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Abstract 

The use of spoken and written language is a capacity that is unique to humans. Individual differences 

in reading- and language-related skills are influenced by genetic variation, with twin-based heritability 

estimates of 30-80%, depending on the trait. The relevant genetic architecture is complex, 

heterogeneous, and multifactorial, and yet to be investigated with well-powered studies. Here, we 

present a multicohort genome-wide association study (GWAS) of five traits assessed individually using 

psychometric measures: word reading, nonword reading, spelling, phoneme awareness, and nonword 

repetition, with total sample sizes ranging from 13,633 to 33,959 participants aged 5-26 years (12,411 

to 27,180 for those with European ancestry, defined by principal component analyses). We identified 

a genome-wide significant association with word reading (rs11208009, p=1.098 x 10-8) independent of 

known loci associated with intelligence or educational attainment. All five reading-/language-related 

traits had robust SNP-heritability estimates (0.13–0.26), and genetic correlations between them were 

modest to high. Using genomic structural equation modelling, we found evidence for a shared genetic 

factor explaining the majority of variation in word and nonword reading, spelling, and phoneme 

awareness, which only partially overlapped with genetic variation contributing to nonword repetition, 

intelligence and educational attainment. A multivariate GWAS was performed to jointly analyse word 

and nonword reading, spelling, and phoneme awareness, maximizing power for follow-up 

investigation. Genetic correlation analysis of multivariate GWAS results with neuroimaging traits 

identified association with cortical surface area of the banks of the left superior temporal sulcus, a 

brain region with known links to processing of spoken and written language. Analysis of evolutionary 

annotations on the lineage that led to modern humans showed enriched heritability in regions 

depleted of Neanderthal variants. Together, these results provide new avenues for deciphering the 

biological underpinnings of these uniquely human traits.  
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Introduction 

The processing and production of complex spoken and written language are capacities that appear to 

be distinct to our species. Such skills have become fundamental for day-to-day life in modern society. 

Decades of family and twin studies have revealed substantial genetic components contributing to 

individual variation in reading- and language-related traits, as well as to susceptibility to associated 

disorders. A recent meta-analysis integrated available data on these skills from 49 twin studies, with a 

total sample size of 38,000 children and adolescents, aged 4-18 years. The meta-analysis yielded 

heritability estimates of 66% for word reading (meta-analysis of 48 studies), 80% for spelling (15 

studies), and 52% for phoneme awareness (the ability to identify and manipulate individual sounds of 

spoken words; 13 studies), and suggested greater genetic influences on reading-related abilities than 

language-related measures (heritability 34%; meta-analysis of 10 studies with measures on receptive 

and expressive vocabulary, oral language and naming abilities)1. 

Linkage mapping and candidate gene studies have reported associations of single-nucleotide 

polymorphisms (SNPs) and/or genetic loci with reading and language-related traits, as well as with 

disorders such as dyslexia and developmental language disorder (DLD; which encompasses the older 

definition of specific language impairment or SLI)2. However, replication efforts have met with limited 

success. Genome-wide association studies (GWAS) are beginning to identify SNPs that show genome-

wide significant associations with reading- and language-related traits: rs7642482 near ROBO2 

associated with expressive vocabulary in infancy3, rs17663182 within MIR924HG with rapid 

automatized naming of letters4, and rs1555839 near RPL7P34 with rapid automatized naming and 

rapid alternating stimulus, deficits of which are often implicated in dyslexia5. Nonetheless, insights into 

the genomic underpinnings of these types of skills from GWAS approaches have thus far been limited, 

which may reflect low power due to the relatively small sample sizes of the cohorts, such that the 

majority of genetic variance remains unexplained. Sample sizes have remained limited because of the 

labour-intensive assessment methods required for phenotyping reading- and language-related traits, 

which are difficult or even impossible to replace with simple questionnaires. Yet, well-powered GWAS 

efforts that characterize the molecular genetic variation involved in reading- and language-related 

traits can provide novel perspectives on the biological bases and origins of human cognitive 

specializations6. 

Here, we present large-scale GWAS meta-analyses of a set of reading- and language-related traits, 

measured with psychometric tools. We captured variation across the phenotypic spectrum, extending 

beyond disorder. Our study focused on traits that have been assessed using continuous measures in 

multiple cohorts from the international GenLang network (www.genlang.org), together with several 
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public datasets that have data available for the relevant phenotypes, matched to genome-wide 

genotype information. Five quantitative traits were identified for which phenotype data could be 

aligned across different cohorts, to yield sufficiently large sample sizes for GWAS: word reading, 

nonword reading, spelling, phoneme awareness and nonword repetition. Univariate GWAS meta-

analyses were performed to identify genetic variation influencing these traits and to model the genetic 

overlaps between them. For comparative purposes, a GWAS meta-analysis for performance IQ was 

also performed in the same dataset. Together with publicly available GWAS summary statistics from 

prior studies of cognitive performance and educational attainment, these data were used to study 

genetic relationships between reading- and language-related traits, IQ and educational attainment. A 

multivariate approach allowed us to optimise the power of the word reading GWAS meta-analysis for 

functional follow-ups investigating the tissues, cell types, brain regions and evolutionary signatures 

involved.  
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Results 

GWAS meta-analysis for quantitative reading- and language-related traits 

We studied five quantitative reading- and language-related traits: word reading accuracy, nonword 

reading accuracy, spelling accuracy, phoneme awareness and nonword repetition accuracy (Table 1). 

These traits are thought to tap into a number of underlying processes involved in written and spoken 

language. For example, nonword reading relies heavily on basic decoding skills: translating graphemes 

one by one into phonemes7, while spelling utilizes lexical and orthographic knowledge: understanding 

of permissible letter patterns and how they are arranged in specific words8. Phoneme awareness 

measures the ability to distinguish and manipulate the separate phonemes in spoken words9. Nonword 

repetition tasks tap into speech perception, phonological short term memory and articulation10. A total 

of 22 cohorts, aggregated by the GenLang consortium combined with several publicly available 

datasets, provided data for one or several of these traits (Supplemental Table 1 and 2, Supplemental 

Figure 1 and 2). The cohorts connected in the GenLang network have either been originally ascertained 

through a proband with language/reading disorder (DLD/SLI or dyslexia) or were sampled from the 

general population; all cohorts include quantitative phenotypic data gathered via validated 

psychometric tests. Some of the samples are birth cohorts, and some involve family or twin designs. 

The phenotype data were collected across an array of different ages, test instruments and languages 

(primarily English, and also Dutch, Spanish, German, French, Finnish, and Hungarian). We reduced 

heterogeneity of assessment age by excluding individuals over 18 years of age (except for three 

cohorts, see Supplemental Methods), and, where phenotype data were available from the same 

participant at multiple ages, by choosing the age that matched best with the assessment ages of the 

largest cohort(s). We limited the heterogeneity introduced by different test instruments by only 

including those that measured the phenotypes described in our analysis plan (Supplemental Notes), 

and, in cases where data from more than one test instrument were available, by selecting the test 

instrument that was used by the largest number of cohorts.  

Table 1: Phenotypes and sample sizes of the GWAS meta-analyses 

Trait Phenotype description 

Meta-analysis total 

sample 

Meta-analysis European 

ancestry only 

# cohorts # individuals # cohorts # individuals 

Word 

reading 

Number of correct words read aloud 

from a list in a time restricted or 

unrestricted fashion 

19 33,959 18 27,180 

Nonword* 

reading 

Number of nonwords read aloud 

correctly from a list in a time restricted 

or unrestricted fashion 

13 17,984 12 16,746 

Spelling Number of words correctly spelled 

orally or in writing, after being dictated 

as single words or in a sentence 

15 18,514 14 17,278 
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Phoneme 

awareness 

Number of words correctly altered in 

phoneme deletion/elision and 

spoonerism tasks 

12 13,633 11 12,411 

Nonword* 

repetition 

Number of nonwords or phonemes 

repeated aloud correctly 

10 14,046 10 12,828 

*A nonword is a group of phonemes that looks or sounds like a word, obeys the phonotactic rules of the language, 

but has no meaning. 

 

GWAS meta-analysis results for word reading and nonword reading stratified by age or test instrument 

were used to investigate the remaining amount of heterogeneity related to age and use of different 

test instruments (Supplemental Table 3). Genetic correlations calculated with linkage disequilibrium 

score regression (LDSC)11 between age-stratified meta-analysis results (cohorts with mean age <12 

years vs g12 years; see Supplemental Table 1) were high (word reading rg=0.86, se=0.16; nonword 

reading rg=0.88, se=0.24). GWAS meta-analysis results of the most commonly used reading test (Time 

Limited Word Recognition Test; TOWRE) were found to be highly correlated with GWAS meta-analysis 

results of all other reading tests (rg=0.85, se=0.15 for word reading, rg=0.99, se=0.21 for nonword 

reading). Similar results were obtained when comparing GWAS meta-analysis results of time-restricted 

reading tests to all other reading tests. Limited heterogeneity of GWAS meta-analysis results was also 

evident in the Cochran Q statistics (Supplemental Figure 3) and LDSC ratios (Supplemental Table 4) for 

all traits except nonword repetition. 

We also assessed whether there was heterogeneity related to sex effects, by estimating genetic 

correlations for female- and male-only subsets. Results of male and female subsets were highly 

correlated (estimates of genetic correlation are rg=1.04, se=0.17, p=1.7x10-9 for word reading, rg=0.97, 

se=0.19, p=2.1x10-7 for nonword reading, rg=1.11, se=0.29, p=1.0x10-4 for spelling, rg=1.56, se=0.55, 

p=4.2x10-3 for phoneme awareness and rg=1.30, se=0.63, p=0.039 for nonword repetition; some 

estimates are above 1, because the genetic covariance estimator is not constrained in LDSC, and likely 

represents sampling variation and randomness; Supplemental Table 3).  

 

A genome-wide significant locus associated with word reading 

For evaluating statistical significance of SNP associations, we determined an appropriate threshold that 

was adjusted for multiple-testing based on the correlation structure of our five reading-/language-

related traits, as estimated using phenoSpD. The significance threshold for assessing the GWAS meta-

analysis results was thus set to 5x10-8 / 2.15 independent traits = 2.33x10-8. We identified a genome-

wide significant locus associated with word reading (rs11208009 C/T on chromosome 1, p=1.10x10-8) 
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(Supplemental Figure 5). Rs11208009 has not shown association with general cognitive performance 

(IQ) or educational attainment, but other SNPs in LD with rs11208009 (r2>0.6) have been associated 

with triglyceride and total cholesterol levels in blood in previous GWAS studies (Supplemental Table 

5). Three genes are located in the vicinity of rs11208009 and SNPs in LD (r2>0.6): DOCK7, encoding a 

guanine nucleotide exchange factor important for neurogenesis12; ANGPTL3, which encodes a growth 

factor specific for the vascular endothelium that is expressed specifically in the liver13; and USP1, 

encoding a deubiquitinating enzyme specific for the Fanconi anemia pathway14. The associated locus 

harbours an eQTL regulating DOCK7 and ATG4C (another nearby gene which encodes an autophagy 

regulator15) in the cerebellum, and DOCK7, ATG4C and USP1 in blood samples (Supplemental Table 6). 

Genome-wide significant loci were not identified for the other traits. Supplemental Table 7 lists all 

results with p<1x10-6.  

 

Traits related to reading and language are highly correlated at the genetic level 

All five traits showed significant SNP heritability, with LDSC-based estimates ranging from 0.13 for 

nonword repetition to 0.26 for nonword reading (Supplemental Table 4), indicating that the captured 

common genetic variation accounts for a substantive proportion of the phenotypic variance in these 

skills. Pairwise genetic correlation analyses showed significant overlap among the reading- and 

language-related traits (Figure 1A; Supplemental Table 4). Genetic correlation estimates were 

especially high for word reading, nonword reading, spelling and phoneme awareness, ranging from 

0.96 (se=0.07) to 1.06 (se=0.07).  

Extensive prior literature has shown correlations of reading- and language-related traits with general 

cognitive performance and educational attainment. Most cognitive assessments depend on a 

combination of verbal and nonverbal tests. To enable the investigation of genetic overlaps between 

non-verbal cognitive performance and reading- and language-related traits, while closely matching the 

sample characteristics of our study, we carried out a GWAS meta-analysis of performance IQ in the 

GenLang network (n=18,722; Supplemental Figure 1-3). Only non-verbal subtests of general 

intelligence tests were used in this analysis (Supplemental Table 1). Summary statistics were also 

obtained from another three sources: 1) genome-wide studies of full-scale IQ (n=257,828) and 

educational attainment (n=766,345) by the Social Science Genetic Association Consortium16; 2) a 

GWAS-by-subtraction study that investigated the non-cognitive abilities involved in educational 

attainment (n=510,795)17; and 3) a recent GWAS analysis of school grades in the Danish iPSYCH cohort 

(n=30,982), that used a decomposition analysis to identify genetic associations with distinct domains 

of performance18.  
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The five GenLang traits showed moderate to strong positive genetic correlations with full-scale IQ 

(range 0.52–0.77), educational attainment (range 0.54–0.68) and school performance (range 0.54–

0.81) (Figure 1A, Supplemental Table 8). Interestingly, genetic correlations with full-scale IQ were 

substantially higher for word reading (95% CI 0.70–0.85) than nonword reading (95% CI 0.50–0.68), 

likely reflecting the importance of reading skills for verbal tests of cognition. Genetic correlations of 

reading-/language-related traits with performance IQ (range 0.20–0.35) were much lower than those 

for full-scale IQ, and the 95% confidence intervals did not overlap. Indeed, only word reading showed 

a significant genetic correlation with performance IQ. Significant trait-specific genetic correlations 

were observed for components 2-4 of the Danish school grade decomposition analysis18. Component 

2, reflecting relatively better school grade performance in language than mathematics (as compared 

to peers), was positively correlated with both GenLang reading traits. Component 3, reflecting 

relatively better school grade performance in oral than in written exams, showed significant negative 

correlations with phoneme awareness and spelling. Lastly, component 4, reflecting relatively better 

school grade performance in Danish than in English, showed significant negative correlation with 

nonword repetition. The non-cognitive abilities involved in educational attainment identified in the 

GWAS-by-subtraction study17 showed small but significant positive genetic correlations with word 

reading, nonword reading and nonword repetition.  

Genomic structural equation modelling (GenomicSEM)19 was used to further investigate the shared 

genetic architecture of the five reading- and language-related traits, together with performance IQ, 

full-scale IQ and educational attainment (Supplemental Table 9). In the final model (Figure 1B), the 

first factor explains variation in nonword reading, spelling and phoneme awareness, word reading and 

full-scale IQ. For the first three of these traits, there is no evidence for additional genetic influences, 

suggesting high genetic similarity. The second factor explains additional variation in full-scale IQ, and 

is also related to performance IQ and educational attainment. The third factor explains variation in 

nonword repetition, word reading and educational attainment. Factors one and three are highly 

correlated, indicating that the genetic architecture underlying word reading does not differ much from 

nonword reading, spelling and phoneme awareness. Nonword repetition, on the other hand, is 

genetically more distinct, as indicated by evidence for specific genetic influences not captured by the 

model. Specific genetic influences were also evident for full-scale IQ and educational attainment. Thus, 

although reading- and language-related traits show genetic overlaps with full-scale IQ and educational 

attainment, the model indicates that these traits also have unique unshared components, in line with 

genetic correlation estimates that are lower than 1. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.466897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.466897
http://creativecommons.org/licenses/by/4.0/


12 

 

 

Figure 1: Reading- and language-related traits have a shared genetic architecture that is largely independent 

of performance IQ. A: Genetic correlations (rg) among the reading- and language-related traits, estimated with 

LDSC. Estimates capped at 1. Full LDSC results are reported in Supplemental Table 4. In addition, genetic 

correlations are given between the GenLang traits and 1) performance IQ (using GenLang cohorts only), 2) 

educational attainment (n=766,345) and full-scale IQ (n=257,828)16, 3) non-cognitive abilities involved in 

educational attainment, resulting from a recent GWAS-by-subtraction study (n=510,795)17, and 4) components 

associated with distinct performance domains, identified used a decomposition analysis of Danish school grades 

(n=30,982)18. Full results can be found in Supplemental Table 8. *Significant genetic correlation after correction 

for 18.28 independent comparisons (p<2.74x10-3); **p<2.74x10-4; ***p<2.74x10-5. B: Three factor model fitted 

to the GenLang summary statistics for word reading, nonword reading, spelling, phoneme awareness and 
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nonword repetition and performance IQ, and published GWAS summary statistics for full-scale IQ and 

educational attainment16 using GenomicSEM19. Black and grey paths represent factor loadings with p<0.05 and 

p>0.05, respectively. Standardized factor loadings are shown, with standard error in parentheses. The subscript 

g represents the genetic variables; the u variables represent the residual genetic variance not explained by the 

models. Unstandardized results and model fit indices are reported in Supplemental Table 9. 

 

Genes and SNPs previously associated with reading-/language-related traits and disorders 

Previous GWAS studies on reading-/language-related traits and disorders (Supplemental Table 10) 

have identified very few associations exceeding genome-wide significance. In those prior studies, there 

were a total of 48 independent SNPs meeting a less stringent threshold of p<1x10-6 in the respective 

GWAS. We ran look-ups of each of those SNPs in our GenLang GWAS meta-analysis results 

(Supplemental Table 11). Where SNP associations passed a threshold adjusted for multiple testing of 

48 SNPs and 2.15 independent GenLang traits (p<4.84x10-4), we then reran the association analyses 

after exclusion of the original cohort(s) in which the association was first identified, to evaluate 

independent effects beyond those of the earlier study. According to these criteria, only one SNP, 

rs1555839, previously associated with rapid automatized naming in the GRaD cohort5, yielded a 

significant signal in the remainder of the GenLang cohorts, showing association with spelling 

(p=3.33x10-4). Rs1555839 is one of five SNPs that reached the threshold for genome-wide significance 

in the original GWAS study of the GRaD cohort. 

Some 20 genes have been described as candidate genes for reading-/language-related traits and 

disorders, based on a range of different mapping approaches2. Supplemental Table 12 gives gene-

based p-values from our GenLang GWAS meta-analysis, calculated by MAGMA20, for each of these 

genes. Variation in one of these genes, namely DCDC2, showed association with nonword reading that 

passed the significance threshold for multiple testing of 20 genes and 2.15 independent GenLang traits 

(p<0.0012). DCDC2 was originally identified in a linkage region for dyslexia susceptibility, and SNPs in 

and near this gene were subsequently associated with dyslexia in candidate gene studies21, although 

some investigations including a meta-analysis of seven studies have failed to support this22. Many 

dyslexic children perform poorly on nonword reading tests23. No single candidate SNP highlighted in 

prior studies of DCDC2, nor in any other candidate gene, was significantly associated with any of the 

traits in the GWAS meta-analysis results after correction for 54 SNPs and 2.15 independent GenLang 

traits (p<4.31x10-4) (Supplemental Table 13).  
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Multivariate GWAS analysis for word reading 

To improve the power of our GWAS meta-analysis and to gain insights into biological pathways shared 

by the traits of interest, utilizing the high genetic correlations between the traits, a multivariate GWAS 

analysis was performed with MTAG24. This approach improves the effect estimates of univariate meta-

analysis results by incorporating information of other genetically correlated traits. Although MTAG 

generates output for each input trait, the results for word reading were used for all follow-up analyses, 

because the univariate word reading GWAS meta-analysis has the largest sample size (27,180 for the 

European-ancestry analysis, compared to 12,411-17,278 for the other three traits). Although no single 

SNP reached genome-wide significance in this multivariate word reading analysis (Supplemental Figure 

4), the SNP-based heritability increased from 0.16 (se=0.04) to 0.29 (se=0.02). MTAG estimated the 

GWAS equivalent sample size of the multivariate word reading results as 41,783, compared to 27,180 

for the univariate results, further indicating the increased power provided by MTAG. The multivariate 

word reading results were used for an array of follow-up analyses utilizing genetic correlations, gene 

property analysis in MAGMA and partitioning heritability. 

 

Genetic correlation with structural brain imaging traits 

We performed a literature review to select 58 structural neuroimaging traits in the UK Biobank 

encompassing brain regions and white matter tracts with known links to aspects of reading and 

language (see Methods). These traits included surface based morphometry (SBM; surface area and 

thickness; Supplemental Figure 6) phenotypes and diffusion tensor imaging (DTI; mean and weighted 

mean fractional anisotropy; Supplemental Figure 7) results. As many of these brain-based phenotypes 

were significantly correlated with each other, genetic correlations among their summary statistics 

were calculated (Supplemental Figure 8) and were used to calculate the number of independent traits 

for multiple testing correction. One trait showed significant genetic correlation with the multivariate 

word reading results (p<0.05 / 24.85 independent traits = 2.01x10-3): the surface area of the banks of 

the superior temporal sulcus (STS) of the left hemisphere (Figure 2; Supplemental Table 14). Functional 

MRI studies have linked this region to different aspects of written and spoken language processing25-

28. To investigate further how the different reading- and language-related traits contribute to these 

findings, we went on to specifically assess genetic correlations for banks of the left STS with the results 

from the original univariate GenLang GWAS meta-analyses, finding consistent correlations (range 

0.18–0.23, Supplemental Table 15).  
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Figure 2: The multivariate word reading results show significant genetic correlation with the cortical 

surface area around the left superior temporal sulcus. Genetic correlations (rg) were estimated with LDSC. 

Included traits are 58 structural brain imaging traits from the UK Biobank selected based on known links of 

regions and circuits with language processing. The results of the 22 cortical surface areas are shown; grey areas 

were not included in the analysis. *Significant genetic correlation after correcting for 24.85 independent brain 

imaging traits (p<2.01x10-3). Full results can be found in Supplemental Table 14 and Supplemental Figure 6 and 

7.  

 

Genetic correlation with traits from the UK biobank and brain-related traits from LD hub 

We went on to assess genetic correlations of the multivariate word reading results with 20 cognitive, 

education, neurological, psychiatric and sleeping-related traits and 515 additional UK Biobank traits 

using LD hub. To further investigate overlaps with IQ, genetic correlations between these 535 traits 

and the published GWAS summary statistics for full-scale IQ16 (n=257,828) were obtained as well. A 

total of 143 traits showed significant genetic correlations with the multivariate word reading results 

after correction for multiple testing (p<0.05/(535*2)=4.67x10-5; Supplemental Table 16), while 245 

traits were genetically correlated with full-scale IQ; 135 traits showed significant correlations both with 

word reading and full-scale IQ. Traits with strong genetic correlations with either word reading, full-

scale IQ or both traits were related to education, eyesight, chronotype, wellbeing, lifestyle, physical 

health and exercise and socioeconomic status. Representative traits are plotted in Figure 3. The genetic 

correlations of reading and full-scale IQ with other traits had similar directions and effect sizes, but 

several differences were evident. Cognitive and education-related traits were more highly genetically 

correlated with full-scale IQ than reading. In addition, several psychiatric and wellbeing traits showed 

significant (negative) genetic correlations with full-scale IQ but not with reading, for example 

depressive symptoms, cross-disorder susceptibility (from the Psychiatric Genomics Consortium 

GWAS), and tense, hurt and nervous feelings. In contrast, several traits related to physical health and 
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lifestyle showed larger genetic correlations with the multivariate reading results than with full-scale 

IQ, including BMI, reduced alcohol intake as a health precaution, and usual walking pace. 

 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.466897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.466897
http://creativecommons.org/licenses/by/4.0/


17 

 

Figure 3: Genetic correlation results of the multivariate reading analysis, with comparisons to those for the 

largest published GWAS of cognitive performance in LDhub. Summary statistics for full-scale IQ (n=257,828) 

were obtained from the Social Science Genetic Association Consortium16. Genetic correlations between the 

multivariate word reading results (blue-green), full-scale IQ (purple) and traits in LDhub reveal an overlap with 

cognitive traits, education, eyesight, chronotype, lifestyle, wellbeing, psychiatric disorders, pain, physical health 

and exercise, and socioeconomic status. A subset of representative traits is shown, out of 143 traits that showed 

significant associations with the multivariate word reading results and 245 traits that showed significant 

correlations with full-scale IQ, of which 135 traits overlap, after correction for multiple testing for 535*2 traits 

(p<4.67 x 10-5). Significant correlations are shown in dark colours, non-significant correlations in light colours. 

Full results can be found in Supplemental Table 16. Genetic correlation (rg) is presented as a dot and error bars 

indicate the standard error. 

 

Evolutionary analysis 

We used LDSC heritability partitioning29 to study the heritability enrichment of the multivariate reading 

results for five annotations reflecting different aspects of human evolution spanning periods from 30 

million to 50,000 years ago (Figure 4; Supplemental notes). Annotations include human gained 

enhancers (HGE) active in fetal and adult brain tissue, ancient selective sweep regions, Neanderthal 

introgressed SNPs and Neanderthal depleted regions. The multivariate reading results were 

significantly enriched for Neanderthal depleted regions, after correction for the five annotations 

analysed (p<0.01) (Supplemental Table 17). These regions are large stretches in the human genome 

that are depleted for Neanderthal ancestry, possibly due to critical functions in Homo sapiens and 

intolerance to gene flow30.  
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Figure 4: LDSC heritability partitioning of multivariate reading GWAS identifies significant enrichment in 

Neanderthal depleted regions. Five annotations were studied, reflecting different aspects of human evolution 

from diverse periods from 30 million to 50,000 years ago. Left: Overview of the approximate time frames 

captured by the five annotations. Mya: million years ago; kya: thousand years ago; HGE: human gained 

enhancers. Right: The -log-10 p-values of the partitioning heritability analysis of the multivariate reading results. 

The dashed line shows the p-value threshold for significant enrichment after Bonferroni-correction for testing 5 

annotations. Results are also available in Supplemental Table 17. 

 

Functional enrichment using heritability partitioning and MAGMA gene property analysis 

We applied LDSC heritability partitioning analyses29 to determine whether the heritability of the 

multivariate reading analysis is enriched in specific functional regions of the genome. We used 489 

annotations reflecting tissue-specific chromatin signatures, as most variants identified in GWAS studies 

are located outside coding regions and are often found enriched in functional regions of the genome 

such as promoters, enhancers and regions with open chromatin. After correcting for testing 489 

annotations (p<1.02x10-4), three annotations showed significant heritability enrichment for reading: 

histone-3 lysine-4 monomethylation (H3K4me1) in two fetal brain samples and the adult brain 

germinal matrix (Figure 5; Supplemental Figure 9 and Table 18). H3K4me1 is considered a marker for 

enhancer regions.  
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Figure 5: SNP-based heritability of reading is significantly enriched in brain enhancers. 489 annotations of 

tissue-specific chromatin signatures were used to analyse the multivariate reading results with LDSC heritability 

partitioning. Only brain annotations are shown; full results are available in Supplemental Figure 9 and 

Supplemental Table 18. PCN: primary cultured neurospheres. The graph shows log-10 p-values on the y-axis and 

brain region-specific chromatin mark on the x-axis. The dashed line shows the p-value threshold for significant 

enrichment after Bonferroni correction for testing 489 annotations.  

 

Next, we used MAGMA gene property analysis20 to study whether the multivariate reading results are 

enriched in a specific tissue or brain cell type, using tissue-specific and cell type-specific gene 

expression data in FUMA31,32. As MAGMA corrects for average expression, each comparison can only 

answer the question of whether the tissue or cell type is more related to the multivariate reading 

results than the average of the tissues or cell types in the dataset. After correction for 83 tissues 

(p<6.02x10-4), no relation was found of the multivariate reading results with tissue-specific gene 

expression patterns of adult tissues from GTEx and brain tissues of a specific (developmental) time 

from Brainspan (Supplemental Figure 10 and Table 19). In the cell type-specific gene expression 

analysis, three single-cell RNA-sequencing datasets of embryonic, fetal and adult brain tissue were 
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used. After correction for 142 cell types (p<3.09x10-4), the multivariate reading results were 

significantly associated with one of the mature neurons from the fetal dataset: red nucleus neurons 

(Supplemental Figure 11 and Table 20). This association could reflect an association with this specific 

nucleus, or with the higher maturity of the neurons compared to the other cell types in the fetal 

dataset. The red nucleus is a large subcortical structure in the ventral midbrain that is part of the 

olivocerebellar and cerebello-thalamo-cortical systems. It plays an important role in locomotion and 

non-motor behaviour in various animal species, and in humans might also play a role in higher cortical 

functions33. A trend was observed for a relation with GABAergic neurons from the embryonic dataset.  
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Discussion 

We performed GWAS meta-analysis of five quantitative reading- and language-related traits: word 

reading, nonword reading, spelling, phoneme awareness and nonword repetition, in sample sizes (up 

to ~34,000 participants) that are substantially larger than any prior genetic analyses of reading and/or 

language skills assessed with neuropsychological tools (n=1,331-10,819)3-5,34-36. We identified genome-

wide significant associations for word reading (rs11208009 at chromosome 1, p=1.10x10-8), 

highlighting DOCK7, ATG4C, ANGPTL3 and USP1 as potential new candidate genes. Other SNPs from 

the locus have been previously associated with triglyceride and cholesterol levels37, but may represent 

an independent association signal. Robust SNP-based heritabilities were observed, ranging from 0.13 

for nonword repetition to 0.26 for nonword reading. These SNP-based heritabilities are similar to those 

of the related trait dyslexia (estimates range from 0.15 to 0.25 on a liability scale)38,39, psychiatric traits 

such as ADHD symptoms in adults (0.22)40, and brain imaging traits such as cortical surface area (range 

0.12–0.33 for different cortex regions)41 and cortical thickness (range 0.08–0.26)41 and they are larger 

than that of psychiatric traits such as major depression (0.08)42 and alcohol dependence (0.09)43. So, 

despite highlighting the need for larger sample sizes to identify more than one genome-wide significant 

locus, our GenLang GWASs already allowed for multiple informative follow-up analyses based on the 

full dataset. 

Word reading, nonword reading, spelling, and phoneme awareness largely share the same genetic 

architecture, as is evident from genetic correlation analyses, as well as the three-factor model in which 

one factor explains most of the variation in these four traits. Nonword repetition, IQ and educational 

attainment have, at least in part, a different genetic foundation, as reflected in the residual genetic 

variation of these traits not captured by the model. These findings are consistent with multiple 

behavioural studies showing a distinction between nonword repetition and other reading- and 

language-related traits44. They are also in line with results of recent structural equation modelling of 

genetic trait interrelatedness for 11 different reading- and language-related measures in the ALSPAC 

cohort, which identified a shared genetic factor accounting almost fully for the genetic variance in 

literacy-related phenotypes, but for only 53% of that in nonword repetition45.  

The five reading- and language-related traits in GenLang also showed high genetic overlaps with full-

scale IQ and educational attainment, in line with the widespread pleiotropy found between many 

aspects of cognitive functioning including language, reading, mathematics and general cognitive 

ability4,46. Given the evidence of a highly shared genetic architecture between word reading, nonword 

reading, spelling, and phoneme awareness, we performed a multivariate analysis with MTAG, to 

increase our power and reduce multiple-testing constraints for follow-up analyses of biological 
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pathways. The multivariate word reading results showed genetic correlations with phenotypes related 

to education, eyesight, chronotype, wellbeing, lifestyle, physical health, exercise and socioeconomic 

status. These associations may in a large part reflect shared biology between the reading-/language-

related traits and cognitive abilities, educational attainment and socioeconomic status. No significant 

genetic correlations were observed with neuropsychiatric disorders based on available data in LDhub. 

However, we note that summary statistics from the current investigation have also been used to 

investigate genetic overlaps with self-report of dyslexia diagnosis in an independent GWAS by 

23andMe (~52k cases), yielding substantial negative genetic correlations between GenLang 

quantitative traits and dyslexia status (e.g. -0.71 for word reading, -0.75 for spelling) as reported in a 

preprint by Doust et al. 3839. The pattern of findings is also likely to be influenced by genetic nurture47, 

relating to the socioeconomic status of the family, as was recently found for polygenic score analyses 

of cognitive traits48. Future investigations including information about nontransmitted alleles49, or data 

from siblings48, may help to disentangle pleiotropy from genetic nurture.  

Beyond pleiotropy, some evidence of differences in trait aetiology was observed in our genetic 

correlation analysis with components (identified via decomposition analysis) from genome-wide 

analysis of school grades in the Danish iPSYCH cohort18 and with results of a GWAS-by-subtraction 

analysis of educational attainment and cognitive performance17. The Danish school grade <component 

3=, corresponding to relatively better performance in oral than written exams, showed negative 

genetic correlations with phoneme awareness and spelling results in GenLang. In other words, higher 

scores on phoneme awareness and spelling appear to be genetically correlated with better 

performance in written than in oral exams. This may reflect the greater importance of phoneme 

awareness and spelling for proficient writing than for oral language. <Component 4=, corresponding to 

relatively better performance in Danish (the native language of the participants in that study) as 

compared to performance in English, showed negative genetic correlations with our GenLang nonword 

repetition measure, possibly reflecting the particular importance of verbal short-term memory in 

second-language learning50,51. The results of the GWAS-by-subtraction, previously suggested to 

represent so-called <non-cognitive= abilities related to educational attainment such as motivation, 

curiosity and persistence, were genetically correlated with word reading, nonword reading, and 

nonword repetition in GenLang. 

Human abilities to process spoken and written language depend on an array of distributed brain 

circuits52-56. We performed a genetic correlation analysis of our multivariate GenLang GWAS with 

summary statistics from 58 MRI-based neuroanatomical phenotypes, chosen because they concerned 

brain areas and/or tracts with known links to language processing53-56. This selection included brain 

regions involved in early modality-specific pre-processing of spoken and written language, for example 
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the auditory regions in transverse temporal gyrus, also known as Heschl’s gyrus, and the superior 

temporal gyrus (spoken language), and several other temporal regions (written language). Other 

regions included are involved in aspects of language comprehension, including the middle temporal 

gyrus, the inferior parietal area and parts of the inferior frontal gyrus. We identified a significant 

genetic correlation of our multivariate GWAS with cortical surface area of the banks of the superior 

temporal sulcus (STS) on the left hemisphere. The STS is a location where the processing of spoken and 

written language converges, in between modality-specific pre-processing and language 

comprehension25-28. A broad range of language-related functions have been previously linked with the 

left STS through (meta-analyses of) fMRI and PET studies, including those essential for the reading- and 

language-related traits included in the GWAS meta-analyses: sublexical processing of speech57,58 and 

representation of phonological word forms59. The importance of this brain area for reading-related 

traits is also evident from a meta-analysis of structural MRI studies that found lower grey matter 

volume in the left STS related to reading disability and poor reading comprehension60. Thus, findings 

from the genetic correlation analysis are consistent with the role of the STS as a hub where the 

processing of different language modalities gets integrated, as well as the lateralization of such 

functions.  

Capacities for acquiring spoken and written language appear to be unique to our species, involving 

underlying skills that emerged on the lineage leading to modern humans61,62. We used heritability 

partitioning to analyse five annotations representing different timeframes and aspects of human 

evolution. Genomic regions that are significantly depleted of Neanderthal ancestry were enriched for 

genetic variants showing associations in our multivariate GenLang GWAS. Neanderthal depleted 

regions are thought to correspond to genomic loci that were intolerant to the gene flow from 

Neanderthal populations into Homo sapiens which took place around 50-60 thousand years ago30. 

These loci are enriched for promoters and regions conserved in primates63, as well as enhancers 

present in many tissues and those specific for fetal brain and muscle64. Only brain enhancers show 

signs of stringent purifying selection against Neanderthal variation, indicating that these regions mark 

parts of the genome where variation has a high probability of deleterious consequence64. Our results 

may reflect divergent selection acting on skills that underlie language in humans compared to 

Neanderthals. However, in our analyses we could not pinpoint any specific timeframe of human 

evolution during which genetic variants associated with reading- and language-related traits were 

introduced. 

Regarding functional implications of our findings, heritability partitioning analyses of the multivariate 

GenLang GWAS results identified enrichment in enhancer regions present in fetal brain tissue and the 

adult germinal matrix. The enhancer regions of the germinal matrix are highly similar to those of fetal 
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brain tissues, and not the other adult brain tissues we studied, likely reflecting the neural stem cell 

population present in that tissue65. In these analyses there was no specific association with one 

particular brain cell type. However, follow-up work with MAGMA, using single-cell RNA sequencing 

data from fetal, embryonic and adult brain, uncovered a significant association with fetal neurons from 

the Red nucleus, which may relate to the more adult state of these neurons compared to the other 

cell types in the fetal dataset66. The MAGMA analysis could not be used to test for replication of the 

association with (fetal) brain tissue of the LDSC heritability partitioning, as results in this case are 

corrected for the association with the average expression of the dataset20,31, and the datasets with 

fetal data only included brain samples.  

We used the GWAS meta-analysis results to investigate evidence for association of previously reported 

candidate SNPs/genes and suggestive genome-wide screening results from prior studies of reading-

/language-related traits and disorders. Out of the 54 candidate SNPs and 20 candidate genes that we 

assessed (none of which met genome-wide significance), only DCDC2 yielded an association that 

survived correction for multiple testing in the context of targeted replications. This locus showed 

association only at the gene-based level and with one trait: nonword reading. Some previously 

reported associations in the literature could reflect the specific language, phenotype, or recruitment 

procedure of the cohort in which the gene or variant was investigated, and/or differences between 

contributions of common and rare variation at a locus of interest. Yet the lack of support here also 

suggests that false positive results have made an impact on the field, most likely related to limited 

sample size in prior reports, which is known to elevate the risk of type-1 error67. Few SNPs have shown 

genome-wide significant associations (p<5 x 10-8) in previous GWAS studies of quantitative reading-

/language-related traits3,5. In our GWAS-meta analysis, the SNP rs1555839, previously associated with 

rapid automatized naming and rapid alternating stimulus5, was significantly associated with spelling. 

Overall, these results highlight the need for a genome-wide perspective, and the importance of large 

well-powered samples, if we are to obtain reliable insights into the role of common genetic variants in 

language- and reading-related traits.  

Reading- and language-related phenotypes pose special challenges for scaling-up genetic analysis, 

since psychometric assessments can be labour-intensive to administer and score, and because of the 

heterogeneity introduced by differences in assessment tools, ages, populations and languages, among 

other factors68,69. One-item questions have enabled increases in sample size for GWAS of a wide range 

of traits and disorders, especially when available through large resources such as the UK Biobank. For 

example, a recent paper reporting development of a polygenic index repository included a polygenic 

score for a one-item question asking adult participants (customers of 23andMe) "at what age did you 

start to read?"70. This "age-started-reading" item was somewhat confusingly referred to in that 
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study as "childhood reading". While answers to the question were available in a large sample (n of 

>173k), the item has substantial limitations, including its reliance on adult self-report of the timing of 

specific events from early childhood, ambiguities over how to interpret the phrase "start to read", as 

well as confounding effects of regional, cultural and historical differences in the age at which children 

first receive formal reading instruction. Moreover, the age a person started to read is a poor proxy of 

reading skill because of the large variation in the developmental trajectories of reading acquisition; in 

other words, children who learn to read relatively late in childhood can still become perfectly proficient 

readers. No validated questions have yet been described that adequately capture interindividual 

variability in reading and language skills in the normal range, which still requires administration of 

psychometric tests. The GenLang Consortium was established as an international effort by multiple 

research teams with the aim of overcoming such difficulties through a range of strategies, and enabling 

large-scale well-powered investigations of genomic underpinnings of these important traits. 

This first wave of analysis from GenLang represents the largest GWAS meta-analyses for direct 

quantitative assessments of reading- and language-related abilities to date, including 22 cohorts with 

data available for at least one of the phenotypes. Nonetheless, although substantially increased over 

prior work in this area, sample sizes may still be considered relatively modest compared to the state-

of-the-art for genetic association analyses of other complex traits. While they captured a significant 

proportion of the genetic variation underlying each phenotype, yielding several novel insights into the 

associated biology, detection of genome-wide significant loci was still limited. In addition, a number of 

phenotypes of interest (such as those that tap into syntactic skills) could not (yet) be pursued due 

inadequate sample sizes, even when combining data available from multiple cohorts. We note that 

despite our best efforts at harmonizing the included datasets, and limited signs of heterogeneity in the 

results based on Cochran Q statistics, LDSC intercepts and genetic correlations between subsets of the 

data, we cannot fully exclude that heterogeneity is introduced by the inclusion of data from different 

assessment tools, languages, and ages. The choice of assessment tools for future collection of reading- 

and language-related phenotypes for genomic studies, to increase the sample sizes of these GWAS 

meta-analyses and also to collect additional language-related phenotypes, should therefore be based 

at least partially on optimal matching with existing data. At the same time, we should invest in 

facilitating and simplifying the collection of language-related phenotypes, in part by developing and 

optimizing test batteries that could be reliably administered online in web/app-based settings. Indeed, 

these are major areas of focus for the GenLang consortium moving forward. 

In summary, our GWAS meta-analyses of five reading- and language-related phenotypes in sample 

sizes of up to ~34,000 participants have demonstrated significant SNP heritability for all traits, and 

identified genome-wide significant associations with word reading on chromosome 1 (rs11208009, 
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p=1.098 x 10-8). Structural equation models revealed a single factor accounting for much of the genetic 

architecture underlying word reading, nonword reading, spelling and phoneme awareness, prompting 

a multivariate GWAS analysis of these four highly correlated traits. The multivariate results were 

genetically correlated with cortical surface area of the banks of the left STS, a brain region where the 

processing of spoken and written language comes together. Finally, partitioned heritability analyses 

showed enrichments in fetal brain enhancers, highlighting links to early brain development, and in 

Neanderthal depleted regions, suggesting that genomic regions associated with emerging language-

related skills in Homo sapiens may have been intolerant to gene flow from other archaic hominins. 

These efforts by GenLang open up novel avenues for deciphering the biological underpinnings of 

spoken and written language.  
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Material and methods 

Phenotypes 

Word reading accuracy was measured as the number of correct words read aloud from a list in a time 

restricted or unrestricted fashion. Nonword reading accuracy was measured as the number of 

nonwords read aloud correctly from a list in a time restricted or unrestricted fashion. A nonword is a 

group of phonemes that looks or sounds like a word, obeys the phonotactic rules of the language, but 

has no meaning. Spelling accuracy was measured by the number of words correctly spelled orally or in 

writing, after being dictated as single words or in a sentence. Phoneme awareness was measured in 

phoneme deletion/elision and spoonerism tasks. Nonword repetition accuracy was measured by the 

number of nonwords or phonemes repeated aloud correctly. Performance IQ, included for follow-up 

analyses of the results of the reading- and language-related traits, employing a matching study design, 

was measured with nonverbal subtests of broader batteries that test for cognitive skills. The 

Supplemental Notes contain further details of phenotyping procedures, and Supplemental Table 1 

provides an overview of the tests used to measure these phenotypes for each cohort. 

Study cohorts 

The meta-analyses included GWAS summary statistics from 22 independent cohorts. These were, 

alphabetically, the Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study), the Avon 

Longitudinal Study of Parents and Children (ALSPAC), the ASTON cohort, the Brisbane Adolescent Twin 

Sample (BATS), the Basque Center on Cognition, Brain and Language (BCBL) cohort, the Colorado 

Learning Disabilities Research Center (CLDRC) cohort, the Early Language in Victoria Study (ELVS), the 

Familial Influences on Literacy Abilities (FIOLA) project, Generation R (GENR), the Genes, Reading, and 

Dyslexia (GRaD) study, the Iowa study, the NeuroDys cohort, the Netherlands Twin Register (NTR), the 

Pediatric Imaging, Neurocognition, and Genetics (PING) cohort, the Philadelphia Neurodevelopmental 

Cohort (PNC), the Raine Study, the SLI Consortium (SLIC) cohort, the Saguenay Youth Study (SYS), the 

Twins Early Development Study (TEDS), the Toronto cohort, the Oxford Dyslexia cohort (UKDYS), and 

the York cohort (see Supplemental Table 1 for demographic characteristics for each cohort). The 

cohorts were collected in different countries: in the USA, UK, the Netherlands, Australia, Canada, 

Spain, Austria, Germany, Switzerland, Finland, Hungary and France (ordered by sample size). Most 

participants are therefore from countries with English as their main language. Other languages spoken 

by participants are Dutch (nf2,865, depending on trait), Spanish (nf1,236), German (nf1,227), Finnish 

(nf323), French (nf137) and Hungarian (nf225). Most cohorts mainly include participants of European 

ancestry, with the exception of the GRaD cohort, which consists of individuals of African-American and 

Hispanic ancestry, and the ABCD Study, GenR and PING cohort, which are multi-ethnic. The sample 

sizes per cohort range from 104 to 10,187 participants (104 to 5,080 participants of European ancestry, 
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defined by principal component analyses (PCA)). For each cohort, an Institutional Review Board (IRB) 

or ethical committee approved the respective studies, and participants provided informed consent. 

Different measures for the reading- and language-related traits had been assessed in each cohort and 

could be included in the GWAS meta-analyses (see Supplemental Notes for details of each measure, 

and Supplemental Table 1 for an overview of the included measures and sample sizes for each cohort). 

Data from children, adolescents and young adults were included in the meta-analysis (age at time of 

assessment ranging from 5 years to 26 years). Outlier samples, based on the phenotype data (>4 SD), 

were removed for each phenotype separately. The phenotype data were then adjusted for covariates 

(age, age2, sex and ancestry principal components; age-normed phenotypes were not adjusted for age 

and age2). See Supplemental Table 2 for details on the included covariates per cohort. Phenotype data 

for word reading, nonword repetition and performance IQ were standardized to z-scores. Phenotype 

data for spelling, phoneme awareness and nonword reading were rank transformed to acquire 

normally distributed data for all cohorts. For follow-up analyses involving multiple phenotypes - the 

genetic correlation analysis with LDSC71 and the multivariate GWAS analysis with MTAG24 - a separate 

rank transformation was performed for word reading, nonword repetition and performance IQ to 

further harmonize the phenotype data processing. For male- and female-only association analyses, 

phenotype data were filtered, adjusted and transformed for male and female subsets separately. 

The genotype data were subjected to stringent quality control according to a detailed analysis plan 

following standard procedures for GWAS, including SNP filters for minor allele frequency, call rate and 

Hardy-Weinberg equilibrium and sample filters including missingness and (for cohorts of unrelated 

individuals) relatedness. Cohort-specific details on quality control can be found in Supplemental Table 

2. Individuals of European ancestry were identified using PCA-based analysis of genetic diversity. 

Individuals with non-European ancestry were excluded from all cohorts, with exception of ABCD, GenR, 

GRaD and PING. For the ABCD, GenR and PING cohorts, two association analyses were performed, one 

including and one excluding individuals of non-European ancestry. Results of datasets including 

individuals of non-European ancestry were excluded from follow-up analyses with LDSC71, MAGMA20 

and MTAG24, since these methods utilize LD information based on European-ancestry reference data 

when raw genotyping data is not available (as is the case for this GWAS meta-analysis). The X 

chromosome was included by all cohorts except for NeuroDys. Genotype data were imputed using the 

Haplotype Reference Consortium version 1.1 panel for 20 out of the 22 cohorts, and using the 1000 

Genomes Project Phase 3 reference panel for the GRaD and SYS cohorts. Single variant association 

analyses were performed using linear regression methods with the imputed additive genotype dosages 

for the full dataset, and for males and females separately. For the X chromosome, males were treated 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.466897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.466897
http://creativecommons.org/licenses/by/4.0/


29 

 

as homozygous diploids. Descriptions for each cohort of the samples, phenotype measures, 

genotyping, quality control and analysis procedures can be found in Supplemental Table 1 and 2.  

Meta-analyses 

The summary statistics for each GWAS cohort for each trait were subjected to stringent quality control 

measures. SNPs were excluded from the meta-analyses based on low imputation quality scores <0.7, 

minor allele frequency <0.01 and minor allele count f10. Additional quality control of each summary 

statistics file was performed with EasyQC72.  

Meta-analyses of the summary statistics were performed with METAL73 (version March 2011), with 

effect size estimates weighted using the inverse of the corresponding standard errors. A total of 13,633 

to 33,959 individuals (12,411 to 27,180 individuals of PCA-selected European ancestry) of 10 to 19 

cohorts (no trait was available from all 22 cohorts) were included in the GWAS meta-analyses for the 

different traits (Table 1 and Supplemental Table 1). SNPs for which data were available from less than 

5,000 individuals were excluded from the meta-analysis results. For the heritability and genetic 

correlation analyses with LDSC, separate meta-analyses without genomic control correction were 

performed, because the LDSC regression intercept can be used to estimate a more powerful and 

accurate correction factor than genomic control71. Only data of individuals of the PCA-selected 

European subgroup were included, to allow use of pre-computed LD scores, as genotyping data of all 

cohorts was not available at a single site to allow the computation of LD-scores for the full partially 

admixed dataset.  

To accommodate the multiple-testing burden present in performing separate meta-analyses for the 

five reading- and language-related traits, while taking into account the high phenotypic correlations 

between them, we calculated the effective number of independent variables (VeffLi) from the meta-

analysis results using PhenoSpD74 (v1.0.0). The Bonferroni-corrected genome-wide significant P-value 

threshold was determined at 2.33x10-8 (5x10-8 / 2.15 independent traits).  

We investigated the degree to which differences between cohorts in age distribution and phenotyping 

tools introduced heterogeneity in the meta-analysis results. First, Cochran's Q test statistics, which 

assess whether estimated effect sizes are homogeneous across studies, were obtained with METAL, 

visualized with quantile-quantile plots (Supplemental Figure 3) and used to decide between a fixed-

effects and random-effects meta-analysis. Based on these analyses, a fixed-effects meta-analysis was 

performed for all traits except for nonword repetition. Second, LDSC intercept and ratio were 

inspected to distinguish polygenicity from confounders71. Third, meta-analyses of subsets of the 

cohorts were performed, split up by mean age or the type of reading test applied. Heterogeneity 

caused by difference in mean age and type of reading test was studied by calculating genetic 
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correlations between data subsets using LDSC11. In addition, meta-analyses for male- and female-only 

subsets of the data were run as sensitivity analyses, to investigate the degree to which males and 

females might show differences in SNP heritability for these traits and show genetic overlap as 

calculated with genetic correlation analyses. 

GenomicSEM 

To investigate the high genetic correlations between the reading- and language-related traits, and with 

cognitive performance and educational attainment, we used genomic structural equation modeling 

(GenomicSEM; version 0.03)19 to model the joint genetic architecture. Summary statistics of the five 

GenLang traits and performance IQ, and published GWAS summary statistics for cognitive performance 

and educational attainment from the Social Science Genetic Association Consortium 

(https://www.thessgac.org/data)16 were used as input. GenomicSEM first runs multivariable LDSC to 

obtain genetic covariance and sampling covariance matrices. Next, exploratory factor analyses were 

run using a maximum-likelihood factor analysis, for models with one to four factors. Confirmatory 

factor analyses were then run in GenomicSEM for the exploratory model that explained the largest 

part of the variance in the data. To determine which factor loadings from the exploratory model to 

include, different models were fitted and compared using the following model fit indices: the p-value 

of the chi-square test, Akaike Information Criterion (AIC), Comparative Fit Index (CFI), and Standardized 

Root Mean Square Residual (SRMS). The model with the highest p-value, lowest AIC, CFI >0.9, and 

SRMR <0.1, was considered the best fitting model. (A p-value above 0.05 may not be possible when 

including summary statistics of large samples19). 

Multivariate GWAS analysis 

A multivariate GWAS was performed on the four most highly correlated traits: word reading, nonword 

reading, spelling and phoneme awareness, using Multi Trait Analysis of GWAS (MTAG, v1.0.8)24, to 

maximize information for follow-up analyses on biological pathways, evolutionary significance, and so 

on. MTAG can perform a multivariate GWAS using summary statistics of different but related traits, 

while correcting for overlapping samples. Because MTAG takes its sample overlap estimates from 

LDSC71, univariate meta-analysis results including only individuals of the PCA-selected European 

subgroup were used. MTAG outputs a result for each trait; only the MTAG results for word reading 

were used, as word reading had the largest sample size, and because the MTAG results for the four 

traits were highly similar as a consequence of the high genetic correlation between the traits. For the 

follow-up analyses using LDSC71 and MAGMA20, the GWAS equivalent sample size estimated by MTAG, 

was used as sample size.  
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Heritability and genetic correlation 

LDSC71 (v1.0.0) was used to estimate genomic inflation and SNP-based heritability of the meta-analysis 

results, and to investigate genetic correlations11. All analyses were based on HapMap 3 SNPs only, and 

precalculated LD scores from the European 1000 Genomes reference cohort were used. For the LDSC 

analyses of the MTAG results, the GWAS equivalent sample size, estimated by MTAG, was used as 

sample size. The influence of confounding factors was tested by comparing the estimated intercept of 

LDSC to one, and the ratio of LDSC to zero. This ratio estimates the proportion of inflation in χ2 

attributable to confounding, as opposed to true polygenic effects. SNP heritability was estimated 

based on the slope of the LDSC. 

GWAS summary statistics for genetic correlation analyses with cognitive traits were obtained from the 

Social Science Genetic Association Consortium (full-scale IQ and educational attainment16; 

https://www.thessgac.org/data); the GWAS catalogue (noncognitive skills investigated with GWAS by 

subtraction17; ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90011874), and 

through collaboration with the iPSYCH consortium (GWAS analysis of Danish school grades18). 

PhenoSpD74 was used to calculate the effective number of independent variables (VeffLi) to inform the 

multiple testing correction. A total of 18.28 independent comparisons were performed in Figure 1, the 

p-value threshold is therefore set to p=2.74*10-3. 

Publicly available GWAS summary statistics of neuroimaging traits were obtained via the Oxford Brain 

Imaging Genetics Server75 (http://big.stats.ox.ac.uk/). Out of 3,144 brain imaging-derived traits with 

summary statistics available from the UK Biobank, a total of 58 neuroanatomical phenotypes were 

selected based on their relevance to language processing. Brain imaging traits encompassed surface-

based morphometric (SBM) and diffusion tensor imaging (DTI) phenotypes. For SBM, data were 

originally generated with Freesurfer by parcellation of the white surface (the surface area between the 

white and grey matter) using the Desikan-Killiany atlas. Both cortical surface area and mean cortical 

thickness were selected for brain areas that overlapped regions previously related to language 

processing, based on literature review53-56. For DTI, tracts spanning the extended language network52 

were selected, and fractional anisotropy values derived from both tract-based-spatial statistics and 

probabilistic tractography were used (both mean and weighted-mean fractional anisotropy). Again, 

PhenoSpd was used to calculate the effective number of independent comparisons. A total of 24.85 

independent brain imaging-derived traits were identified. Therefore the p-value threshold for a 

significant genetic correlation between the brain imaging-derived traits and the MTAG results was set 

to p=2.01x10-3 (0.05/24.85).In addition to our targeted analysis of brain imaging traits, genetic 

correlations were estimated between the MTAG results and summary statistics of 20 cognitive, 

education, neurological, psychiatric and sleeping-related traits and all 515 UK Biobank traits available 
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in LD Hub76 (v1.9.3, http://ldsc.broadinstitute.org/ldhub/). These 535 traits comprise all phenotypes 

available through LDhub with relevance to brain function (beyond neuroimaging traits), and all 

available traits from the UK Biobank. Genetic correlations between these 535 traits and the published 

GWAS summary statistics for full-scale IQ16 were obtained as well. The Bonferroni corrected p-value 

threshold for significance of the LDhub results was 0.05 / (535*2) = 4.67x10-5. Genetic correlations may 

reflect pleiotropy, correlation between causal loci or spurious associations, and can inform about 

shared biological mechanisms and causal relationships between traits77. 

Functional Mapping and Annotation of GWAS meta-analysis results 

The platform Functional Mapping and Annotation of Genome-Wide Association Studies32 (FUMA 

GWAS; https://fuma.ctglab.nl/; version 1.3.6a) was used to annotate the genome-wide significant 

variants and to calculate gene-based p-values. Using the SNP2GENE function, genome-wide significant 

loci were annotated with expression quantitative trait locus (eQTL) data from 4 different databases: 

GTEx V8 (brain samples only; http://www.gtexportal.org/home/datasets), the blood eQTL browser 

(http://genenetwork.nl/bloodeqtlbrowser/), the BIOS QTL browser 

(http://genenetwork.nl/biosqtlbrowser/), and BRAINEAC (http://www.braineac.org/). Loci were also 

annotated with information on previously associated traits from the GWAS catalog 

(https://www.ebi.ac.uk/gwas/).  

Gene and gene-set analysis 

MAGMA20 (version 1.08) gene analysis in FUMA was used to calculate gene-based p-values from SNPs 

located in the body of the gene and in the region 1kb upstream to include SNPs located in the promoter 

region. Look-ups were performed for candidate genes proposed in prior literature on reading-, speech- 

and language-related traits and disorders. MAGMA accounts for gene-size, number of SNPs in a gene 

and LD between markers. The gene-based analysis was performed with default parameters (SNP-wide 

mean model), with the European 1000 Genomes reference cohort phase 3 as reference panel. 

The MTAG results were further analysed using MAGMA gene property analyses, to study relationships 

with tissue-specific and cell type-specific gene expression patterns. Bulk RNA-sequencing data from 

GTEx V8 (http://www.gtexportal.org/home/datasets) and Brainspan (http://www.brainspan.org) of 

adult tissue samples and developmental brain samples were assessed in the SNP2GENE analysis in 

FUMA32. In addition, single-cell RNA-sequencing data from human embryonic (midbrain, 6-11 weeks 

post conception; Gene expression omnibus (GEO) accession number GSE76381), fetal (prefrontal 

cortex, 8-26 weeks post conception; GEO accession number GSE104276) and adult (Allen Brain Atlas 

cell types data of the middle temporal gyrus; http://celltypes.brain-map.org/) brain samples were used 
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in the Cell Type analysis in FUMA31. MAGMA performs a one-sided test which essentially assesses the 

positive relationship between tissue specificity and genetic association of genes. 

Partitioning heritability of chromatin and evolutionary signatures 

LDSC heritability partitioning29 was used to estimate the enrichment of heritability of the MTAG results 

in annotations reflecting tissue-specific chromatin modification patterns. Annotations were based on 

data from the Roadmap Epigenomics project and ENTEX, processed by Finucane et al.78.  

In addition, LDSC heritability partitioning was used to study the association with several annotations 

reflecting evolutionary signatures and annotations from different periods along the lineage leading to 

modern humans, ranging from around 50,000 years ago back to 30 million years, adapting a pipeline 

recently published by Tilot et al.79. The following annotations reflecting evolutionary features were 

used (details in Supplemental notes): 1) adult brain Human Gained Enhancers80, 2) fetal brain Human 

Gained Enhancers81, 3) ancient selective sweep regions82, 4) Neanderthal-introgressed SNPs83, and 5) 

Neanderthal-depleted regions30. All enrichments are controlled for the baseline LD v2 model29,84, and 

heritability enrichment in human adult and fetal HGEs were additionally controlled for adult and fetal 

brain active regulatory elements.  

 

Data availability 

The full GWAS summary statistics will be made freely available through the GWAS Catalog 

(https://www.ebi.ac.uk/gwas/) and the website of the GenLang network (www.genlang.org).  

 

Code availability 

Code used to perform the meta-analysis and follow-up analyses is available at 

https://gitlab.gwdg.de/else.eising/genlang_quantitative_trait_gwasma. 
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