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Abstract 
Computation within cortical microcircuits is determined by functional properties of the neurons and 

their synaptic interactions. While heterogeneity of inhibitory interneurons is well established, the 

anatomical, physiological, and molecular differentiation of excitatory pyramidal neurons is not fully 

resolved. To identify functional subtypes within the pyramidal neuron population, we focused on 

human layer 2-3 cortex which greatly expanded during evolution. We performed multi-neuron patch-

clamp recordings in brain slices from the temporal cortex of 22 epilepsy patients. We characterized 

the electrophysiological properties of up to 80 pyramidal neurons per patient, enabling us to assess 

inter- and intra-individual functional variability. Hierarchical clustering of the high-dimensional 

parameter space yielded functionally distinct clusters of pyramidal neurons which were present across 

individuals. This may represent a generic organizational principle converging with previously 

described transcriptomic heterogeneity. We further observed substantial heterogeneity in 

physiological parameters with intra-individual variability being severalfold larger than inter-individual 

variability. The phenotypic variability within and across pyramidal neuron subtypes has important 

implications for the computational capacity of the cortical microcircuit.  
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Introduction 
The function of the brain emerges through interaction of diverse neuron types. The identity and 

characteristics of these neuron types have been subject of intense study since the seminal work by 

Ramón y Cajal (1). To better understand the functional role of neuronal diversity, classifications have 

been made based on single-cell physiology, anatomy and molecular markers. Initial studies described 

a largely homogeneous pyramidal neuron population in contrast to distinct interneuron types, 

underestimating their diversity beyond layer- and projection-specific subtypes (2-4). More recently, 

high-throughput molecular approaches led to detailed cortical taxonomies, including human neurons, 

based on their common gene expression (5-11). Efforts to map these transcriptomic types (t-types) 

to their morpho-electrical properties revealed both discrete and continuous phenotypic variation 

between t-types (5, 6, 12). This highlights the ongoing challenge to identify discrete entities of 

neuronal subtypes based on their molecular, morphological, and physiological profile (13). 

Neuronal cell classes appear broadly conserved across species (7, 8, 14) . Nevertheless, functional 

specialization of the human cortex has been proposed, although the cellular and circuit 

implementation for this is not well understood (15). Especially human cortical layers two and three (L2-

3) expanded during evolution (16, 17), and its pyramidal neurons possess unique morphology, cortical 

depth-dependent electrophysiology, as well as distinct dendritic computations (18-22). Anatomically, 

two pyramidal neuron subtypes were identified based on different dendritic morphologies (23). 

Transcriptomic studies of human L2-3 found an increased pyramidal neuron diversity, corresponding 

to five types that diverged with respect to their electrophysiological and morphological characteristics 

(5, 8). While a subtype classification based on electrophysiology (e-types) in human layer 5 (L5) was 

able to distinguish between transcriptomically defined extra-telencephalic and intra-telencephalic 

projecting neurons (24), the granularity of functional pyramidal neuron subtypes in the human L2-3 

remains to be resolved.  

Functional classification of pyramidal neuron subtypes might be challenging due to multiple 

confounding factors, such as differences between areas and individuals. Comparative studies across 

regions suggest variations of neuron properties across the cortical sheet (10, 25). Furthermore, 

substantial inter-individual variability of neurons has been observed across species, including crabs, 

mice and humans (25-27). In order to assess the diversity of human L2-3 pyramidal neurons and to 

disentangle the effects of inter-individual variability, we characterized functional properties in large 

samples of neurons from individual patients. We performed multi-neuron patch-clamp recordings on 

human brain slices from temporal cortex of epilepsy patients (28) and identified distinct functional 

subtypes which were present across individual patients. While we identified inter-individual 

differences, we found that intra-individual variability was several folds higher. 

Results 
High yield intrinsic and synaptic recordings per single patient make individualized analysis 

possible. We used resected cortical tissue from 22 patients diagnosed with refractory epilepsy and 

undergoing temporal lobe surgery (10 females and 12 males, age range from 21 to 55 years; Fig. 1A, 

suppl. Table 1). In order to maximize experimental yield per patient at high recording quality, we 

established specialized recording setups and procedures. These included sterile slicing conditions 

and parallel recording on two optimized multi-patch setups employing reuse of individual pipettes (28). 

Up to ten neurons in cortical L2-3 were recorded simultaneously (Fig. 1B-D). Out of 1429 recorded 

neurons, 964 met our inclusion criteria and were classified as pyramidal neurons based on their 

electrophysiological properties (see method section). The neurons were filled with biocytin and 

subsequently visualized (Fig. 1C). Up to 80 pyramidal neurons per patient and their respective 
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monosynaptic connections were recorded, making analysis on the single patient level 

possible (Fig. 1E). 

 
Figure 1: High throughput whole-cell patch-clamp recordings per single patient. (A) Human cortical brain tissue was 

obtained from patients that underwent surgery for temporal-lobe epilepsy. A typical specimen consisting of the temporal pole 

and anterior parts of the superior, medial and inferior temporal gyrus (STG, MTG and ITG, respectively) is shown in relation 

to the entire human cerebrum. In total, 199 acute cortical slices from tissue of 22 patients were measured. Of 1429 recorded 

neurons, 964 passed quality control, had complete data and were classified as pyramidal neurons. (B) Nissl staining of 

cortex, red inset highlights L2-3 where most recordings were performed. (C) Biocytin staining of recorded neighbouring 

neurons. Colored patch pipettes depict multi-neuron patch-clamp approach, one neuron was not stained (dashed circle). (D) 

Voltage responses of the neurons in panel B with the respective colored pipette are shown for a sequence of increasing 

step current injections (50-100 pA increments). (E) Bar plot showing number of recorded neurons with complete data per 

patient, sorted in a descending order. (F) Schematics depicting the electrophysiological parameters extracted from the raw 

traces by an automated analysis pipeline. For this study 15 well established electrophysiological properties were 

analysed (see Methods). 

Human L2-3 pyramidal neurons are functionally heterogenous and occupy a high-dimensional 

parameter space. We extracted 15 active and passive electrophysiological properties, similarly to 

previous studies addressing the functional phenotype of neurons (Fig. 1F, (12, 21, 29). The pyramidal 

neurons were highly diverse with respect to their electrophysiological properties, showing broad and 

in some cases skewed distributions (Fig. 2A, Table 1). Some properties were strongly correlated, 

such as broader action potential (AP) halfwidths with slower AP downstrokes (R = -0.8), higher firing 

frequency with higher input resistances (R = 0.56) or larger AP amplitudes with faster AP upstroke 

(R = 0.69, Fig. 2C). In order to quantify the overall degree of correlation between functional 

parameters, we conducted a principal component analysis. The first principal component explained 

24% of the total variance in the dataset, and the top three components amounted to 52% percent 

(Fig. 2D). Thus, while some degree of correlation was identified between properties, the overall 

functional parameter space of the pyramidal neurons appears to be rather high-dimensional. 
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Electrophysiological parameter Unit Median Interquartile range Skewness 

Resting membrane potential mV -73.4 -77.7 -69.4 0.1 

Input resistance MΩ 74.0 50.4 108.4 2.2 

Membrane time constant tau ms 18.5 15.7 21.8 0.8 

AP threshold amplitude mV -37.2 -40.6 -34.1 0.0 

AP amplitude mV 84.5 78.8 89.7 -0.3 

AP halfwidth ms 0.86 0.75 1.00 0.5 

AP upstroke mV/ms 361 307 425 0.6 

AP downstroke mV/ms 84.6 72.0 97.0 6.4 

AP afterhyperpolarization mV 14.3 12.3 16.6 0.7 

AP afterdepolarization slope mV/ms 0.30 0.06 0.62 1.4 

Interspike interval adaptation index ratio 2.07 1.56 3.22 5.3 

Frequency at 700 pA Hz 22.0 15.0 30.0 6.8 

Sag ratio ratio 1.08 1.03 1.14 1.2 

Rheobase pA 250 200 350 0.6 

fi slope Hz/pA 0.04 0.03 0.05 7.2 

Table 1: Descriptive statistics of the 15 electrophysiological parameters. 

Human L2-3 pyramidal neurons can be classified into distinct functional subtypes. To 

disambiguate whether the heterogeneous pyramidal neurons occupy a continuum in the high-

dimensional space or are grouped in sub-spaces, we performed an unsupervised hierarchical cluster 

analysis. Based on a Monte Carlo approach for testing statistical significance of the clustering (21, 

30), we identified five electrophysiologically distinct subtypes (e-types) of pyramidal neurons in our 

high dimensional dataset (Fig. 2E). To better understand their functional properties, we performed 

Random Forest Feature Importance analysis to highlight the most distinguishing parameter for each 

e-type (Fig. 2G). Most notably, e-type 3 (green) exhibits a high inter-spike interval adaptation, 

reflecting initial doublet spiking. In addition, e-type 2 (blue) is characterized by a prominent voltage 

sag in comparison to other types (Fig. 2G). We visualized this high-dimensional parameter space 

using Uniform Manifold Approximation and Projection (UMAP, see Methods). This revealed functional 

clusters with broad distributions and regions of overlap (Fig. 2F). However, as these results are 

generated from pooled data of 22 patients, it remains an open question to what extend this functional 

heterogeneity is determined by inter-individual differences or whether it represents a generic pattern 

across individuals. 
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Figure 2: High-dimensional functional heterogeneity of L2-3 pyramidal neurons. (A) Histograms show distributions of 
example electrophysiological parameters. (B) Matrix shows Pearson correlation coefficient for each pair of parameters. 
(C) The parameter pairs with strong correlation as highlighted by asterisks in (B) are shown as scatter plots. The color of 
data points reflects the Pearson correlation coefficient. (D) A Scree plot of a principal component analysis of the 15 
electrophysiological properties shows the variance explained by each principal component. The fact that the top 3 principal 
components explain only 52% of the variance suggests that the parameter space is rather high-dimensional. 
(E) A clustergramm visualization of the electrophysiological parameters for all 964 pyramidal neurons, grouped according 
to the hierarchical clustering based on Ward9s method. The colours in the dendrogram on top indicate the results of the 
statistical testing of the bifurcations (8sigclust29 R package, see Methods): Red indicates significant bifurcations (p-
values < 0.021, corrected for family wise error), yellow indicates non-significant bifurcations, blue indicates untested 
bifurcations due to non-significant bifurcation above, and black indicates untested bifurcations due to cluster size below 
threshold. Each column represents one neuron, and the color code represents the z-score of each parameter (rows). Five 
functional clusters were identified (e-types, see Methods) and are shown by the color code in the top row. (F) Uniform 
Manifold Approximation and Projection (UMAP) dimensionality reduction was performed to visualize the high-dimensional 
parameter space. Each dot represents one neuron positioned according to its set of parameters and color coded by the 
membership in one of the e-types as determined by the hierarchical clustering. (G) The most distinguishing parameter of 
each e-type is shown. The boxplots illustrate the comparison between the neurons of a respective e-type (color code) with 
all other neurons (grey) for a given parameter. Below are example traces shown for each e-type with insets highlighting the 
most distinguishing property. (H) Laminar cell depth position is shown for each pyramidal neuron, color-coded and grouped 
by the e-type. E-types are sorted based on descending medians. Note that group 4 seems to be restricted to superficial 
layers, whereas the doublet spiking group (e-type 3) appears distributed across cortical layers. 

E-types of human L2-3 pyramidal neurons are found across individuals. To characterize inter-

individual variability, we compared the clustering result of pyramidal neurons at the level of single 
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patients. Individualized UMAPs showed a high degree of similarity across patients with respect to 

patterns of distribution (Fig. 3B). Additionally, we assessed the fraction of e-types in patients with 

more than 50 sampled neurons and found that all e-types were present in each individual, with 

exception of the least common e-type being absent in 3 patients (Fig. 3C). While the relative 

proportions of e-types differed in each patient, they largely resemble the overall fractions. Thus, our 

analysis of the high-dimensional parameter space showed preserved e-types across individuals, 

suggesting a functionally relevant subdivision of pyramidal neurons. 

 
Figure 3: Inter-individual comparison of functional heterogeneity. (A-B) UMAP visualization of neurons from all patients 
(A) and of neurons only from individual patients with large sample sizes (B). The color of the data points corresponds to the 
e-type of the respective neurons (red = e-type 1, blue = e-type 2, green = e-type 3, purple = e-type 4 and orange = e-type 
5). Note that the patient specific UMAPs show a high degree of similarity. (C) Stacked bar plots show relative fraction of 
different e-types for 11 patients, in which more than 50 pyramidal neurons were recorded. (D) Smoothed distributions of 
input resistance are shown for each patient, sorted by ascending patient medians (each patient is represented by a different 
color). (E) Scatter plot shows the distribution of input resistance across the cortical depth (each grey dot represents a 
recorded pyramidal neuron). The colored lines represent the patient-specific intercepts and the fixed slope approximated by 
the linear mixed-effects model. (F) Smoothed distributions of input resistance are shown for the different e-types. (G) Line 
plot indicates the relative contribution of the predictors to the explained variance of each electrophysiological parameter 
Each line represents one parameter with three selected parameters highlighted in color. 

Intra-individual functional variability is severalfold larger than inter-individual variability. To 

assess the contribution of inter-individual differences to the functional heterogeneity, we compared 

the distributions of single parameters across patients. While we observed small differences in 

medians between patients, the distributions for individual patients were broad and overlapping 

(Fig. 3D), suggesting small inter-individual vs. large intra-individual variability (Input resistance: SD of 

individual means = 25 MΩ, mean intra-individual SD = 47 MΩ). To further quantify to what extent the 

heterogeneity of physiological parameters is determined by inter-individual differences and other 

factors, such as the identified e-types and the localization of the neuron relative to pia, we fit linear 

mixed-effects models to the data (Fig. 3E, see Methods). We compared the relative contribution of 

these three predictors to the total variability of each parameter (Fig. 3G, Table 2). On average, the 

model attributed about 13% of total variability to differences between patient samples. For example, 

inter-individual differences were responsible for 11% of input resistance variability. In general, e-types 

accounted for a larger proportion of variability (interquartile range: 19-29%). Notably, variability of ISI 

adaptation was explained to a high degree through e-types (78%). This is likely due to the fact, that 

e-type 3 (doublet spiker) is characterized by a markedly larger ISI adaptation than other types. The 

dependence of physiological parameters on cortical depth has been described previously (5, 22, 31). 

We found that the distance of the pyramidal neuron soma to the pial surface had a significant effect 
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on most parameters, such as input resistance (Fig. 3E), sag ratio, fi-slope, AP ADP slope, AP 

frequency, and AP up- and downstroke (Table 2). However, the explained variability by depth is 

relatively small compared to the other predictors (Fig. 3G, Table 2). The residual, unexplained, 

variability within the individual patients for all parameters, except for ISI adaptation, remains high 

(interquartile range 57-68%). This demonstrates that within-individual variability is about five times 

higher than that between individuals. 

    Variance explained in LME model     

Electrophysiological 
parameter Unit 

Cell 
depth 

Inter-
individual e-type Residual 

Fixed 
slope 

unit/mm 

p-value 
of fixed 
effect 

Resting membrane potential mV 0.0% 17% 26% 57% -0.23 0.835 

Input resistance MΩ 2.7% 11% 19% 67% -47.97 0.000 

Membrane time constant ms 0.6% 13% 10% 77% 2.26 0.023 

AP threshold amplitude mV 0.3% 14% 35% 51% -1.99 0.038 

AP amplitude mV 0.3% 12% 20% 68% 2.6 0.086 

AP halfwidth ms 0.7% 16% 19% 65% 0.1 0.007 

AP upstroke mV/ms 1.0% 10% 32% 57% 49.29 0.001 

AP downstroke mV/ms 1.4% 10% 25% 64% -13.24 0.000 

AP afterhyperpolarization mV 0.2% 14% 22% 64% -0.97 0.129 

AP afterdepolarization slope mV/ms 3.0% 16% 26% 54% -0.5 0.000 

Interspike interval adaptation ratio 0.0% 4% 78% 19% 0.07 0.884 

Frequency at 700 pA Hz 1.5% 23% 13% 63% -7.95 0.000 

Sag ratio ratio 1.1% 1% 19% 79% 0.05 0.001 

Rheobase pA 0.2% 9% 31% 59% 27.62 0.143 

fi slope Hz/pA 2.9% 17% 2% 78% -0.02 0.000 

Table 2: Results of linear mixed-effect models. Relative proportions of variance explained are shown for the three 
predictors cell depth, patient identity and e-type, and the residual. The fixed slope approximates the linear dependence of 
the electrophysiological parameter on the cortical depth, e.g. the input resistance decreases by 48 MΩ per mm cortical 
depth. The statistical significance of this linear fit is indicated by the p-value. 

Discussion  
By recording a large number of pyramidal neurons within L2-3 human temporal cortex, we were able 

to characterize the functional landscape of this population in a higher granularity than previous studies 

in rodents and humans (12, 21-23, 31, 32). This allowed us to identify electrophysiological 

subtypes (e-types) that exhibited distinct functional properties. While previous studies in rodents and 

monkeys described electrophysiological subtypes of L2-3 pyramidal neurons (33, 34) that could relate 

to different projection targets (35), the functional heterogeneity in human L2-3 pyramidal neurons has 

mostly been attributed to a continuous gradient along the cortical depth (21, 22, 31). In contrast, 

human L5 pyramidal neurons have been shown to comprise three distinct e-types (24). In our study 

of human L2-3, the statistical significance of our hierarchical clustering argues for a separation of 

pyramidal neurons into at least five e-types rather than a continuous variation of physiological 

parameters. While we could also confirm a significant dependence of certain functional parameters 

on the cortical depth, the linear mixed-effects models, applied here, attributed only up to 3% of 

explained variance to this predictor. This finding argues for a large functional heterogeneity of these 

neurons which exists independent of the soma location.  

Recent studies described a large transcriptomic diversity which implicates differential expression of 

proteins that determine the phenotypic properties of individual neurons (12). For human L2-3 

pyramidal neurons, several different t-types have been proposed (5, 8, 36). While they exhibit 
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divergent physiological properties, a classification based on physiology alone was only able to predict 

the t-type of superficial L2-3 pyramidal neurons with 49% accuracy (5). In line with this, the properties 

of the e-types, identified in this study, do not seem to directly correspond to the properties of the t-

types in those studies. This fact further highlights large phenotypic variability within and across t-types 

(12), indicating substantial translational and posttranslational regulation in neurons which may reflect 

adaptation to specific functional and computational requirements. In accordance, recent theoretical 

studies have shown that heterogeneity in single neuron parameters represents a critical source of 

functional specialization as well as robust encoding and learning in cortical microcircuits (37-39). 

Inter-individual differences of electrophysiological properties of neurons have been reported in 

entorhinal cortex in the mouse and in the stomatogastric ganglion in the crab (26, 40). These may 

reflect different solutions to generate an adaptive higher-order circuit performance. In human 

neurophysiology studies, the genetic and environmental background are usually uncontrolled 

although they represent important confounding factors. We find that electrophysiological properties 

exhibit different degree of variability due to inter-individual differences. Specifically, we identified 

parameters with substantial inter-individual variability, such as firing frequency or AP halfwidth. This 

may motivate future studies to reveal the contribution of these parameters to different circuit-level 

computation across individuals. Accordingly, initial investigations have associated AP kinetics in L2-

3 with higher cognitive function (41). Additionally, increased sag ratio in L5 was observed with higher 

age (42). However, we identify over 80% of variability attributed to sources independent of inter-

individual differences, suggesting that single neuron properties are substantially tuned for functional 

specialization within their respective microcircuit at the level of the individual. This emphasizes that 

large sample sizes from individual patients are needed to identify valid associations between single 

neuron properties and patient characteristics. 
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Methods 

Human Subjects 

The data obtained in this study was measured in acute brain slices obtained from temporal lobe 

resections in 22 patients suffering from pharmacologically refractory epilepsy (12 male, 10 female, 

age range 21 to 55 years with median age of 34 years). The study procedures adhered to ethical 

requirements and were approved by the local ethical committee with Approval Nr. EA2/111/14. Prior 

written informed consent for the scientific use of resected tissue was given by the patients. 

Patient Gender Age (year) 

1 m 36 

2 f 45 

3 f 55 

4 m 40 

5 m 27 

6 m 30 

7 f 21 

8 m 22 

9 m 35 

10 f 21 

11 f 48 

12 m 36 

13 f 22 

14 f 36 

15 f 34 

16 m 34 

17 m 31 

18 f 27 

19 m 48 

20 m 32 

21 f 25 

22 m 53 

Supplementary table 1: Patient metadata 

Experimental procedures 

Human Brain Slice Preparation 

Temporal lobe pole tissue resected from the patients was transferred from the operating theatre to 

the laboratory in sterile and cooled sucrose-based aCSF (in mM: 87 NaCl, 2.5 KCl, 3 MgCl2, 0.5 

CaCl2, 10 glucose, 75 sucrose, 1.25 NaH2PO4, and 25 NaHCO3, 310 mOsm) enriched with carbogen 

(95% O2, 5% CO2) within 15-40 min after resection. The pia mater was removed from the surface 

and the tissue was cut under sterile conditions in ice-cold sucrose-based aCSF to 300 or 400 µm-

thick slices. After a 30 minutes recovery period at 34°C, slices were held submerged at room 

temperature in sucrose-based aCSF. In a subset of experiments, an antibiotic (Minocycline, 2 µM) 

was added to the incubation solution. Recordings were made up to 52 hours after slicing (interquartile 

range: 7.5-26 hours). 

Patch-Clamp Recordings 

Slices were transferred to the recording chambers of two patch-clamp setups optimized for high-

throughput microcircuit assessment of rare tissue samples, including automated pipette pressure and 
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pipette cleaning systems (28). The eight-manipulator setup included the following equipment: Eight 

PatchStar manipulators (Scientifica), BX-51 WI microscope (Olympus), Orca-Flash 4.0 LT Camera 

(Hamamatsu), MultiClamp 700B amplifiers (Molecular Devices), Digidata 1550 digitizer (Molecular 

Devices). The ten-manipulator setup included ten u-Mp micromanipulators (Sensapex), Eclipse FN1 

microscope (Nikon), Orca-Flash 4.0 LT Camera (Hamamatsu), MultiClamp700B amplifier (Molecular 

Devices), Power1401-3A digitizer (Cambridge Electronic Design). Data were low-pass filtered with 

Bessel filter at 6 kHz and digitized at a sampling rate of 20 kHz. Data acquisition was performed using 

pClamp 10 (Molecular Devices) or Signal 6 acquisition software (Cambridge Electronic Design).  

Patch pipettes were pulled from borosilicate glass capillaries (2 mm outer/1 mm inner diameter; 

Hilgenberg) on a horizontal puller (P-97, Sutter Instrument Company). They were filled with K-

gluconate based intracellular solution containing (in mM) 130 K-gluconate, 2 MgCl2, 0.2 EGTA, 10 

Na2-phosphocreatine, 2 Na2ATP, 0.5 Na2GTP, 10 HEPES buffer and 0.1% biocytin (290– 295 mOsm, 

pH adjusted to 7.2 with KOH) and had 5-8 MΩ resistance. The liquid junction potential was calculated 

to be 16 mV and was not corrected for. Neurons were visualized using the differential interference 

contrast infrared microscope and pyramidal neuron-like soma were selected. Whole-cell patch-clamp 

recordings of these L2-3 neurons were performed at 34 ̊C under submerged conditions, with 

continuous perfusion of aCSF containing (in mM) 125 NaCl, 2.5 KCl, 1 MgCl2, 2 CaCl2, 10 glucose, 

1.25 NaH2PO4, and 25 NaHCO3 (300 mOsm). Pipette access resistance and capacitance were 

compensated throughout the experiment, and remaining effects of these were addressed offline by 

means of reverse RC filtering (see quality control and de-filtering procedure below). For the 

assessment of electrophysiological properties, we applied a range of step currents in current clamp 

mode (see intrinsic physiology feature analysis below) within the initial 30 minutes of recording. 

Morphology 

After recording, slices were fixed overnight in a fixative solution containing 4% paraformaldehyde with 

0.1 M Phosphate buffer (PB, pH 7.4) at 4°C for 24 - 48 hours. The biocytin-filled neurons were 

subsequently visualized using avidin conjugated fluorochrome (Alexa Fluor-647, 1:1000, Invitrogen, 

UK) in a PB-buffered saline (PBS, 0.9% NaCl) solution containing 3% NGS, 0.1% TritonX-100 and 

0.05% NaN3 for 24 hours at 4°C. Slices were rinsed in PBS and then desalted in PB before being 

mounted in on glass slides (Fluoromount-G, Southern Biotech) with a 300 μm thick metal spacer, 

cover-slipped and sealed. Visualized neurons were imaged on a laser scanning confocal microscope 

(FV1000, Olympus, Japan) for morphological identification. Selected neurons were reconstructed 

from composite image-stacks obtained with a 30x silicone immersion lens (N.A. 1.05, UPlanSApo, 

Olympus) over the whole extent of the cells. 

Data analysis and visualisation 

Intrinsic Physiology Feature Analysis 

Recent large-scale studies have demonstrated the necessity of automated analysis (12, 29). 

Comparable to their approaches, we built an analysis pipeline consisting of custom Matlab scripts 

(MathWorks). Following experiments, the raw membrane voltage traces from both setups were 

imported into Matlab and a database was populated by automatically extracting parameters from the 

raw traces and incorporating metadata from experiment documentation. For each neuron 15 active 

and passive electrophysiological properties were automatically extracted (Supp. Fig. 1). 
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Supplementary figure 1: Extraction of passive and active electrophysiological parameters from current clamp 
traces shown for one example neuron. (A) Stimulation paradigm consists of increasing step current injections (-300 to 
900 pA; 50 and 100 pA increments). The voltage traces in response to the stimulation are shown. (B) The displayed voltage 
responses to the –100, –50, 50 and 100 pA steps are used to calculate the input resistance as the difference between the 
steady state voltage and the resting membrane potential, divided by the injected current. The bottom graph shows input 
resistance in relation to step current amplitude, as well as the mean of the four values, which is taken as the final input 
resistance. (C) Magnification of voltage traces, superimposed by the curves (red lines), that were fit to the voltage traces to 
obtain the membrane time constant and sag ratio (see Methods). (D) First action potential (AP) elicited by the example 
neuron. The AP threshold and peak are marked by red circles, the difference between them is the AP amplitude. The AP 
upstroke, downstroke and afterdepolarization slope (AP adp slope) are indicated by arrowheads, the half-width (AP h.w.) 
and afterhyperpolarization (AP ahp) are indicated by lines. (E) The step current injection, that elicits the first AP is referred 
to as rheobase. (F) Frequency of AP9s, fired in response to 700 pA step current, is defined as the firing frequency. (G) 
Scatterplot showing the firing frequency in relation to the amplitude of the step current injection. The slope of the red line, 
which is a linear fit of the data, is the frequency/current-slope (Fi-slope). (H) Schematic of inter-spike interval adaptation (ISI 
adaptation) calculated as the ratio of the second inter-spike interval to the first inter-spike interval (5 ratios were calculated 
from different step current responses and the mean was taken as the final value, see Methods). 

Resting membrane potential, input resistance, membrane time constant and sag ratio: 

To estimate the resting membrane potential, the average amplitudes of four 150 ms trace segments, 

located before the –50, 50, 100 and 150 pA step current injections, were calculated. The mean of the 

four values was used as the final resting membrane potential. The input resistance was calculated as 

the difference between the steady state voltage and the resting membrane potential, divided by the 

injected current, using –100, –50, 50, 100 pA current steps. The average voltage of the last 100 ms 

before the end of the step current stimulus was defined as the steady state (12). The mean of the 

input resistance values at the different step current injections was used as the final input resistance 

(Supp. Fig. 1B). To estimate the membrane time constant, the τ-values of mono-exponential functions 

(1), which were fit to the initial segments of the voltage responses to the –50 and –100 pA step 

currents, were utilized. We used the mean of the two τ values as the membrane time constant (Supp. 

Fig. 1C). 

(1)  

To approximate the sag, we fit the voltage response to a –100 pA step current with a function of the 

form (2). The sag ratio was calculated from the model fit as the ratio of the negative peak voltage 

amplitude measured from resting membrane potential and the respective amplitude of the steady 

state voltage during current injection (Supp. Fig. 1C). 
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(2)  

De-filtering of action potential traces: 

Action potentials (AP) are fast signals and thus prone to filtering artifacts. Since it is not possible to 

compensate the entire capacitance of the patch-clamp pipette in current clamp mode, its remainder 

(referred to as parasitic capacitance; (43) ), combined with the access resistance, form a filter. Some 

AP parameters extracted from the original traces show a correlation with the access resistance due 

to an increasing effect of this filter with larger access resistance (Supp. Fig. 2C-J). The AP upstroke 

and the AP amplitude are affected the most (Pearson correlation coefficient is –0.59 for both 

correlations). Even if one sets strict limits for the access resistance of included recordings, this filter 

artifact will still affect AP shape parameters recorded with low access resistance. Since we measured 

the access resistance, and can estimate the parasitic capacitance, we can hence approximate the 

effect of the filtering. In an approach similar to that of Jayant et al. (44) we used an inverse digital RC-

filter algorithm to produce a de-filtered AP signal for each neuron. Supplemental figure 2 shows a 

comparison between the original and the de-filtered AP signals (Supp. Fig. 2A-B). The parameters 

extracted from the de-filtered signals show a much weaker correlation with the access resistance 

(Supp. Fig. 2C-J). Correcting for the dependence of parameters on the access resistance allowed 

further analysis with minimized technical bias. 

Action potential parameters: 

AP parameters were extracted from the first AP elicited in response to a series of increasing step 

current injections (increments of 50 pA) (Supp. Fig. 1D). All measurements were taken from the de-

filtered trace. The AP threshold amplitude was measured on the ascending trace where the slope 

exceeded 20 mV/ms. The maximum and the minimum of the AP slope were defined as the AP 

upstroke and downstroke, respectively. The AP amplitude was measured from the AP threshold to 

the maximum peak. The AP halfwidth is the width of the AP in milliseconds at half amplitude. The AP 

afterhyperpolarization was measured as the difference between the AP threshold and the minimum 

after the AP. If no minimum was reached in a 10.0 ms time window, then the amplitude at the point 

after the AP, where the slope exceeded –0.2 mV/ms was used instead. The AP afterdepolarization 

slope was defined as the mean slope of the voltage trace in a 1.0 ms time window after the AP 

afterhyperpolarization. 
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Supplemental figure 2. De-filtering of action potential traces. A-B Two example recordings are shown. The original AP 
trace (blue) was de-filtered (black AP trace) using an inverse digital RC-filter algorithm. The access resistance and an 
estimated parasitic capacitance of 4.5 pF were used to construct the inverse filter. Note that the de-filtered APs are faster 
and larger. C-J The different AP parameters of all 964 included pyramidal neurons are plotted against the access resistance. 
Values derived from the original trace are shown in blue, the values from the de-filtered trace are shown in black. Red lines 
are least square lines and red numbers indicate the Pearson correlation coefficient. Note that the de-filtering reduces the 
effect of access resistance on the data, which are present even for recordings with low access resistance. 
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Firing properties: 

To characterize the firing properties of a neuron, the rheobase, firing frequency, frequency/current 

slope (Fi slope) and the interspike interval adaptation index (ISI adaptation) were extracted. The first 

step current stimulus that elicited at least one AP is referred to as the rheobase (Supp. Fig. 1E). The 

firing frequency is the frequency of APs elicited in response to a 700 pA step (Supp. Fig. 1F). The fi 

slope is the slope of a linear fit through the firing frequencies at increasing step current amplitudes 

(50-100 pA increments) (Supp. Fig. 1G). To calculate the ISI adaptation the first five step currents 

that elicited at least three APs were used (12). The ISI adaptation was calculated separately for each 

current injection by dividing the second inter-spike interval (interval between second and third AP) by 

the first (interval between the first and second AP) (Supp. Fig. 1H). The mean value of those five 

ratios was calculated for the final ISI adaptation (if less than five values were available, the mean of 

all available values was calculated).  

Quality control: 

To exclude unhealthy neurons and suboptimal recording conditions, we only included neurons for 

further analysis when they met the following criteria: 

• Resting membrane potential between -90 mV and -60 mV (without liquid junction potential 

correction) 

• Access resistance < 50 MΩ (mean: 24 MΩ, SD: 10 MΩ). 
Of 1429 patch-clamp recordings, 1007 neurons met the inclusion criteria. For 979 of these neurons, 

all 15 electrophysiological properties could be extracted. 15 neurons were labelled as interneurons 

based on an initial hierarchical clustering. The remaining 964 pyramidal neurons were included for 

the study. 

Statistical analysis 

Statistical analyses and data visualisation were performed using R (45) and the IDE RStudio (46). 

Unless otherwise specified, the 8tidyverse9 R package was utilized to graph the data (47). The R 

packages used for statistical analyses are cited in the respective sections below. 

Parameter distribution, correlation and principal component analysis 

The measures of central tendency (median) and dispersion (interquartile range) of the 15 active and 

passive electrophysiological properties were analysed using the 8base9 and 8stats9 packages of R (45). 

The skewness, kurtosis and related parameters were calculated using the 8moments9 package (48). 

The correlation matrix containing Pearson correlation coefficients of the 15 electrophysiological 

properties was calculated using the 8stats9 package and visualized using the 8ggcorrplot9 package (49). 

The principal component analysis (PCA) of the 15 electrophysiological properties was performed 

using the 'prcomp9 function of the 8stats9 package. Before performing PCA, the data was standardized 

(z-scores). 

Unsupervised hierarchical clustering analysis 

We performed a hierarchical clustering analysis of all included neurons with complete data (n = 979) 

based on the 15 electrophysiological properties, using the 8hclust9 function of the 8stats9 package. Prior 

to clustering, the data was standardized (z-scores). Euclidian distance between data points was 

calculated and 8ward.D29 linkage criterion was used as the agglomeration method (50). The resulting 

dendrogram was cut at the level of two groups. One of the two resulting groups contained 15 neurons 

with clear interneuron characteristics upon manual inspection. These neurons were removed from the 

subsequent analysis. The remaining 964 pyramidal neurons were clustered again using the same 

approach (Euclidean distance and 8ward.D29 method). The 8sigclust29 package was used to test the 

statistical significance of the hierarchical clustering using a Monte Carlo based approach (30). The 

significance level was set to alpha = 0.05 and the minimum number of neurons that needed to be 
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present below a given bifurcation of the dendrogram for the algorithm to continue to calculate a p-

value was set to 125 (approximately one eighth of the dataset). This procedure yielded seven 

statistically significant pyramidal neuron groups. We merged the last three groups that were separated 

in the hierarchical order of the dendrogram, because of their similarity with respect to most parameters 

except for the resting membrane potential and associated parameters. These three groups therefore 

may correspond to the same functional subtype recorded at different membrane voltages. In total, this 

procedure yielded five clusters of pyramidal neurons that differed significantly in their 

electrophysiological properties. 

UMAP visualisation 

To visualize our 15-dimensional parameter space (15 electrophysiological properties), we used the 

Uniform Manifold Approximation and Projection (UMAP) technique for dimensionality reduction 

(8umap9 package, (51, 52). The data was standardized (z-score) before performing dimensionality 

reduction. The UMAP figures were plotted using the following hyperparameters: n_neighbors = 60, 

spread = 0.15, min_dist = 0.001. To generate patient-specific UMAP plots, the coordinates of the 

UMAP projection of the pooled data were used, but only patient specific data points were displayed. 

Random Forest Feature Importance 

The most distinguishing electrophysiological property for each neuron subtype was identified using a 

Random Forest approach. Our labelled data (e-type labels) was used to generate a Random Forest 

decision tree ensemble using the 8randomForest9 package (53). As a measure of feature importance, 

the mean decrease of the Gini index from splitting on a certain property, was extracted for each neuron 

subtype in comparison to the other subtypes. The property with the largest mean decrease of the Gini 

index was interpreted as the most distinguishing one for a certain subtype. 

Linear mixed-effects modelling 

Linear mixed-effects models were fit to the data using the 8lme49 package (54). For each 

electrophysiological property, we modeled patient identity and e-type as random intercepts and the 

cortical depth as fixed intercept and slope: 8electrophysiological parameter ~ cortical depth + (1|patient 

identity) + (1|e-type)9. The fractions of variance explained by cortical depth (corresponding to marginal 

R²), e-type and patient identity were calculated from the respective models using the 8insight9 package 

(55). The residual variance represents the unexplained variance (residual variance = 1 – conditional 

R²) that is independent of the predictors in these models. 
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