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Abstract 

How are syntactically and semantically connected word sequences, or constituents, represented 
in the human language system? An influential fMRI study, Pallier et al. (2011, PNAS), 
manipulated the length of constituents in sequences of words or pseudowords. They reported that 
some language regions (in the anterior temporal cortex and near the temporo-parietal junction) 
were sensitive to constituent length only for sequences of real words but not pseudowords. In 
contrast, language regions in the inferior frontal and posterior temporal cortex showed the same 
pattern of increased response to longer constituents—and similar overall response magnitudes—
for word and pseudoword sequences. Based on these results, Pallier et al. argued that the latter 
regions represent abstract sentence structure. Here we identify methodological and theoretical 
concerns with the Pallier et al. study and conduct a replication across two fMRI experiments. Our 
results do not support Pallier et al.’s critical claim of distinct neural specialization for abstract 
syntactic representations. Instead, we find that all language regions show a similar profile of 
sensitivity to both constituent length and lexicality (stronger responses to real-word than 
pseudoword stimuli). In addition, we argue that the constituent length effect in these experiments 
i) is not readily grounded in established theories of sentence processing, and ii) may not actually 
derive from syntactic structure building, but may instead reflect the temporal receptive window of 
the human language system. 

Significance Statement 

An influential study (Pallier et al., 2011, PNAS) has been widely interpreted as evidence that 
inferior frontal and posterior temporal brain regions perform abstract syntactic processing during 
language comprehension, independent of lexical content. Here we identify theoretical, empirical, 
and methodological concerns with the original study and conduct a replication across two 
experiments. Contrary to Pallier et al. (2011), we find evidence that both syntactic and lexical 
processing are distributed throughout the human language network, consistent with prior 
arguments for a highly lexicalized and distributed human language processing system. 
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Main Text 
 
Introduction 
 

Human languages are characterized by rich and complex structure. How sentence structure is 
processed during real-time comprehension is a central question in the study of language  (1). In 
an influential study, Pallier, Devauchelle, and Dehaene (ref. (2), henceforth PDD) provided fMRI 
evidence that syntactic constituents—groups of words that function as single units within a 
hierarchical structure of a sentence—are represented in the brain when people read sentences. 
More interestingly, they argued that their evidence showed that brain regions in the inferior frontal 
and posterior temporal cortex represent abstract syntactic structure without the lexical content of 
sentences. Ten years later, PDD has been cited over 500 times, and its claims have informed 
theories of cognition, brain function, and evolution that posit neural circuits dedicated to abstract 
combinatorics (e.g., refs. (3–7)). 

In PDD’s paradigm (Figure 1), participants read 12-word sequences presented one word at a 
time. The internal composition of the sequences varied parametrically from a sequence of twelve 
unconnected words to a 12-word sentence (condition "c12” in Figure 1). In the intermediate 
conditions, the sequences contained concatenated constituents of different lengths: six 2-word 
constituents (c02), four 3-word constituents (c03), three 4-word constituents (c04), or two 6-word 
constituents (c06). PDD hypothesized that normal language processing requires the 
comprehender to maintain an increasingly complex representation of constituent structure as 
each new word is processed, and that this increased representational complexity will correspond 
to an increase in overall neuronal activity in conditions with longer constituents. To investigate the 
abstractness of syntactic representations, a ‘Jabberwocky’ version of each condition (e.g. jab-
c01, jab-c12) was created by replacing the content words (nouns, verbs, adjectives, and adverbs) 
with word-like nonwords (pseudowords), but preserving the syntactic ‘frame’, i.e., function words 
like articles and auxiliaries, and functional morphological endings (e.g., higher and higher prices > 
hisker and hisker cleeces). 

In line with their hypothesis, PDD observed stronger neural responses to real-word sequences 
comprised of longer constituents in six frontal and temporal left-hemisphere regions previously 
associated with language processing. Critically, they found that Jabberwocky sequences elicited 
a similar-magnitude response and a similar pattern of constituent-length effects in inferior frontal 
and posterior temporal, but not anterior temporal or temporo-parietal regions, leading to the 
argument that these regions represent abstract syntactic structure and are insensitive to word 
meanings. 

However, PDD's core claims now face empirical and theoretical objections. First, multiple past 
studies have found evidence of lexical processing in the inferior frontal and posterior temporal 
areas identified by PDD as abstract syntactic hubs (e.g., refs. (8–12)), and other studies have 
reported sensitivity to structure in Jabberwocky materials in anterior temporal regions argued by 
PDD to be insensitive to such effects (e.g., refs. (8–10, 13, 14)). These prior studies raise 
concerns about the empirical validity of PDD's reported pattern. Second, PDD's proposed theory 
of syntactic structure building (which predicts a monotonic increase in demand across the 
constituent) is at odds with an extensive theoretical and empirical literature on human sentence 
processing that has revealed considerable variation in processing demand over the course of 
constituents (15), including reductions in demand for certain kinds of long constituents (16, 17). 

Furthermore, some of the methodological choices in PDD's design and analyses are problematic. 
First, PDD used a between-subjects design to compare the real-words and Jabberwocky 
conditions (thus simultaneously varying both the sample of participants and the condition), even 
though this manipulation is feasible to perform in a within-subjects design that avoids this 
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confound. Because individuals and, by extension, groups of individuals vary along numerous trait 
and state dimensions that are known to affect neural responses (e.g., refs. (18–20)), the 
magnitudes of neural responses in two groups cannot be confidently attributed to 
differences/similarities between conditions. Second, PDD used the same data both to define the 
regions of interest and to quantify their responses, introducing circularity (21). Finally, PDD relied 
on traditional group analyses (18), which assume voxel-wise correspondence across individual 
brains. Ample evidence exists for substantial inter-individual variability in the precise locations of 
functional areas in the association cortex (e.g., refs. (22–24)), including in the language network 
(e.g., refs. (8, 25)). Given that some of PDD’s claims rely on not finding certain effects in certain 
brain regions, the choice of traditional group analyses, which suffer from low sensitivity (26) is 
suboptimal. 

Motivated by these concerns, we conduct two experiments that constitute the closest effort to 
date to replicate PDD's original study while addressing the methodological issues above. First, 
we use a strictly within-subjects design. Second, we use independent data to define the regions 
of interest and to quantify their responses to the critical conditions. And third, we define areas of 
interest functionally in individual brains (e.g., refs. (8, 27, 28)), which has been shown empirically 
and through simulations to yield higher sensitivity and higher functional resolution (e.g., refs. (26, 
29–31)). 

Whereas we replicate the basic constituent-length effect in both experiments (see ref. (32) for 
another recent replication), our results challenge PDD’s critical claim that the inferior frontal and 
posterior temporal regions support abstract syntactic processing. In particular, all language 
regions show (a) an effect of ‘lexicality’ with real-word conditions eliciting stronger responses than 
Jabberwocky conditions, (b) a length by lexicality interaction whereby the constituent-length effect 
is more pronounced in the real-word compared to Jabberwocky conditions, or (c) both. These 
findings challenge the notion of regions within the language network that support abstract, 
content-independent, syntactic processing. 

We further show that multiple extant theories of human language processing do not explain 
PDD’s pattern of results. This finding makes it difficult to ground PDD’s effect in independently 
motivated mechanisms of sentence processing. We propose a non-syntactic alternative account 
of PDD’s constituent-length effect in terms of the size of the language system’s temporal 
receptive window (e.g., ref (33)) that aligns with prior research. 
 
 
Results 

Results are visualized in Figure 2 (full significance testing details are given in Table S1). For the 
real-word conditions, all regions show the pattern reported by PDD: increasing activation as a 
function of constituent length, including a smaller increase at larger lengths (e.g., c06 to c12). This 
pattern is robust in both Experiment 1 and 2 (Figure 2B-D). However, as shown in Figure 2D, both 
a) the language network when treated as an integrated whole (see e.g., refs (31, 34–36)), and b) 
each individual region within it (correcting over regions for false discovery rate – FDR; see 
Materials & Methods) also show i) constituent-length effects for the Jabberwocky conditions 
(significant for all but the LAngG language fROI), ii) lexicality effects (larger overall responses to 
real-word than Jabberwocky stimuli; significant for all but the LIFGorb language fROI), and iii) 
constituent-length by lexicality interactions (larger constituent-length effects for real-word than 
Jabberwocky conditions; significant in the LIFGorb, LAntTemp, and LAngG language fROIs, and 
in the language network overall). Thus, contrary to PDD, who reported the same response pattern 
to real-word and Jabberwocky stimuli in inferior frontal and posterior temporal regions, we find 
significant effects of stimulus type in these regions, either in the form of larger overall response to 
real-word stimuli (the LIFG and LPostTemp language fROIs) or steeper increases in response to 
constituent length in real-word stimuli (the LIFGorb language fROI). In summary, no region exhibits 
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the critical pattern of similar sensitivity to the constituent-length manipulation (which PDD argue is 
a syntactic manipulation, but see Discussion) in the absence of sensitivity to lexical content (i.e., 
real words vs. Jabberwocky). 

To help interpret the constituent-length effect observed by PDD and replicated here (see also ref. 
(32)), follow-up analyses considered the impact of including as predictors in the model six linguistic 
measures that are motivated by an extensive theoretical and empirical literature on human 
language processing mechanisms and their cognitive demands: open nodes, node closings, 
Dependency Locality Theory (DLT) storage cost, DLT integration cost, 5-gram surprisal, and PCFG 
surprisal (see Materials & Methods and SI Section 5). If the constituent-length effect is due to 
one or more of these linguistic variables, then controlling for them should attenuate the effect. 
However, under the same FDR correction as above, no linguistic variable significantly alters the 
strength of the overall constituent-length effect in the language network in either experiment. In 
other words, we find no evidence that PDD’s pattern of results can be explained by (or grounded 
in) prevailing theories of cognitive load during language comprehension. As we argue below, the 
constituent-length effect may be driven primarily by poorer overall engagement of the language 
processing system in shorter conditions, rather than by syntactic structure building as argued by 
PDD. 
 
 
Discussion  
By showing purported evidence for the existence of brain regions specialized for representing 
abstract linguistic structure PDD provided an important connection between the brain, cognition, 
and the structure of natural language that has informed much subsequent theorizing about the 
neural basis of language and the structure of mental representations for language (e.g., refs. (3–
7)). However, PDD’s conclusions (1) relied on statistically questionable between-group 
comparisons to substantiate the claim of abstract syntactic processing, (2) used the same data to 
define the fROIs and to statistically examine their responses, (3) did not take into account 
individual variation in functional brain anatomy, and (4) depended on a theory of language 
processing that has not been externally validated, conflicts with known empirical patterns, and is 
not widely accepted by the sentence processing community. In two conceptual replications that 
used independent data to define the areas of interest and to quantify their responses (e.g., (21)), 
we reproduced PDD’s finding of increased language network activation as a function of 
constituent length for real-word stimuli. However, contrary to PDD, we find that (1) no language 
region shows a pattern consistent with abstract syntactic processing, and (2) all language 
regions, except for the LAngG language fROI, show qualitatively and, for the most part, 
quantitatively similar patterns of response, arguing against the division proposed by PDD 
between abstract syntactic regions (inferior frontal and posterior temporal regions) and regions 
that are only sensitive to syntactic structure in meaningful stimuli (anterior temporal regions). 
These key similarities and differences between our findings and PDD’s are summarized in Table 
1. 

PDD’s core claim is that the inferior frontal and posterior temporal components of the language 
network (but not its anterior temporal or temporo-parietal components) support abstract syntactic 
processing given that—in their data—these regions show similarly strong responses to real-word 
and Jabberwocky stimuli, and similar constituent-length effects. The similar magnitudes of 
response to real-word and Jabberwocky stimuli may have been an artifact of a between-group 
comparison (separate groups of participants performed the real-word conditions vs. the 
Jabberwocky conditions). Here, using a within-subjects design, we show a robust effect of 
lexicality such that real-word stimuli elicit a much stronger response than Jabberwocky stimuli. 
This effect is present across the language network, and critically in both the inferior frontal and 
posterior temporal areas (the LIFG and LPostTemp language fROIs). This finding aligns with 
several prior studies (fMRI: ref. (8)—see Figure S1-B for a direct comparison of the overlapping 
subset of conditions, refs. (37, 38); intracranial recordings: ref. (39)) and with growing evidence 
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for strong integration between structure and lexical meaning in the representations and 
computations that underlie language processing across fields and approaches, from linguistic 
theory (e.g., refs. (40–43)), to psycholinguistics (e.g., refs. (44–47)), to computational linguistics 
(e.g., refs. (48–51)), to cognitive neuroscience (e.g., refs. (10, 39, 52–54)). Furthermore, in line 
with this strongly lexicalized view of linguistic syntax, although several non-linguistic domains like 
music, arithmetic, and computer programming exhibit language-like hierarchical structure and 
have been hypothesized/argued to share combinatorial machinery with language (e.g., refs. (55–
58)), growing evidence indicates that functionally distinct brain regions are responsible for 
structure building in language vs. other domains (e.g., refs. (59–64), see ref. (65) and Fedorenko 
& Shain, to appear, for reviews). 

PDD additionally claim a distinction between, on the one hand, areas that putatively support 
abstract syntactic processing (inferior frontal and posterior temporal areas discussed above), and, 
on the other hand, areas that only support syntactic processing in meaningful (real-word, not 
Jabberwocky) stimuli. The latter, according to PDD, include anterior temporal areas and the 
posterior-most parts of the temporal component of the language network (what they refer to as 
‘TPJ’ or temporo-parietal junction—an area that overlaps with our LAngG parcel; Figure S1-A). 
Similarly to PDD, we observe significant interactions between the constituent-length manipulation 
and stimulus type—with a more pronounced effect of constituent length in real-word than in 
Jabberwocky stimuli—in the LAntTemp and LAngG language fROIs. However, contra PDD, we 
observe a) a large and statistically significant constituent-length effect in Jabberwocky stimuli in 
the LAntTemp language fROI (see also ref. (8); Figure S1), b) larger overall responses in the 
presence of lexical content in the LIFG and LPostTemp language fROIs, and c) a significant 
constituent length by lexicality interaction in the LIFGorb fROI, along with numerically positive 
interactions in the LIFG and LPostTemp fROIs (Figure 2C-D). Thus, contrary to PDD, our results 
support similar patterns of response to the critical manipulations across the regions of the 
language network, rather than PDD’s proposed functional subdivision. 

The only exception is the LAngG language fROI, which fails to show a significant constituent-
length effect for Jabberwocky stimuli, aligning with other studies that have not found sensitivity to 
structural manipulations therein (e.g., refs. 35, 48) and with studies that have found weaker 
functional correlations between the LAngG fROI and the rest of the language network (e.g., refs. 
(25, 34, 67)). The precise role of the LAngG language fROI in linguistic and cognitive processing 
remains debated, but this region does not appear to be selective for language as it responds 
more strongly to meaningful pictorial stimuli than to sentences (68, 69). 

Going back to the constituent-length effect in real-word stimuli: we asked, what does this effect 
reflect? We considered the possibility that the empirical predictions of the non-standard sentence 
processing theory advocated by PDD might be correlated with the predictions of sentence 
processing theories with wider acceptance and stronger empirical support, thus grounding out 
PDD’s pattern of results in more fundamental explanations of the cognitive mechanisms that 
underlie language comprehension. We considered several theory-driven measures of sentence 
processing difficulty (including one, open nodes, expressly designed to predict PDD-like build-up 
effects within constituent strings), and showed that none of them statistically attenuate the 
constituent-length effect when included as controls, and some of them are actually anti-correlated 
with constituent length (Figure 1C). The constituent-length effect therefore does not align with 
prominent theories about the influence of syntactic structure on patterns of comprehension 
difficulty in human sentence processing. 

But if the constituent-length effect does not reflect syntactic structure building, what is the right 
way to interpret this pattern of results? Our proposed answer draws on a prior theoretical 
distinction between the “proper” and “actual” domains of specialized information processing 
systems (70, 71), whereby the system’s degree of engagement can be modulated by the degree 
of fit between a given input and the target domain for which the system is adapted. Given the 
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highly combinatory and contextualized nature of natural language, we hypothesize that several 
words of contiguous context may be necessary in order to identify a stimulus as “proper” to the 
high-level language system. As a consequence, PDD’s shorter-constituent-length conditions may 
fail by degrees to fully engage language processing mechanisms in the first place, thereby 
attenuating overall activation in the language system.  

Prior investigations of temporal receptive windows (TRWs, e.g., refs. (33, 72)) support this 
perspective. A TRW of a brain region (or a voxel, or a neuron) is defined as the length of the 
preceding context that affects the processing of the current input. Based on the inter-subject 
correlation approach (73), Blank & Fedorenko (ref. (74); see also ref. (33)) showed that multiword 
spans of coherent language are needed to maximize synchrony between language network 
responses across individuals (i.e., to maximize the degree of stimulus-related processing or 
stimulus ‘tracking’). Relatedly, Fedorenko et al. (39) showed a monotonic increase in activity in 
electrocorticographic recordings in some language-responsive electrodes over the course of the 
sentence (see also ref. (75)), with no similar increase shown for strings of unconnected words. 
These patterns suggest that multiword coherent contexts may be a critical prerequisite for full 
engagement of the language comprehension system. 

Under this view, PDD’s design reveals an effect not because of how syntactic constituents are 
processed but because of how the language system recognizes inputs as being in-domain. 
PDD’s design may thus be a parametric variant of contrasts used in other work showing that 
responses in the language system are diminished by truncation of coherent context (sentences > 
word lists), removal of lexical content (sentences > Jabberwocky), or both (sentences > non-word 
lists, or speech > acoustically degraded and thus indecipherable speech) (e.g., refs. (8, 10, 37, 
54, 59, 76, 77)). The 2-, 3-, 4-, and 6-word conditions in PDD serve as steps along a continuum of 
language-likeness between word lists and sentences and correspondingly produce a rise in 
language network activation. 

In summary, our finding of lexicality effects (and/or constituent length by lexicality interactions) in 
inferior frontal and posterior temporal language regions undermines an influential claim in PDD: 
that these regions support abstract, content-independent syntactic structure building. Our results 
are instead consistent with growing evidence that linguistic representations and computations 
over a range of levels of description (phonological, lexical, syntactic, and semantic) are highly 
distributed across the language network and are not spatially segregated (10, 52, 54, 74, 78, 79). 

We close by noting that despite offering an alternative interpretation of PDD’s findings that does 
not invoke constituency, our study has no bearing on whether constituency influences human 
sentence processing in general; we only argue that PDD’s study does not support such an 
influence. Indeed, abundant evidence for syntactic influences on human sentence processing has 
accumulated across multiple experimental paradigms (e.g., refs. (66, 80–85)). However, by 
showing lexicality effects distributed throughout the language system, our results pose a 
challenge to PDD’s notion of abstract, content-independent syntactic processing centers. 
Whatever internal functional differentiation the language network may ultimately be shown to 
exhibit, these results and related evidence of distributed lexical, syntactic, and semantic 
processing—discussed above—suggest that it is unlikely to be characterized by slicing between 
levels of linguistic description. 
 
 
Materials and Methods 

This study consists of two replication attempts. Experiment 1 focuses on the real-word conditions 
from PDD and attempts to replicate the basic constituent-length effect in the language network’s 
response. Experiment 2 additionally includes Jabberwocky conditions in order to test PDD’s 
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critical theoretical claim: that a subset of the language network implements abstract, content-
independent, syntactic processing. 

Participants 

Forty individuals (age 18-38, 22 females) participated for payment (Experiment 1: n=15; 
Experiment 2: n=25). All were right-handed—as determined by the Edinburgh Handedness 
Inventory (86), or self-report—native speakers of English from Cambridge/Boston, MA and the 
surrounding community. All participants gave informed consent in accordance with the 
requirements of MIT’s Committee on the Use of Humans as Experimental Subjects (COUHES). 
Each participant completed a language localizer task (8) and a critical task.  

Critical Task 

The design of both experiments followed PDD but used English materials available at 
https://osf.io/7pknb/ (the original experiments were carried out in French). In particular, 
participants were presented with same-length strings (12 words/nonwords), and the internal 
composition of these strings varied across conditions. The conditions in Experiment 1 were 
similar to PDD’s real-word conditions, except they did not include the 3-word constituent 
condition. Experiment 2 included three types of experimental manipulation: a) six conditions that 
were identical to the real-word conditions in PDD: a sequence of twelve unconnected words (i.e., 
constituents of length 1: c01; here and elsewhere, our condition name abbreviations are similar to 
those in PDD), six 2-word constituents (c02), four 3-word constituents (c03), three 4-word 
constituents (c04), two 6-word constituents (c06), and a 12-word sentence (c12); b) three 
conditions that were a subset of the Jabberwocky conditions from PDD selected to span the 
range of constituent lengths: a list of twelve unconnected nonwords (jab-c01), three 4-word 
Jabberwocky constituents (jab-c04), and a 12-word Jabberwocky sentence (jab-c12); and c) two 
non-constituent conditions (four 3-word non-constituents (nc03) and three 4-word non-
constituents (nc04)). We report the results for the non-constituent conditions in SI Section 9 
given that they are not critical for the main question investigated here. Sample stimuli are shown 
in Figure 1A, with the distribution of parts of speech by condition in Figure 1B.  

Procedure 

The procedure was similar for the two experiments and followed PDD: participants saw the stimuli 
presented one word/nonword at a time in the center of the screen in all caps with no punctuation 
at the rate of 300 ms per word/nonword (for 3.6 s total trial duration). In Experiment 1, the 150 
trials (30 12-word sequences x 5 conditions) were distributed across 5 runs, so that each run 
contained 6 trials per condition. In addition, each run included 108 s of fixation, for a total run 
duration of 216 s (3 min 36 s). In Experiment 2, the 330 trials (30 12-word sequences x 11 
conditions) were distributed across 10 runs, so that each run contained 3 trials per condition. In 
addition, each run included 121.2 s of fixation, for a total run duration of 240 s (4 min). In both 
experiments, the order of conditions and the distribution of fixation periods in each run were 
determined with the optseq2 algorithm (87). 

Linguistic Analyses 

The language processing mechanisms that are assumed by PDD commit larger and larger neural 
assemblies to the representation of a constituent as it is processed word by word, resulting in a 
hypothesized monotonic increase in language network activation as a function of constituent 
length (Figure 1C, PDD), motivated by evidence of such increases during sequence memory 
tasks in non-linguistic primates (88–90), and by consistency with a general computational model 
of distributed associative memory (91). PDD do not attempt to ground their hypothesis in an 
extensive psycholinguistic literature on the mechanisms of human sentence processing, leaving 
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open the possibility that constituent length effects derive indirectly from more fundamental 
sentence processing mechanisms. This does not in itself undermine PDD’s claim as long as their 
results are well approximated by measures with external theoretical and empirical support. If—as 
our results indicate—this is not the case, such an outcome undermines the interpretation of 
PDD’s results as driven by syntactic structure building (see Discussion for an alternative 
account). 

To test whether PDD’s results are approximated by independently motivated word-by-word 
measures of processing demand, we considered six alternative measures from the 
psycholinguistic literature: four of them are derived from memory-based accounts of sentence 
processing (75, 79, 92), and the other two—from surprisal-based accounts (93–95). The mean 
value of each predictor by condition is plotted in Figure 1C. 

Open nodes and nodes merged are measures of memory demand hypothesized by (75). They 
respectively denote costs associated with storing incomplete syntactic constituents and 
integrating syntactic constituents once they are completed. Integration cost and storage cost are 
measures of memory demand hypothesized by the Dependency Locality Theory (DLT) (92). They 
respectively denote costs associated with keeping incomplete syntactic dependencies in memory 
(e.g., the awaited verb once the subject is encountered) and retrieving items from memory in 
order to construct syntactic dependencies to them (i.e. retrieving the subject once the verb is 
encountered). 5-gram surprisal and PCFG surprisal denote measures of word predictability 
derived respectively from (i) a computational model that predicts words based on the four 
preceding words (5-gram surprisal), and (ii) a computational model that predicts words based on 
hypotheses about the sentence’s constituent structure (probabilistic context-free grammar or 
PCFG surprisal). 

For extended discussion of these predictors and their possible relationship to the constituent 
length effects reported by PDD, see SI Section 5. 

Based on theories of working memory demand and surprisal, language processing difficulty 
(hence, amount of computation/activation) is expected to increase with increases in 
storage/integration costs and surprisal. Because language network activation increases with 
constituent length, for any variables that underlie PDD’s pattern, expected difficulty should also 
increase with constituent length. This is not the case for the node closings predictor, as discussed 
above, nor for either of the surprisal measures (Figure 1C). Anti-correlations with the surprisal 
measures are not unexpected: words within constituents are expected to be more informative 
about each other than words that span constituent boundaries, and words with longer contexts 
are expected to be more predictable on average than words with less context, given that more 
evidence can accumulate to support the prediction. By contrast, accounting for the influence of 
function words (larger DLT integration cost at short constituent lengths are driven by the lower 
proportion of function words in these items, Figure 1C), the DLT predictors (and the open nodes 
predictor, as discussed above) show the expected positive association with constituent length. 
This is again unsurprising: longer constituents permit both longer dependencies (higher 
integration cost) and more incomplete dependencies at any point in processing (higher storage 
cost and more open nodes).  

Imaging, Functional Localization, and Data Analysis 
Imaging, functional localization, and data analysis procedures are described in SI Sections 1-4. 
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Figures and Tables 

 
Figure 1. (A) Examples of stimuli across length conditions (from 1-word constituents, c01, to 12-
word constituents, c12), with real-word constituent conditions shown in warm colors and 
Jabberwocky constituent conditions shown in cool colors. (B) Proportion of parts of speech (PoS) 
by constituent length for real-word conditions. At length 1, nouns and verbs are overrepresented 
and function words are underrepresented. This is because function words easily license 
multiword constituents, violating the 1-word constraint. At lengths 3+, the distribution of 
categories is relatively stable. (C) Mean value of linguistic features (memory- and surprisal-
based) by constituent length for real-word conditions, compared to PDD-hypothesized monotonic 
increase (left). Error bars show standard errors of the mean across items. 
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Figure 2. A. Group masks bounding the six left-hemisphere regions of the language network. The 
top 10% of language-selective voxels are selected within each mask in each participant. B. 
Estimated response to each condition of the real-words conditions in Expt 1 (which did not 
include Jabberwocky conditions). Responses in all regions increase with constituent length. C. 
Estimated response to each condition of the real-words conditions (replicating Expt 1) and the 
Jabberwocky conditions in Expt 2. Responses in all regions increase with constituent length in 
both real-word and Jabberwocky conditions. D. Key contrasts by language network fROI (left-to-
right): constituent-length effect for real-word conditions in Expt 1; constituent-length effect for real-
word conditions in Expt 2; constituent-length effect for Jabberwocky conditions in Expt 2; overall 
lexicality effect (increase in response for real-word over Jabberwocky conditions in Expt 2, 
averaging over length); increase in constituent-length effect in real-word conditions over 
Jabberwocky in Expt 2. Starred bars indicate statistically significant effects by likelihood ratio test. 
(Note that effect sizes in D are not always identical to their corresponding slopes in B and C 
because some contrasts use a subset of available length conditions for valid comparison.) Error 
bars show standard error of the mean over participants. 
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 sensitivity to lexical content 
(inconsistent with abstract syntactic processsing) 

sensitivity to structure in Jabberwocky 

 PDD SKLASMF PDD SKLASMF 

inferior frontal – + + + 

anterior temporal + + – + 

posterior temporal – + + + 

AngG/TPJ + + – – 

 
Table 1. Summary of key similarities and differences between PDD’s findings and those of our 
study (SKLASMF). PDD reported (a) one set of regions (inferior frontal and posterior temporal) 
that were sensitive to structure (constituent length) in real-word stimuli and equally sensitive to 
structure in Jabberwocky stimuli (supporting abstract syntactic processing in these regions), and 
(b) another set of regions (anterior temporal and TPJ) that were sensitive to lexical content and 
insensitive to structure in Jabberwocky stimuli. Our study does not reproduce most of PDD’s 
reported insensitivities (red minus signs), instead finding sensitivity to both lexical content and 
syntactic structure in Jabberwocky stimuli throughout the regions of the functional language 
network. 
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