known clinical and genetic information.

Table 2 indicates the cell lines with available data for each of the 22 experimental treatments,
which are described below.

Table 3 lists the assessed biological outcomes along with their dimensionality (number of
parameters quantified), the number of samples available across all cell lines, their temporal
frequency, and the total size or number of datapoints. For example, there is available
transcriptomic (i.e., gene expression) data quantified by RNA sequencing, which includes read
counts for each annotated gene expressed as transcripts per million (TPM), on 360 samples
collected on average every 11 days (min: 5 days, max 15 days), and each cell line has on average
8 timepoints (min:2, max:19). The transcriptomic dataset includes a total of 12.6B datapoints.
Although multiple treatments were used to perturb bioenergetic and endocrine pathways, the
dataset is most extensive and is of highest temporal resolution for cell lines from healthy controls.
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Table 4 lists the five main phases for which the study was conducted (Phases I-V). The time
periods and experimenters associated with each study phase.

Experimental treatments

1. Control (untreated)

a. Rationale: Cells are grown under metabolically diverse conditions of Dulbecco’s
modified Eagle’s medium (DMEM, Thermofisher #10569044) containing 5.5 mM
glucose, 1 mM pyruvate, 4 mM GlutaMAX™, supplemented with 10% fetal bovine
serum, 1% non-essential amino acids, 50 mg/ml Uridine, and 10 mM Palmitate.

b. Design & dose: No treatment. To enable direct comparison of control growth
trajectories to treatments (diluted in the vehicle DMSO), untreated controls were
grown in 0.001% DMSO (Sigma-Aldrich #D4540).

c. Duration: 0-270 days

d. Study Phase: |-V

2. Chronic Dexamethasone (DEX)

a. Rationale: Glucocorticoid receptor agonist, activates transcription of >1,000
genes *8. Used as a mimetic of chronic neuroendocrine or psychosocial stress in
animal studies *°. This treatment was used to examine the effects of chronic
activation glucocorticoid signaling, a major evolutionary conserved stress pathway,
on aging- and metabolism-related processes.

b. Design & dose: (PubChem CID: 5743, SID: 46508930) Chronic 100nM (in EtOh)
dose every passage, Sigma-Aldrich #D4902.

c. Duration: 20-270 days (chronic)

d. Study Phase: I-llI

3. Oligomycin (Oligo)

a. Rationale: Inhibition of the mitochondrial OXPHOS system by inhibiting the ATP
synthase (Complex V). Oligo treatment causes depletion of mitochondria-derived
ATP, hyperpolarization of the membrane potential, and triggers retrograde
signaling that activates the integrated stress response (ISR) ¢°. This treatment was
used to inhibit OXPHOS downstream from the respiratory chain, and thereby
examine the effect of chronic OXPHOS dysfunction.

b. Design & dose: Chronic, 1nM (stored in DMSO) dose every passage, Sigma-
Aldrich #75351

c. Duration: 20-220 days

d. Study Phase: I

4. Mitochondrial Nutrient Uptake Inhibitors (mitoNUITs)

a. Rationale: Inhibiting the import of three major substrates into mitochondria,
including i) pyruvate, with UK5099, an inhibitor of the mitochondrial pyruvate
carrier (MPC); ii) fatty acids, with Etomoxir, an irreversible inhibitor of carnitine
palmitoyltransferase-1 (CPT-1) that prevents the transport of fatty acyl chains from
the cytoplasm to the mitochondria; and iii) glutamine, with BPTES, an inhibitor of
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glutaminase GLS1 that converts glutamine to glutamate inside the mitochondria.
This treatment was used to starve the tricarboxylic acid (TCA) cycle of carbon
intermediates, thus inhibiting OXPHOS upstream of the respiratory chain.

b. Design & dose: UK5099 (PubChem CID: 6438504, SID: 329825569) chronic at
2uM (in DMSOQO), Sigma-Aldrich #PZ0160; Etomoxir (PubChem CID: 123823)
chronic at 4uM (in ddH>O), Sigma-Aldrich #E1905; BPTES (PubChem CID:
3372016) chronic at 3uM (in DMSO), Sigma-Aldrich #SML0601; dosed every
passage.

c. Duration: 20-210 days

d. Study Phase: I

5. Hypoxia

a. Rationale: Oxygen is the terminal electron acceptor at respiratory chain complex
IV (cytochrome c oxidase), and decreasing ambient oxygen tension from 21% to
3% has been shown to influence cellular bioenergetics. In cellular and animal
models of mitochondrial disease, including the Ndufs4 deficient mouse *°, hypoxia
treatment has shown promise to alleviate the disease phenotype and extend
lifespan. In relation to cellular aging, 3% oxygen tension also extends cellular
lifespan in murine and human fibroblasts 8'°°.

b. Design & dose: Cells chronically grown at 3% O, (5% CO.), except periodic
exposure to ambient 21% O during passaging (~3 hours, once each week). This
experiment was run twice (Study Phase Ill and V). Phase Il compared healthy to
chronic DEX cells in hypoxia, while Phase V compared healthy to SURF1-mutant
cells in hypoxia. Additionally, all seahorse bioenergetic measurements were
measured in 21% oxygen (Phase V included an overnight incubation at 21% O3).

c. Duration: 0-70 days

d. Study Phase: lll &V

6. Contact Inhibition

a. Rationale: Allowing cells to fill up the dish and enter a quiescent state allows for
the experimentally untangle the role of cell division in time-dependent changes.
Contact-inhibited fibroblasts continue to undergo morphological changes, exhibit
>88% reduced division rate on average, and display skin-like tissue appearance
after months in culture.

b. Design & dose: After thawing and adjustment to culture environment cells are
plated in multiple flasks at high density with marked collection points with the 0
time point collected 7 days after the initial plating. Media is changed weekly, at the
same time points as dividing cells are passaged.

c. Duration: 20-140 days

d. Study Phase: Il

7. Galactose
a. Rationale: Galactose is a non-fermentable sugar and its oxidation into pyruvate
through glycolysis yields no ATP, thereby forcing cells to rely solely on OXPHOS
for ATP production .
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b. Design & dose: Galactose (PubChem CID: 6036, SID: 178101363) chronic at
5.5mM (stored in ddH.O) dose every passage, Sigma-Aldrich #G5388.

c. Duration: 20-170 days

d. Study Phase: IV

8. 2-deoxy-d-glucose (2-DG)

a. Rationale: 2-deoxy-d-glucose (2DG) is an inhibitor of hexokinase ® that blocks
metabolic flux and ATP synthesis from the metabolism of glucose through
glycolysis.

b. Design & dose: 2-DG (PubChem CID: 108223, SID:24893732) chronic at TmM
(in ddH20) dose every passage, Sigma-Aldrich #D3179.

c. Duration: 20-170 days

d. Study Phase: IV

9. Beta-hydroxybutyrate (and 0mM glucose)

a. Rationale: Caloric restriction has been shown to extend lifespan. Beta-
hydroxbutyrate is a ketone body that is induced in caloric restriction and acts as a
signaling metabolite to effect gene expression in diverse tissues °.

b. Design & dose: hydroxybutyrate (PubChem CID: 10197691, SID: 57651496)
chronic at 10mM (in ddH20) dose every passage, Sigma-Aldrich #54965.

c. Duration: 20-170 days

d. Study Phase: IV

10. 5-azacytidine (5-aza)

a. Rationale: 5-aza was used to induce global demethylation of the genome, thus
testing if direct alteration of the methylome would reset the aging of our cells. Note,
no significant change was seen in the growth rate or global DNA methylation after
treatment, suggesting that the dose used may have been insufficient to induce
robust alterations in DNA methylation .

b. Design & dose: 5-aza (PubChem CID: 9444, SID: 24278211) acute treatment for
2 passages (~10days) at 1ug/mL (stored in PBS), Sigma-Aldrich #A2385.

c. Duration: 60-230 days

d. Study Phase: I

11. MitoQ

a. Rationale: MitoQ is a mitochondria-targeted antioxidant compound used
specifically in the mitochondrial compartment ®°. MitoQ was used to test how
reducing mitochondrial oxidation would influence cellular aging, or moderate the
influence of chronic stressors (see Treatment 19).

b. Design & dose: MitoQ (PubChem CID: 11388332, SID:134224101) chronic
treatment at 10nM (stored in DMSQO), provided by author M.P.M.

c. Duration: 20-120 days

d. Study Phase: |

12. N-Acetyl-L-cysteine (NAC)
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a. Rationale: NAC acts as a precursor of glutathione (GSH), which is itself a direct
antioxidant and a substrate for antioxidant enzymes °, NAC also generates H2S
and sulfanes that can act as antioxidants ”'. NAC was used to test whether
reducing total cellular oxidative stress burden by scavenging of reactive oxygen
species may influence cellular aging, or moderate the effect of chronic stress (see
Treatment 20).

b. Design & dose: NAC (PubChem CID: 12035, SID: 24277970) chronic treatment
at 2mM (in ddH20), Sigma-Aldrich #A7250.

c. Duration: 20-120 days

d. Study Phase: |

13. a-ketoglutarate (a-KG)

a. Rationale: 0-KG (also 2-oxoglutarate) is a key tricarboxylic acid cycle (TCA) cycle

metabolite that is a substrate for 2-oxoglutarate-dependent dioxygenases (2-
OGDD), and necessary cofactor for enzymes that perform demethylation of

proteins and DNA 72, ¢-KG was used to shift the a-KG-to-succinate ratio, which
was hypothesized to promote DNA demethylation 3. The cellular uptake and

bioavailability of a-KG was not monitored.

b. Design & dose: A-ketoglutarate (PubChem CID: 164533, SID: 329766750)
chronic treatment at 1mM (in ddH20), Sigma-Aldrich #75890.

c. Duration: 20-130 days

d. Study Phase: |

14. Oligomycin + DEX

a. Rationale: The complex V inhibitor oligomycin was used in combination with DEX
to examine their interactions. DEX increases mitochondrial OXPHOS-derived ATP
production, which is inhibited by Oligo, suggesting that DEX and Oligo may have
antagonistic effects.

b. Design & dose: same as Treatments 2 and 3.

c. Duration: 20-70 days

d. Study Phase: I

15. mitoNUITs + DEX
a. Rationale: Because the increase in mitochondria ATP production induced by DEX
requires the uptake of carbon substrates, which is inhibited by mitoNUITs. Both
treatments were used in parallel to examine if mitoNUITs would interfere with the
effects of DEX on cellular bioenergetics and signaling.
b. Design & dose: same as Treatments 2 and 4.
Duration: 20-270 days
d. Study Phase: I

o

16. Hypoxia + DEX
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a. Rationale: Hypoxia triggers a shift towards glycolytic metabolism, whereas DEX
causes a shift towards OXPHOS. Both treatments were used in parallel to examine
if DEX hypoxia could rescue the chronic effects of DEX on energetic parameters
and aging markers.

b. Design & dose: same as Treatments 2 and 5.

c. Duration: 20-70 days

d. Study Phase: Il

17. Contact inhibition + hypoxia
a. Rationale: Both contact inhibition and hypoxia reduce cellular division rate, and
partially recreate some of the natural conditions of skin fibroblasts in the human
body. Both were used in parallel as an attempt to recapitulate as closely as
possible in vivo conditions and evaluate the influence of this state on aging
markers.
b. Design & dose: same as Treatments 5 and 6.
Duration: 20-140 days
d. Study Phase: Il

o

18. 5-azacytidine + mitoNUITs

a. Rationale: Here we tested the idea that mitochondrial activity stores the memory
of epigenetic state. By demethylating the genome with 5-azacytidine and then
simultaneously diverting energy away from the ETC we hypothesized that the
genome would take longer to be remethylated back to its original state.

b. Design & dose: same as Treatments 4 and 10.

c. Duration: 60-230 days

d. Study Phase: I

19. MitoQ + DEX

a. Rationale: DEX causes a bioenergetic shift towards OXPHOS, and causes
premature aging based on several biomarkers (unpublished). MitoQ was used to
examine if these effects of chronic glucocorticoid stimulation could be alleviated by
buffering mitochondrial ROS, which would suggest that part of the accelerated
aging phenotype in DEX-treated cells is in part driven by mitochondrial ROS.

b. Design & dose: same as Treatments 2 and 11.

c. Duration: 20-130 days

d. Study Phase: |

20. NAC + DEX
a. Rationale: Similar to Treatment 19, NAC was used in parallel with DEX to examine
if the chronic effects of glucocorticoid signaling could be alleviated by buffering of
ROS in the cytoplasmic compartment (vs MitoQ, for mitochondrial ROS).
b. Design & dose: same as Treatments 2 and 12.
c. Duration: 20-120 days
d. Study Phase: |

21. Pulsated DEX
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a. Rationale: This treatment was used to examine the effects of a more physiological
pulsatile activation of glucocorticoid signaling, compared to its chronic activation
(Treatment 2).

b. Design & dose: Same molecular composition as chronic DEX (100nM, see
Treatment 2). Cells were treated once, for 30 min, before each passage (every 5-
7 days).

c. Duration: 20-120 days (pulsated)

d. Study Phase: |

22. Contact Inhibition & regrowth

a. Rationale: Allowing cells to continue their replicative lifespan after being held in
contact inhibition for several weeks allows for the experimental determination of
whether cultured cells remember their divisional age and contain the same total
replicative lifespan.

b. Design & dose: After 80 days of contact inhibition cells were allowed to continue
dividing until replicative exhaustion (i.e. ‘Contact Inhibition Regrowth’).

c. Duration: 80-210 days

d. Study Phase: |

Technical Validation

The number of days per passage were systematically recorded (and can be derived from
the ‘Date_time_of _passage’ variable, for each cell count timepoint in the database). Variation and
deviations in the number of days between passages increase towards the latter part of the lifespan
for all lines and treatments because of the limited number of cells once enter quiescence and
senescence (Figure 5A).

Two of the 6 healthy controls’ growth curves were repeated 4 times, over a ~2 year period,
in separate phases by different experimenters (see Table 4), confirming that the growth curves
were reproducible (Figure 5B). Chronic DEX (Treatment 2) was repeated in study Phases |, I,
and lll. Hypoxia (Treatment 5) was repeated in study Phases Ill and V. SURF1-mutant cells were
run in both study Phases Il and V. All data reflecting independent growth curves on multiple
parameters can be visualized on our webtool (https://columbia-picard.shinyapps.io/shinyapp-
Lifespan_Study/) and from the downloaded data.

The telomere length qPCR assay contained 5 technical replicates of the same sample
(HC1, passage 10, 42 days grown). Replicates had a C.V. of 9% (range of 0.21 T/S units) (Figure
5C).

The mtDNA copy number gPCR assay contained 7 technical replicates across 7 plates of
the same 2 samples (HC5 & HCG6). Replicates had an average C.V. of 3.5% (range: 95.05
copies/cell) (Figure 5D).

The cell-free DNA gPCR assay contained 9 technical replicates across 8 plates of the
same samples (HC3, passage 32, 189 days grown). An aged sample was selected to ensure
robust extracellular DNA levels. Replicates of cf-mtDNA and cf-nDNA measurements had an
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average C.V. of 25% and 40% (range: 100,609 and 166 copies/mL/10° cells, respectively) (Figure
5E).

The IL6 ELISA assay contained 9 technical replicates across 8 plates of the same samples
(HC3, passage 32, 189 days grown). An old media sample (robust extracellular IL6 levels) was
selected as a positive control. Replicates had a C.V. of 49% (range: 101.5 pg/mL/10° cells)
(Figure 5F).

The technical variation in DNAm on the EPIC array was also previously determined on six
DNA replicates from HC5 (GEO #GSE131280). DNAmAge computed from the combination of
multiple probes or CpG sites showed a coefficient of variation, for selected clocks, of 3% for the
Horvath1 (PanTissue) clock, 4% for the Horvath2 (Skin&Blood) clock, and 13% for the PhenoAge
clock (Figure 5G). After PC-adjustment based on °', the technical variation between samples was
reduced to 2%, 8%, and 2%, respectively, indicating moderately robust technical validity at the
single-CpG level, but high validity when multiple CpGs are combined into multivariate DNAm
clocks. The DNAm dataset also contains 3 replicate longitudinal experiments of HC1 & HC2 that
can be used to quantify the variability in the longitudinal rates of epigenetic aging using the
investigator’s preferred clock(s) or individual CpGs.

Technical variation for RNA- and DNA-based OMICS measures with >100 samples (i.e.
RNAseq, DNAm, telomere length etc.) was determined by distributing the same biological sample
(healthy HC1 fibroblasts, untreated, passage 6, 21 days grown) across multiple plates and
sequencing lanes. For RNAseq, the technical assay variation was determined from 7 biological
replicates. The average coefficient of variation (C.V., standard deviation divided by the mean) in
normalized read counts across all genes was 1.47% (range = 3.42 normalized expression units
(Figure 5H). Figure 5J shows the frequency distribution of C.V. for each mapped gene, and how
technical variation for individual genes influenced sample position on a 2-component principal
component analysis (PCA) across all study samples, indicating good reliability (Figure 5I).

The mean sequencing depth for WGS was >20X for most samples, as shown in Figure
5k.
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Figure 5. Experimental replication and technical variation across multi-modal measurements. (A)
Timecourse of the number of days between each passage for each phase of the study. (B) Growth curves
of donors repeated at different phases of the study. Color indicates phase of study and shape indicates cell
line donor. (C-H) Variation in technical replicates for (C) telomere length, (D) mtDNA copy number, (E) cell-
free DNA, (F) IL6 as measured by ELISA, (G) DNAmMAge as estimated by three epigenetic clocks and there
PC-adjusted calibrations, and (H) average RNAseq-based transcript levels across all expressed genes. (I)
Principal component analysis of all expressed genes for the full 354 sample RNAseq dataset. Technical
replicates are highlighted in blue (n=7). (J) Coefficient of variations in transcript per million (TPM) across
the 7 RNAseq technical replicates for each mapped gene. The majority of genes have CVs < 5%, and 99%
of genes have CVs < 10%. (K) Mean sequencing coverage for whole genome sequencing (n=94 samples).
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Usage Notes

Here we mention some of the limitations of the dataset that should be considered for the
analysis and interpretation of findings.

Sample Exclusion. All samples and measurements that did not pass quality control, regardless of
the assay, were excluded from the published dataset (i.e. ‘Supplemental File 1’ & ShinyApp). See
‘Data Access’, section for access to raw data files.

Prestudy passaging. Fibroblast cell lines were sourced from different vendors and isolated using
varying culture methods (Table 1). Additionally, donor medical history, chronological age, and
environmental exposures add additional variability between cell lines. Due to these constraints, it
is not possible to determine the exact number of population doublings cells underwent before
performing the study. These constraints could influence the cumulative population doublings of
each cell line but should not affect rates of aging or age-related trajectories.

Pre-study freeze-thaw cycles. Study Phases | and Il involved a single freeze-thaw cycle in liquid
nitrogen in our laboratory from the cell obtained; while an additional cycle occurred in cells used
in Phases lll, IV, V.

Normalization to cell numbers. The raw values for some features are influenced by the number of
cells in the culture flask at each passage. For example, secretome data that includes extracellular
levels of cytokines or cell-free mitochondrial DNA (cf-mtDNA) in the cell media are determined
not only by the secretion rate, but also by the total number of cells contributing to the signal in the
flask. Therefore, secreted factors levels are normalized to cell number at the time of harvesting
media, which represents the amount of analyte released per cell counted. To obtain raw
concentrations media concentrations, the investigator can multiply the normalized values
(variable_name_example e.g. ‘IL6_ELISA _Upg_per_ml’) by the cell count
(variable_name_in_database_for_cellcount, e.g. ‘Cells_counted_UmillionCells’) at each time
point. Cell counts should include the fraction of dead cells at any given passage unless otherwise
established secretion from exclusively live cells.

Cell seeding density. In Phase V of the study, we improved our calculation of seeding numbers
to ensure <80% confluency at each passage. This minor change in protocol could contribute to
differences between replicate experiments and trajectories of metabolic rate and other potential
differences between Phase V and earlier phases.

Sample size and robustness of experimental treatments. As detailed in Table 2, this Cellular
Lifespan dataset includes longitudinal assessments of treatment conditions in primary human
fibroblasts from multiple independent donors, in some cases replicated multiple times. This is the
case for untreated (Treatment #1), chronic DEX (#2), and hypoxia (#5) treatments. These time-
series data enable robust modeling of time-related dynamics and treatment effects, using the
user’s preferred methods. Other treatment conditions were either performed in a smaller number
of donors, particularly HC1 (male) and HC2 (female), and/or for some treatments the timecourse
experiment was not subsequently repeated. These conditions should be considered exploratory
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and may serve as preliminary data for subsequent experiments. All treatment conditions were
conducted in at least two different donors, and each experiment contained multiple timecouse
data points. The more limited domains of the dataset enable to calculate robust estimates of effect
sizes, directionality of effects, and effects across two donors of different biological sex.

Rate of epigenetic aging. To obtain stable estimates of epigenetic aging without potential artifacts
attributable to the early effects of culture or before the onset of treatments, or to later alterations
in the epigenome (i.e., non-linear trajectories on DNAmAge clocks) related to quiescence or
senescence towards the end of life, rates of epigenetic aging were determined by taking the linear
slope for each cell line from 25 to 75 days of growth.

Future analyses. This dataset contains multi-modal data that can be used to investigate each of
the hallmarks of aging (see Figure 4). In particular, the high-resolution timecourses are ideal to
model age-related trajectories with either linear or complex non-linear functions. These models
could then be systematically classified and statistically examined using functional regression
approaches, for example, to identify (groups of) parameters exhibiting similar related age-
associated trajectories. Such parameters would indicate co-regulation and could inform
subsequent mechanistic studies aiming to establish causal pathways, bioenergetic parameters,
enzymes, or genes that drive specific aging trajectories. Because the average timecourse
contains ~12 timepoints, and because interpolation likely overfits beyond the 3-sample resolution
rule-of-thumb, non-linear modeling efforts should be limited to 4 inflection points across the
cellular lifespan.

It is also possible to leverage the repeated measures design across portions of the
lifespan, or across the whole lifespan, to examine stable (i.e. time-invariant) differences between
treatment groups. Examples include: i) the SURF1 mutant cells effects relative to control, which
triggers hypermetabolism, a robust hypersecretory phenotype, the transcriptional integrated
stress response, and accelerates several markers of cellular aging ™, and ii) the chronic Dex
treatment effects on control fibroblasts, which alters cytological, transcriptional, secretory, and
(epi)genomic aging markers *°.

Finally, these longitudinal data can be used to develop or validate new penalized
regression algorithms or “epigenetic clocks” *'.

Data Access

All data can be accessed, visualized, and downloaded without restrictions at
https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/. This simple interface allows
users to select (and de-select) the donors of interest, select the experimental treatment(s), and
visualize the time course data in an realtime-updatable display panel (Figure 6). Users can select
multiple donors and-or treatments simultaneously to visualize the effects of interest and explore
the data. All data visualized is downloadable as a .csv file which can further be found directly at:
https://figshare.com/articles/dataset/Lifespan_Study Data/18441998. The app will be regularly
updated with new data as additional lifespan experiments and analyses are performed.

The unprocessed RNAseq (GSE179848) and EPIC DNA methylation array data
(GSE179847) can also be accessed and downloaded in full through Gene Expression Omnibus
(GEO). WGS coverage and variant information can be accessed on the ShinyApp, and the
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complete data is available upon request. Brightfield microscopy images can be downloaded at:
https://figshare.com/articles/dataset/Brightfield Images for Cellular Lifespan Study/18444731.
Raw Seahorse assay files along with corresponding data analysis scripts can be found at :
https://github.com/gav-sturm/Cellular_Lifespan_Study/tree/main/Seahorse.
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Figure 6. Data visualization and exploration on the Cellular Lifespan ShinyApp. (A-C) Visualization
example of high-dimensionality epigenetic DNA methylation (DNAm) data using tools on the ShinyApp. (A)
Interactive timecourse of the DNAm Skin&Blood clock (Horvath2, a multivariate algorithm trained using
penalized elastic net regression) across the cellular lifespan of HC1 fibroblasts, both untreated (grey) and
treated chronically (red) with 100nM of dexamethasone (DEX, glucocorticoid receptor agonist) to mimic
chronic stress exposure. Note that the x axis represents time in culture, which can be changed using the
selector menu on the left to “population doublings” to take into account the reduced division rate in Dex-
treated cells. Other biological measures are visualized via tabs on the top. (B-C) Interactive principal
component analysis of the 45,000 significant age-related CpGs in 2D (B) and 3D (C). The frequency and
duration of different cytological, molecular, and bioenergetic measurements vary by cell lines and
experimental conditions. See Figure 3, Tables 2-4, and Supplemental File 2 for details. The Shiny App can
be accessed, and the data downloaded, at https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study.
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Code Availability

Code is available at https://github.com/gav-sturm/Cellular_Lifespan_Study
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o Donor
CeliLine In-house Recived From Tissue Location Genetic SUR'.:1 Ethnicity Sex Age Passage Cat #
name name Mutation
(years)
Lifeline Cell . FC-0024 Lot
HC1 hFB12 Technology Dermal Breast Normal N/A Caucasian | male 18 1 #03099
HC2 hrg13 | LifeLine Cell Dermal Breast Normal NIA Caucasian | female | 18 1| FC-0024 Lot
Technology # 00967
HC3 hFB14 Corriel Institute Foreskin Normal N/A Black male 0 4 AG01439
HC4 hFB11 Hirano Lab Dermal Upper-Arm Skin Normal N/A N/A male 3 4
HC5 hFB1 Hirano Lab Dermal Upper-Arm Skin Normal N/A Caucasian | male 29 3
HC6 hFB2 Hirano Lab Dermal Upper-Arm Skin Normal N/A Caucasian | female 26 4
¢.518_519del
. ) SURF1 (p.S173Cfs*7)
SURF1_1 hFB6 Hirano Lab Dermal Upper-Arm Skin Mutation ¢.845_846del N/A male 0.25 7
(p.$282Cfs*7)
€.247_248insCTGC
) ) SURF1 (p.R83Pfx*7)
SURF1_2 hFB7 Hirano Lab Dermal Upper-Arm Skin Mutation ¢.313_321del N/A male 11 5
(p-L105_A107del)
SURF1 Homozygous
SURF1_3 hFB8 Hirano Lab Dermal Upper-Arm Skin Mutati ¢.313_321del N/A female 9 9
utation (p.L105_A107del)

Table 1. Cell line metadata. Demographic, tissue of origin, and genetic characteristics of the primary
human fibroblast cell lines used in the Cellular Lifespan Study dataset. The dataset includes 6 healthy
control donors, and 3 donors with lethal SURF 1 mutations that alter mitochondrial respiratory chain complex
IV assembly and function, and lead to early death in affected patients.
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Healthy Controls

SURF1 Mitochondrial Disease

Treatments

HC1
(hFB12)

HC2
(hFB13)

HC3
(hFB14)

HC4
(hFB11)

HC5
(hFB1)

HCé
(hFB2)

SURF1_1
(hFB6)

SURF1_2
(hFB7)

SURF1_3
(hFBS)

1. Control

2. Chronic DEX

3. Oligomycin

4. mitoNUITs

5. Hypoxia

6. Contact Inhibition

7. Galactose

8.2DG

9. B-hydroxybutyrate

10. 5-aza

11. MitoQ

12. NAC

13. a-KG

14. Oligomycin+DEX

15.mitoNUITs+DEX

16. Hypoxia+DEX

17. Contact
Inhibition+Hypoxia

18. 5-aza+mitoNUITs

19. MitoQ+DEX

20. NAC+DEX

21 Pulsated DEX

22. Contact inhibition
& regrowth

Table 2. Cell lines and treatments for the Cellular Lifespan Study. Experimental conditions, or

absence thereof, applied to each primary human fibroblast cell line.
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Biological # of # of Timepoints Frequency | Total data
measures Platform parameters | Samples | per cell line® (days) * points
Cell cytology Countess 3 1,547 Avg. 21 Avg. 7 5x10e3
(7,41) (5,22)
Cell morphology Bright field 2 1,547 Avg. 21 Avg. 7 3x10e3
microscopy (7,41) (5,22)
Bioenergetics Seahorse XF°96 34 468 Avg. 9 Avg. 6 16x10e3
(3,18) (6,7)
Transcriptomics RNAseq 28,633 345 Avg. 8 Avg. 11 9x10e9
lllumina HiSeq (2,19) (5,15)
Telomere length gPCR 1 496 Avg. 7 Avg. 8 500
(2,15) (4,15)
DNA methylation lllumina EPIC 865,817 479 Avg. 7 Avg. 8 427x10e6
Bead Array (2,15) (4,15)
Whole Genome lllumina HiSeq ~3,200,000, 94 Avg. 6 Avg. 18 301x10e9
Sequencing 000 (2,11) (8,28)
IL6 ELISA 1 695 Avg. 10 Avg. 8 700
(5,20) (5,15)
GDF15 ELISA 1 100 Avg. 9 Avg. 21 100
(7,10) (10,60)
Cytokines Luminex array 52 76 Avg. 8 Avg. 21 4x10e3
(6,10) (10,60)
cf-mtDNA gPCR 2 695 Avg. 12 Avg. 8 1.4x10e3
(6,20) (5,15)
mtDNA copy number gPCR 2 494 Avg. 10 Avg. 8 1x10e3
(5,20) (4,15)
mtDNA sequencing lon Torrent 10 120 Avg. 8 Avg. 8 1.2x10e3
(4,14) (8,8)

Table 3. Dimensionality of biological measures available in this dataset. Molecular, cellular and
bioenergetic features, the technique or platform used to generate the data, their temporal resolution, and
the dimensionality of datasets for each biological measure. ® Values are averages with minimum and
maximum number of timepoints (min, max). * The frequency of passaging differs by study Phase: Phase I,

5 days; Phase Il, 5 days; Phase lll, 7 days; Phase IV, 7 days; Phase V, 5 days.
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Study Phase | Investigator | Time period Cell lines Treatments

Phase | G.S. Oct 2017-Feb 2018 (4 mo) HC5,6 1,2,6,11,12,13,19,20,21,22

Phase Il G.S. Aug 2018-May 2019 (10 mo) | HC1,2,3, 1,2,3,4,10,14,15,18
SURF1_1,2,3

Phase I G.S. Feb 2019-April 2019 (3 mo) HC1,2,4 1,2,5,6,16,17

Phase IV J.M. May 2019-Oct 2019 (6mo) HC1,2 1,7,8,9

Phase V A.S.M. Oct 2020-June 2021 (8mo) HC1,2,3, 1,5
SURF1_1,2,3

Table 4. Study phases, cell lines used, and treatments applied in the Cellular Lifespan Study. Five
phases conducted by different investigators with varying study lengths, cell lines, treatments, and

exposures.

Supplementary Files

Supplementary File 1. Cellular Lifespan Study complete dataset.

Supplementary File 2. Heatmaps of available experimental data.

30



https://doi.org/10.1101/2021.11.12.468448
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.12.468448; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

References

1. Kaeberlein, M., Rabinovitch, P. S. & Martin, G. M. Healthy aging: The ultimate preventative
medicine. Science 350, 1191-1193 (2015).

2. De Cecco, M. et al. Author Correction: L1 drives IFN in senescent cells and promotes age-
associated inflammation. Nature 572, E5 (2019).

3. Petr, M. A,, Tulika, T., Carmona-Marin, L. M. & Scheibye-Knudsen, M. Protecting the Aging
Genome. Trends Cell Biol. 30, 117—-132 (2020).

4. Vijg, J. & Suh, Y. Genome instability and aging. Annu. Rev. Physiol. 75, 645-668 (2013).

5. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115
(2013).

6. Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins.
Proc. Natl. Acad. Sci. U. S. A. 102, 10604—10609 (2005).

7. Wang, Y. et al. Epigenetic influences on aging: a longitudinal genome-wide methylation
study in old Swedish twins. Epigenetics 13, 975-987 (2018).

8. Tabula Muris Consortium et al. Single-cell transcriptomics of 20 mouse organs creates a
Tabula Muris. Nature 562, 367-372 (2018).

9. Ubaida-Mohien, C. et al. Discovery proteomics in aging human skeletal muscle finds
change in spliceosome, immunity, proteostasis and mitochondria. Elife 8, (2019).

10. Tanaka, T. et al. Plasma proteomic biomarker signature of age predicts health and life
span. Elife 9, (2020).

11. Ferrucci, L. et al. Measuring biological aging in humans: A quest. Aging Cell 19, e13080
(2020).

12. Lépez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of
aging. Cell 153, 1194-1217 (2013).

13. Campisi, J. et al. From discoveries in ageing research to therapeutics for healthy ageing.

Nature 571, 183-192 (2019).

31


https://doi.org/10.1101/2021.11.12.468448
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.12.468448; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

available under aCC-BY-NC-ND 4.0 International license.

Jansen, R. et al. An integrative study of five biological clocks in somatic and mental health.
Elife 10, (2021).

Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of
ageing. Nat. Rev. Genet. 19, 371-384 (2018).

Cohen, A. A. Complex systems dynamics in aging: new evidence, continuing questions.
Biogerontology 17, 205-220 (2016).

Belsky, D. W. et al. Quantification of the pace of biological aging in humans through a blood
test, the DunedinPoAm DNA methylation algorithm. Elife 9, (2020).

Kuo, P. -L et al. A roadmap to build a phenotypic metric of ageing: insights from the
Baltimore Longitudinal Study of Aging. Journal of Internal Medicine vol. 287 373-394
(2020).

Poulton, R., Moffitt, T. E. & Silva, P. A. The Dunedin Multidisciplinary Health and
Development Study: overview of the first 40 years, with an eye to the future. Soc.
Psychiatry Psychiatr. Epidemiol. 50, 679-693 (2015).

Ruple, A., MacLean, E., Snyder-Mackler, N., Creevy, K. E. & Promislow, D. Dog Models of
Aging. Annu Rev Anim Biosci (2021) doi:10.1146/annurev-animal-051021-080937.
Mitchell, S. J., Scheibye-Knudsen, M., Longo, D. L. & de Cabo, R. Animal models of aging
research: implications for human aging and age-related diseases. Annu Rev Anim Biosci 3,
283-303 (2015).

Palliyaguru, D. L. et al. Fasting blood glucose as a predictor of mortality: Lost in translation.
Cell Metab. 33, 2189-2200.e3 (2021).

Berry, B. J. & Kaeberlein, M. An energetics perspective on geroscience: mitochondrial
protonmotive force and aging. Geroscience (2021) doi:10.1007/s11357-021-00365-7.
Yang, J. et al. Synchronized age-related gene expression changes across multiple tissues
in human and the link to complex diseases. Scientific Reports vol. 5 (2015).

Vizioli, M. G. et al. Mitochondria-to-nucleus retrograde signaling drives formation of

32


https://doi.org/10.1101/2021.11.12.468448
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.12.468448; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

available under aCC-BY-NC-ND 4.0 International license.

cytoplasmic chromatin and inflammation in senescence. Genes Dev. 34, 428—-445 (2020).
Barends, M. et al. Causes of Death in Adults with Mitochondrial Disease. JIMD Rep. 26,
103-113 (2016).

Kaufmann, P. et al. Natural history of MELAS associated with mitochondrial DNA
m.3243A>G genotype. Neurology 77, 1965-1971 (2011).

Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA
polymerase. Nature 429, 417-423 (2004).

Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in
mammalian aging. Science 309, 481-484 (2005).

Jain, I. H. et al. Hypoxia as a therapy for mitochondrial disease. Science 352, 54—61
(2016).

Sturm, G. et al. Human aging DNA methylation signatures are conserved but accelerated in
cultured fibroblasts. Epigenetics 14, 961-976 (2019).

Picard, M. Mitochondrial synapses: intracellular communication and signal integration.
Trends Neurosci. 38, 468—-474 (2015).

Tiranti, V. et al. Mutations of SURF-1 in Leigh disease associated with cytochrome ¢
oxidase deficiency. Am. J. Hum. Genet. 63, 1609—-1621 (1998).

Agostino, A. et al. Constitutive knockout of Surf1 is associated with high embryonic lethality,
mitochondrial disease and cytochrome c oxidase deficiency in mice. Hum. Mol. Genet. 12,
399-413 (2003).

Wedatilake, Y. et al. SURF1 deficiency: a multi-centre natural history study. Orphanet
Journal of Rare Diseases vol. 8 (2013).

Mookerjee, S. A., Gerencser, A. A., Nicholls, D. G. & Brand, M. D. Quantifying intracellular
rates of glycolytic and oxidative ATP production and consumption using extracellular flux
measurements. Journal of Biological Chemistry vol. 293 12649-12652 (2018).

Tan, B., Xiao, H., Li, F., Zeng, L. & Yin, Y. The profiles of mitochondrial respiration and

33


https://doi.org/10.1101/2021.11.12.468448
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.12.468448; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

glycolysis using extracellular flux analysis in porcine enterocyte IPEC-J2. Anim Nutr1, 239—
243 (2015).

38. Brand, M. D. & Nicholls, D. G. Assessing mitochondrial dysfunction in cells. Biochem. J
435, 297-312 (2011).

39. Goudenége, D. et al. eKLIPse: a sensitive tool for the detection and quantification of
mitochondrial DNA deletions from next-generation sequencing data. Genet. Med. 21, 1407-
1416 (2019).

40. Picard, M. et al. Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt
transcriptional reprogramming. Proceedings of the National Academy of Sciences vol. 111
E4033-E4042 (2014).

41. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Erratum: Near-optimal probabilistic
RNA-seq quantification. Nat. Biotechnol. 34, 888 (2016).

42. Horvath, S. et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford
Progeria Syndrome and ex vivo studies. Aging 10, 1758-1775 (2018).

43. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human
aging rates. Mol. Cell 49, 359-367 (2013).

44. McEwen, L. M. et al. The PedBE clock accurately estimates DNA methylation age in
pediatric buccal cells. Proc. Natl. Acad. Sci. U. S. A. 117, 23329-23335 (2020).

45. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10,
573-591 (2018).

46. Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging
11, 303-327 (2019).

47. Lu, A. T. et al. DNA methylation-based estimator of telomere length. Aging 11, 5895-5923
(2019).

48. Youn, A. & Wang, S. The MiAge Calculator: a DNA methylation-based mitotic age

calculator of human tissue types. Epigenetics 13, 192—206 (2018).

34


https://doi.org/10.1101/2021.11.12.468448
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.12.468448; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

available under aCC-BY-NC-ND 4.0 International license.

Levine, M. E., Leung, D., Minteer, C. & Gonzalez, J. A DNA Methylation Fingerprint of
Cellular Senescence. bioRxiv 674580 (2019) doi:10.1101/674580.

Belsky, D. W. et al. DunedinPACE, a DNA methylation biomarker of the pace of aging. Elife
11, (2022).

Higgins-Chen, A. T. et al. A computational solution for bolstering reliability of epigenetic
clocks: Implications for clinical trials and longitudinal tracking. bioRxiv 2021.04.16.440205
(2021) doi:10.1101/2021.04.16.440205.

Cawthon, R. M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30, e47
(2002).

Lin, J. et al. Analyses and comparisons of telomerase activity and telomere length in human
T and B cells: insights for epidemiology of telomere maintenance. J. Immunol. Methods
352, 71-80 (2010).

Tanaka, T. et al. Plasma proteomic signature of age in healthy humans. Aging Cell 17,
12799 (2018).

Ware, S. A. et al. An automated, high-throughput methodology optimized for quantitative
cell-free mitochondrial and nuclear DNA isolation from plasma. J. Biol. Chem. 295, 15677—
15691 (2020).

Belmonte, F. R. et al. Digital PCR methods improve detection sensitivity and measurement
precision of low abundance mtDNA deletions. Sci. Rep. 6, 25186 (2016).

Trumpff, C. et al. Acute psychological stress increases serum circulating cell-free
mitochondrial DNA. Psychoneuroendocrinology 106, 268-276 (2019).

John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding
patterns. Nat. Genet. 43, 264-268 (2011).

David, D. J. et al. Neurogenesis-dependent and -independent effects of fluoxetine in an
animal model of anxiety/depression. Neuron 62, 479-493 (2009).

Mick, E. et al. Distinct mitochondrial defects trigger the integrated stress response

35


https://doi.org/10.1101/2021.11.12.468448
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.12.468448; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

depending on the metabolic state of the cell. Elife 9, (2020).

61. Estrada, J. C. et al. Culture of human mesenchymal stem cells at low oxygen tension
improves growth and genetic stability by activating glycolysis. Cell Death Differ. 19, 743—
755 (2012).

62. Korski, K. I. et al. Hypoxia Prevents Mitochondrial Dysfunction and Senescence in Human
c-Kit+ Cardiac Progenitor Cells. Stem Cells 37, 555-567 (2019).

63. Damiani, E. et al. Modulation of Oxidative Status by Normoxia and Hypoxia on Cultures of
Human Dermal Fibroblasts: How Does It Affect Cell Aging? Oxid. Med. Cell. Longev. 2018,
5469159 (2018).

64. van Vliet, T. et al. Physiological hypoxia restrains the senescence-associated secretory
phenotype via AMPK-mediated mTOR suppression. Mol. Cell 81, 2041-2052.e6 (2021).

65. Timpano, S. et al. Physioxic human cell culture improves viability, metabolism, and
mitochondrial morphology while reducing DNA damage. FASEB J. 33, 5716-5728 (2019).

66. Robinson, B. H., Petrova-Benedict, R., Buncic, J. R. & Wallace, D. C. Nonviability of cells
with oxidative defects in galactose medium: a screening test for affected patient fibroblasts.
Biochem. Med. Metab. Biol. 48, 122—126 (1992).

67. Dwarakanath, B. & Jain, V. Targeting glucose metabolism with 2-deoxy-D-glucose for
improving cancer therapy. Future Oncol. 5, 581-585 (2009).

68. Newman, J. C. & Verdin, E. B-Hydroxybutyrate: A Signaling Metabolite. Annu. Rev. Nutr.
37, 51-76 (2017).

69. Murphy, M. P. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta 1777,
1028-1031 (2008).

70. Aldini, G. et al. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the
reasons why. Free Radic. Res. 52, 751-762 (2018).

71. Ezerina, D., Takano, Y., Hanaoka, K., Urano, Y. & Dick, T. P. N-Acetyl Cysteine Functions

as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production.

36


https://doi.org/10.1101/2021.11.12.468448
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.12.468448; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

72.

73.

74.

75.

available under aCC-BY-NC-ND 4.0 International license.

Cell Chemical Biology vol. 25 447-459.e4 (2018).

Martinez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control
physiology and disease. Nat. Commun. 11, 102 (2020).

Xiao, M. et al. Inhibition of a-KG-dependent histone and DNA demethylases by fumarate
and succinate that are accumulated in mutations of FH and SDH tumor suppressors.
Genes Dev. 26, 1326-1338 (2012).

Sturm, G. et al. OxPhos Dysfunction Causes Hypermetabolism and Reduces Lifespan in
Cells and in Patients with Mitochondrial Diseases. bioRxiv 2021.11.29.470428 (2021)
doi:10.1101/2021.11.29.470428.

Bobba-Alves, N. et al. Chronic Glucocorticoid Stress Reveals Increased Energy
Expenditure and Accelerated Aging as Cellular Features of Allostatic Load. bioRxiv

2022.02.22.481548 (2022) doi:10.1101/2022.02.22.481548.

37


https://doi.org/10.1101/2021.11.12.468448
http://creativecommons.org/licenses/by-nc-nd/4.0/

