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Abstract

How are syntactically and semantically connected word sequences, or constituents, represented
in the human language system? An influential fMRI study, Pallier et al. (2011, PNAS),
manipulated the length of constituents in sequences of words or pseudowords. They reported that
some language regions (in the anterior temporal cortex and near the temporo-parietal junction)
were sensitive to constituent length only for sequences of real words but not pseudowords. In
contrast, language regions in the inferior frontal and posterior temporal cortex showed the same
pattern of increased response to longer constituents—and similar overall response magnitudes—
for word and pseudoword sequences. Based on these results, Pallier et al. argued that the latter
regions represent abstract sentence structure. Here we identify methodological and theoretical
concerns with the Pallier et al. study and conduct a replication across two fMRI experiments. Our
results do not support Pallier et al.’s critical claim of distinct neural specialization for abstract
syntactic representations. Instead, we find that all language regions show a similar profile of
sensitivity to both constituent length and lexicality (stronger responses to real-word than
pseudoword stimuli). In addition, we argue that the constituent length effect in these experiments
i) is not readily grounded in established theories of sentence processing, and ii) may not actually
derive from syntactic structure building, but may instead reflect the temporal receptive window of
the human language system.

Significance Statement

An influential study (Pallier et al., 2011, PNAS) has been widely interpreted as evidence that
inferior frontal and posterior temporal brain regions perform abstract syntactic processing during
language comprehension, independent of lexical content. Here we identify theoretical, empirical,
and methodological concerns with the original study and conduct a replication across two
experiments. Contrary to Pallier et al. (2011), we find evidence that both syntactic and lexical
processing are distributed throughout the human language network, consistent with prior
arguments for a highly lexicalized and distributed human language processing system.


https://doi.org/10.1101/2021.11.12.467812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.12.467812; this version posted November 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Main Text

Introduction

Human languages are characterized by rich and complex structure. How sentence structure is
processed during real-time comprehension is a central question in the study of language (1). In
an influential study, Pallier, Devauchelle, and Dehaene (ref. (2), henceforth PDD) provided fMRI
evidence that syntactic constituents—groups of words that function as single units within a
hierarchical structure of a sentence—are represented in the brain when people read sentences.
More interestingly, they argued that their evidence showed that brain regions in the inferior frontal
and posterior temporal cortex represent abstract syntactic structure without the lexical content of
sentences. Ten years later, PDD has been cited over 500 times, and its claims have informed
theories of cognition, brain function, and evolution that posit neural circuits dedicated to abstract
combinatorics (e.g., refs. (3-7)).

In PDD’s paradigm (Figure 1), participants read 12-word sequences presented one word at a
time. The internal composition of the sequences varied parametrically from a sequence of twelve
unconnected words to a 12-word sentence (condition "c12” in Figure 1). In the intermediate
conditions, the sequences contained concatenated constituents of different lengths: six 2-word
constituents (c02), four 3-word constituents (c03), three 4-word constituents (c04), or two 6-word
constituents (c06). PDD hypothesized that normal language processing requires the
comprehender to maintain an increasingly complex representation of constituent structure as
each new word is processed, and that this increased representational complexity will correspond
to an increase in overall neuronal activity in conditions with longer constituents. To investigate the
abstractness of syntactic representations, a ‘Jabberwocky’ version of each condition (e.g. jab-
c01, jab-c12) was created by replacing the content words (nouns, verbs, adjectives, and adverbs)
with word-like nonwords (pseudowords), but preserving the syntactic ‘frame’, i.e., function words
like articles and auxiliaries, and functional morphological endings (e.g., higher and higher prices >
hisker and hisker cleeces).

In line with their hypothesis, PDD observed stronger neural responses to real-word sequences
comprised of longer constituents in six frontal and temporal left-hemisphere regions previously
associated with language processing. Critically, they found that Jabberwocky sequences elicited
a similar-magnitude response and a similar pattern of constituent-length effects in inferior frontal
and posterior temporal, but not anterior temporal or temporo-parietal regions, leading to the
argument that these regions represent abstract syntactic structure and are insensitive to word
meanings.

However, PDD's core claims now face empirical and theoretical objections. First, multiple past
studies have found evidence of lexical processing in the inferior frontal and posterior temporal
areas identified by PDD as abstract syntactic hubs (e.g., refs. (8—12)), and other studies have
reported sensitivity to structure in Jabberwocky materials in anterior temporal regions argued by
PDD to be insensitive to such effects (e.g., refs. (8—10, 13, 14)). These prior studies raise
concerns about the empirical validity of PDD's reported pattern. Second, PDD's proposed theory
of syntactic structure building (which predicts a monotonic increase in demand across the
constituent) is at odds with an extensive theoretical and empirical literature on human sentence
processing that has revealed considerable variation in processing demand over the course of
constituents (15), including reductions in demand for certain kinds of long constituents (16, 17).

Furthermore, some of the methodological choices in PDD's design and analyses are problematic.
First, PDD used a between-subjects design to compare the real-words and Jabberwocky
conditions (thus simultaneously varying both the sample of participants and the condition), even
though this manipulation is feasible to perform in a within-subjects design that avoids this
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confound. Because individuals and, by extension, groups of individuals vary along numerous trait
and state dimensions that are known to affect neural responses (e.g., refs. (18-20)), the
magnitudes of neural responses in two groups cannot be confidently attributed to
differences/similarities between conditions. Second, PDD used the same data both to define the
regions of interest and to quantify their responses, introducing circularity (21). Finally, PDD relied
on traditional group analyses (18), which assume voxel-wise correspondence across individual
brains. Ample evidence exists for substantial inter-individual variability in the precise locations of
functional areas in the association cortex (e.g., refs. (22—24)), including in the language network
(e.g., refs. (8, 25)). Given that some of PDD’s claims rely on not finding certain effects in certain
brain regions, the choice of traditional group analyses, which suffer from low sensitivity (26) is
suboptimal.

Motivated by these concerns, we conduct two experiments that constitute the closest effort to
date to replicate PDD's original study while addressing the methodological issues above. First,
we use a strictly within-subjects design. Second, we use independent data to define the regions
of interest and to quantify their responses to the critical conditions. And third, we define areas of
interest functionally in individual brains (e.g., refs. (8, 27, 28)), which has been shown empirically
and through simulations to yield higher sensitivity and higher functional resolution (e.g., refs. (26,
29-31)).

Whereas we replicate the basic constituent-length effect in both experiments (see ref. (32) for
another recent replication), our results challenge PDD’s critical claim that the inferior frontal and
posterior temporal regions support abstract syntactic processing. In particular, all language
regions show (a) an effect of ‘lexicality’ with real-word conditions eliciting stronger responses than
Jabberwocky conditions, (b) a length by lexicality interaction whereby the constituent-length effect
is more pronounced in the real-word compared to Jabberwocky conditions, or (c) both. These
findings challenge the notion of regions within the language network that support abstract,
content-independent, syntactic processing.

We further show that multiple extant theories of human language processing do not explain
PDD'’s pattern of results. This finding makes it difficult to ground PDD’s effect in independently
motivated mechanisms of sentence processing. We propose a non-syntactic alternative account
of PDD’s constituent-length effect in terms of the size of the language system’s temporal
receptive window (e.g., ref (33)) that aligns with prior research.

Results

Results are visualized in Figure 2 (full significance testing details are given in Table $1). For the
real-word conditions, all regions show the pattern reported by PDD: increasing activation as a
function of constituent length, including a smaller increase at larger lengths (e.g., c06 to c12). This
pattern is robust in both Experiment 1 and 2 (Figure 2B-D). However, as shown in Figure 2D, both
a) the language network when treated as an integrated whole (see e.g., refs (31, 34—36)), and b)
each individual region within it (correcting over regions for false discovery rate — FDR; see
Materials & Methods) also show i) constituent-length effects for the Jabberwocky conditions
(significant for all but the LAngG language fROI), ii) lexicality effects (larger overall responses to
real-word than Jabberwocky stimuli; significant for all but the LIFGorb language fROI), and iii)
constituent-length by lexicality interactions (larger constituent-length effects for real-word than
Jabberwocky conditions; significant in the LIFGorb, LAntTemp, and LAngG language fROls, and
in the language network overall). Thus, contrary to PDD, who reported the same response pattern
to real-word and Jabberwocky stimuli in inferior frontal and posterior temporal regions, we find
significant effects of stimulus type in these regions, either in the form of larger overall response to
real-word stimuli (the LIFG and LPostTemp language fROIs) or steeper increases in response to
constituent length in real-word stimuli (the LIFGorb language fROI). In summary, no region exhibits
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the critical pattern of similar sensitivity to the constituent-length manipulation (which PDD argue is
a syntactic manipulation, but see Discussion) in the absence of sensitivity to lexical content (i.e.,
real words vs. Jabberwocky).

To help interpret the constituent-length effect observed by PDD and replicated here (see also ref.
(32)), follow-up analyses considered the impact of including as predictors in the model six linguistic
measures that are motivated by an extensive theoretical and empirical literature on human
language processing mechanisms and their cognitive demands: open nodes, node closings,
Dependency Locality Theory (DLT) storage cost, DLT integration cost, 5-gram surprisal, and PCFG
surprisal (see Materials & Methods and Sl Section 5). If the constituent-length effect is due to
one or more of these linguistic variables, then controlling for them should attenuate the effect.
However, under the same FDR correction as above, no linguistic variable significantly alters the
strength of the overall constituent-length effect in the language network in either experiment. In
other words, we find no evidence that PDD’s pattern of results can be explained by (or grounded
in) prevailing theories of cognitive load during language comprehension. As we argue below, the
constituent-length effect may be driven primarily by poorer overall engagement of the language
processing system in shorter conditions, rather than by syntactic structure building as argued by
PDD.

Discussion

By showing purported evidence for the existence of brain regions specialized for representing
abstract linguistic structure PDD provided an important connection between the brain, cognition,
and the structure of natural language that has informed much subsequent theorizing about the
neural basis of language and the structure of mental representations for language (e.g., refs. (3—
7)). However, PDD’s conclusions (1) relied on statistically questionable between-group
comparisons to substantiate the claim of abstract syntactic processing, (2) used the same data to
define the fROIs and to statistically examine their responses, (3) did not take into account
individual variation in functional brain anatomy, and (4) depended on a theory of language
processing that has not been externally validated, conflicts with known empirical patterns, and is
not widely accepted by the sentence processing community. In two conceptual replications that
used independent data to define the areas of interest and to quantify their responses (e.g., (21)),
we reproduced PDD’s finding of increased language network activation as a function of
constituent length for real-word stimuli. However, contrary to PDD, we find that (1) no language
region shows a pattern consistent with abstract syntactic processing, and (2) all language
regions, except for the LAngG language fROI, show qualitatively and, for the most part,
quantitatively similar patterns of response, arguing against the division proposed by PDD
between abstract syntactic regions (inferior frontal and posterior temporal regions) and regions
that are only sensitive to syntactic structure in meaningful stimuli (anterior temporal regions).
These key similarities and differences between our findings and PDD’s are summarized in Table
1.

PDD'’s core claim is that the inferior frontal and posterior temporal components of the language
network (but not its anterior temporal or temporo-parietal components) support abstract syntactic
processing given that—in their data—these regions show similarly strong responses to real-word
and Jabberwocky stimuli, and similar constituent-length effects. The similar magnitudes of
response to real-word and Jabberwocky stimuli may have been an artifact of a between-group
comparison (separate groups of participants performed the real-word conditions vs. the
Jabberwocky conditions). Here, using a within-subjects design, we show a robust effect of
lexicality such that real-word stimuli elicit a much stronger response than Jabberwocky stimuli.
This effect is present across the language network, and critically in both the inferior frontal and
posterior temporal areas (the LIFG and LPostTemp language fROIs). This finding aligns with
several prior studies (fMRI: ref. (8)—see Figure $1-B for a direct comparison of the overlapping
subset of conditions, refs. (37, 38); intracranial recordings: ref. (39)) and with growing evidence
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for strong integration between structure and lexical meaning in the representations and
computations that underlie language processing across fields and approaches, from linguistic
theory (e.g., refs. (40—43)), to psycholinguistics (e.g., refs. (44—47)), to computational linguistics
(e.g., refs. (48-51)), to cognitive neuroscience (e.g., refs. (10, 39, 52-54)). Furthermore, in line
with this strongly lexicalized view of linguistic syntax, although several non-linguistic domains like
music, arithmetic, and computer programming exhibit language-like hierarchical structure and
have been hypothesized/argued to share combinatorial machinery with language (e.g., refs. (55—
58)), growing evidence indicates that functionally distinct brain regions are responsible for
structure building in language vs. other domains (e.g., refs. (59—64), see ref. (65) and Fedorenko
& Shain, to appear, for reviews).

PDD additionally claim a distinction between, on the one hand, areas that putatively support
abstract syntactic processing (inferior frontal and posterior temporal areas discussed above), and,
on the other hand, areas that only support syntactic processing in meaningful (real-word, not
Jabberwocky) stimuli. The latter, according to PDD, include anterior temporal areas and the
posterior-most parts of the temporal component of the language network (what they refer to as
‘TPJ’ or temporo-parietal junction—an area that overlaps with our LAngG parcel; Figure S1-A).
Similarly to PDD, we observe significant interactions between the constituent-length manipulation
and stimulus type—with a more pronounced effect of constituent length in real-word than in
Jabberwocky stimuli—in the LAntTemp and LAngG language fROIs. However, contra PDD, we
observe a) a large and statistically significant constituent-length effect in Jabberwocky stimuli in
the LAntTemp language fROI (see also ref. (8); Figure S1), b) larger overall responses in the
presence of lexical content in the LIFG and LPostTemp language fROls, and c) a significant
constituent length by lexicality interaction in the LIFGorb fROI, along with numerically positive
interactions in the LIFG and LPostTemp fROIs (Figure 2C-D). Thus, contrary to PDD, our results
support similar patterns of response to the critical manipulations across the regions of the
language network, rather than PDD’s proposed functional subdivision.

The only exception is the LAngG language fROI, which fails to show a significant constituent-
length effect for Jabberwocky stimuli, aligning with other studies that have not found sensitivity to
structural manipulations therein (e.g., refs. 35, 48) and with studies that have found weaker
functional correlations between the LAngG fROI and the rest of the language network (e.g., refs.
(25, 34, 67)). The precise role of the LAngG language fROI in linguistic and cognitive processing
remains debated, but this region does not appear to be selective for language as it responds
more strongly to meaningful pictorial stimuli than to sentences (68, 69).

Going back to the constituent-length effect in real-word stimuli: we asked, what does this effect
reflect? We considered the possibility that the empirical predictions of the non-standard sentence
processing theory advocated by PDD might be correlated with the predictions of sentence
processing theories with wider acceptance and stronger empirical support, thus grounding out
PDD'’s pattern of results in more fundamental explanations of the cognitive mechanisms that
underlie language comprehension. We considered several theory-driven measures of sentence
processing difficulty (including one, open nodes, expressly designed to predict PDD-like build-up
effects within constituent strings), and showed that none of them statistically attenuate the
constituent-length effect when included as controls, and some of them are actually anti-correlated
with constituent length (Figure 1C). The constituent-length effect therefore does not align with
prominent theories about the influence of syntactic structure on patterns of comprehension
difficulty in human sentence processing.

But if the constituent-length effect does not reflect syntactic structure building, what is the right
way to interpret this pattern of results? Our proposed answer draws on a prior theoretical
distinction between the “proper” and “actual” domains of specialized information processing
systems (70, 71), whereby the system’s degree of engagement can be modulated by the degree
of fit between a given input and the target domain for which the system is adapted. Given the
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highly combinatory and contextualized nature of natural language, we hypothesize that several
words of contiguous context may be necessary in order to identify a stimulus as “proper” to the
high-level language system. As a consequence, PDD’s shorter-constituent-length conditions may
fail by degrees to fully engage language processing mechanisms in the first place, thereby
attenuating overall activation in the language system.

Prior investigations of temporal receptive windows (TRWs, e.g., refs. (33, 72)) support this
perspective. A TRW of a brain region (or a voxel, or a neuron) is defined as the length of the
preceding context that affects the processing of the current input. Based on the inter-subject
correlation approach (73), Blank & Fedorenko (ref. (74); see also ref. (33)) showed that multiword
spans of coherent language are needed to maximize synchrony between language network
responses across individuals (i.e., to maximize the degree of stimulus-related processing or
stimulus ‘tracking’). Relatedly, Fedorenko et al. (39) showed a monotonic increase in activity in
electrocorticographic recordings in some language-responsive electrodes over the course of the
sentence (see also ref. (75)), with no similar increase shown for strings of unconnected words.
These patterns suggest that multiword coherent contexts may be a critical prerequisite for full
engagement of the language comprehension system.

Under this view, PDD’s design reveals an effect not because of how syntactic constituents are
processed but because of how the language system recognizes inputs as being in-domain.

PDD'’s design may thus be a parametric variant of contrasts used in other work showing that
responses in the language system are diminished by truncation of coherent context (sentences >
word lists), removal of lexical content (sentences > Jabberwocky), or both (sentences > non-word
lists, or speech > acoustically degraded and thus indecipherable speech) (e.g., refs. (8, 10, 37,
54,59, 76, 77)). The 2-, 3-, 4-, and 6-word conditions in PDD serve as steps along a continuum of
language-likeness between word lists and sentences and correspondingly produce a rise in
language network activation.

In summary, our finding of lexicality effects (and/or constituent length by lexicality interactions) in
inferior frontal and posterior temporal language regions undermines an influential claim in PDD:
that these regions support abstract, content-independent syntactic structure building. Our results
are instead consistent with growing evidence that linguistic representations and computations
over a range of levels of description (phonological, lexical, syntactic, and semantic) are highly
distributed across the language network and are not spatially segregated (10, 52, 54, 74, 78, 79).

We close by noting that despite offering an alternative interpretation of PDD’s findings that does
not invoke constituency, our study has no bearing on whether constituency influences human
sentence processing in general; we only argue that PDD’s study does not support such an
influence. Indeed, abundant evidence for syntactic influences on human sentence processing has
accumulated across multiple experimental paradigms (e.g., refs. (66, 80—85)). However, by
showing lexicality effects distributed throughout the language system, our results pose a
challenge to PDD’s notion of abstract, content-independent syntactic processing centers.
Whatever internal functional differentiation the language network may ultimately be shown to
exhibit, these results and related evidence of distributed lexical, syntactic, and semantic
processing—discussed above—suggest that it is unlikely to be characterized by slicing between
levels of linguistic description.

Materials and Methods

This study consists of two replication attempts. Experiment 1 focuses on the real-word conditions
from PDD and attempts to replicate the basic constituent-length effect in the language network’s
response. Experiment 2 additionally includes Jabberwocky conditions in order to test PDD’s
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critical theoretical claim: that a subset of the language network implements abstract, content-
independent, syntactic processing.

Participants

Forty individuals (age 18-38, 22 females) participated for payment (Experiment 1: n=15;
Experiment 2: n=25). All were right-handed—as determined by the Edinburgh Handedness
Inventory (86), or self-report—native speakers of English from Cambridge/Boston, MA and the
surrounding community. All participants gave informed consent in accordance with the
requirements of MIT’'s Committee on the Use of Humans as Experimental Subjects (COUHES).
Each participant completed a language localizer task (8) and a critical task.

Critical Task

The design of both experiments followed PDD but used English materials available at
https://osf.io/7pknb/ (the original experiments were carried out in French). In particular,
participants were presented with same-length strings (12 words/nonwords), and the internal
composition of these strings varied across conditions. The conditions in Experiment 1 were
similar to PDD’s real-word conditions, except they did not include the 3-word constituent
condition. Experiment 2 included three types of experimental manipulation: a) six conditions that
were identical to the real-word conditions in PDD: a sequence of twelve unconnected words (i.e.,
constituents of length 1: c01; here and elsewhere, our condition name abbreviations are similar to
those in PDD), six 2-word constituents (c02), four 3-word constituents (c03), three 4-word
constituents (c04), two 6-word constituents (c06), and a 12-word sentence (c12); b) three
conditions that were a subset of the Jabberwocky conditions from PDD selected to span the
range of constituent lengths: a list of twelve unconnected nonwords (jab-c01), three 4-word
Jabberwocky constituents (jab-c04), and a 12-word Jabberwocky sentence (jab-c12); and c) two
non-constituent conditions (four 3-word non-constituents (nc03) and three 4-word non-
constituents (nc04)). We report the results for the non-constituent conditions in SI Section 9
given that they are not critical for the main question investigated here. Sample stimuli are shown
in Figure 1A, with the distribution of parts of speech by condition in Figure 1B.

Procedure

The procedure was similar for the two experiments and followed PDD: participants saw the stimuli
presented one word/nonword at a time in the center of the screen in all caps with no punctuation
at the rate of 300 ms per word/nonword (for 3.6 s total trial duration). In Experiment 1, the 150
trials (30 12-word sequences x 5 conditions) were distributed across 5 runs, so that each run
contained 6 trials per condition. In addition, each run included 108 s of fixation, for a total run
duration of 216 s (3 min 36 s). In Experiment 2, the 330 trials (30 12-word sequences x 11
conditions) were distributed across 10 runs, so that each run contained 3 trials per condition. In
addition, each run included 121.2 s of fixation, for a total run duration of 240 s (4 min). In both
experiments, the order of conditions and the distribution of fixation periods in each run were
determined with the optseq2 algorithm (87).

Linguistic Analyses

The language processing mechanisms that are assumed by PDD commit larger and larger neural
assemblies to the representation of a constituent as it is processed word by word, resulting in a
hypothesized monotonic increase in language network activation as a function of constituent
length (Figure 1C, PDD), motivated by evidence of such increases during sequence memory
tasks in non-linguistic primates (88-90), and by consistency with a general computational model
of distributed associative memory (91). PDD do not attempt to ground their hypothesis in an
extensive psycholinguistic literature on the mechanisms of human sentence processing, leaving
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open the possibility that constituent length effects derive indirectly from more fundamental
sentence processing mechanisms. This does not in itself undermine PDD’s claim as long as their
results are well approximated by measures with external theoretical and empirical support. If—as
our results indicate—this is not the case, such an outcome undermines the interpretation of
PDD'’s results as driven by syntactic structure building (see Discussion for an alternative
account).

To test whether PDD'’s results are approximated by independently motivated word-by-word
measures of processing demand, we considered six alternative measures from the
psycholinguistic literature: four of them are derived from memory-based accounts of sentence
processing (75, 79, 92), and the other two—from surprisal-based accounts (93—-95). The mean
value of each predictor by condition is plotted in Figure 1C.

Open nodes and nodes merged are measures of memory demand hypothesized by (75). They
respectively denote costs associated with storing incomplete syntactic constituents and
integrating syntactic constituents once they are completed. Integration cost and storage cost are
measures of memory demand hypothesized by the Dependency Locality Theory (DLT) (92). They
respectively denote costs associated with keeping incomplete syntactic dependencies in memory
(e.g., the awaited verb once the subject is encountered) and retrieving items from memory in
order to construct syntactic dependencies to them (i.e. retrieving the subject once the verb is
encountered). 5-gram surprisal and PCFG surprisal denote measures of word predictability
derived respectively from (i) a computational model that predicts words based on the four
preceding words (5-gram surprisal), and (ii) a computational model that predicts words based on
hypotheses about the sentence’s constituent structure (probabilistic context-free grammar or
PCFG surprisal).

For extended discussion of these predictors and their possible relationship to the constituent
length effects reported by PDD, see Sl Section 5.

Based on theories of working memory demand and surprisal, language processing difficulty
(hence, amount of computation/activation) is expected to increase with increases in
storage/integration costs and surprisal. Because language network activation increases with
constituent length, for any variables that underlie PDD’s pattern, expected difficulty should also
increase with constituent length. This is not the case for the node closings predictor, as discussed
above, nor for either of the surprisal measures (Figure 1C). Anti-correlations with the surprisal
measures are not unexpected: words within constituents are expected to be more informative
about each other than words that span constituent boundaries, and words with longer contexts
are expected to be more predictable on average than words with less context, given that more
evidence can accumulate to support the prediction. By contrast, accounting for the influence of
function words (larger DLT integration cost at short constituent lengths are driven by the lower
proportion of function words in these items, Figure 1C), the DLT predictors (and the open nodes
predictor, as discussed above) show the expected positive association with constituent length.
This is again unsurprising: longer constituents permit both longer dependencies (higher
integration cost) and more incomplete dependencies at any point in processing (higher storage
cost and more open nodes).

Imaging, Functional Localization, and Data Analysis
Imaging, functional localization, and data analysis procedures are described in Sl Sections 1-4.
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Figure 1. (A) Examples of stimuli across length conditions (from 1-word constituents, c01, to 12-
word constituents, ¢12), with real-word constituent conditions shown in warm colors and
Jabberwocky constituent conditions shown in cool colors. (B) Proportion of parts of speech (PoS)
by constituent length for real-word conditions. At length 1, nouns and verbs are overrepresented
and function words are underrepresented. This is because function words easily license
multiword constituents, violating the 1-word constraint. At lengths 3+, the distribution of
categories is relatively stable. (C) Mean value of linguistic features (memory- and surprisal-
based) by constituent length for real-word conditions, compared to PDD-hypothesized monotonic
increase (left). Error bars show standard errors of the mean across items.
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Constituent-length Constituent-length Constituent-length Lexicality effect Constituent-length
effect for real-word effect for real-word  effect for Jabberwocky (real-word > by stimulus type
conditions (Expt 1) conditions (Expt 2) conditions (Expt 2) Jabberwocky, (real-word vs.
Expt 2) Jabberwocky)

interaction (Expt 2)

Figure 2. A. Group masks bounding the six left-hemisphere regions of the language network. The
top 10% of language-selective voxels are selected within each mask in each participant. B.
Estimated response to each condition of the real-words conditions in Expt 1 (which did not
include Jabberwocky conditions). Responses in all regions increase with constituent length. C.
Estimated response to each condition of the real-words conditions (replicating Expt 1) and the
Jabberwocky conditions in Expt 2. Responses in all regions increase with constituent length in
both real-word and Jabberwocky conditions. D. Key contrasts by language network fROI (left-to-
right): constituent-length effect for real-word conditions in Expt 1; constituent-length effect for real-
word conditions in Expt 2; constituent-length effect for Jabberwocky conditions in Expt 2; overall
lexicality effect (increase in response for real-word over Jabberwocky conditions in Expt 2,
averaging over length); increase in constituent-length effect in real-word conditions over
Jabberwocky in Expt 2. Starred bars indicate statistically significant effects by likelihood ratio test.
(Note that effect sizes in D are not always identical to their corresponding slopes in B and C
because some contrasts use a subset of available length conditions for valid comparison.) Error
bars show standard error of the mean over participants.
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sensitivity to lexical content sensitivity to structure in Jabberwocky
(inconsistent with abstract syntactic processsing)

PDD SKLASMF PDD SKLASMF
inferior frontal - + + +
anterior temporal + + - +
posterior temporal - + + +
AngG/TPJ + + - -

Table 1. Summary of key similarities and differences between PDD’s findings and those of our
study (SKLASMF). PDD reported (a) one set of regions (inferior frontal and posterior temporal)
that were sensitive to structure (constituent length) in real-word stimuli and equally sensitive to
structure in Jabberwocky stimuli (supporting abstract syntactic processing in these regions), and
(b) another set of regions (anterior temporal and TPJ) that were sensitive to lexical content and
insensitive to structure in Jabberwocky stimuli. Our study does not reproduce most of PDD’s
reported insensitivities (red minus signs), instead finding sensitivity to both lexical content and
syntactic structure in Jabberwocky stimuli throughout the regions of the functional language
network.
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