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Abstract
The use of spoken and written language is a capacity that is unique to humans. Individual differences

in reading- and language-related skills are influenced by genetic variation, with twin-based heritability
estimates of 30-80%, depending on the trait. The relevant genetic architecture is complex,
heterogeneous, and multifactorial, and yet to be investigated with well-powered studies. Here, we
present a multicohort genome-wide association study (GWAS) of five traits assessed individually using
psychometric measures: word reading, nonword reading, spelling, phoneme awareness, and nonword
repetition, with total sample sizes ranging from 13,633 to 33,959 participants aged 5-26 years (12,411
to 27,180 for those with European ancestry, defined by principal component analyses). We identified
a genome-wide significant association with word reading (rs11208009, p=1.098 x 10®) independent of
known loci associated with intelligence or educational attainment. All five reading-/language-related
traits had robust SNP-heritability estimates (0.13-0.26), and genetic correlations between them were
modest to high. Using genomic structural equation modelling, we found evidence for a shared genetic
factor explaining the majority of variation in word and nonword reading, spelling, and phoneme
awareness, which only partially overlapped with genetic variation contributing to nonword repetition,
intelligence and educational attainment. A multivariate GWAS was performed to jointly analyse word
and nonword reading, spelling, and phoneme awareness, maximizing power for follow-up
investigation. Genetic correlation analysis of multivariate GWAS results with neuroimaging traits
identified association with cortical surface area of the banks of the left superior temporal sulcus, a
brain region with known links to processing of spoken and written language. Analysis of evolutionary
annotations on the lineage that led to modern humans showed enriched heritability in regions
depleted of Neanderthal variants. Together, these results provide new avenues for deciphering the

biological underpinnings of these uniquely human traits.
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Introduction

The processing and production of complex spoken and written language are capacities that appear to
be distinct to our species. Such skills have become fundamental for day-to-day life in modern society.
Decades of family and twin studies have revealed substantial genetic components contributing to
individual variation in reading- and language-related traits, as well as to susceptibility to associated
disorders. A recent meta-analysis integrated available data on these skills from 49 twin studies, with a
total sample size of 38,000 children and adolescents, aged 4-18 years. The meta-analysis yielded
heritability estimates of 66% for word reading (meta-analysis of 48 studies), 80% for spelling (15
studies), and 52% for phoneme awareness (the ability to identify and manipulate individual sounds of
spoken words; 13 studies), and suggested greater genetic influences on reading-related abilities than
language-related measures (heritability 34%; meta-analysis of 10 studies with measures on receptive

and expressive vocabulary, oral language and naming abilities)?.

Linkage mapping and candidate gene studies have reported associations of single-nucleotide
polymorphisms (SNPs) and/or genetic loci with reading and language-related traits, as well as with
disorders such as dyslexia and developmental language disorder (DLD; which encompasses the older
definition of specific language impairment or SLI)%. However, replication efforts have met with limited
success. Genome-wide association studies (GWAS) are beginning to identify SNPs that show genome-
wide significant associations with reading- and language-related traits: rs7642482 near ROBO2
associated with expressive vocabulary in infancy3, rs17663182 within MIR924HG with rapid
automatized naming of letters?, and rs1555839 near RPL7P34 with rapid automatized naming and
rapid alternating stimulus, deficits of which are often implicated in dyslexia®. Nonetheless, insights into
the genomic underpinnings of these types of skills from GWAS approaches have thus far been limited,
which may reflect low power due to the relatively small sample sizes of the cohorts, such that the
majority of genetic variance remains unexplained. Sample sizes have remained limited because of the
labour-intensive assessment methods required for phenotyping reading- and language-related traits,
which are difficult or even impossible to replace with simple questionnaires. Yet, well-powered GWAS
efforts that characterize the molecular genetic variation involved in reading- and language-related
traits can provide novel perspectives on the biological bases and origins of human cognitive

specializations®.

Here, we present large-scale GWAS meta-analyses of a set of reading- and language-related traits,
measured with psychometric tools. We captured variation across the phenotypic spectrum, extending
beyond disorder. Our study focused on traits that have been assessed using continuous measures in

multiple cohorts from the international GenlLang network (www.genlang.org), together with several
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public datasets that have data available for the relevant phenotypes, matched to genome-wide
genotype information. Five quantitative traits were identified for which phenotype data could be
aligned across different cohorts, to yield sufficiently large sample sizes for GWAS: word reading,
nonword reading, spelling, phoneme awareness and nonword repetition. Univariate GWAS meta-
analyses were performed to identify genetic variation influencing these traits and to model the genetic
overlaps between them. For comparative purposes, a GWAS meta-analysis for performance 1Q was
also performed in the same dataset. Together with publicly available GWAS summary statistics from
prior studies of cognitive performance and educational attainment, these data were used to study
genetic relationships between reading- and language-related traits, IQ and educational attainment. A
multivariate approach allowed us to optimise the power of the word reading GWAS meta-analysis for
functional follow-ups investigating the tissues, cell types, brain regions and evolutionary signatures

involved.
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Results

GWAS meta-analysis for quantitative reading- and language-related traits

We studied five quantitative reading- and language-related traits: word reading accuracy, nonword
reading accuracy, spelling accuracy, phoneme awareness and nonword repetition accuracy (Table 1).
These traits are thought to tap into a number of underlying processes involved in written and spoken
language. For example, nonword reading relies heavily on basic decoding skills: translating graphemes
one by one into phonemes’, while spelling utilizes lexical and orthographic knowledge: understanding
of permissible letter patterns and how they are arranged in specific words®. Phoneme awareness
measures the ability to distinguish and manipulate the separate phonemes in spoken words®. Nonword
repetition tasks tap into speech perception, phonological short term memory and articulation'®. A total
of 22 cohorts, aggregated by the Genlang consortium combined with several publicly available
datasets, provided data for one or several of these traits (Supplemental Table 1 and 2, Supplemental
Figure 1 and 2). The cohorts connected in the GenLang network have either been originally ascertained
through a proband with language/reading disorder (DLD/SLI or dyslexia) or were sampled from the
general population; all cohorts include quantitative phenotypic data gathered via validated
psychometric tests. Some of the samples are birth cohorts, and some involve family or twin designs.
The phenotype data were collected across an array of different ages, test instruments and languages
(primarily English, and also Dutch, Spanish, German, French, Finnish, and Hungarian). We reduced
heterogeneity of assessment age by excluding individuals over 18 years of age (except for three
cohorts, see Supplemental Methods), and, where phenotype data were available from the same
participant at multiple ages, by choosing the age that matched best with the assessment ages of the
largest cohort(s). We limited the heterogeneity introduced by different test instruments by only
including those that measured the phenotypes described in our analysis plan (Supplemental Notes),
and, in cases where data from more than one test instrument were available, by selecting the test

instrument that was used by the largest number of cohorts.

Table 1: Phenotypes and sample sizes of the GWAS meta-analyses

Meta-analysis total Meta-analysis European
sample ancestry only
Trait Phenotype description # cohorts  #individuals # cohorts #individuals
Word Number of correct words read aloud 19 33,959 18 27,180
reading from a list in a time restricted or
unrestricted fashion
Nonword*  Number of nonwords read aloud 13 17,984 12 16,746
reading correctly from a list in a time restricted
or unrestricted fashion
Spelling Number of words correctly spelled 15 18,514 14 17,278

orally or in writing, after being dictated
as single words or in a sentence
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Phoneme Number of words correctly altered in 12 13,633 11 12,411
awareness phoneme deletion/elision and
spoonerism tasks
Nonword*  Number of nonwords or phonemes 10 14,046 10 12,828
repetition repeated aloud correctly
*A nonword is a group of phonemes that looks or sounds like a word, obeys the phonotactic rules of the language,

but has no meaning.

GWAS meta-analysis results for word reading and nonword reading stratified by age or test instrument
were used to investigate the remaining amount of heterogeneity related to age and use of different
test instruments (Supplemental Table 3). Genetic correlations calculated with linkage disequilibrium
score regression (LDSC)' between age-stratified meta-analysis results (cohorts with mean age <12
years vs 212 years; see Supplemental Table 1) were high (word reading rg=0.86, se=0.16; nonword
reading rg=0.88, se=0.24). GWAS meta-analysis results of the most commonly used reading test (Time
Limited Word Recognition Test; TOWRE) were found to be highly correlated with GWAS meta-analysis
results of all other reading tests (rg=0.85, se=0.15 for word reading, rg=0.99, se=0.21 for nonword
reading). Similar results were obtained when comparing GWAS meta-analysis results of time-restricted
reading tests to all other reading tests. Limited heterogeneity of GWAS meta-analysis results was also

evident in the Cochran Q statistics (Supplemental Figure 3) and LDSC ratios (Supplemental Table 4) for

all traits except nonword repetition.

We also assessed whether there was heterogeneity related to sex effects, by estimating genetic
correlations for female- and male-only subsets. Results of male and female subsets were highly
correlated (estimates of genetic correlation are rg=1.04, se=0.17, p=1.7x10"° for word reading, rg=0.97,
se=0.19, p=2.1x107 for nonword reading, rg=1.11, se=0.29, p=1.0x10* for spelling, rg=1.56, se=0.55,
p=4.2x103 for phoneme awareness and rg=1.30, se=0.63, p=0.039 for nonword repetition; some
estimates are above 1, because the genetic covariance estimator is not constrained in LDSC, and likely

represents sampling variation and randomness; Supplemental Table 3).

A genome-wide significant locus associated with word reading

For evaluating statistical significance of SNP associations, we determined an appropriate threshold that
was adjusted for multiple-testing based on the correlation structure of our five reading-/language-
related traits, as estimated using phenoSpD. The significance threshold for assessing the GWAS meta-
analysis results was thus set to 5x10® / 2.15 independent traits = 2.33x10%. We identified a genome-

wide significant locus associated with word reading (rs11208009 C/T on chromosome 1, p=1.10x10%)
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(Supplemental Figure 5). Rs11208009 has not shown association with general cognitive performance
(1Q) or educational attainment, but other SNPs in LD with rs11208009 (r?>0.6) have been associated
with triglyceride and total cholesterol levels in blood in previous GWAS studies (Supplemental Table
5). Three genes are located in the vicinity of rs11208009 and SNPs in LD (r2>0.6): DOCK7, encoding a
guanine nucleotide exchange factor important for neurogenesis'?; ANGPTL3, which encodes a growth
factor specific for the vascular endothelium that is expressed specifically in the liver!?; and USP1,
encoding a deubiquitinating enzyme specific for the Fanconi anemia pathway®. The associated locus
harbours an eQTL regulating DOCK7 and ATG4C (another nearby gene which encodes an autophagy
regulator®®) in the cerebellum, and DOCK7, ATG4C and USP1 in blood samples (Supplemental Table 6).
Genome-wide significant loci were not identified for the other traits. Supplemental Table 7 lists all

results with p<1x10°®.

Traits related to reading and language are highly correlated at the genetic level

All five traits showed significant SNP heritability, with LDSC-based estimates ranging from 0.13 for
nonword repetition to 0.26 for nonword reading (Supplemental Table 4), indicating that the captured
common genetic variation accounts for a substantive proportion of the phenotypic variance in these
skills. Pairwise genetic correlation analyses showed significant overlap among the reading- and
language-related traits (Figure 1A; Supplemental Table 4). Genetic correlation estimates were
especially high for word reading, nonword reading, spelling and phoneme awareness, ranging from

0.96 (se=0.07) to 1.06 (se=0.07).

Extensive prior literature has shown correlations of reading- and language-related traits with general
cognitive performance and educational attainment. Most cognitive assessments depend on a
combination of verbal and nonverbal tests. To enable the investigation of genetic overlaps between
non-verbal cognitive performance and reading- and language-related traits, while closely matching the
sample characteristics of our study, we carried out a GWAS meta-analysis of performance 1Q in the
Genlang network (n=18,722; Supplemental Figure 1-3). Only non-verbal subtests of general
intelligence tests were used in this analysis (Supplemental Table 1). Summary statistics were also
obtained from another three sources: 1) genome-wide studies of full-scale 1Q (n=257,828) and
educational attainment (n=766,345) by the Social Science Genetic Association Consortium?¢; 2) a
GWAS-by-subtraction study that investigated the non-cognitive abilities involved in educational
attainment (n=510,795)"; and 3) a recent GWAS analysis of school grades in the Danish iPSYCH cohort
(n=30,982), that used a decomposition analysis to identify genetic associations with distinct domains

of performance®®,

10
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The five Genlang traits showed moderate to strong positive genetic correlations with full-scale I1Q
(range 0.52-0.77), educational attainment (range 0.54-0.68) and school performance (range 0.54—
0.81) (Figure 1A, Supplemental Table 8). Interestingly, genetic correlations with full-scale 1Q were
substantially higher for word reading (95% Cl 0.70-0.85) than nonword reading (95% Cl 0.50-0.68),
likely reflecting the importance of reading skills for verbal tests of cognition. Genetic correlations of
reading-/language-related traits with performance 1Q (range 0.20-0.35) were much lower than those
for full-scale 1Q, and the 95% confidence intervals did not overlap. Indeed, only word reading showed
a significant genetic correlation with performance 1Q. Significant trait-specific genetic correlations
were observed for components 2-4 of the Danish school grade decomposition analysis'®. Component
2, reflecting relatively better school grade performance in language than mathematics (as compared
to peers), was positively correlated with both Genlang reading traits. Component 3, reflecting
relatively better school grade performance in oral than in written exams, showed significant negative
correlations with phoneme awareness and spelling. Lastly, component 4, reflecting relatively better
school grade performance in Danish than in English, showed significant negative correlation with
nonword repetition. The non-cognitive abilities involved in educational attainment identified in the
GWAS-by-subtraction study?’ showed small but significant positive genetic correlations with word

reading, nonword reading and nonword repetition.

Genomic structural equation modelling (GenomicSEM)?* was used to further investigate the shared
genetic architecture of the five reading- and language-related traits, together with performance IQ,
full-scale 1Q and educational attainment (Supplemental Table 9). In the final model (Figure 1B), the
first factor explains variation in nonword reading, spelling and phoneme awareness, word reading and
full-scale 1Q. For the first three of these traits, there is no evidence for additional genetic influences,
suggesting high genetic similarity. The second factor explains additional variation in full-scale 1Q, and
is also related to performance 1Q and educational attainment. The third factor explains variation in
nonword repetition, word reading and educational attainment. Factors one and three are highly
correlated, indicating that the genetic architecture underlying word reading does not differ much from
nonword reading, spelling and phoneme awareness. Nonword repetition, on the other hand, is
genetically more distinct, as indicated by evidence for specific genetic influences not captured by the
model. Specific genetic influences were also evident for full-scale 1Q and educational attainment. Thus,
although reading- and language-related traits show genetic overlaps with full-scale 1Q and educational
attainment, the model indicates that these traits also have unique unshared components, in line with

genetic correlation estimates that are lower than 1.
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Figure 1: Reading- and language-related traits have a shared genetic architecture that is largely independent

of performance IQ. A: Genetic correlations (rg) among the reading- and language-related traits, estimated with
LDSC. Estimates capped at 1. Full LDSC results are reported in Supplemental Table 4. In addition, genetic
correlations are given between the Genlang traits and 1) performance 1Q (using GenlLang cohorts only), 2)
educational attainment (n=766,345) and full-scale 1Q (n=257,828)¢, 3) non-cognitive abilities involved in
educational attainment, resulting from a recent GWAS-by-subtraction study (n=510,795)’, and 4) components
associated with distinct performance domains, identified used a decomposition analysis of Danish school grades
(n=30,982)8. Full results can be found in Supplemental Table 8. *Significant genetic correlation after correction
for 18.28 independent comparisons (p<2.74x1073); **p<2.74x10%; ***p<2.74x107°. B: Three factor model fitted

to the Genlang summary statistics for word reading, nonword reading, spelling, phoneme awareness and
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nonword repetition and performance 1Q, and published GWAS summary statistics for full-scale 1Q and
educational attainment?® using GenomicSEM?. Black and grey paths represent factor loadings with p<0.05 and
p>0.05, respectively. Standardized factor loadings are shown, with standard error in parentheses. The subscript
g represents the genetic variables; the u variables represent the residual genetic variance not explained by the

models. Unstandardized results and model fit indices are reported in Supplemental Table 9.

Genes and SNPs previously associated with reading- /language-related traits and disorders
Previous GWAS studies on reading-/language-related traits and disorders (Supplemental Table 10)
have identified very few associations exceeding genome-wide significance. In those prior studies, there
were a total of 48 independent SNPs meeting a less stringent threshold of p<1x10°® in the respective
GWAS. We ran look-ups of each of those SNPs in our GenlLang GWAS meta-analysis results
(Supplemental Table 11). Where SNP associations passed a threshold adjusted for multiple testing of
48 SNPs and 2.15 independent Genlang traits (p<4.84x10%), we then reran the association analyses
after exclusion of the original cohort(s) in which the association was first identified, to evaluate
independent effects beyond those of the earlier study. According to these criteria, only one SNP,
rs1555839, previously associated with rapid automatized naming in the GRaD cohort?, yielded a
significant signal in the remainder of the Genlang cohorts, showing association with spelling
(p=3.33x10%). Rs1555839 is one of five SNPs that reached the threshold for genome-wide significance
in the original GWAS study of the GRaD cohort.

Some 20 genes have been described as candidate genes for reading-/language-related traits and
disorders, based on a range of different mapping approaches?. Supplemental Table 12 gives gene-
based p-values from our GenLang GWAS meta-analysis, calculated by MAGMAZ?, for each of these
genes. Variation in one of these genes, namely DCDC2, showed association with nonword reading that
passed the significance threshold for multiple testing of 20 genes and 2.15 independent Genlang traits
(p<0.0012). DCDC2 was originally identified in a linkage region for dyslexia susceptibility, and SNPs in
and near this gene were subsequently associated with dyslexia in candidate gene studies?, although
some investigations including a meta-analysis of seven studies have failed to support this?2. Many
dyslexic children perform poorly on nonword reading tests?3. No single candidate SNP highlighted in
prior studies of DCDC2, nor in any other candidate gene, was significantly associated with any of the
traits in the GWAS meta-analysis results after correction for 54 SNPs and 2.15 independent GenlLang
traits (p<4.31x10%) (Supplemental Table 13).
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Multivariate GWAS analysis for word reading

To improve the power of our GWAS meta-analysis and to gain insights into biological pathways shared
by the traits of interest, utilizing the high genetic correlations between the traits, a multivariate GWAS
analysis was performed with MTAG?*. This approach improves the effect estimates of univariate meta-
analysis results by incorporating information of other genetically correlated traits. Although MTAG
generates output for each input trait, the results for word reading were used for all follow-up analyses,
because the univariate word reading GWAS meta-analysis has the largest sample size (27,180 for the
European-ancestry analysis, compared to 12,411-17,278 for the other three traits). Although no single
SNP reached genome-wide significance in this multivariate word reading analysis (Supplemental Figure
4), the SNP-based heritability increased from 0.16 (se=0.04) to 0.29 (se=0.02). MTAG estimated the
GWAS equivalent sample size of the multivariate word reading results as 41,783, compared to 27,180
for the univariate results, further indicating the increased power provided by MTAG. The multivariate
word reading results were used for an array of follow-up analyses utilizing genetic correlations, gene

property analysis in MAGMA and partitioning heritability.

Genetic correlation with structural brain imaging traits

We performed a literature review to select 58 structural neuroimaging traits in the UK Biobank
encompassing brain regions and white matter tracts with known links to aspects of reading and
language (see Methods). These traits included surface based morphometry (SBM; surface area and
thickness; Supplemental Figure 6) phenotypes and diffusion tensor imaging (DTI; mean and weighted
mean fractional anisotropy; Supplemental Figure 7) results. As many of these brain-based phenotypes
were significantly correlated with each other, genetic correlations among their summary statistics
were calculated (Supplemental Figure 8) and were used to calculate the number of independent traits
for multiple testing correction. One trait showed significant genetic correlation with the multivariate
word reading results (p<0.05 / 24.85 independent traits = 2.01x103): the surface area of the banks of
the superior temporal sulcus (STS) of the left hemisphere (Figure 2; Supplemental Table 14). Functional
MRI studies have linked this region to different aspects of written and spoken language processing?>
2 To investigate further how the different reading- and language-related traits contribute to these
findings, we went on to specifically assess genetic correlations for banks of the left STS with the results
from the original univariate GenLang GWAS meta-analyses, finding consistent correlations (range

0.18-0.23, Supplemental Table 15).
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Figure 2: The multivariate word reading results show significant genetic correlation with the cortical
surface area around the left superior temporal sulcus. Genetic correlations (rg) were estimated with LDSC.
Included traits are 58 structural brain imaging traits from the UK Biobank selected based on known links of
regions and circuits with language processing. The results of the 22 cortical surface areas are shown; grey areas
were not included in the analysis. *Significant genetic correlation after correcting for 24.85 independent brain
imaging traits (p<2.01x1073). Full results can be found in Supplemental Table 14 and Supplemental Figure 6 and
7.

Genetic correlation with traits from the UK biobank and brain-related traits from LD hub

We went on to assess genetic correlations of the multivariate word reading results with 20 cognitive,
education, neurological, psychiatric and sleeping-related traits and 515 additional UK Biobank traits
using LD hub. To further investigate overlaps with 1Q, genetic correlations between these 535 traits
and the published GWAS summary statistics for full-scale 1Q® (n=257,828) were obtained as well. A
total of 143 traits showed significant genetic correlations with the multivariate word reading results
after correction for multiple testing (p<0.05/(535*2)=4.67x107; Supplemental Table 16), while 245
traits were genetically correlated with full-scale 1Q; 135 traits showed significant correlations both with
word reading and full-scale 1Q. Traits with strong genetic correlations with either word reading, full-
scale 1Q or both traits were related to education, eyesight, chronotype, wellbeing, lifestyle, physical
health and exercise and socioeconomic status. Representative traits are plotted in Figure 3. The genetic
correlations of reading and full-scale 1Q with other traits had similar directions and effect sizes, but
several differences were evident. Cognitive and education-related traits were more highly genetically
correlated with full-scale 1Q than reading. In addition, several psychiatric and wellbeing traits showed
significant (negative) genetic correlations with full-scale 1Q but not with reading, for example
depressive symptoms, cross-disorder susceptibility (from the Psychiatric Genomics Consortium

GWAS), and tense, hurt and nervous feelings. In contrast, several traits related to physical health and
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lifestyle showed larger genetic correlations with the multivariate reading results than with full-scale

1Q, including BMI, reduced alcohol intake as a health precaution, and usual walking pace.

Fluid intelligence {UKBB)

Childhood 1Q {meta-analysis 2014)
Prospective memory test difficulty (UKBB)
Number of incorrect matches (UKBB)

Years cof schooling {(meta-analysis 2016)
Age completed full time education {UKBB)
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Figure 3: Genetic correlation results of the multivariate reading analysis, with comparisons to those for the
largest published GWAS of cognitive performance in LDhub. Summary statistics for full-scale 1Q (n=257,828)
were obtained from the Social Science Genetic Association Consortium'®. Genetic correlations between the
multivariate word reading results (blue-green), full-scale IQ (purple) and traits in LDhub reveal an overlap with
cognitive traits, education, eyesight, chronotype, lifestyle, wellbeing, psychiatric disorders, pain, physical health
and exercise, and socioeconomic status. A subset of representative traits is shown, out of 143 traits that showed
significant associations with the multivariate word reading results and 245 traits that showed significant
correlations with full-scale 1Q, of which 135 traits overlap, after correction for multiple testing for 535*2 traits
(p<4.67 x 10®). Significant correlations are shown in dark colours, non-significant correlations in light colours.
Full results can be found in Supplemental Table 16. Genetic correlation (rg) is presented as a dot and error bars

indicate the standard error.

Evolutionary analysis

We used LDSC heritability partitioning?® to study the heritability enrichment of the multivariate reading
results for five annotations reflecting different aspects of human evolution spanning periods from 30
million to 50,000 years ago (Figure 4; Supplemental notes). Annotations include human gained
enhancers (HGE) active in fetal and adult brain tissue, ancient selective sweep regions, Neanderthal
introgressed SNPs and Neanderthal depleted regions. The multivariate reading results were
significantly enriched for Neanderthal depleted regions, after correction for the five annotations
analysed (p<0.01) (Supplemental Table 17). These regions are large stretches in the human genome
that are depleted for Neanderthal ancestry, possibly due to critical functions in Homo sapiens and

intolerance to gene flow*°.
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Figure 4: LDSC heritability partitioning of multivariate reading GWAS identifies significant enrichment in
Neanderthal depleted regions. Five annotations were studied, reflecting different aspects of human evolution
from diverse periods from 30 million to 50,000 years ago. Left: Overview of the approximate time frames
captured by the five annotations. Mya: million years ago; kya: thousand years ago; HGE: human gained
enhancers. Right: The -log-10 p-values of the partitioning heritability analysis of the multivariate reading results.
The dashed line shows the p-value threshold for significant enrichment after Bonferroni-correction for testing 5

annotations. Results are also available in Supplemental Table 17.

Functional enrichment using heritability partitioning and MAGMA gene property analysis
We applied LDSC heritability partitioning analyses? to determine whether the heritability of the
multivariate reading analysis is enriched in specific functional regions of the genome. We used 489
annotations reflecting tissue-specific chromatin signatures, as most variants identified in GWAS studies
are located outside coding regions and are often found enriched in functional regions of the genome
such as promoters, enhancers and regions with open chromatin. After correcting for testing 489
annotations (p<1.02x10%), three annotations showed significant heritability enrichment for reading:
histone-3 lysine-4 monomethylation (H3K4mel) in two fetal brain samples and the adult brain
germinal matrix (Figure 5; Supplemental Figure 9 and Table 18). H3K4me1 is considered a marker for

enhancer regions.
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Figure 5: SNP-based heritability of reading is significantly enriched in brain enhancers. 489 annotations of
tissue-specific chromatin signatures were used to analyse the multivariate reading results with LDSC heritability
partitioning. Only brain annotations are shown; full results are available in Supplemental Figure 9 and
Supplemental Table 18. PCN: primary cultured neurospheres. The graph shows log-10 p-values on the y-axis and
brain region-specific chromatin mark on the x-axis. The dashed line shows the p-value threshold for significant

enrichment after Bonferroni correction for testing 489 annotations.

Next, we used MAGMA gene property analysis® to study whether the multivariate reading results are
enriched in a specific tissue or brain cell type, using tissue-specific and cell type-specific gene
expression data in FUMA332, As MAGMA corrects for average expression, each comparison can only
answer the question of whether the tissue or cell type is more related to the multivariate reading
results than the average of the tissues or cell types in the dataset. After correction for 83 tissues
(p<6.02x10%), no relation was found of the multivariate reading results with tissue-specific gene
expression patterns of adult tissues from GTEx and brain tissues of a specific (developmental) time
from Brainspan (Supplemental Figure 10 and Table 19). In the cell type-specific gene expression

analysis, three single-cell RNA-sequencing datasets of embryonic, fetal and adult brain tissue were
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used. After correction for 142 cell types (p<3.09x10%), the multivariate reading results were
significantly associated with one of the mature neurons from the fetal dataset: red nucleus neurons
(Supplemental Figure 11 and Table 20). This association could reflect an association with this specific
nucleus, or with the higher maturity of the neurons compared to the other cell types in the fetal
dataset. The red nucleus is a large subcortical structure in the ventral midbrain that is part of the
olivocerebellar and cerebello-thalamo-cortical systems. It plays an important role in locomotion and
non-motor behaviour in various animal species, and in humans might also play a role in higher cortical

functions®. A trend was observed for a relation with GABAergic neurons from the embryonic dataset.
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Discussion

We performed GWAS meta-analysis of five quantitative reading- and language-related traits: word
reading, nonword reading, spelling, phoneme awareness and nonword repetition, in sample sizes (up
to ~34,000 participants) that are substantially larger than any prior genetic analyses of reading and/or
language skills assessed with neuropsychological tools (n=1,331-10,819)>>343¢, We identified genome-
wide significant associations for word reading (rs11208009 at chromosome 1, p=1.10x107%),
highlighting DOCK7, ATG4C, ANGPTL3 and USP1 as potential new candidate genes. Other SNPs from
the locus have been previously associated with triglyceride and cholesterol levels®’, but may represent
an independent association signal. Robust SNP-based heritabilities were observed, ranging from 0.13
for nonword repetition to 0.26 for nonword reading. These SNP-based heritabilities are similar to those
of the related trait dyslexia (estimates range from 0.15 to 0.25 on a liability scale)3®?°, psychiatric traits
such as ADHD symptoms in adults (0.22), and brain imaging traits such as cortical surface area (range
0.12-0.33 for different cortex regions)*! and cortical thickness (range 0.08-0.26)*! and they are larger
than that of psychiatric traits such as major depression (0.08)*?* and alcohol dependence (0.09)*. So,
despite highlighting the need for larger sample sizes to identify more than one genome-wide significant
locus, our GenLang GWASs already allowed for multiple informative follow-up analyses based on the

full dataset.

Word reading, nonword reading, spelling, and phoneme awareness largely share the same genetic
architecture, as is evident from genetic correlation analyses, as well as the three-factor model in which
one factor explains most of the variation in these four traits. Nonword repetition, IQ and educational
attainment have, at least in part, a different genetic foundation, as reflected in the residual genetic
variation of these traits not captured by the model. These findings are consistent with multiple
behavioural studies showing a distinction between nonword repetition and other reading- and
language-related traits*. They are also in line with results of recent structural equation modelling of
genetic trait interrelatedness for 11 different reading- and language-related measures in the ALSPAC
cohort, which identified a shared genetic factor accounting almost fully for the genetic variance in

literacy-related phenotypes, but for only 53% of that in nonword repetition®.

The five reading- and language-related traits in GenlLang also showed high genetic overlaps with full-
scale IQ and educational attainment, in line with the widespread pleiotropy found between many
aspects of cognitive functioning including language, reading, mathematics and general cognitive
ability**. Given the evidence of a highly shared genetic architecture between word reading, nonword
reading, spelling, and phoneme awareness, we performed a multivariate analysis with MTAG, to

increase our power and reduce multiple-testing constraints for follow-up analyses of biological
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pathways. The multivariate word reading results showed genetic correlations with phenotypes related
to education, eyesight, chronotype, wellbeing, lifestyle, physical health, exercise and socioeconomic
status. These associations may in a large part reflect shared biology between the reading-/language-
related traits and cognitive abilities, educational attainment and socioeconomic status. No significant
genetic correlations were observed with neuropsychiatric disorders based on available data in LDhub.
However, we note that summary statistics from the current investigation have also been used to
investigate genetic overlaps with self-report of dyslexia diagnosisinan independent GWAS by
23andMe (~52k cases), yielding substantial negative genetic correlations between Genlang
guantitative traits and dyslexia status (e.g. -0.71 for word reading, -0.75 for spelling) as reported in a
preprint by Doust et al. 38%. The pattern of findings is also likely to be influenced by genetic nurture®’,
relating to the socioeconomic status of the family, as was recently found for polygenic score analyses
of cognitive traits*:. Future investigations including information about nontransmitted alleles*, or data

from siblings*®, may help to disentangle pleiotropy from genetic nurture.

Beyond pleiotropy, some evidence of differences in trait aetiology was observed in our genetic
correlation analysis with components (identified via decomposition analysis) from genome-wide
analysis of school grades in the Danish iPSYCH cohort®® and with results of a GWAS-by-subtraction
analysis of educational attainment and cognitive performance?’. The Danish school grade “component
3”, corresponding to relatively better performance in oral than written exams, showed negative
genetic correlations with phoneme awareness and spelling results in GenLang. In other words, higher
scores on phoneme awareness and spelling appear to be genetically correlated with better
performance in written than in oral exams. This may reflect the greater importance of phoneme
awareness and spelling for proficient writing than for oral language. “Component 4”, corresponding to
relatively better performance in Danish (the native language of the participants in that study) as
compared to performance in English, showed negative genetic correlations with our GenLang nonword
repetition measure, possibly reflecting the particular importance of verbal short-term memory in

051 The results of the GWAS-by-subtraction, previously suggested to

second-language learning
represent so-called “non-cognitive” abilities related to educational attainment such as motivation,
curiosity and persistence, were genetically correlated with word reading, nonword reading, and

nonword repetition in GenlLang.

Human abilities to process spoken and written language depend on an array of distributed brain
circuits®>°¢. We performed a genetic correlation analysis of our multivariate GenLang GWAS with
summary statistics from 58 MRI-based neuroanatomical phenotypes, chosen because they concerned
brain areas and/or tracts with known links to language processing®¢. This selection included brain

regions involved in early modality-specific pre-processing of spoken and written language, for example
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the auditory regions in transverse temporal gyrus, also known as Heschl’s gyrus, and the superior
temporal gyrus (spoken language), and several other temporal regions (written language). Other
regions included are involved in aspects of language comprehension, including the middle temporal
gyrus, the inferior parietal area and parts of the inferior frontal gyrus. We identified a significant
genetic correlation of our multivariate GWAS with cortical surface area of the banks of the superior
temporal sulcus (STS) on the left hemisphere. The STS is a location where the processing of spoken and
written language converges, in between modality-specific pre-processing and language
comprehension?>28, A broad range of language-related functions have been previously linked with the
left STS through (meta-analyses of) fMRI and PET studies, including those essential for the reading- and
language-related traits included in the GWAS meta-analyses: sublexical processing of speech®”*® and
representation of phonological word forms®®. The importance of this brain area for reading-related
traits is also evident from a meta-analysis of structural MRI studies that found lower grey matter
volume in the left STS related to reading disability and poor reading comprehension®. Thus, findings
from the genetic correlation analysis are consistent with the role of the STS as a hub where the
processing of different language modalities gets integrated, as well as the lateralization of such

functions.

Capacities for acquiring spoken and written language appear to be unique to our species, involving
underlying skills that emerged on the lineage leading to modern humans®¥®2, We used heritability
partitioning to analyse five annotations representing different timeframes and aspects of human
evolution. Genomic regions that are significantly depleted of Neanderthal ancestry were enriched for
genetic variants showing associations in our multivariate GenLang GWAS. Neanderthal depleted
regions are thought to correspond to genomic loci that were intolerant to the gene flow from
Neanderthal populations into Homo sapiens which took place around 50-60 thousand years ago°.
These loci are enriched for promoters and regions conserved in primates®, as well as enhancers
present in many tissues and those specific for fetal brain and muscle®. Only brain enhancers show
signs of stringent purifying selection against Neanderthal variation, indicating that these regions mark
parts of the genome where variation has a high probability of deleterious consequence®*. Our results
may reflect divergent selection acting on skills that underlie language in humans compared to
Neanderthals. However, in our analyses we could not pinpoint any specific timeframe of human
evolution during which genetic variants associated with reading- and language-related traits were

introduced.

Regarding functional implications of our findings, heritability partitioning analyses of the multivariate
Genlang GWAS results identified enrichment in enhancer regions present in fetal brain tissue and the

adult germinal matrix. The enhancer regions of the germinal matrix are highly similar to those of fetal
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brain tissues, and not the other adult brain tissues we studied, likely reflecting the neural stem cell
population present in that tissue®®. In these analyses there was no specific association with one
particular brain cell type. However, follow-up work with MAGMA, using single-cell RNA sequencing
data from fetal, embryonic and adult brain, uncovered a significant association with fetal neurons from
the Red nucleus, which may relate to the more adult state of these neurons compared to the other

t%. The MAGMA analysis could not be used to test for replication of the

cell types in the fetal datase
association with (fetal) brain tissue of the LDSC heritability partitioning, as results in this case are
corrected for the association with the average expression of the dataset?®3!, and the datasets with

fetal data only included brain samples.

We used the GWAS meta-analysis results to investigate evidence for association of previously reported
candidate SNPs/genes and suggestive genome-wide screening results from prior studies of reading-
/language-related traits and disorders. Out of the 54 candidate SNPs and 20 candidate genes that we
assessed (none of which met genome-wide significance), only DCDC2 yielded an association that
survived correction for multiple testing in the context of targeted replications. This locus showed
association only at the gene-based level and with one trait: nonword reading. Some previously
reported associations in the literature could reflect the specific language, phenotype, or recruitment
procedure of the cohort in which the gene or variant was investigated, and/or differences between
contributions of common and rare variation at a locus of interest. Yet the lack of support here also
suggests that false positive results have made an impact on the field, most likely related to limited
sample size in prior reports, which is known to elevate the risk of type-1 error®’. Few SNPs have shown
genome-wide significant associations (p<5 x 10®) in previous GWAS studies of quantitative reading-
/language-related traits*®. In our GWAS-meta analysis, the SNP rs1555839, previously associated with
rapid automatized naming and rapid alternating stimulus®, was significantly associated with spelling.
Overall, these results highlight the need for a genome-wide perspective, and the importance of large
well-powered samples, if we are to obtain reliable insights into the role of common genetic variants in

language- and reading-related traits.

Reading- and language-related phenotypes pose special challenges for scaling-up genetic analysis,
since psychometric assessments can be labour-intensive to administer and score, and because of the
heterogeneity introduced by differences in assessment tools, ages, populations and languages, among
other factors®®, One-item questions have enabled increases in sample size for GWAS of a wide range
of traits and disorders, especially when available through large resources such as the UK Biobank. For
example, a recent paper reporting development of a polygenic index repository included a polygenic
score for a one-item question asking adult participants (customers of 23andMe) "at what age did you

start to read?"’®. This "age-started-reading" item was somewhat confusingly referred to in that
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study as "childhood reading". While answers to the question were available in a large sample (n of
>173k), the item has substantial limitations, including its reliance on adult self-report of the timing of
specific events from early childhood, ambiguities over how to interpret the phrase "start to read", as
well as confounding effects of regional, cultural and historical differences in the age at which children
first receive formal reading instruction. Moreover, the age a person started to read is a poor proxy of
reading skill because of the large variation in the developmental trajectories of reading acquisition; in
other words, children who learn to read relatively late in childhood can still become perfectly proficient
readers. No validated questions have yet been described that adequately capture interindividual
variability in reading and language skills in the normal range, which still requires administration of
psychometric tests. The GenLang Consortium was established as an international effort by multiple
research teams with the aim of overcoming such difficulties through a range of strategies, and enabling

large-scale well-powered investigations of genomic underpinnings of these important traits.

This first wave of analysis from Genlang represents the largest GWAS meta-analyses for direct
guantitative assessments of reading- and language-related abilities to date, including 22 cohorts with
data available for at least one of the phenotypes. Nonetheless, although substantially increased over
prior work in this area, sample sizes may still be considered relatively modest compared to the state-
of-the-art for genetic association analyses of other complex traits. While they captured a significant
proportion of the genetic variation underlying each phenotype, yielding several novel insights into the
associated biology, detection of genome-wide significant loci was still limited. In addition, a number of
phenotypes of interest (such as those that tap into syntactic skills) could not (yet) be pursued due
inadequate sample sizes, even when combining data available from multiple cohorts. We note that
despite our best efforts at harmonizing the included datasets, and limited signs of heterogeneity in the
results based on Cochran Q statistics, LDSC intercepts and genetic correlations between subsets of the
data, we cannot fully exclude that heterogeneity is introduced by the inclusion of data from different
assessment tools, languages, and ages. The choice of assessment tools for future collection of reading-
and language-related phenotypes for genomic studies, to increase the sample sizes of these GWAS
meta-analyses and also to collect additional language-related phenotypes, should therefore be based
at least partially on optimal matching with existing data. At the same time, we should invest in
facilitating and simplifying the collection of language-related phenotypes, in part by developing and
optimizing test batteries that could be reliably administered online in web/app-based settings. Indeed,

these are major areas of focus for the GenlLang consortium moving forward.

In summary, our GWAS meta-analyses of five reading- and language-related phenotypes in sample
sizes of up to ~34,000 participants have demonstrated significant SNP heritability for all traits, and

identified genome-wide significant associations with word reading on chromosome 1 (rs11208009,
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p=1.098 x 10°8). Structural equation models revealed a single factor accounting for much of the genetic
architecture underlying word reading, nonword reading, spelling and phoneme awareness, prompting
a multivariate GWAS analysis of these four highly correlated traits. The multivariate results were
genetically correlated with cortical surface area of the banks of the left STS, a brain region where the
processing of spoken and written language comes together. Finally, partitioned heritability analyses
showed enrichments in fetal brain enhancers, highlighting links to early brain development, and in
Neanderthal depleted regions, suggesting that genomic regions associated with emerging language-
related skills in Homo sapiens may have been intolerant to gene flow from other archaic hominins.
These efforts by GenLang open up novel avenues for deciphering the biological underpinnings of

spoken and written language.
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Material and methods

Phenotypes

Word reading accuracy was measured as the number of correct words read aloud from a list in a time
restricted or unrestricted fashion. Nonword reading accuracy was measured as the number of
nonwords read aloud correctly from a list in a time restricted or unrestricted fashion. A nonword is a
group of phonemes that looks or sounds like a word, obeys the phonotactic rules of the language, but
has no meaning. Spelling accuracy was measured by the number of words correctly spelled orally or in
writing, after being dictated as single words or in a sentence. Phoneme awareness was measured in
phoneme deletion/elision and spoonerism tasks. Nonword repetition accuracy was measured by the
number of nonwords or phonemes repeated aloud correctly. Performance 1Q, included for follow-up
analyses of the results of the reading- and language-related traits, employing a matching study design,
was measured with nonverbal subtests of broader batteries that test for cognitive skills. The
Supplemental Notes contain further details of phenotyping procedures, and Supplemental Table 1

provides an overview of the tests used to measure these phenotypes for each cohort.

Study cohorts

The meta-analyses included GWAS summary statistics from 22 independent cohorts. These were,
alphabetically, the Adolescent Brain Cognitive Development™ Study (ABCD Study), the Avon
Longitudinal Study of Parents and Children (ALSPAC), the ASTON cohort, the Brisbane Adolescent Twin
Sample (BATS), the Basque Center on Cognition, Brain and Language (BCBL) cohort, the Colorado
Learning Disabilities Research Center (CLDRC) cohort, the Early Language in Victoria Study (ELVS), the
Familial Influences on Literacy Abilities (FIOLA) project, Generation R (GENR), the Genes, Reading, and
Dyslexia (GRaD) study, the lowa study, the NeuroDys cohort, the Netherlands Twin Register (NTR), the
Pediatric Imaging, Neurocognition, and Genetics (PING) cohort, the Philadelphia Neurodevelopmental
Cohort (PNC), the Raine Study, the SLI Consortium (SLIC) cohort, the Saguenay Youth Study (SYS), the
Twins Early Development Study (TEDS), the Toronto cohort, the Oxford Dyslexia cohort (UKDYS), and
the York cohort (see Supplemental Table 1 for demographic characteristics for each cohort). The
cohorts were collected in different countries: in the USA, UK, the Netherlands, Australia, Canada,
Spain, Austria, Germany, Switzerland, Finland, Hungary and France (ordered by sample size). Most
participants are therefore from countries with English as their main language. Other languages spoken
by participants are Dutch (n<2,865, depending on trait), Spanish (n<1,236), German (n<1,227), Finnish
(n£323), French (n<137) and Hungarian (n<225). Most cohorts mainly include participants of European
ancestry, with the exception of the GRaD cohort, which consists of individuals of African-American and
Hispanic ancestry, and the ABCD Study, GenR and PING cohort, which are multi-ethnic. The sample

sizes per cohort range from 104 to 10,187 participants (104 to 5,080 participants of European ancestry,
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defined by principal component analyses (PCA)). For each cohort, an Institutional Review Board (IRB)

or ethical committee approved the respective studies, and participants provided informed consent.

Different measures for the reading- and language-related traits had been assessed in each cohort and
could be included in the GWAS meta-analyses (see Supplemental Notes for details of each measure,
and Supplemental Table 1 for an overview of the included measures and sample sizes for each cohort).
Data from children, adolescents and young adults were included in the meta-analysis (age at time of
assessment ranging from 5 years to 26 years). Outlier samples, based on the phenotype data (>4 SD),
were removed for each phenotype separately. The phenotype data were then adjusted for covariates
(age, age?, sex and ancestry principal components; age-normed phenotypes were not adjusted for age
and age?). See Supplemental Table 2 for details on the included covariates per cohort. Phenotype data
for word reading, nonword repetition and performance IQ were standardized to z-scores. Phenotype
data for spelling, phoneme awareness and nonword reading were rank transformed to acquire
normally distributed data for all cohorts. For follow-up analyses involving multiple phenotypes - the
genetic correlation analysis with LDSC’! and the multivariate GWAS analysis with MTAG?* - a separate
rank transformation was performed for word reading, nonword repetition and performance 1Q to
further harmonize the phenotype data processing. For male- and female-only association analyses,

phenotype data were filtered, adjusted and transformed for male and female subsets separately.

The genotype data were subjected to stringent quality control according to a detailed analysis plan
following standard procedures for GWAS, including SNP filters for minor allele frequency, call rate and
Hardy-Weinberg equilibrium and sample filters including missingness and (for cohorts of unrelated
individuals) relatedness. Cohort-specific details on quality control can be found in Supplemental Table
2. Individuals of European ancestry were identified using PCA-based analysis of genetic diversity.
Individuals with non-European ancestry were excluded from all cohorts, with exception of ABCD, GenR,
GRaD and PING. For the ABCD, GenR and PING cohorts, two association analyses were performed, one
including and one excluding individuals of non-European ancestry. Results of datasets including
individuals of non-European ancestry were excluded from follow-up analyses with LDSC’t, MAGMAZ?°
and MTAG?*, since these methods utilize LD information based on European-ancestry reference data
when raw genotyping data is not available (as is the case for this GWAS meta-analysis). The X
chromosome was included by all cohorts except for NeuroDys. Genotype data were imputed using the
Haplotype Reference Consortium version 1.1 panel for 20 out of the 22 cohorts, and using the 1000
Genomes Project Phase 3 reference panel for the GRaD and SYS cohorts. Single variant association
analyses were performed using linear regression methods with the imputed additive genotype dosages

for the full dataset, and for males and females separately. For the X chromosome, males were treated
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as homozygous diploids. Descriptions for each cohort of the samples, phenotype measures,

genotyping, quality control and analysis procedures can be found in Supplemental Table 1 and 2.

Meta-analyses

The summary statistics for each GWAS cohort for each trait were subjected to stringent quality control
measures. SNPs were excluded from the meta-analyses based on low imputation quality scores <0.7,
minor allele frequency <0.01 and minor allele count <£10. Additional quality control of each summary

statistics file was performed with EasyQC’>.

Meta-analyses of the summary statistics were performed with METAL”? (version March 2011), with
effect size estimates weighted using the inverse of the corresponding standard errors. A total of 13,633
to 33,959 individuals (12,411 to 27,180 individuals of PCA-selected European ancestry) of 10 to 19
cohorts (no trait was available from all 22 cohorts) were included in the GWAS meta-analyses for the
different traits (Table 1 and Supplemental Table 1). SNPs for which data were available from less than
5,000 individuals were excluded from the meta-analysis results. For the heritability and genetic
correlation analyses with LDSC, separate meta-analyses without genomic control correction were
performed, because the LDSC regression intercept can be used to estimate a more powerful and
accurate correction factor than genomic control’’. Only data of individuals of the PCA-selected
European subgroup were included, to allow use of pre-computed LD scores, as genotyping data of all
cohorts was not available at a single site to allow the computation of LD-scores for the full partially

admixed dataset.

To accommodate the multiple-testing burden present in performing separate meta-analyses for the
five reading- and language-related traits, while taking into account the high phenotypic correlations
between them, we calculated the effective number of independent variables (VeffLi) from the meta-
analysis results using PhenoSpD’* (v1.0.0). The Bonferroni-corrected genome-wide significant P-value

threshold was determined at 2.33x10°® (5x10® / 2.15 independent traits).

We investigated the degree to which differences between cohorts in age distribution and phenotyping
tools introduced heterogeneity in the meta-analysis results. First, Cochran's Q test statistics, which
assess whether estimated effect sizes are homogeneous across studies, were obtained with METAL,
visualized with quantile-quantile plots (Supplemental Figure 3) and used to decide between a fixed-
effects and random-effects meta-analysis. Based on these analyses, a fixed-effects meta-analysis was
performed for all traits except for nonword repetition. Second, LDSC intercept and ratio were
inspected to distinguish polygenicity from confounders’. Third, meta-analyses of subsets of the
cohorts were performed, split up by mean age or the type of reading test applied. Heterogeneity

caused by difference in mean age and type of reading test was studied by calculating genetic
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correlations between data subsets using LDSC. In addition, meta-analyses for male- and female-only
subsets of the data were run as sensitivity analyses, to investigate the degree to which males and
females might show differences in SNP heritability for these traits and show genetic overlap as

calculated with genetic correlation analyses.

GenomicSEM

To investigate the high genetic correlations between the reading- and language-related traits, and with
cognitive performance and educational attainment, we used genomic structural equation modeling
(GenomicSEM; version 0.03)'° to model the joint genetic architecture. Summary statistics of the five
Genlang traits and performance 1Q, and published GWAS summary statistics for cognitive performance
and educational attainment from the Social Science Genetic Association Consortium

(https://www.thessgac.org/data)® were used as input. GenomicSEM first runs multivariable LDSC to

obtain genetic covariance and sampling covariance matrices. Next, exploratory factor analyses were
run using a maximume-likelihood factor analysis, for models with one to four factors. Confirmatory
factor analyses were then run in GenomicSEM for the exploratory model that explained the largest
part of the variance in the data. To determine which factor loadings from the exploratory model to
include, different models were fitted and compared using the following model fit indices: the p-value
of the chi-square test, Akaike Information Criterion (AIC), Comparative Fit Index (CFl), and Standardized
Root Mean Square Residual (SRMS). The model with the highest p-value, lowest AIC, CFl >0.9, and
SRMR <0.1, was considered the best fitting model. (A p-value above 0.05 may not be possible when

including summary statistics of large samples'®).

Multivariate GWAS analysis

A multivariate GWAS was performed on the four most highly correlated traits: word reading, nonword
reading, spelling and phoneme awareness, using Multi Trait Analysis of GWAS (MTAG, v1.0.8)%, to
maximize information for follow-up analyses on biological pathways, evolutionary significance, and so
on. MTAG can perform a multivariate GWAS using summary statistics of different but related traits,
while correcting for overlapping samples. Because MTAG takes its sample overlap estimates from
LDSC?, univariate meta-analysis results including only individuals of the PCA-selected European
subgroup were used. MTAG outputs a result for each trait; only the MTAG results for word reading
were used, as word reading had the largest sample size, and because the MTAG results for the four
traits were highly similar as a consequence of the high genetic correlation between the traits. For the
follow-up analyses using LDSC’* and MAGMAZ, the GWAS equivalent sample size estimated by MTAG,

was used as sample size.
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Heritability and genetic correlation

LDSC™ (v1.0.0) was used to estimate genomic inflation and SNP-based heritability of the meta-analysis
results, and to investigate genetic correlations®!. All analyses were based on HapMap 3 SNPs only, and
precalculated LD scores from the European 1000 Genomes reference cohort were used. For the LDSC
analyses of the MTAG results, the GWAS equivalent sample size, estimated by MTAG, was used as
sample size. The influence of confounding factors was tested by comparing the estimated intercept of
LDSC to one, and the ratio of LDSC to zero. This ratio estimates the proportion of inflation in x2
attributable to confounding, as opposed to true polygenic effects. SNP heritability was estimated

based on the slope of the LDSC.

GWAS summary statistics for genetic correlation analyses with cognitive traits were obtained from the
Social Science Genetic Association Consortium (full-scale 1Q and educational attainment?s;

https://www.thessgac.org/data); the GWAS catalogue (noncognitive skills investigated with GWAS by

subtraction'’;  ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary statistics/GCST90011874), and

through collaboration with the iPSYCH consortium (GWAS analysis of Danish school grades'®).
PhenoSpD’# was used to calculate the effective number of independent variables (VeffLi) to inform the
multiple testing correction. A total of 18.28 independent comparisons were performed in Figure 1, the

p-value threshold is therefore set to p=2.74*1073.

Publicly available GWAS summary statistics of neuroimaging traits were obtained via the Oxford Brain

Imaging Genetics Server” (http://big.stats.ox.ac.uk/). Out of 3,144 brain imaging-derived traits with

summary statistics available from the UK Biobank, a total of 58 neuroanatomical phenotypes were
selected based on their relevance to language processing. Brain imaging traits encompassed surface-
based morphometric (SBM) and diffusion tensor imaging (DTI) phenotypes. For SBM, data were
originally generated with Freesurfer by parcellation of the white surface (the surface area between the
white and grey matter) using the Desikan-Killiany atlas. Both cortical surface area and mean cortical
thickness were selected for brain areas that overlapped regions previously related to language
processing, based on literature review>* >, For DTI, tracts spanning the extended language network>?
were selected, and fractional anisotropy values derived from both tract-based-spatial statistics and
probabilistic tractography were used (both mean and weighted-mean fractional anisotropy). Again,
PhenoSpd was used to calculate the effective number of independent comparisons. A total of 24.85
independent brain imaging-derived traits were identified. Therefore the p-value threshold for a
significant genetic correlation between the brain imaging-derived traits and the MTAG results was set
to p=2.01x103 (0.05/24.85).In addition to our targeted analysis of brain imaging traits, genetic
correlations were estimated between the MTAG results and summary statistics of 20 cognitive,

education, neurological, psychiatric and sleeping-related traits and all 515 UK Biobank traits available
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in LD Hub”® (v1.9.3, http://ldsc.broadinstitute.org/Idhub/). These 535 traits comprise all phenotypes
available through LDhub with relevance to brain function (beyond neuroimaging traits), and all
available traits from the UK Biobank. Genetic correlations between these 535 traits and the published
GWAS summary statistics for full-scale 1Q% were obtained as well. The Bonferroni corrected p-value
threshold for significance of the LDhub results was 0.05 / (535*2) = 4.67x10°. Genetic correlations may
reflect pleiotropy, correlation between causal loci or spurious associations, and can inform about

shared biological mechanisms and causal relationships between traits”’.

Functional Mapping and Annotation of GWAS meta-analysis results
The platform Functional Mapping and Annotation of Genome-Wide Association Studies3? (FUMA

GWAS; https://fuma.ctglab.nl/; version 1.3.6a) was used to annotate the genome-wide significant

variants and to calculate gene-based p-values. Using the SNP2GENE function, genome-wide significant
loci were annotated with expression quantitative trait locus (eQTL) data from 4 different databases:

GTEx V8 (brain samples only; http://www.gtexportal.org/home/datasets), the blood eQTL browser

(http://genenetwork.nl/bloodeqtlbrowser/), the BIOS QTL browser

(http://genenetwork.nl/biosgtlbrowser/), and BRAINEAC (http://www.braineac.org/). Loci were also

annotated with information on previously associated traits from the GWAS catalog

(https://www.ebi.ac.uk/gwas/).

Gene and gene-set analysis

MAGMAZ? (version 1.08) gene analysis in FUMA was used to calculate gene-based p-values from SNPs
located in the body of the gene and in the region 1kb upstream to include SNPs located in the promoter
region. Look-ups were performed for candidate genes proposed in prior literature on reading-, speech-
and language-related traits and disorders. MAGMA accounts for gene-size, number of SNPs in a gene
and LD between markers. The gene-based analysis was performed with default parameters (SNP-wide

mean model), with the European 1000 Genomes reference cohort phase 3 as reference panel.

The MTAG results were further analysed using MAGMA gene property analyses, to study relationships
with tissue-specific and cell type-specific gene expression patterns. Bulk RNA-sequencing data from

GTEx V8 (http://www.gtexportal.org/home/datasets) and Brainspan (http://www.brainspan.org) of

adult tissue samples and developmental brain samples were assessed in the SNP2GENE analysis in
FUMA?32, In addition, single-cell RNA-sequencing data from human embryonic (midbrain, 6-11 weeks
post conception; Gene expression omnibus (GEO) accession number GSE76381), fetal (prefrontal
cortex, 8-26 weeks post conception; GEO accession number GSE104276) and adult (Allen Brain Atlas

cell types data of the middle temporal gyrus; http://celltypes.brain-map.org/) brain samples were used
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in the Cell Type analysis in FUMA3!. MAGMA performs a one-sided test which essentially assesses the

positive relationship between tissue specificity and genetic association of genes.

Partitioning heritability of chromatin and evolutionary signatures
LDSC heritability partitioning® was used to estimate the enrichment of heritability of the MTAG results
in annotations reflecting tissue-specific chromatin modification patterns. Annotations were based on

data from the Roadmap Epigenomics project and ENTEX, processed by Finucane et al.”®,

In addition, LDSC heritability partitioning was used to study the association with several annotations
reflecting evolutionary signatures and annotations from different periods along the lineage leading to
modern humans, ranging from around 50,000 years ago back to 30 million years, adapting a pipeline
recently published by Tilot et al.”. The following annotations reflecting evolutionary features were
used (details in Supplemental notes): 1) adult brain Human Gained Enhancers®, 2) fetal brain Human
Gained Enhancers®, 3) ancient selective sweep regions®?, 4) Neanderthal-introgressed SNPs®, and 5)
Neanderthal-depleted regions®. All enrichments are controlled for the baseline LD v2 model*#, and
heritability enrichment in human adult and fetal HGEs were additionally controlled for adult and fetal

brain active regulatory elements.

Data availability
The full GWAS summary statistics will be made freely available through the GWAS Catalog

(https://www.ebi.ac.uk/gwas/) and the website of the GenLang network (www.genlang.org).

Code availability

Code wused to perform the meta-analysis and follow-up analyses is available at

https://gitlab.gwdg.de/else.eising/genlang_quantitative_trait_gwasma.
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