

1 **Ensemble cryo-electron microscopy reveals conformational
2 states of the nsp13 helicase in the SARS-CoV-2 helicase
3 replication-transcription complex**

4

5 **James Chen^{1,6}, Qi Wang^{2,6}, Brandon Malone^{1,6}, Eliza Llewellyn¹,
6 Yakov Pechersky², Kashyap Maruthi³, Ed T. Eng³, Jason K. Perry⁴,
7 Elizabeth A. Campbell¹, David E. Shaw^{2,5,7}, Seth A. Darst^{1,7,8}**

8

9 ¹Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065
10 USA.

11 ²D. E. Shaw Research, New York, NY 10036 USA.

12 ³The National Resource for Automated Molecular Microscopy, Simons Electron
13 Microscopy Center, New York Structural Biology Center, New York, NY 10027 USA.

14 ⁴Gilead Sciences, Inc., Foster City, CA 94404 USA.

15 ⁵Department of Biochemistry and Molecular Biophysics, Columbia University, New York,
16 NY 10032 USA.

17

18

19 The authors declare no conflict of interest

20

21 ⁶These authors contributed equally to this work.

22 ⁷Correspondence to: David.Shaw@DEShawResearch.com; darst@rockefeller.edu

23 ⁸Lead contact: darst@rockefeller.edu

24

25

26 **The SARS-CoV-2 nonstructural proteins coordinate genome replication and gene**
27 **expression. Structural analyses revealed the basis for coupling of the essential**
28 **nsp13 helicase with the RNA dependent RNA polymerase (RdRp) where the holo-**
29 **RdRp and RNA substrate (the replication-transcription complex, or RTC)**
30 **associated with two copies of nsp13 (nsp13₂-RTC). One copy of nsp13 interacts**
31 **with the template RNA in an opposing polarity to the RdRp and is envisaged to**
32 **drive the RdRp backwards on the RNA template (backtracking), prompting**
33 **questions as to how the RdRp can efficiently synthesize RNA in the presence of**
34 **nsp13. Here, we use cryo-electron microscopy and molecular dynamics**
35 **simulations to analyze the nsp13₂-RTC, revealing four distinct conformational**
36 **states of the helicases. The results suggest a mechanism for the nsp13₂-RTC to**
37 **turn backtracking on and off, using an allosteric mechanism to switch between**
38 **RNA synthesis or backtracking in response to stimuli at the RdRp active site.**

39

40 COVID-19, caused by the coronavirus SARS-CoV-2 ^{1,2}, continues to devastate the
41 world. The viral RNA-dependent RNA polymerase (RdRp, encoded by non-structural
42 protein 12, or nsp12) functions as a holo-RdRp (comprising nsp7/nsp8₂/nsp12) in a
43 replication-transcription complex (holo-RdRp + RNA, or RTC) to direct RNA synthesis
44 from the viral RNA genome ³⁻⁵. The RdRp is also a target for the clinically approved
45 antiviral remdesivir ⁶⁻⁸. In addition to the holo-RdRp, the virus encodes several nucleic
46 acid processing enzymes, including a helicase (nsp13), an exonuclease (nsp14), an
47 endonuclease (nsp15), and methyltransferases (nsp14 and nsp16) ⁹. Little is known
48 about how these enzymes coordinate to replicate and transcribe the viral genome.

49 Nsp13, essential for viral replication ¹⁰⁻¹³, is a superfamily 1B (SF1B) helicase
50 that can unwind DNA or RNA substrates with a 5'->3' directionality ¹⁴⁻¹⁶. Along with the
51 two canonical RecA ATPase domains of SF1 helicases ^{14,17}, nsp13 contains three
52 additional domains; an N-terminal zinc-binding domain (ZBD, unique to nidoviral
53 helicases), a stalk, and a 1B domain ^{13,18,19}. Prior studies established that the nsp13
54 helicase forms a stable complex with the RTC, and single-particle cryo-electron
55 microscopy (cryo-EM) structures of an nsp13₂-RTC (the RTC with two nsp13 protomers
56 bound) have been determined ²⁰⁻²².

57 In the nsp13₂-RTC structure, two protomers of nsp13 (nsp13.1 and nsp13.2;
58 Fig. 1) sit on top of the RTC with each nsp13-ZBD interacting with one of the two N-
59 terminal helical extensions of nsp8 ²⁰⁻²². This overall architecture places the nsp13.1
60 active site directly in the path of the downstream template-RNA (t-RNA). The cryo-EM
61 maps showed that the 5'-single-stranded overhang of the t-RNA (Fig. S1) passed
62 through the nucleic acid binding channel of nsp13.1 ²³, but the low resolution of the map
63 due to structural heterogeneity precluded detailed modeling ²⁰.

64 The structural analysis of the nsp13₂-RTC provided new perspectives into the
65 role of the nsp13 helicase in the complex viral replication-transcription program,
66 suggesting that nsp13 may facilitate processive elongation by the RdRp on the highly
67 structured RNA genome ^{24,25}, but may also generate backtracked RTCs for
68 proofreading, template-switching during sub-genomic RNA transcription, or both ^{20,26}.
69 How nsp13 directs these diverse processes that regulate RdRp function remains less

70 understood. For instance, the structures indicate that nsp13 translocates on the t-RNA
71 strand in the 5'->3' direction ¹⁶, while the RdRp would translocate on the same strand in
72 the opposite direction (Fig. 1B). How can the RdRp rapidly replicate the ~30 kb viral
73 genome ²⁷ if it is opposed by the helicase? Also, what is the role of the second nsp13
74 protomer (nsp13.2), which appears capable of ATPase and translocation/helicase
75 activity but does not appear to be engaged with nucleic acid in the structures ^{20,26}?

76 Here we describe an extensive structural analysis of a cryo-EM dataset of the
77 nsp13-RTC, combined with molecular dynamics (MD) simulation analysis of the
78 resulting structures. The results yield a cryo-EM map of the nsp13₂-RTC at a nominal
79 resolution of 2.8 Å (2.1-2.5 Å in the active site core of the RdRp; Fig. 1). Structural
80 heterogeneity apparent in the nsp13 portions of the map was resolved by classification
81 approaches, revealing four distinct conformational states of the nsp13 subunits.
82 Analysis of these conformational states suggest solutions to the apparent contradictions
83 regarding the role of nsp13 and provides further insight into models for nsp13 function
84 during viral replication/transcription.

85

86 RESULTS

87 **An augmented cryo-EM dataset allows extensive structural analysis of the nsp13-
88 RTC.** Previously we described a single-particle cryo-EM analysis of a stable SARS-
89 CoV-2 nsp13-RTC from a curated set of 88,058 particle images ²⁰. These particles were
90 classified into three distinct assemblies, nsp13₁-RTC (4.0 Å nominal resolution), nsp13₂-
91 RTC (3.5 Å), and a dimer of nsp13₂-RTC [(nsp13₂-RTC)₂; 7.9 Å]. Here we analyzed a
92 much larger dataset (nearly five times as many particles; Fig. S1, Table S1) collected
93 from the same sample preparation. From a consensus refinement (Figs. S1 and S2,
94 map1; Note: Fig. S1 shows the details of the cryo-EM processing pipeline; Fig. S2 is a
95 streamlined cryo-EM processing pipeline that highlights the essential steps), the
96 particles were classified ²⁸ into the same three assemblies observed previously [nsp13₁-
97 RTC (map2), nsp13₂-RTC (map3), (nsp13₂-RTC)₂ (map4)] ²⁰ with a very similar
98 distribution of particles between the three assemblies (Figs. S1 and S2; Tables S1 and
99 S2), confirming the robustness of the classification procedure. We focus primarily on the
100 nsp13₂-RTC because the bulk of the particles (72%) belong to this class and generated
101 the highest resolution map (Figs. S1, S2 and S3; map3; 2.9 Å nominal resolution).

102 To obtain the best possible consensus cryo-EM map of the entire complex, we
103 generated a series of cryo-EM maps by focused refinement around sub-domains of the
104 nsp13₁-RTC (map2) and nsp13₂-RTC (map3) maps and combined these, generating a
105 composite map with a nominal resolution of 2.8 Å (Fig. 1; Figs. S1-S3, map9). Local
106 resolution analysis ²⁹ suggested that the active site and NiRAN ligand-binding pocket of
107 the RdRp were resolved to between 2.1-2.6 Å resolution (Fig. S3). This was supported
108 by the excellent quality of the cryo-EM map, where the ADP-Mg²⁺ bound in the NiRAN
109 domain enzymatic site could be visualized (Fig. S4), and RNA base pairs near the
110 RdRp active site could be identified directly from the cryo-EM density (Fig. S4).
111 Although not as well resolved, the ADP-AlF₃-Mg²⁺ and surrounding residues in the
112 nsp13 active sites could also be modeled (Fig. S4).

113 Despite the excellent map quality for most of the RTC (Figs. 1 and S4), features
114 of the composite consensus map (map9) suggested substantial heterogeneity in the
115 nsp13 subunits, particularly in the RecA2 and 1B domains (Fig. S3). Therefore, we
116 generated a mask surrounding the nsp13.1 and nsp13.2 RecA1, RecA2, and 1B
117 domains (of map3; Figs. 2 and S2) and used masked classification with signal
118 subtraction³⁰ to identify four distinct conformational states (Figs. 2, S1, S2, and S5;
119 Table S3) with significant differences in the dispositions of the nsp13 subunits,
120 particularly nsp13.1.

121 The class II structure (Figs. 2 and S5) contains the most particles and the nsp13
122 subunits are best resolved in this map (map12; Figs. 2, S2 and S5). Compared to the
123 other structures, the nsp13.1 RecA domains of class II (map12) are closed onto each
124 other more than the other structures (Fig. S5) and are thereby engaged most tightly with
125 the RNA (see below). We call this the 'nsp13.1-engaged' structure and use it as a
126 reference to give a general overview of the conformational changes in the other classes.

127 While each of the classes shows significant changes in both the disposition of
128 each nsp13 subunit as a whole as well as intramolecular domain motions within each
129 nsp13 subunit, each structural class can be characterized by one dominant
130 conformational change in nsp13.1 (compared to the nsp13.1-engaged structure used as
131 a reference):

132 i) In class I, the nsp13.1 RecA2 domain is rotated open by 21° with respect to RecA1.
133 Concomitantly, the RNA binding site is empty while occupancy of the nsp13.1
134 nucleotide-binding site is ambiguous. We therefore call this the 'nsp13.1-apo' structure
135 (Fig. 2).

136 ii) In class III, the nsp13.1 subunit swivels as a whole by 38° away from nsp13.2. We
137 call this the 'nsp13.1-swiveled' structure (Fig. 2).

138 iii) In class IV, the nsp13.1 domain 1B is rotated 85° away from the nsp13.1 RNA
139 binding channel, creating the '1B-open' structure (Fig. 2).

140

141 **The nsp13.1-engaged conformation grasps the downstream RNA t-strand**

142 In the nsp13.1-engaged structure, the distance between the center-of-gravity of the two
143 nsp13.1 RecA domains, 27.3 Å, is the shortest of the eight nsp13 conformations
144 (Fig. S5). The RecA domains are thus 'closed' and grasp the downstream t-RNA single-
145 stranded 5'-segment emerging from the RdRp active site, giving rise to well-resolved
146 cryo-EM density for the RNA passing through the helicase (Fig. 3A). The RNA is
147 corralled in a tunnel between the two RecA domains and the 1B domain, which is also
148 in a closed conformation (Figs. 2 and 3A). The pattern of purine and pyrimidines in the
149 cryo-EM density is clearly discernable, allowing the unique sequence register of the
150 RNA engaged with the nsp13.1 helicase to be determined (Fig. 3A).

151 The ordered RNA segment is 7 nucleotides in length (+9 to +15; Fig. 3), with the
152 five central nucleotides (+10 to +14) completely enclosed within the helicase. The RNA
153 phosphate backbone generally faces the nsp13.1 RecA domains, and the mostly
154 stacked bases face the 1B domain (Fig. 3). As might be expected, the helicase
155 establishes extensive interactions with the RNA phosphate backbone, including several

156 polar interactions. Interactions with the RNA bases are mostly van der Waals
157 interactions and not expected to be base-specific (Fig. 3).

158

159 **The nsp13.1-apo state**

160 Comparison of the nsp13.1-apo and nsp13.1-engaged structures revealed a striking
161 change in the conformation of the RecA-like ATPase domains of nsp13.1.
162 Superimposition of the α -carbons of nsp13.1 RecA1 (residues 235-439) or
163 RecA2 (residues 440-596) alone yielded root-mean-square-deviations (rmsds) of
164 0.387 and 0.673 Å, respectively, indicating the structures of the individual domains are
165 very similar between the two states. However, superimposition via the α -carbons of only
166 RecA1 gave an rmsd of 7.05 Å for the RecA2 α -carbons, indicating a substantial
167 change in the relative disposition of the two domains. The movement of RecA2 with
168 respect to RecA1 corresponds to an \sim 21° rotation about the axis shown in Fig. 4A (also
169 see Video S1), corresponding to an opening of the RecA domains; the nsp13.1 RecA
170 domains of the nsp13.1-apo state are the furthest open of any of the eight nsp13
171 protomer structures (Fig. S5F).

172 The consensus nsp13₂-RTC cryo-EM map (map3; Figs. S1 and S2) contains low-
173 resolution density indicating that the downstream single-stranded 5'-segment of the t-
174 RNA occupies the nsp13.1 RNA binding channel (Fig. 1B). Moreover, the t-RNA 5'-
175 segment occupying the nsp13.1 RNA binding channel of the nsp13.1-engaged state is
176 well resolved (Fig. 3). By contrast, the nsp13.1-apo cryo-EM density shows that the
177 nsp13.1 RNA-binding path is empty (Fig. 4B). The nsp13.1-apo cryo-EM density also
178 does not support occupancy of ADP-AlF₃-Mg²⁺ in the nucleotide-binding site of nsp13.1,
179 although the low resolution of the map in this region makes this conclusion tentative.

180

181 **Spontaneous and reversible transition of the nsp13.1 RecA domains between the**
182 **nsp13.1-engaged and nsp13.1-apo conformations**

183 To characterize the RecA1-RecA2 interdomain movement and how a bound substrate
184 may influence that movement, we performed MD simulations of free nsp13.1
185 (i.e., without nsp13.2 or the RTC) under four different substrate-bound conditions
186 (ATPMg²⁺/RNA, ADPMg²⁺/RNA, ATPMg²⁺ only, and ADPMg²⁺ only). For each condition,
187 we ran three independent 5- μ s simulations, all initiated from the nsp13.1-engaged
188 conformation (Figs. 2 and 3).

189 In simulations of ATPMg²⁺/RNA-bound nsp13.1, the RecA2 domain maintained
190 its general orientation with respect to RecA1 throughout the simulations (Fig. 4C). The
191 average rmsd of RecA2 between the initial nsp13.1-engaged cryo-EM structure and the
192 structures from the MD trajectories, aligned on the RecA1, was low (\sim 2.9 Å; some
193 adjustment of RecA2 from the initial nsp13.1-engaged cryo-EM structure position in
194 these simulations was expected, as the cryo-EM structure was determined using ADP-
195 AlF₃/RNA in place of ATPMg²⁺/RNA). Conformations resembling the nsp13.1-apo
196 structure (rmsd <3.5 Å) were not observed (Fig. 4C, D).

197 In simulations of ADPMg²⁺/RNA-bound nsp13.1, RecA2 rotated away from its
198 initial position in the nsp13.1-engaged conformation, and nsp13.1-apo-like
199 conformations were repeatedly visited throughout the simulations (Figs .4C, D). The
200 ADPMg²⁺/RNA-bound nsp13.1-apo-like conformations were metastable, and
201 interconverted with the nsp13.1-engaged conformations. Spontaneous and reversible
202 conversion between the nsp13.1-engaged and nsp13.1-apo conformations was also
203 observed in the simulations of ATPMg²⁺-bound and ADPMg²⁺-bound nsp13.1
204 (Figs. 4C, D). These results suggest that the presence of both the ATPMg²⁺ and RNA
205 may stabilize the nsp13.1-engaged conformation and that the absence of either
206 substrate may destabilize the nsp13.1-engaged conformation and facilitate the transition
207 to the nsp13.1-apo conformation, consistent with the observations from the cryo-EM
208 analysis.

209

210 **The '1B-open' conformation of nsp13.1 may explain how the RdRp can synthesize**
211 **RNA in the presence of nsp13**

212 In the nsp13.1-engaged state, the downstream single-stranded t-RNA is guided through
213 a deep groove between the RecA1 and RecA2 domains that is completely closed off by
214 the 1B domain (Fig. 5A). Remarkably, in the 1B-open structure, the nsp13.1 1B domain
215 rotates 85° about the stalk away from the nsp13.1 RNA binding channel, creating an
216 open groove rather than a closed tunnel (Fig. 5B). The cryo-EM density allows modeling
217 of the downstream single-stranded t-RNA emerging from the RdRp active site up to the
218 edge of the open groove proximal to the RdRp, but the RNA density disappears there,
219 indicating that the RNA is not engaged within the active site of the helicase (Fig. 5B).

220 In the 1B-open conformation, the nsp13.1 1B domain appears to be trapped
221 open by the presence of nsp13.2 (Fig. 5B), with the transition from the 1B-open to the
222 1B-closed conformation blocked by nsp13.2. Consistent with this, we analyzed the
223 nsp13 conformational states in the nsp13₁-RTC (nsp13.2 absent) by masked
224 classification with signal subtraction around the RecA1, RecA2 and 1B domains of the
225 single nsp13 (Fig. S1) but the 1B-open nsp13 conformation was not observed. We
226 propose that the 1B-open conformation of the nsp13.1 1B domain is trapped by the
227 presence of nsp13.2.

228 We note that in the (nsp13₂-RTC)₂ dimer (Figs. S1-S3), the nsp13 protomers
229 corresponding to nsp13.1 are also in the '1B-open' state, as was observed by Yan *et al.*
230³¹. Since the dimer only comprises 8% of our particle dataset (Table S1) while the
231 nsp13₂-RTC complex comprises 72% of the particles, we have focused our attention on
232 the latter complex. We observe that the (nsp13₂-RTC)₂ dimer forms in the absence of
233 additional factors such as nsp10-14²⁰, in contrast to what's reported in Yan *et al.*³¹.

234 Yan *et al.*³¹ observed the 1B-open state of nsp13.1 (labeled nsp13-2 in their
235 nomenclature) in their (dimer) dCap(0)-RTC structure, curiously assigned as a
236 backtracking-competent state. This is at odds with: i) observations that nsp13.1 in the
237 1B-open conformation does not engage RNA in its RNA-binding groove [Fig. 5B; also
238 observed by Yan *et el.*³¹] and so would be incompetent for RNA translocation, and
239 ii) the finding that nsp13 stimulated SARS-CoV-2 RTC backtracking²⁶.

240

241 **Spontaneous transition of the nsp13.1 1B domain from the 1B-open to 1B-closed**
242 **conformations**

243 The conformations of the nsp13.1 1B domain in the nsp13.1-engaged and nsp13.1-apo
244 structures are related by a $\sim 10^\circ$ rotation around the nsp13-stalk, but the 1B domains are
245 closed on the nsp13-RecA domains in both structures. We refer to these collectively as
246 '1B-closed' states (Fig. 2). These conformations have also been observed in crystal
247 structures of isolated nsp13 as well as some other SF1-like helicases³². The
248 conformation of the 1B domain in the 1B-open cryo-EM structure, in which the domain is
249 rotated $\sim 85^\circ$ compared to the 1B-closed conformations, was only seen in nsp13.1 when
250 it was paired with nsp13.2 in the RTC, suggesting that this conformation may not be
251 stable in isolated nsp13. To test this hypothesis, we performed five independent 25- μ s
252 simulations on isolated (free) nsp13 (with ADPMg²⁺), initiated from the 1B-open
253 conformation (Fig. 2).

254 In three out of the five simulations, the 1B domain underwent a $\sim 90^\circ$ rotation
255 from the starting 1B-open conformation around the stalk toward the RNA-binding groove
256 to a 1B-closed conformation (Fig. 6A). These $\sim 90^\circ$ rotated 1B domain conformations
257 closely resemble the disposition of the 1B domain in the nsp13.1-apo structure. The
258 1B domain rmsd between the simulation-generated structures from the last 2 μ s of the
259 three trajectories and the 1B domain in the nsp13.1-apo cryo-EM structure (aligned on
260 the RecA1 domain) was, on average, ~ 3.6 Å. We also observed that a small portion
261 ($<5\%$) of these 1B-closed structures were more similar to the 1B domain of the nsp13.1-
262 engaged conformation (rmsd <3.5 Å). These nsp13.1-engaged-like 1B conformations
263 were short-lived, and once visited they quickly transitioned to the nsp13.1-apo
264 conformation, presumably because the nsp13.1-engaged conformation was captured in
265 the presence of RNA, which was not included in our simulations.

266 We next asked whether or not the 1B domain in a 1B-closed state may
267 spontaneously transition to the 1B-open state. In each of the three simulations in which
268 we observed a transition of the 1B domain from the 1B-open to a 1B-closed
269 conformation, the 1B domain remained in the 1B-closed conformation through the end
270 of the 25- μ s simulation; a 1B-closed-to-open transition was not observed. We performed
271 an additional five independent 25- μ s simulations of the isolated (free) nsp13.1, initiated
272 from the 1B-closed conformation (of the nsp13.1-engaged structure). We did not
273 observe any transition events to the 1B-open conformation over the aggregated 125 μ s
274 simulation time. Instead, the 1B domain maintained its 1B-closed orientation in the initial
275 structure, with some minor wobbling back and forth between the 1B-closed
276 conformations of the nsp13.1-engaged and nsp13.1-apo structures (Fig. 6B).

277 Aligning the nsp13.1 simulation structures in the 1B-open-to-closed transition
278 pathways with the nsp13.1 of the 1B-open cryo-EM structure showed that, on average,
279 $\sim 40\%$ (53%, 22%, and 45% in the three simulations) of these 1B domain intermediate
280 conformations clashed with nsp13.2, suggesting that the 1B-open-to-closed transition
281 might be blocked by nsp13.2 (Fig. S6). Here we envisage that 1B domain transitions are
282 facilitated by entry into the 'swiveled' state. The swiveled structure is characterized by
283 one dominant conformational change; compared to the nsp13.1-engaged structure, the

284 nsp13.1 protomer as a whole swivels with respect to the rest of the RTC by 38°,
285 repositioning nsp13.1 with respect to nsp13.2 (Fig. 6C).

286 There are some clashes between nsp13.1 and nsp13.2 when the simulation-
287 generated structures are aligned to the swiveled cryo-EM structure, but to a much
288 lesser extent (9%, 0%, and 2% in the three simulations; Fig. S6). This observation is
289 consistent with the notion that the swiveled structure may be an intermediate state that
290 facilitates the transition between the 1B-open and 1B-closed conformations.

291 In summary, our simulations suggest that the conformation of the 1B domain in
292 the 1B-open structure may only be transiently stable on its own, transitioning
293 spontaneously into the 1B-closed conformations of the nsp13.1-apo and nsp13.1-
294 engaged structures. Such transitions may be blocked by the presence of nsp13.2 in the
295 1B-open nsp13₂-RTC. We did not observe transitions from the 1B-closed conformations
296 to the 1B-open conformation, and we speculate that in the presence of RNA in the
297 nsp13.1 RNA-binding groove (Fig. 3), nsp13.1 may be further stabilized in the closed
298 1B domain conformation.

299

300 **Nsp13 conformations in nsp13₂-backtracked complexes**

301 In the nsp13.1-engaged state (Fig. 2), the RdRp translocates in the 3'->5' direction on
302 the t-RNA while nsp13.1 grasps the single-stranded t-RNA ahead of the RdRp (Fig. 3)
303 and translocates in the 5'->3' direction (Fig. 1B). We proposed that events at the RdRp
304 active site that would delay or stall p-RNA chain elongation (such as misincorporation or
305 incorporation of nucleotide analogs) could allow the nsp13.1 translocation activity to
306 push the RdRp backward on the t-RNA²⁰. In this process, termed backtracking, the
307 complex moves in the 5'->3' direction on the t-RNA accompanied by reverse-threading
308 of the p-RNA through the complex, generating a single-stranded p-RNA 3'-fragment. In
309 support of this hypothesis, structural and functional studies showed that the SARS-CoV-
310 2 RdRp can backtrack, that the resulting single-stranded p-RNA 3'-fragment extrudes
311 out the RdRp NTP-entry tunnel, and that backtracking is stimulated by nsp13²⁶.

312 To compare the conformational states of the nsp13 protomers in the nsp13₂-
313 BTCs (backtracked complexes) with the nsp13₂-RTCs, we used the same masked
314 classification with signal subtraction protocol (Fig. S2) to classify the nsp13₂-BTC
315 particles into four conformational states (Fig. S7). Structural models were built and rigid-
316 body refined into the cryo-EM densities for each class except for nsp13₂-BTC-class2
317 (13% of the particles), which had very poor cryo-EM density for nsp13.1. To compare
318 these structural models with the nsp13₂-RTC structures, we aligned the models for each
319 nsp13₂-BTC model with the nsp13.1-engaged state by superimposing α -carbons of
320 nsp12, yielding rmsds < 0.213 Å. We then calculated rmsds for α -carbons of nsp13.1
321 and nsp13.2. Both nsp13₂-BTC-class1 and nsp13₂-BTC-class4 aligned well with the
322 nsp13.1-engaged nsp13₂-RTC state (Table S4) and both also had strong density for the
323 downstream t-RNA engaged with nsp13.1 (Fig. S7). Therefore, we classify both of these
324 structures as nsp13.1-engaged-BTCs. The nsp13₂-BTC-class3 structure had an open
325 1B domain of nsp13.1 and clearly aligned with the 1B-open-RTC structure (Table S4).
326 Thus, in contrast to the nsp13₂-RTC structures, which were equally divided between the
327 nsp13.1-engaged and 1B-open states (33% each), the nsp13₂-BTC structures were

328 heavily skewed towards the nsp13.1-engaged state (72%) vs. the 1B-open state (15%);
329 Fig. S7).

330

331 Discussion

332 In this work, we observed distinct conformational states of the nsp13 protomers within
333 the SARS-CoV-2 nsp13₂-RTC, providing functional insights into nsp13 and its complex
334 with the RTC (see Video S2). Like other helicases, nsp13 is a molecular motor that
335 translocates along single-stranded nucleic acid, unwinding structural elements in its
336 path (Mickolajczyk et al., 2020). This process is driven by conformational changes
337 within nsp13 resulting from NTP hydrolysis.

338 The conformational transition from the nsp13.1-engaged to the nsp13.1-apo
339 structures, observed both by our cryo-EM (Fig. 4A) and MD (Figs. 4C, D) analyses,
340 corresponds to an ~21° rotation of the RecA2 domain with respect to RecA1, opening
341 the gap between the two domains (Fig. 4A; Video S1). The nsp13.1-engaged structure
342 is engaged with the substrate RNA and is trapped in an 'on-pathway' conformation of
343 the nucleotide hydrolysis cycle by the non-hydrolyzable ATP analog ADP-AlF₃. While
344 the nsp13.1-apo structure, being devoid of RNA, is not 'on-pathway' *per se*, the 21°
345 opening of the RecA2 domain from the nsp13.1-engaged to nsp13.1-apo conformations
346 matches the disposition of the RecA2 domains in other SF1 helicases, such as human
347 Upf1, a structural homolog of nsp13^{13,23}. The disposition of the RecA domains of Upf1
348 with ADP-AlF₃ and RNA substrate [PDB 2XZO]³³ matches the nsp13.1-engaged
349 structure. On the other hand, the RecA domains in a structure of Upf1 with ADP (so
350 likely on-pathway) are opened by a 24° rotation about the same axis as the 21° opening
351 of the nsp13.1-apo RecA domains [PDB 2GK6]³⁴. We thus infer that the nsp13.1-apo
352 conformation reports on an on-pathway conformation of the RecA domains, such as in
353 the ADP-Mg²⁺/RNA-bound state of the translocation cycle (Figs. 4C, D). Due to the
354 opening of the nsp13.1 RecA domains, the center-of-gravity of RecA2 shifts roughly
355 parallel with the RNA backbone by 3.4 Å, corresponding to the rise between stacked
356 RNA bases. This observation is suggestive of an 'inchworm' model for translocation
357 (Video S1), as proposed for related SF1 helicase translocation on single-stranded
358 nucleic acids^{14,17,35-39}.

359 Prior structural analysis of the nsp13₂-RTC identified that the nsp13.1 helicase
360 and the RdRp translocate on the t-RNA with opposing polarities (Chen et al., 2020). In
361 circumstances where RdRp elongation of the p-RNA is hindered (such as in the event of
362 a misincorporation at the p-RNA 3'-end), nsp13.1 translocation activity could backtrack
363 the RdRp²⁰, as shown by follow-up structural and biochemical analyses²⁶. The
364 opposing polarities of the RdRp and nsp13 translocation activities (Fig. 1B) presented a
365 conundrum that was not addressed by these previous studies; how is it possible for the
366 RdRp to rapidly and efficiently synthesize RNA if it is constantly being opposed by
367 nsp13? Moreover, the predominant complex present in the nsp13-RTC samples is the
368 nsp13₂-RTC complex (Table S1), but only nsp13.1 was seen to engage with the t-RNA;
369 what is the role of nsp13.2, the second copy of nsp13 in the nsp13₂-RTC? The work
370 herein suggests answers to both questions.

371 Maximum likelihood classification approaches revealed four distinct
372 conformations of the nsp13 protomers in the nsp13₂-RTC (Figs. 2, 7; Videos S1, S2).
373 The nsp13.1-engaged state resolves nsp13.1 clamped onto the single-stranded
374 downstream t-RNA, providing an atomic view of nsp13 engaged with the single-
375 stranded RNA (Fig. 3). The single-stranded t-RNA threads through a tunnel formed by a
376 deep groove between the RecA1 and RecA2 domains and further enclosed by the 1B
377 domain (Fig. 5A).

378 By contrast, the 1B-open state shows nsp13.1 adopting a conformation in which
379 the 1B domain is rotated open ~85° about the stalk domain, leaving an open RNA
380 binding groove (Fig. 5B). In this state, the single-stranded downstream t-RNA does not
381 engage with the helicase. Thus, this represents an inactive state of the helicase that
382 would be unable to translocate on the RNA.

383 Our structural analysis combined with MD simulations confirmed that the
384 conformation of the nsp13.1 1B domain in the 1B-open structure is not stable on its own
385 but is sterically trapped by the presence of nsp13.2, which blocks the conformational
386 change required for 1B domain closure (Fig. 6A). These results suggest that the 1B-
387 open state represents a rapidly elongating state of the nsp13₂-RTC, where the
388 downstream single-stranded template RNA feeds into the RdRp active site without
389 engaging with nsp13.1. Nsp13.2 may trap the 1B-open (inactive) state of nsp13.1,
390 allowing RdRp elongation to proceed without opposition from the nsp13.1 helicase
391 (Fig. 7). Finally, swiveling of nsp13.1 in the swiveled state allows space for the 1B-open
392 to 1B-closed transition (Fig. 6C), suggesting that the swiveled state represents a
393 transition state between the open and closed states of the 1B domain (Fig. 7). We note
394 that the presence of nsp13.2 in the nsp13.1-engaged state would also block the 1B-
395 closed to 1B-open transition, suggesting how nsp13.2 can enhance the helicase activity
396 of nsp13.1²¹

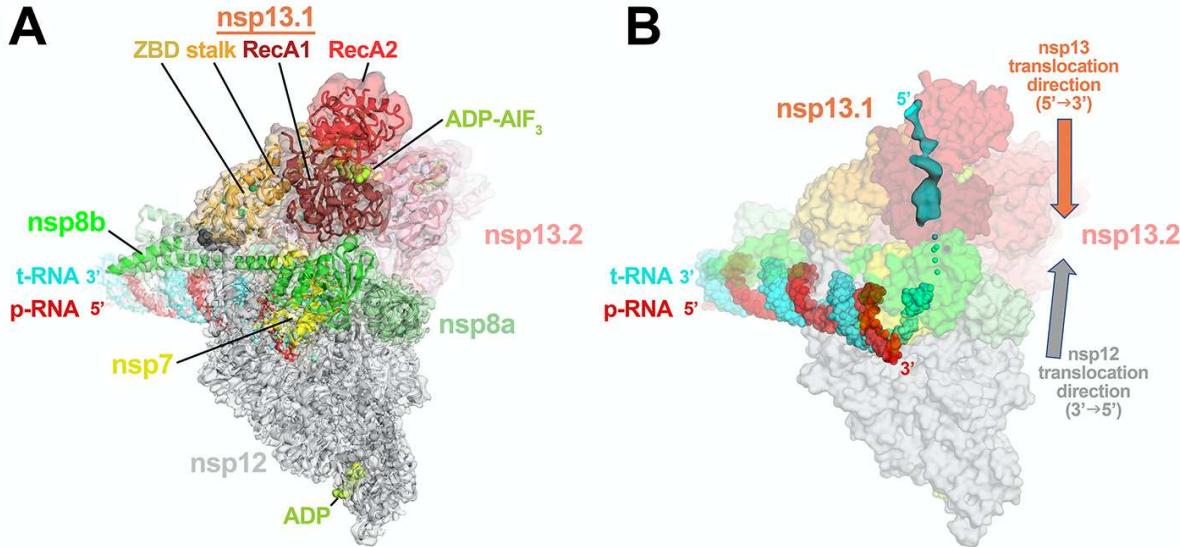
397 Thus, our results suggest a mechanism for the nsp13₂-RTC to turn backtracking
398 on and off; switching between rapid RNA synthesis (1B-open state; elongating RdRp;
399 Fig. 7) and backtracking (nsp13.1-engaged, backtracking RdRp; Fig. 7). In our analysis
400 of the conformational states of the nsp13₂-RTC, the particles were equally divided
401 between the nsp13.1-engaged (backtracking on) and 1B-open (backtracking off) states
402 (Figs. S2, S7). Remarkably, an identical analysis of the backtracked nsp13₂-BTC²⁶
403 revealed a strikingly different distribution of particles in which the nsp13.1-engaged
404 (backtracking on) state was heavily favored (Fig. S7). This raises the possibility that the
405 conformational switch that turns backtracking on and off is allosterically controlled.

406 In MD simulations exploring the dynamics of the p-RNA 3'-nucleotide of a pre-
407 translocated RTC, a mismatched p-RNA 3'-nucleotide frayed from the t-RNA towards
408 and into the NTP-entry tunnel (which also serves as the backtracking tunnel; Video S1),
409 while a p-RNA 3'-nucleotide engaged in a Watson-Crick base pair with the t-RNA did
410 not²⁶. We thus suggest that misincorporation by the RdRp leads to fraying of the p-RNA
411 3'-nucleotide into the NTP-entry tunnel, which may allosterically signal the rapidly
412 elongating 1B-open state to switch to the backtracking nsp13.1-engaged state (Fig. 7).
413 This facilitates a possible proofreading mechanism since backtracking would extrude
414 the mismatched p-RNA 3'-nucleotide out of the NTP-entry tunnel (Fig. 7)²⁶, allowing the
415 nsp10/nsp14 3'-exonuclease proofreading activity to access and degrade the

416 mismatched p-RNA 3'-nucleotide ⁴⁰⁻⁴². The nsp14-mediated proofreading activity is
417 crucial for the virus to avoid mutation catastrophe while replicating its ~30 kb genome ⁴¹,
418 and is also an important determinant of SARS-CoV-2 susceptibility to many anti-viral
419 nucleotide analogs ⁴³.

420

421 **Acknowledgments.** We thank M. Ebrahim and L. Urnavicius at The Rockefeller
422 University Evelyn Gruss Lipper Cryo-electron Microscopy Resource Center and
423 H. Kuang at the New York Structural Biology Center (NYSBC) for help with cryo-EM
424 data collection, and R. Landick, T. Appleby, and members of the Darst/Campbell
425 laboratory for helpful discussions, and M. Grasso, P.M.M. Shelton, T. M. Kapoor,
426 P.D.B. Olinares, and B.T. Chait (The Rockefeller University) for helpful discussions and
427 initial sample characterizations and analyses. Some of the work reported here was
428 conducted at the Simons Electron Microscopy Center (SEMC) and the National
429 Resource for Automated Molecular Microscopy (NRAMM) and National Center for
430 CryoEM Access and Training (NCCAT) located at the NYSBC, supported by grants
431 from the NIH National Institute of General Medical Sciences (P41 GM103310),
432 NYSTAR, the Simons Foundation (SF349247), the NIH Common Fund Transformative
433 High Resolution Cryo-Electron Microscopy program (U24 GM129539) and NY State
434 Assembly Majority. This work was supported by the Pels Family Center for Biochemistry
435 and Structural Biology (The Rockefeller University), and NIH grants R01 GM114450
436 (E.A.C.), R35 GM118130 (S.A.D.), and R01 AI161278 (E.A.C./S.A.D.).


437

438 **Author contributions.** Conceptualization; J.C., Q.W., B.M., J.P., E.A.C., D.E.S.,
439 S.A.D.; Cloning, protein purification, biochemistry; J.C., B. M., E.L.; Cryo-EM specimen
440 preparation; J.C., B.M., E.L.; Cryo-EM data collection and processing: J.C., K.M.,
441 E.T.E.; Model building and structural analysis: J.C., B.M., E.A.C., S.A.D.; Molecular
442 dynamics simulation and analysis; Q.W., Y.P.; Funding acquisition and supervision:
443 E.A.C., D.E.S., S.A.D.' Manuscript first draft: Q.W., B.M., J.P., E.A.C., D.E.S., S.A.D.;
444 All authors contributed to finalizing the written manuscript.

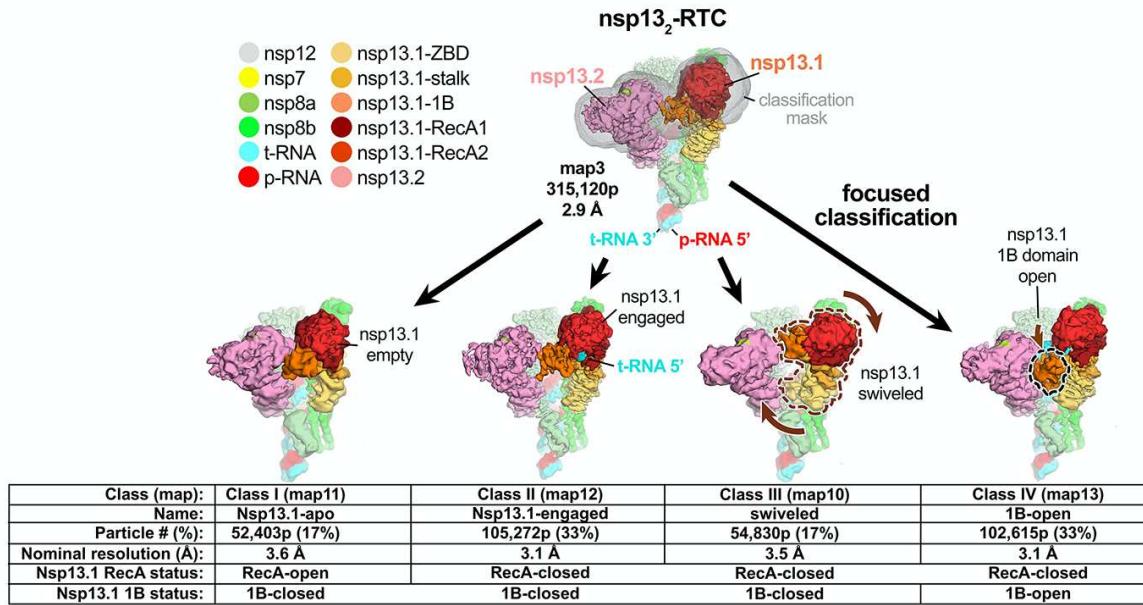
445

446 **Competing interests.** The authors declare there are no competing interests.

447

448 Chen et al., Figure 1

449 **Fig. 1 | Consensus cryo-EM structure of an nsp13₂-RTC.**


450 **A.** Overall architecture of the consensus nsp13₂-RTC. Shown is the transparent cryo-
451 EM density (map3, local-resolution filtered) with the nsp13₂-RTC model superimposed.

452 **B.** The consensus nsp13₂-RTC structure is shown; RNA is shown as atomic spheres,
453 proteins are shown as transparent molecular surfaces. A low-pass filtered (6 Å) cryo-EM
454 difference density reveals the path of the downstream t-RNA 5'-segment through the
455 RNA binding groove of nsp13.1 (cyan surface).

456 See also Figs. S1-S4.

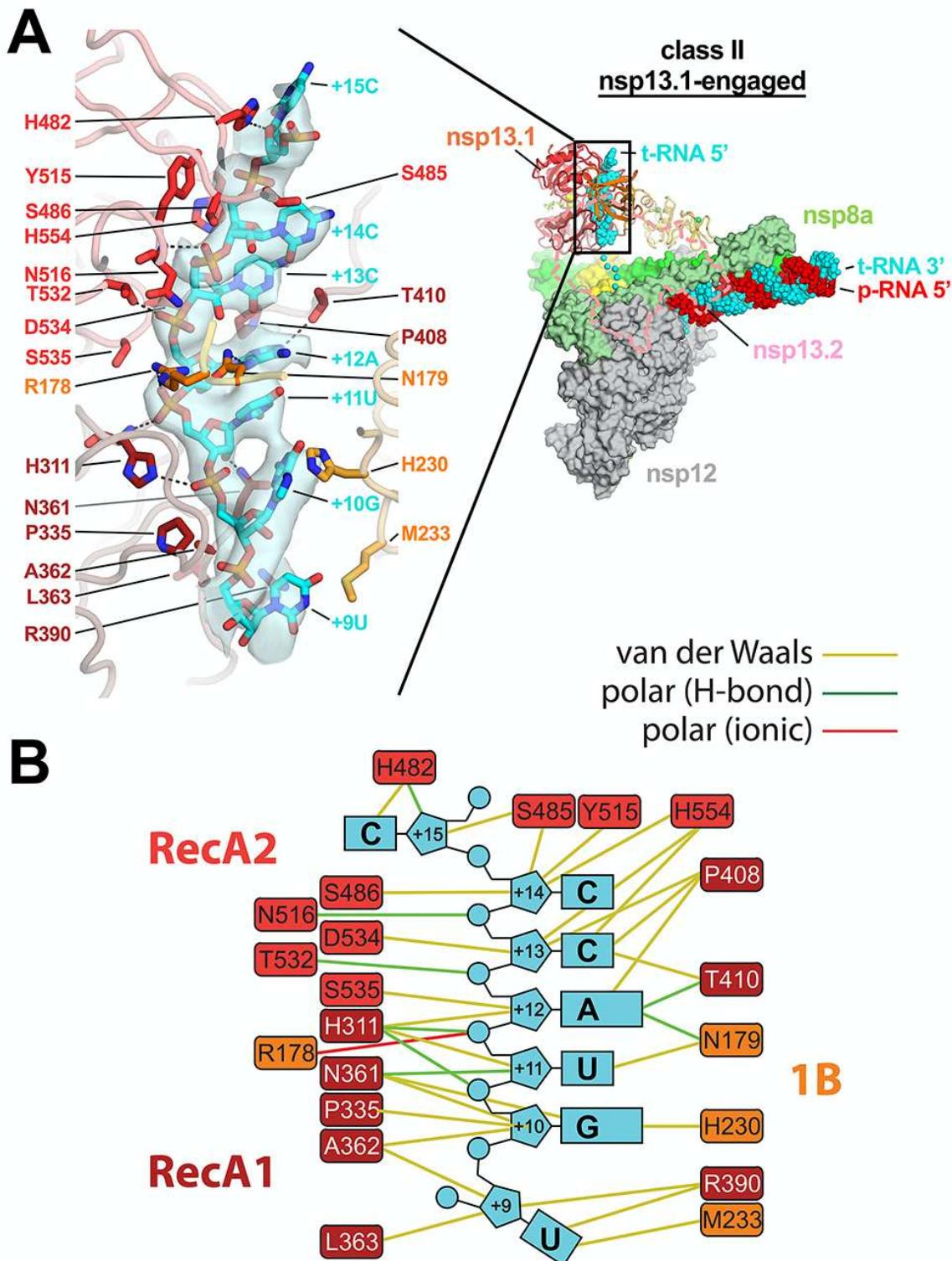
457

458

Chen et al., Figure 2

459

460 **Fig. 2 | Four conformational states of the nsp13₂-RTC.**


461 (top) Cryo-EM density (map3, local-resolution filtered) colored according to the code on
462 the left. A mask was constructed surrounding the nsp13.1 and nsp13.2 1B, RecA1, and
463 RecA2 domains (grey mesh). The 315,120 particles were divided into four distinct
464 structures (class I, II, III, and IV) by focused classification inside the mask, followed by
465 further refinement (Figs. S1, S5). Class II contained the most particles, and the nsp13.1
466 RecA domains were completely closed (Fig. S5), entrapping the 5'-t-RNA segment in a
467 groove between the two RecA domains and the 1B domain (Fig. 3). Therefore, class II
468 (nsp13.1-engaged) was used as a reference for comparison of the other structures.
469 Each class was characterized by one dominant conformational change:
470 class I) nsp13.1-apo, the RecA domains were completely open (Fig. S5) and devoid of
471 RNA (Fig. 4), class III) swiveled, the nsp13.1 protomer as a whole was rotated 38° as
472 shown (Fig. 6), class IV) 1B-open, the nsp13.1 1B domain was rotated open by 85°
473 (Fig. 5).

474 Also see Fig. S5 and Videos S1 and S2.

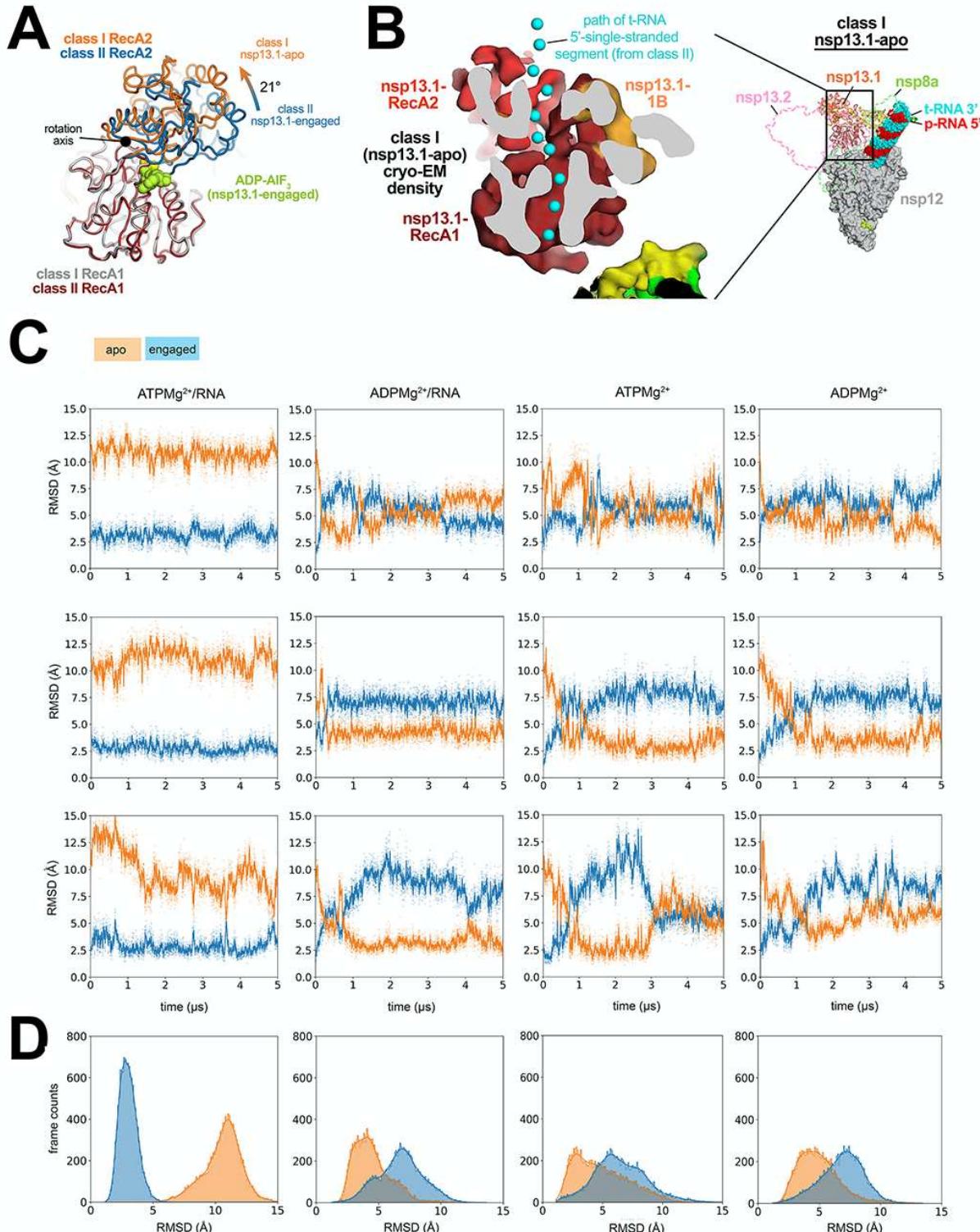
475

476

477

Chen et al., Figure 3

479 **Fig. 3 | In class II (nsp13.1-engaged), the nsp13.1 RecA domains and 1B domain**
480 **clamp onto the 5'-single-stranded t-RNA.**


481 **A. (right)** Overall view of the nsp13.1-engaged structure. Proteins are shown as
482 molecular surfaces except nsp13.1 is shown as a backbone ribbon, and nsp13.2 is
483 removed and shown only as a dashed outline. The RNA is shown as atomic spheres.
484 The boxed region is magnified on the left.

485 (*left*) Nsp13.1 is shown as a backbone worm but with side chains that interact with the t-
486 RNA shown. Cryo-EM density for the downstream 5'-t-RNA segment is shown
487 (transparent blue surface) with the t-RNA model superimposed. The pattern of
488 purines/pyrimidines in the RNA density was clear and unique, allowing the identification
489 of the sequence register for the nsp13.1-bound RNA.

490 **B.** Schematic illustrating nsp13.1-RNA interactions.

491 Also see Video S2.

492

Chen et al., Figure 4

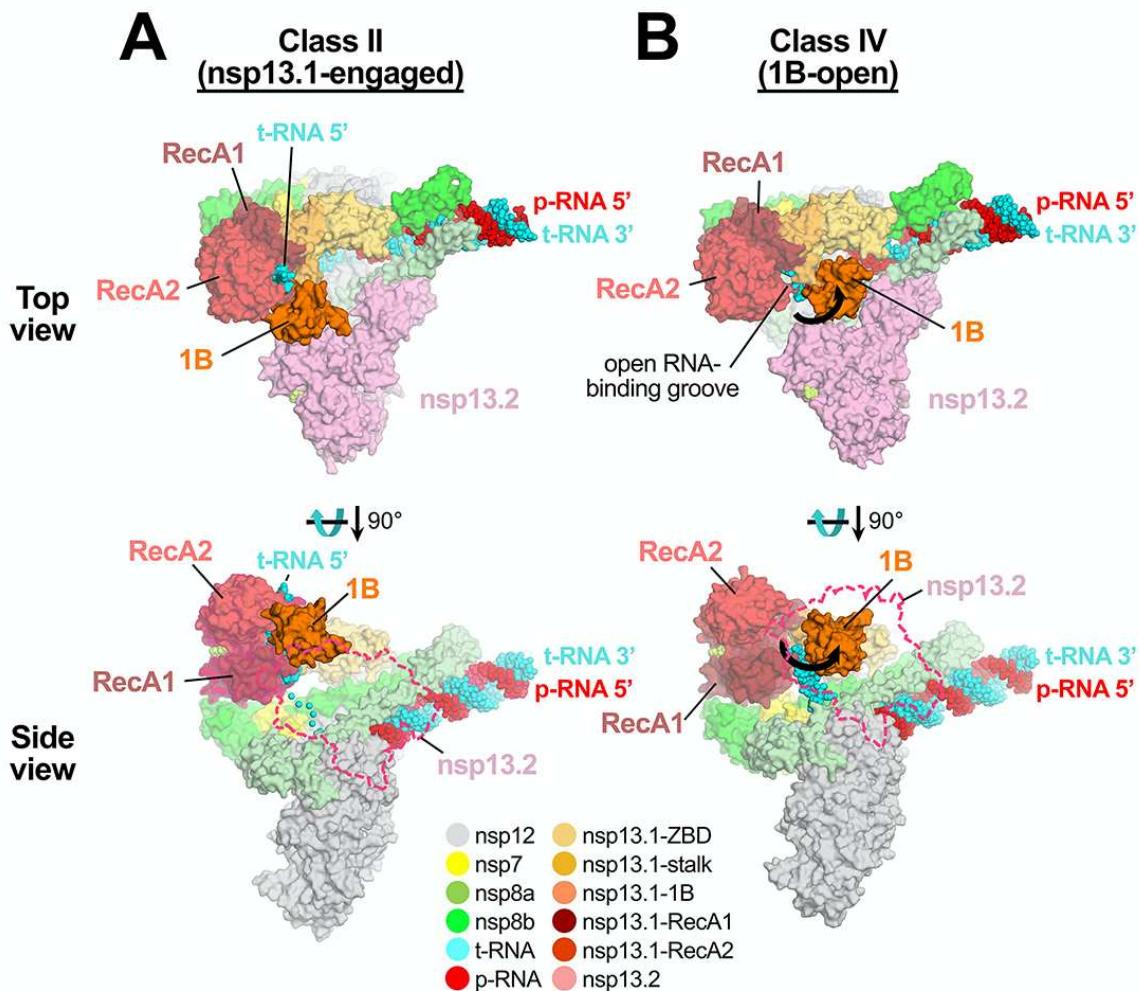
493
494

495 **Fig. 4 | In nsp13.1-apo, the RecA domains are open and devoid of RNA density.**

496 **A.** The RecA1 domains of class I (nsp13.1-apo) and class II (nsp13.1-engaged) were
497 superimposed (rmsd of 0.387 Å over 205 α -carbons), revealing that the RecA2 domain
498 of nsp13.1-apo was rotated open by 21° about the rotation axis shown. The ADP-AIF₃-
499 Mg²⁺ from the nsp13.1-engaged structure is shown as limon atomic spheres.

500 **B. (right)** Overall view of the nsp13.1-apo structure. Proteins are shown as molecular
501 surfaces except nsp13.1, which is shown as a backbone ribbon, and nsp13.2, which is
502 removed and shown only as a dashed outline. The RNA is shown as atomic spheres.
503 The boxed region is magnified on the left.

504 (*left*) Cryo-EM density of nsp13.1-apo reveals that the RNA path is empty (the RNA path
505 from the nsp13.1-engaged structure is denoted by cyan spheres).

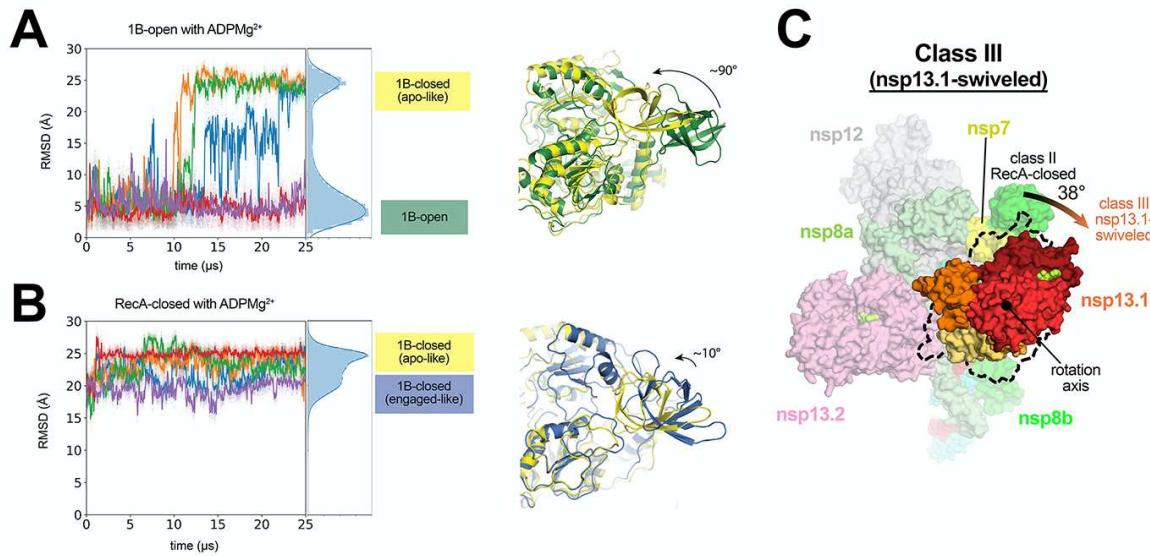

506 **C.** Three independent simulations of nsp13.1 bound to ATPMg²⁺/RNA, ADPMg²⁺/RNA,
507 ATP Mg²⁺, and ADPMg²⁺. Values of rmsd plotted represent the heavy-atom rmsd of the
508 RecA2 lobe (after alignment on the RecA1 lobe) with respect to nsp13.1-engaged (blue)
509 and nsp13.1-apo (orange) cryo-EM structures.

510 **D.** The rmsd histograms represent aggregate values across all three replicates shown
511 in **(C)**.

512 Also see Video S1.

513

514


515 Chen et al., Figure 5

516 **Fig. 5 | 1B-open structure.**

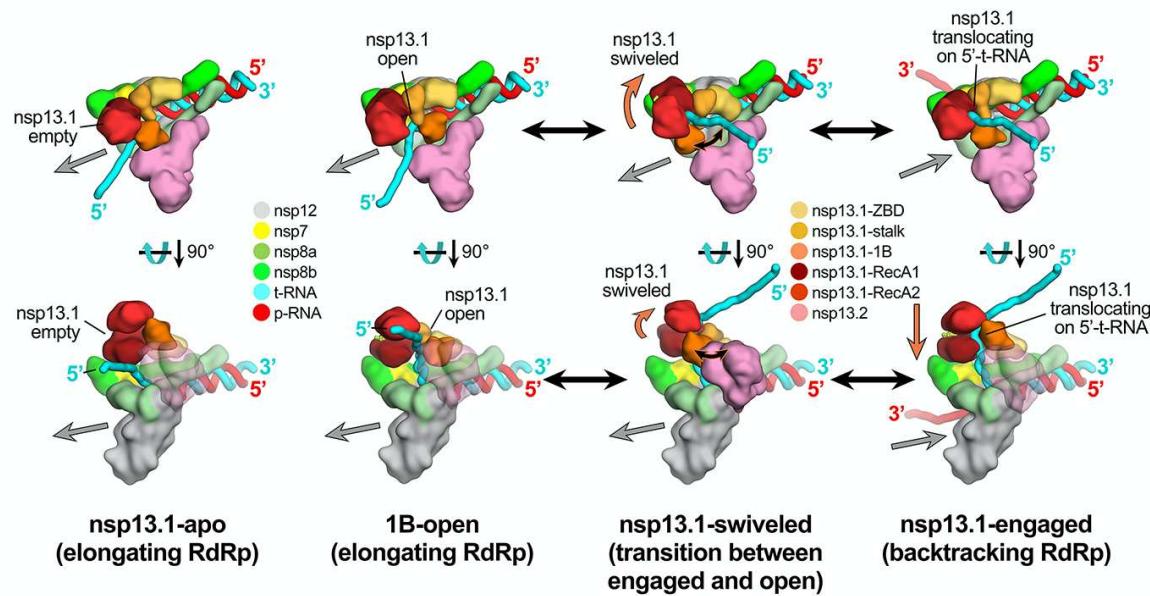
517 Comparison of nsp13.1-engaged (A) and 1B-open (B) structures. Two views are shown,
518 a top view (*top*) and a side view (*bottom*). In the top view, the proteins are shown as
519 molecular surfaces and color-coded according to the key at the bottom. In the side view,
520 nsp13.2 is shown only as a dashed outline. The RNA is shown as atomic spheres. In
521 the 1B-open structure (B), the nsp13.1 1B domain is rotated open by 85° (represented
522 by thick black arrows). The 5'-t-RNA emerging from the RdRp active site approaches
523 the nsp13.1 RNA binding groove but does not enter it.

524 Also see Video S2.

525
526

Chen et al., Figure 6

527


528 **Fig. 6 | In the nsp13.1-swiveled structure, the entire nsp13.1 promoter is rotated.**

529 **A.** Front view of the nsp13.1-swiveled structure, highlighting nsp13.1. The position of
530 the nsp13.1 promoter in the nsp13.1-engaged structure is illustrated by the dashed
531 black outline. The nsp13.1 promoter of the nsp13.1-swiveled structure is rotated by 38°
532 as shown.

533 **B.** Five independent simulations of ADPMg²⁺-bound nsp13.1, starting from the 1B-open
534 cryo-EM structure. Values plotted represent the heavy-atom rmsd of the 1B domain
535 (nsp13 residues 150-228) compared to the 1B domain in the 1B-open cryo-EM structure
536 (aligned on the RecA1 domain). The rmsd histograms on the right represent aggregate
537 values across all five simulations. Representative structures of the two major
538 conformations from the rmsd histogram from simulations are shown (right).

539 **C.** Five independent simulations of ADPMg²⁺-bound nsp13.1, starting from the nsp13.1-
540 engaged state. Values plotted represent the heavy-atom rmsd of the 1B domain
541 compared to the 1B domain in the 1B-open cryo-EM state (aligned on the RecA1
542 domain). The rmsd histograms on the far right represent aggregate values across all
543 five simulations. Representative structures of the two major conformations from the
544 rmsd histogram from simulations are shown (right).

545 See also Fig. S6.

546 Chen et al., Figure 7

547 **Fig. 7. Schematic model for RTC elongation (1B-open) vs. backtracking (nsp13.1-
548 engaged) states.**

549 Top views (top row) and side views (bottom row) of each structural class.

550 Nsp13.1-apo (17%): The nsp13.1 RecA domains are open, consistent with the absence
551 of nucleotide. The nsp13.1 is therefore not engaged with the downstream 5'-t-RNA and
552 the RdRp can freely translocate on the t-RNA with concurrent elongation of the p-RNA
553 (gray arrow pointing downstream).

554 1B-open (33%): The nsp13.1 1B domain is rotated open and sterically trapped by the
555 presence of nsp13.2. The nsp13.1 is therefore unable to engage with the downstream
556 5'-t-RNA and is inactive. The RdRp is able to elongate freely in the downstream
557 direction.

558 Nsp13.1-swiveled (17%): The rotation of the nsp13.1 protomer away from nsp13.2
559 provides space for the nsp13.1 1B domain to open and/or close. We therefore propose
560 that nsp13.1-swiveled represents a transition state between the 1B-open (elongating)
561 and nsp13.1-engaged (backtracking) states.

562 Nsp13.1-engaged (33%): The nsp13.1 1B and RecA domains are clamped onto the
563 downstream 5'-t-RNA. In this state, nsp13.1 can translocate on the t-RNA in the 5'-3'
564 direction (shown by the orange arrow). This counteracts RdRp elongation and causes
565 backtracking (backward motion of the RdRp on the RNA, shown by the gray arrow
566 pointing upstream).

567 Also see Fig. S7 and Videos S1 and S2.

568

569 **METHODS**

570 No statistical methods were used to predetermine sample size. The experiments were
571 not randomized, and the investigators were not blinded to allocation during experiments
572 and outcome assessment.

573

574 **Protein expression and purification**

575 SARS-CoV-2 *nsp12* was expressed and purified as described ²⁰. Briefly, a pRSFDuet-1
576 plasmid containing His₆-SUMO SARS-CoV-2 *nsp12* (Addgene #159107) was
577 transformed into *E. coli* BL21-CodonPlus cells (Agilent). Cells were grown and protein
578 expression was induced by the addition of isopropyl β-d-1-thiogalactopyranoside
579 (IPTG). Cells were collected and lysed in a French press (Avestin). The lysate was
580 cleared by centrifugation and purified on a HiTrap Heparin HP column (Cytiva). The
581 fractions containing *nsp12* were loaded onto a HisTrap HP column (Cytiva) for further
582 purification. Eluted *nsp12* was dialyzed, cleaved with His₆-Ulp1 SUMO protease, and
583 passed through a HisTrap HP column to remove the SUMO protease. Flow-through was
584 collected, concentrated by centrifugal filtration (Amicon), and loaded on a Superdex 200
585 Hiloade 16/600 (Cytiva). Glycerol was added to the purified *nsp12*, aliquoted, flash-frozen
586 with liquid N₂, and stored at -80°C.

587 SARS-CoV-2 *nsp7/8* was expressed and purified as described ²⁰. Briefly, the
588 pCDFDuet-1 plasmid containing His₆ SARS-CoV-2 *nsp7/8* (Addgene #159092) was
589 transformed into *E. coli* BL21 (DE3). Cells were grown and protein expression was
590 induced by the addition of IPTG. Cells were collected and lysed in a French press
591 (Avestin). The lysate was cleared by centrifugation and purified on a HisTrap HP
592 column (Cytiva). Eluted *nsp7/8* was dialyzed, cleaved with His₆-Prescission Protease to
593 cleave His₆ tag, and then passed through a HisTrap HP column to remove the protease
594 (Cytiva). Flow-through was collected, concentrated by centrifugal filtration (Amicon), and
595 loaded onto a Superdex 75 Hiloade 16/600 (Cytiva). Glycerol was added to the purified
596 *nsp7/8*, aliquoted, flash-frozen with liquid N₂, and stored at -80°C.

597 SARS-CoV-2 *nsp13* was expressed and purified as described ²⁰. Briefly, the pet28
598 plasmid containing His₆ SARS-CoV-2 *nsp13* (Addgene #159390) was transformed into
599 *E. coli* Rosetta (DE3) (Novagen). Cells were grown and protein expression was induced
600 by the addition of IPTG. Cells were collected and lysed in a French press (Avestin). The
601 lysate was cleared by centrifugation and purified on a HisTrap HP column (Cytiva).
602 Eluted *nsp13* was dialyzed, cleaved with His₆-Prescission Protease, and then passed
603 through a HisTrap HP column to remove protease (Cytiva). Flow-through was collected,
604 concentrated by centrifugal filtration (Amicon), and loaded onto a Superdex 200 Hiloade
605 16/600 (Cytiva). Glycerol was added to the purified *nsp13*, aliquoted, flash-frozen with
606 liquid N₂, and stored at -80°C.

607

608 **Preparation of SARS-CoV-2 *nsp13*-replication/transcription complex (RTC) for**
609 **Cryo-EM.** Cryo-EM samples of SARS-CoV-2 *nsp13*-RTC were prepared as described
610 ²⁰. Briefly, purified *nsp12* and *nsp7/8* were concentrated, mixed in a 1:3 molar ratio, and
611 incubated for 20 min at 22°C. Annealed RNA scaffold (Horizon Discovery, Ltd.) was

612 added to the nsp7/8/12 mixture and incubated for 15 min at 22°C. Sample was buffer
613 exchanged into cryo-EM buffer [20 mM HEPES pH 8.0, 150 mM K-Acetate, 10 mM
614 MgCl₂, 2 mM DTT] and further incubated for 20 min at 30°C. The sample was purified
615 over a Superose 6 Increase 10/300 GL column (Cyriva) in cryo-EM buffer. The peak
616 corresponding to nsp7/8/12/RNA complex was pooled and concentrated by centrifugal
617 filtration (Amicon). Purified nsp13 was concentrated by centrifugal filtration (Amicon)
618 and buffer exchanged into cryo-EM buffer. Buffer exchanged nsp13 was mixed with
619 ADP (1 mM final) and AlF₃ (1 mM final) and then added to nsp7/8/12/RNA at a molar
620 ratio of 1:1. Complex was then incubated for 5 min at 30°C.

621

622 **Cryo-EM grid preparation.** Prior to grid freezing, 3-([3-
623 cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO,
624 Anatrace) was added to the sample (8 mM final), resulting in a final complex
625 concentration of 8 μM. The final buffer condition for the cryo-EM sample was
626 20 mM HEPES pH 8.0, 150 mM K-Acetate, 10 mM MgCl₂, 2 mM DTT, 1 mM ADP,
627 1 mM AlF₃, 8 mM CHAPSO. C-flat holey carbon grids (CF-1.2/1.3-4Au, EMS) were
628 glow-discharged for 20 s prior to the application of 3.5 μL of sample. Using a Vitrobot
629 Mark IV (Thermo Fisher Scientific), grids were blotted and plunge-froze into liquid
630 ethane with 90% chamber humidity at 4°C.

631

632 **Cryo-EM data acquisition and processing.** Structural biology software was accessed
633 through the SBGrid consortium ⁴⁴. Grids were imaged using a 300 kV Titan Krios
634 (Thermo Fisher Scientific) equipped with a GIF BioQuantum and K3 camera (Gatan).
635 Images were recorded with Leginon ⁴⁵ with a pixel size of 1.07 Å/px (micrograph
636 dimension of 5760 × 4092 px) over a defocus range of −0.8 μm to −2.5 μm with a 20 eV
637 slit. Movies were recorded in “counting mode” (native K3 camera binning 2) with ~30 e-
638 /px/s in dose-fractionation mode with subframes of 50 ms over a 2.5 s exposure
639 (50 frames) to give a total dose of ~66 e-/Å². Dose-fractionated movies were gain-
640 normalized, drift-corrected, summed, and dose-weighted using MotionCor2 ⁴⁶. The
641 contrast transfer function (CTF) was estimated for each summed image using the Patch
642 CTF module in cryoSPARC v2.15.0 ⁴⁷. Particles were picked and extracted from the
643 dose-weighted images with box size of 256 px using cryoSPARC Blob Picker and
644 Particle Extraction. The entire dataset consisted of 17,806 motion-corrected images with
645 3,750,107 particles. Particles were sorted using two rounds of cryoSPARC 2D
646 classification (N=100, where N equals the number of classes), resulting in 661,105
647 curated particles that were re-extracted with a boxsize of 320 px. An initial model was
648 generated using cryoSPARC *Ab initio* Reconstruction (N=3) on a subset of the particles.
649 Particles were further curated using this initial model as a 3D template for cryoSPARC
650 Heterogeneous Refinement (N=3), resulting in 451,760 particles (green map, Fig. S1).
651 Curated particles were further classified using cryoSPARC Heterogeneous Refinement
652 (N=3). Each of the resulting 3D classes were further processed with cryoSPARC
653 *Ab initio* Reconstruction (N=3), generating three distinct models that could be used to
654 sort particles [Ref 1: nsp13₁-RTC, Ref 2: nsp13₂-RTC, Ref 3: (nsp13₂-RTC)₂]. Using
655 Ref 1-3 as 3D templates for Heterogeneous Refinement (N=6), multi-reference
656 classification was performed on the 451,760 curated particles. Classification revealed

657 three unique classes: nsp13₁-RTC (class1; 85,206 particles; yellow), nsp13₂-RTC
658 (class2-4; 315,216 particles; red), and (nsp13₂-RTC)₂ (class5; 35,403 particles; blue).
659 Particles within each class were further processed using RELION 3.1-beta Bayesian
660 Polishing ⁴⁸. Polished particles were refined using cryoSPARC Local and Global CTF
661 Refinement in combination with cryoSPARC Non-uniform Refinement ⁴⁹, resulting in
662 structures with the following particle counts and nominal resolutions: nsp13₁-RTC
663 (85,187 particles; 3.2 Å), nsp13₂-RTC (315,120 particles; 2.9 Å), (nsp13₂-RTC)₂ (35,392
664 particles; 3.3 Å). To facilitate model building of nsp13₂-RTC, particles from nsp13₁-RTC
665 and nsp13₂-RTC were combined in a cryoSPARC Non-uniform Refinement, subtracted
666 (masking the RTC), and further refined with cryoSPARC Local Refinement using a
667 mask encompassing the RTC. The resulting map, deemed RTC (local), had nominal
668 resolution of 2.8 Å. Additionally, particles from the nsp13₂-RTC were subtracted in
669 different regions (using separate masks for nsp12-NiRAN, nsp13.1, and nsp13.2) and
670 the particles from each subtraction were further refined with masked cryoSPARC Local
671 Refinement. The resulting maps had the following nominal resolutions:
672 nsp13.1(local): 3.4 Å, nsp13.2(local): 3.3 Å, nsp12-NiRAN(local): 2.7 Å. Locally refined
673 maps were combined into an nsp13₂-RTC composite map using PHENIX 'Combine
674 Focused Maps' ^{50,51}, with resulting nominal resolution of 2.8 Å. The nsp13-RecA
675 domains in particles from the nsp13₁-RTC and nsp13₂-RTC classes were sorted using
676 particle subtraction (masking around the RecA domains, shown as red mesh in Fig. S1),
677 followed by masked RELION 3D classification. Classification of RecA domains in the
678 nsp13₁-RTC particles (pale yellow) did not reveal discrete conformational heterogeneity
679 in the RecA domains. However, classification of RecA domains in the nsp13₂-RTC
680 particles (light red) revealed unique conformations of the RecA domains with the
681 following particle counts and nominal resolutions: RecA classI (52,403 particles; 3.5 Å),
682 RecA class II (102,615 particles; 3.1 Å), RecA class III (54,830 particles; 3.5 Å),
683 RecA class IV (105,272 particles; 3.1 Å). Local resolution calculations were generated
684 using blocres and blocfilt from the Bsoft package ²⁹.

685
686 **Model building and refinement.** For an initial model of the nsp13₂-RTC, the initial RTC
687 model was derived from PDB 6XEZ ²⁰ and the initial nsp13 model from PDB 6ZSL ³².
688 The models were manually fit into the cryo-EM density maps using Chimera ⁵² and rigid-
689 body and real-space refined using Phenix real-space-refine ^{50,51}. For real-space
690 refinement, rigid body refinement was followed by all-atom and B-factor refinement with
691 Ramachandran and secondary structure restraints. Models were inspected and
692 modified in Coot ⁵³.

693

694 Molecular dynamics simulations

695 *General simulation setup and parameterization.* Proteins, ATP, ADP, and ions were
696 parameterized with the DES-Amber SF1.0 force field ⁵⁴. RNAs were parameterized with
697 the Amber ff14 RNA force field ⁵⁵ with modified electrostatic, van der Waals, and
698 torsional parameters to more accurately reproduce the energetics of nucleobase
699 stacking ⁵⁶. The systems were solvated with water parameterized with the TIP4P-D
700 water model ⁵⁷ and neutralized with a 150 mM NaCl buffer. The systems each contained
701 ~160,000 atoms in a 110 × 110 × 110 Å cubic box.

702 Systems were first equilibrated on GPU Desmond using a mixed NVT/NPT
703 schedule⁵⁸, followed by a 1 μ s relaxation simulation on Anton, a special-purpose
704 machine for molecular dynamics simulations⁵⁹. All production simulations were
705 performed on Anton and initiated from the last frame of the relaxation simulation.
706 Production simulations were performed in the NPT ensemble⁶⁰ at 310 K using the
707 Martyna-Tobias-Klein barostat⁶¹. The simulation time step was 2.5 fs, and a modified r-
708 RESPA integrator⁶² was used in which long-range electrostatic interactions were
709 evaluated every three time steps. Electrostatic forces were calculated using the *u*-series
710 method⁶³. A 9- \AA cutoff was applied for the van der Waals calculations.

711 *System preparation.* The initial conformations of Class II nsp13.1 bound to the various
712 substrates (ATPMg²⁺/RNA, ADPMg²⁺/RNA, ATPMg²⁺, and ADPMg²⁺) were prepared
713 based on the cryo-EM structure of the Class II nsp13₂-BTC₅. The initial conformation of
714 the Class IV, 1B-open nsp13.1 structure was prepared from the cryo-EM Class IV
715 nsp13₂-BTC₅ structure. AlF₃ was removed from the active site. Missing loops and
716 termini in proteins were capped with ACE/NME capping groups. In simulations with ATP
717 at the active site, ATP was manually placed using ADP in the cryo-EM structure as the
718 reference. The systems were prepared for simulation using the Protein Preparation
719 Wizard in Schrödinger Maestro (Schrödinger Release 2020-4: Maestro, Schrödinger,
720 LLC, New York, NY, 2020).

721 *Simulation analysis.* The average rmsd was calculated for the RecA2 domain (residues
722 450–690) and 1B domain (residues 145–200) of nsp13.1 between the cryo-EM
723 structures and instantaneous structures from the trajectories, aligned on the RecA1 lobe
724 (residues 240–440). Simulation structures shown in figures were rendered using PyMol
725 (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC).

726

727 **Quantification and statistical analysis.** The local resolution of the cryo-EM maps
728 (Figs S3 and S5) was estimated using blocres²⁹ with the following parameters: box
729 size 15, sampling 1.1, and cutoff 0.5. Directional 3DFSCs (Figs. S3 and S5) were
730 calculated using 3DFSC⁶⁴. The quantification and statistical analyses for model
731 refinement and validation were generated using MolProbity⁶⁵ and PHENIX⁵¹.

732

733 **Data and code availability.** All unique/stable reagents generated in this study are
734 available without restriction from one of the Lead Contacts, Seth A. Darst
735 (darst@rockefeller.edu). The cryo-EM density maps and atomic coordinates have been
736 deposited in the EMDDataBank and Protein Data Bank as follows: nsp13₁-RTC (EMD-
737 24431, 7RE2), nsp13₂-RTC (composite) (EMD-24430, 7RE1), (nsp13₂-RTC)₂ (EMD-
738 24432, 7RE3), nsp13₂-RTC (nsp13.1-apo) (EMD-24428, 7RDZ), nsp13₂-RTC (nsp13.1-
739 engaged) (EMD-24427, 7RDY), nsp13₂-RTC (nsp13.1-swiveled) (EMD-24429, 7RE0),
740 nsp13₂-RTC (1B-open) (EMD-24426, 7RDX). The MD trajectories described in this work
741 are available at
742 https://www.deshawresearch.com/downloads/download_trajectory_sarscov2.cgi/.

743

744

745 **REFERENCES**

746

747 1. Wu, F. *et al.* A new coronavirus associated with human respiratory disease in China.
748 *Nature* 579, 265–269 (2020).

749 2. Zhou, P. *et al.* A pneumonia outbreak associated with a new coronavirus of probable
750 bat origin. *Nature* 579, 270–273 (2020).

751 3. Subissi, L. *et al.* One severe acute respiratory syndrome coronavirus protein complex
752 integrates processive RNA polymerase and exonuclease activities. *Proceedings of the
753 National Academy of Sciences of the United States of America* 111, E3900-9 (2014).

754 4. Kirchdoerfer, R. N. & Ward, A. B. Structure of the SARS-CoV nsp12 polymerase
755 bound to nsp7 and nsp8 co-factors. *Nature Communications* 10, 2342–9 (2019).

756 5. Hillen, H. S. *et al.* Structure of replicating SARS-CoV-2 polymerase. *Nature* 1–6
757 (2020) doi:10.1038/s41586-020-2368-8.

758 6. Gordon, C. J. *et al.* Remdesivir is a direct-acting antiviral that inhibits RNA-dependent
759 RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high
760 potency. *J Biol Chem* 295, 6785–6797 (2020).

761 7. Tchesnokov, E. P. *et al.* Template-dependent inhibition of coronavirus RNA-
762 dependent RNA polymerase by remdesivir reveals a second mechanism of action. *J
763 Biol Chem* 295, 16156–16165 (2020).

764 8. Kokic, G. *et al.* Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. *Nat
765 Commun* 12, 279 (2021).

766 9. Snijder, E. J., Decroly, E. & Ziebuhr, J. The Nonstructural Proteins Directing
767 Coronavirus RNA Synthesis and Processing. *Adv Virus Res* 96, 59–126 (2016).

768 10. Dinten, L. C. van, Tol, H. van, Gorbalyena, A. E. & Snijder, E. J. The Predicted
769 Metal-Binding Region of the Arterivirus Helicase Protein Is Involved in Subgenomic
770 mRNA Synthesis, Genome Replication, and Virion Biogenesis. *J Virol* 74, 5213–5223
771 (2000).

772 11. Seybert, A., Dinten, L. C. van, Snijder, E. J. & Ziebuhr, J. Biochemical
773 Characterization of the Equine Arteritis Virus Helicase Suggests a Close Functional
774 Relationship between Arterivirus and Coronavirus Helicases. *J Virol* 74, 9586–9593
775 (2000).

776 12. Seybert, A. *et al.* A Complex Zinc Finger Controls the Enzymatic Activities of
777 Nidovirus Helicases. *J Virol* 79, 696–704 (2005).

778 13. Lehmann, K. C., Snijder, E. J., Posthuma, C. C. & Gorbalenya, A. E. What we know
779 but do not understand about nidovirus helicases. *Virus Res* 202, 12–32 (2015).

780 14. Saikrishnan, K., Powell, B., Cook, N. J., Webb, M. R. & Wigley, D. B. Mechanistic
781 basis of 5'-3' translocation in SF1B helicases. *Cell* 137, 849–59 (2009).

782 15. Adedeji, A. O. *et al.* Mechanism of Nucleic Acid Unwinding by SARS-CoV Helicase.
783 *Plos One* 7, e36521 (2012).

784 16. Mickolajczyk, K. J. *et al.* Force-dependent stimulation of RNA unwinding by SARS-
785 CoV-2 nsp13 helicase. *Biophys J* (2020) doi:10.1016/j.bpj.2020.11.2276.

786 17. Singleton, M. R., Dillingham, M. S. & Wigley, D. B. Structure and Mechanism of
787 Helicases and Nucleic Acid Translocases. *Annu Rev Biochem* 76, 23–50 (2007).

788 18. Hao, W. *et al.* Crystal structure of Middle East respiratory syndrome coronavirus
789 helicase. *Plos Pathog* 13, e1006474 (2017).

790 19. Jia, Z. *et al.* Delicate structural coordination of the Severe Acute Respiratory
791 Syndrome coronavirus Nsp13 upon ATP hydrolysis. *Nucleic Acids Res* 47, 6538–6550
792 (2019).

793 20. Chen, J. *et al.* Structural basis for helicase-polymerase coupling in the SARS-CoV-2
794 replication-transcription complex. *Cell* 182, 1560-1573.e13 (2020).

795 21. Yan, L. *et al.* Architecture of a SARS-CoV-2 mini replication and transcription
796 complex. *Nat Commun* 11, 5874 (2020).

797 22. Yan, L. *et al.* Cryo-EM Structure of an Extended SARS-CoV-2 Replication and
798 Transcription Complex Reveals an Intermediate State in Cap Synthesis. *Cell* 184, 184-
799 193.e10 (2021).

800 23. Deng, Z. *et al.* Structural basis for the regulatory function of a complex zinc-binding
801 domain in a replicative arterivirus helicase resembling a nonsense-mediated mRNA
802 decay helicase. *Nucleic Acids Res* 42, 3464–77 (2013).

803 24. Tavares, R. de C. A., Mahadeshwar, G., Wan, H., Huston, N. C. & Pyle, A. M. The
804 Global and Local Distribution of RNA Structure throughout the SARS-CoV-2 Genome. *J
805 Virol* 95, (2021).

806 25. Huston, N. C. *et al.* Comprehensive in vivo secondary structure of the SARS-CoV-2
807 genome reveals novel regulatory motifs and mechanisms. *Mol Cell* 81, 584-598.e5
808 (2021).

809 26. Malone, B. *et al.* Structural basis for backtracking by the SARS-CoV-2 replication–
810 transcription complex. *Proc National Acad Sci* 118, e2102516118 (2021).

811 27. Seifert, M. *et al.* Signatures and mechanisms of efficacious therapeutic
812 ribonucleotides against SARS-CoV-2 revealed by analysis of its replicase using
813 magnetic tweezers. *Biorxiv* 2020.08.06.240325 (2020) doi:10.1101/2020.08.06.240325.

814 28. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM
815 structure determination. *Journal of structural biology* 180, 519–530 (2012).

816 29. Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping
817 local variations in resolution in cryo-EM reconstructions. *Journal of structural biology*
818 184, 226–236 (2013).

819 30. Bai, X., Rajendra, E., Yang, G., Shi, Y. & Scheres, S. H. W. Sampling the
820 conformational space of the catalytic subunit of human γ -secretase. *eLife* 4, e11182
821 (2015).

822 31. Yan, L. *et al.* Coupling of N7-methyltransferase and 3'-5' exoribonuclease with
823 SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. *Cell* 184,
824 3474-3485.e11 (2021).

825 32. Newman, J. A. *et al.* Structure, Mechanism and Crystallographic fragment screening
826 of the SARS-CoV-2 NSP13 helicase. *Biorxiv* 2021.03.15.435326 (2021)
827 doi:10.1101/2021.03.15.435326.

828 33. Chakrabarti, S. *et al.* Molecular mechanisms for the RNA-dependent ATPase
829 activity of Upf1 and its regulation by Upf2. *Mol Cell* 41, 693–703 (2011).

830 34. Cheng, Z., Muhlrad, D., Lim, M. K., Parker, R. & Song, H. Structural and functional
831 insights into the human Upf1 helicase core. *Embo J* 26, 253–264 (2007).

832 35. Dillingham, M. S., Wigley, D. B. & Webb, M. R. Demonstration of Unidirectional
833 Single-Stranded DNA Translocation by PcrA Helicase: Measurement of Step Size and
834 Translocation Speed †. *Biochemistry-us* 39, 205–212 (2000).

835 36. Lohman, T. M., Tomko, E. J. & Wu, C. G. Non-hexameric DNA helicases and
836 translocases: mechanisms and regulation. *Nat Rev Mol Cell Bio* 9, 391–401 (2008).

837 37. Tomko, E. J., Fischer, C. J., Niedziela-Majka, A. & Lohman, T. M. A Nonuniform
838 Stepping Mechanism for *E. coli* UvrD Monomer Translocation along Single-Stranded
839 DNA. *Mol Cell* 26, 335–347 (2007).

840 38. Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S. & Wigley, D. B.
841 Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an
842 inchworm mechanism. *Cell* 97, 75–84 (1999).

843 39. Yarranton, G. T. & Gefter, M. L. Enzyme-catalyzed DNA unwinding: Studies on
844 *Escherichia coli* rep protein. *Proc National Acad Sci* 76, 1658–1662 (1979).

845 40. Minskaia, E. *et al.* Discovery of an RNA virus 3'->5' exoribonuclease that is critically
846 involved in coronavirus RNA synthesis. *Proc National Acad Sci* 103, 5108–5113 (2006).

847 41. Gorbatenko, A. E., Enjuanes, L., Ziebuhr, J. & Snijder, E. J. Nidovirales: Evolving
848 the largest RNA virus genome. *Virus Res* 117, 17–37 (2006).

849 42. Denison, M. R., Graham, R. L., Donaldson, E. F., Eckerle, L. D. & Baric, R. S.
850 Coronaviruses: An RNA proofreading machine regulates replication fidelity and
851 diversity. *Rna Biol* 8, 270–279 (2011).

852 43. Agostini, M. L. *et al.* Coronavirus Susceptibility to the Antiviral Remdesivir (GS-
853 5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. *Mbio*
854 9, e00221-18 (2018).

855 44. Morin, A. *et al.* Collaboration gets the most out of software. *eLife* 2, e01456 (2013).

856 45. Suloway, C. *et al.* Automated molecular microscopy: the new Leginon system.
857 *Journal of structural biology* 151, 41–60 (2005).

858 46. Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for
859 improved cryo-electron microscopy. *Nature methods* 14, 331–332 (2017).

860 47. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms
861 for rapid unsupervised cryo-EM structure determination. *Nat Methods* 14, 290–296
862 (2017).

863 48. Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure
864 determination in RELION-3. *eLife* 7, (2018).

865 49. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization
866 improves single-particle cryo-EM reconstruction. *Nat Methods* 17, 1214–1221 (2020).

867 50. Afonine, P. V. *et al.* New tools for the analysis and validation of cryo-EM maps and
868 atomic models. *Acta crystallographica. Section D, Structural biology* 74, 814–840
869 (2018).

870 51. Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for
871 macromolecular structure solution. *Acta Crystallographica Section D Biological
872 Crystallography* 66, 213–221 (2010).

873 52. Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory
874 research and analysis. *Journal of computational chemistry* 25, 1605–1612 (2004).

875 53. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta
876 Crystallographica Section D Biological Crystallography* 60, 2126–2132 (2004).

877 54. Piana, S., Robustelli, P., Tan, D., Chen, S. & Shaw, D. E. Development of a Force
878 Field for the Simulation of Single-Chain Proteins and Protein–Protein Complexes. *J
879 Chem Theory Comput* 16, 2494–2507 (2020).

880 55. Maier, J. A. *et al.* ff14SB: Improving the Accuracy of Protein Side Chain and
881 Backbone Parameters from ff99SB. *J Chem Theory Comput* 11, 3696–3713 (2015).

882 56. Tan, D., Piana, S., Dirks, R. M. & Shaw, D. E. RNA force field with accuracy
883 comparable to state-of-the-art protein force fields. *Proc National Acad Sci* 115,
884 201713027 (2018).

885 57. Piana, S., Donchev, A. G., Robustelli, P. & Shaw, D. E. Water Dispersion
886 Interactions Strongly Influence Simulated Structural Properties of Disordered Protein
887 States. *J Phys Chem B* 119, 5113–5123 (2015).

888 58. Bowers, K. J. *et al.* Scalable Algorithms for Molecular Dynamics Simulations on
889 Commodity Clusters. *Acm Ieee Sc 2006 Conf Sc'06* 43–43 (2006)
890 doi:10.1109/sc.2006.54.

891 59. Shaw, D. E. *et al.* Anton 2: Raising the Bar for Performance and Programmability in
892 a Special-Purpose Molecular Dynamics Supercomputer. *Sc14 Int Conf High Perform
893 Comput Netw Storage Analysis* 41–53 (2014) doi:10.1109/sc.2014.9.

894 60. Lippert, R. A. *et al.* Accurate and efficient integration for molecular dynamics
895 simulations at constant temperature and pressure. *J Chem Phys* 139, 164106 (2013).

896 61. Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics
897 algorithms. *J Chem Phys* 101, 4177–4189 (1994).

898 62. Tuckerman, M., Berne, B. J. & Martyna, G. J. Reversible multiple time scale
899 molecular dynamics. *J Chem Phys* 97, 1990–2001 (1992).

900 63. Predescu, C. *et al.* The u -series: A separable decomposition for electrostatics
901 computation with improved accuracy. *J Chem Phys* 152, 084113 (2020).

902 64. Tan, Y. Z. *et al.* Addressing preferred specimen orientation in single-particle cryo-
903 EM through tilting. *Nature methods* 14, 793–796 (2017).

904 65. Chen, V. B. *et al.* MolProbity: all-atom structure validation for macromolecular
905 crystallography. *Acta Crystallographica Section D Biological Crystallography* 66, 12–21
906 (2010).

907