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Abstract:

The linear mixed effects model (LME) is a versatile modeling approach to deal with correlations among
observations. Despite the rising importance of LME due to the complex designs of large-scale
longitudinal population neuroimaging studies, LME has seldom been used in whole-brain imaging
analyses due to its heavy computational requirements. Here, we introduce afast and efficient mixed-
effects algorithm (FEMA) that makes whole-brain vertexwise, voxelwise and connectome-wise LME
analyses possible. In a series of realistic simulations, we demonstrate the equivalency of statistical
power and control of type | errors between FEMA and classical LME, while showing orders of
magnitude improvement in the computational speed. By applying FEMA on diffusion images and
resting state functional connectivity matrices from the Adolescent Brain Cognitive Development
Study*™ (ABCD) release 4.0 data, we show annualized changes in voxelwise fractional anisotropy (FA)
and functional connectomes in early adolescence, highlighting a critical time of maturing connections
among cortical and subcortical regions. FEMA enables researchers to quickly examine the relationships
between large numbers of neuroimaging metrics and variables of interest while considering complex

study designs including repeated measures and family structures.
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Introduction:

As magnetic resonance imaging (MRI) studies have moved to the population scale, the size of datasets
and complexity of relationships among observations have posed greater challenges to neuroimaging
analyses. In the Adolescent Brain Cognitive Development (ABCD) Study™, for example, alongitudinal
design and inclusion of twins and siblings make it necessary to consider correlations among
observations. The flexibility of modeling random effects in the linear mixed effects model (LME) has
allowed researchers to account for such repeated measures, family relatedness, and longitudinal
observations (Beck et al., 2021; Bernal-Rusi€l et al., 2013; Chen et al., 2013; Dick et al., 2021).
Complex study designs and the heterogeneity in the study population can be parameterized by the
random covariance in the LME leading to an increase in statistical power and reduction of inferential
biases (Bernal-Rusid et al., 2013). These statistical characteristics make the LME an increasingly
important tool in analyzing big population data. However, there has been limited use of the LME in
brain imaging studies requiring image-wise inferences (e.g. vertexwise, voxelwise, and connectome-
wise), due to computational demands. Hence, the full potential of the massive population imaging
samples currently collected, e.g., to reveal more of the complexity of human neurodevelopment, remains
to be realized.

The classical LME requires extensive computational resources. The numeric solution for LME is
typically obtained through Maximum Likelihood or Restricted Maximum Likelihood (REML) which the
parametrized study covarianceisiteratively inverted in order to identify the random effects that
maximize the likelihood of the model (Bernal-Rusiel et al., 2013; Chen et al., 2013). Because of this
procedure, the computational complexity scales polynomially with the number of data entries, making
the classical solutions difficult to execute on large scale population data. It is even more challenging for

whole-brain analyses, as the dependent variable can be tens of thousands of voxels, surface vertices, or
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connectivities between regions of interest (ROI). Even a procedure that takes a minute to fit asingle
LME analysis at a single voxel would require aimost a year to complete for a whole-brain voxelwise
analysis. Thereisaneed for afast and efficient LME algorithm that is capable of handling large-scale
imaging data. The release of datafrom the ABCD Study (Casey et al., 2018) makes this unmet need
more salient, as best practices for statistical analysis are to control for cohort heterogeneity and
relatedness due to the inclusion of multiple siblings and twins in the sample, in order to correctly model
longitudinal measures (Dick et al., 2021; Smith and Nichols, 2018).

Previous attempts to extend LME for usein large-scale neuroimaging data analysis have relied
on adivide-and-conquer approach (Bernal-Rusiel et al., 2013; Chen et al., 2013). For example, the LME
toolbox for longitudinal analyses released with Freesurfer starts cortical surface vertexwise LME by
segmenting verticesinto asmaller set of regions of interest that share similar random effects and are
geodesically close, thus reducing the number of outcome variables and the size of the covariance matrix
whose inverse must be calculated (Bernal-Rusiel et al., 2013). However, it currently lacks support for
complex study design, such asinclusion of family members, and imaging measures beyond cortical
surfaces. The LME tool implemented in AFNI utilizes the parallelization by performing multiple threads
of the LME solver in R (from the Ime4 package) to derive the results (Chen et al., 2013). It quickly
becomes infeasible for large-scal e population imaging data with thousands of dependent variables. The
core of both Freesurfer LME and AFNI LME is REML which still needs polynomial time to estimate
the parameterized covariances. Finally, one approach to make mixed effects modelling practical for
neuroimaging isto fit only amarginal model and rely on a sandwich estimator of standard errors to
incorporate repeated measures covariance. The SWE toolbox takes this approach, using aworking
covariance of independence it fits an ordinary least squares regression but then estimates intra-block

covariance when conducting inference (Guillaume et al., 2014). Although SWE is computationally
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efficient and produces valid inferences, a LME model would be more efficient in whitening data and
model, leading to improvement in the statistical power.

Here, we present afast and resource efficient LME algorithm, called the Fast and Efficient
Mixed-effects Algorithm (FEMA), that can perform whole-brain image-wise analyses on complex large-
scale imaging datain a computationally efficient manner. By utilizing the method-of -moments estimator,
effect binning, and sparsity of the random effects design matrices, FEMA finishes whole-brain image-
wise LME analyses within minutes, compared to days or even months required using REML solvers,
thus allowing the analyses to be run using ordinary computer without the need for large memories or
extensive parallelization. Using both realistically simulated data and empirical data from the ABCD
Study, we have demonstrated that the results from FEMA are consistent with classical REML results
while the required resources and computational times are dramatically reduced, allowing researchers to
quickly examine the relationships between neuroimaging metrics and variables of interest while
considering repeated measures, family structures, and other complex study designs. Applying FEMA to
longitudinal multimodal brain imaging data of the ABCD Study revealed the neurodevel opmental
patterns of human brain change during early adolescence regarding tissue microstructure and resting-

state functional connectivity networks.

Material and Methods

Figure 1 illustrates the algorithmic design of FEMA in three steps. First, FEMA sets up the moddl asa
classical LME with random intercept that characterizes the variation within and between groups. As an
example, we use an intercept with three independent components that characterizes the variance

attributable to the family relatedness (F), the variance attributable to individual subjects (S), and the
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measurement errors (E) (Figure 1, pand 1). Second, the random effects are estimated through moment-
estimatorsinstead of classical maximum likelihood approach, utilizing the benefit of large sample size
and sparse indicator matrices (Figure 1, panel 11). Third, the fixed effects are estimated by generalized
least squares given the estimated random effects, leveraging binning of the random effectsinto finite
discrete configurations to reduce the number of parameterized covariance matrix inversions (Figure 1,

panel 111). In the following section, we elaborate each of these three steps.

Model Set Up

Asin most of the classical analytic approachesin brain mapping, we assume an additive linear

relationship between imaging measures (y) and covariates of interest (x) plusrandom variations (u), as

Yij = x:iB; + pi#(1)

fori € 1..N observationsand j € 1..] imaging measures (voxels/vertices/connectivities), and x; 5;
isthe dot product of avector of covariates with a vector of fixed effects. We follow a mass-univariate
approach where we will not attempt to model the dependence between the / imaging measures, but we
will combine information across the measures to obtain reliable variance parameter estimates.

In the fixed effects only setting (e.g. smple linear regression model, LM) or marginal models
(e.g. generalized estimating equation), u accounts for the marginal errors. The LME, on the other hand,
assumes the random term, 1, captures not only the uncorrelated measurement error but in addition
correlations among observations attributable to the known structure of the data entries. We assumeitis
normally distributed, for each imaging measure, j

uj ~N(0,V;)#(2)
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For example, given the longitudinal design and inclusion of family members, random intercepts for
subject and family induce a marginal variance structure V; that can be parameterized as the variance
attributable to living in the same family (F), repeated measures from the same subject (S), and random
errors (E), assumed to be independent and have compound symmetry:

Vi = O-}'?FZFZIIT + O}Z,SZSZ§ + 0}?51#(3)
where, generically, Z isan indicator matrix expressing the random intercepts, where row z; specifies the
membership of i-th observation, and each column corresponds to a different level of the random factor,
Zy; for families, Z for subjects, each with a corresponding variance parameter, o and o/, respectively;
sz' £ Isthe variance of the random uncorrelated measurement error. Echoing to the model set up in
equation (1), the random intercepts can be rewritten in matrix formasu; = Zpu; p + Zspjs + Iy g
using random effects vectors uy ; and us ; with dimension equal to the number of families and the
number of individuals, respectively.

The main computational bottleneck here is the estimation of V; for every imaging outcome
measure, as the computational complexity is at least 0(n?) in the number of observations, n, if REML is
used for each imaging measure. When the number of imaging measures, J, islarge, such as voxelwise
analyses, solving REML for every single measure would be computationally infeasible. In the following

section, we discuss how our algorithm overcomes this computational limitation.

Estimating the variance components

To overcome the computational bottleneck of estimating the parameterized covariance matrix, V;,

we
implemented the method of moments estimator to obtain the values of ¢ and o for each voxe j,

which isfast and unbiased with some sacrifice on statistical efficiency, asit is generally the case for
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MoM vs ML estimators (Ge et al., 2016; Haseman and Elston, 1972). For a given voxel j and for each

pair of observations (i, (") the expected value of the product of corresponding residuals ;7* and 9777 is:

E[f’ffsf’]rf's] = f,F(ZFZlIT)i,i’ + GjZ,S(ZSZé)i,i’ + sz,Er #(4)
where the residual vector iscomputed as ¥/** = Y, — XB; , B; = (X'X)™'X'Y;, the E operator represents
the expectation with respect to random effects, and (ZZ'),; ;» denotesthe (i,i") element of the ZZ" matrix.
Eqgn. (2) specifiesn(n — 1)/2 equations with 3 unknowns, allowing us to estimate the variance
parameters using ordinary least squares (OLS). Crucially, the OLS estimates can be expressed as a
simple matrix expression allowing usto simultaneously obtain the variance parameters for all
voxels/vertices. Given the marginal varianceis highly structured, as the indicator matrices are sparse and
have only a small number of possible configurations, the OLS procedure can be further simplified (Chen
et al., 2019). However, in our current implementation of FEMA, we kept the general form of solving
n(n — 1)/2 equations as the matrix multiplications enable the simultaneous mass-univariate estimations

across J measures.

Estimating fixed effects for the variables of interest

Once the three variance parameters are estimated for each j, the covariance matrix V; can be composed

per Eq. (3), and fixed effects estimated with generalized least squares.

~ _ -1 ’ _
Bi = (X'V;TIX) X'V Ty #(5)
with variance

Var(B;) = (X'V;7'X) " #(6)
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The test statistic for individual fixed effectsisthen computed as Wald’ s ratio, Sefé 3 For an arbitrary
]

contrast estimate C = ¢’;Wald' s ratio is computed using Var(C) = ¢'Var(f)c.

To further speed up the calculations, instead of separately inverting parameterized covariance, V;,
for each of J imaging measures, we grouped them on a regular multidimensional grid according to the
values of estimated random effects, binning 67, 6/% and 67 into only K sets of values, where K << J,
In a series of simulations, we will show how a finite number of gridded binsis sufficient to capture the

variance components for all input imaging measures while dramatically reducing the required

computational time.

Simulations
To evaluate the validity of our algorithm, we performed simulations with realistic data generated from
random effects models and covariance structure from the imaging data of ABCD Study. The ABCD
Study is alongitudinal study across 21 sites following 11,880 individuals starting at 9-11 years old, with
epidemiologically informed ascertainment and incorporation of afamily component, including
monozygotic twins, dizygotic twins, and siblings in the study samples (Casey et a., 2018). Given the
complexity of the ABCD data, we utilized its data structure to simulate realistic scenarios of large-scale
population imaging studies. Here, we randomly sampled covariates, repeated observations, and family
indices from the real ABCD data. The forward simulations assume
Yij = X + Wi
x~N(0,1)
uy ~N(0,V})

Vv, = j?FZFzg + aj?szszg + aj?EI#(7)

10
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where the fixed and random effects parameters were sampled as:

B; ~ unif (—0.02,0.02)

o/~ unif (0.2,0.8)
oGr + g5 + ojp = 1#(8)

The range of the parameters were chosen based on the observations reported in large-scale imaging
analyses, i.e. small effect sizes and evident effects of family and repeated measures (Dick et al., 2021).
We then forward simulated the imaging measures y, based on the sampled covariates and variance
components defined by subject indices (S) and family indices (F). We randomly generated the true
values of variance parameters and the fixed effects coefficients to see how different variance component
values would impact the validity and accuracy of the estimation of the parameters of interest. In each
simulation scenario, we simultaneously generated 5000 imaging measures, with randomly assigned
parameters for each imaging measure. The §; were set to 0 when we specifically examined the Type |
error rates. We repeated the smulations in two runs per scenario, resulting in smulating 10,000 random
imaging measures in each scenario. We then compared our FEMA with REML based LME (REML-
LME) in terms of: 1) validity and reliability of the fixed effects estimation; 2) the computational cost of
the algorithms; and, 3) the impact of model misspecification, i.e. providing fewer numbers of random

effects configurations.

Empirical Application

To demonstrate the utility of FEMA, we applied our method to ABCD data release 4.0 to examine
longitudinal changes in imaging measures during adolescence. The longitudinal images were collected 2
years after the baseline imaging scans. The ABCD Study utilized multi-modal imaging protocols,

including structural T1 images, multi-shell diffusion images, functional task MRI, and resting state

11
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functional MRI (Casey et al., 2018; Hagler et al., 2019). In our empirical application to showcase FEMA,
we focused on two imaging measurements: fractional anisotropy (FA) from diffusion MRI and
connectivities from resting-state functional MRI. Details of image processing and quality controls can be
found elsewhere (Hagler et a., 2019). FA derived from diffusion MRI reflects the underlying micro-
structural properties of the tissues (Tournier et al., 2011). The connectivities are the BOLD signal
correlations between brain regions, including functionally defined cortical parcels (Gordon et al., 2016)
and anatomically defined subcortical regions (Fischl et al., 2002), during resting-state functional MRI
scans. We investigated how voxe wise diffusion imaging measures and resting-state connectivity
measures changed over time as ABCD participants matured. In our analyses, the family 1Ds and subject
IDs were treated as indicators for random intercepts (Figure 1, panel | for example), capturing the
variance attributable to shared family relatedness and the within-person longitudinal stabilities (Dick et
al., 2021). The confounding variables include age-at-enrollment, sex, population structure (first 10
genetic principal components), MRI scanner, MRI software versions, parental incomes, and parental
education levels. The variable of interest was the difference in age between the first imaging scan and
the second imaging scan, alowing usto examine how the imaging measures changed over development.
Given that for both imaging modalities there are more than 100K voxels or between ROI connectivities,
itisinfeasibleto apply classical LME for these datasets. Therefore, we only compared FEMA with

naive applications of smple linear models (LM), highlighting the benefit of having afast and efficient
LME solver. To showcase the improvement of power of FEMA compared to LM, we calculated the

relative efficiency astheratio of effective sample sizes:

Nrgma _ Var(Bm)
Nyym Var(Brema)

Efficiency =

12
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Because the estimation of the effective sample sizeistaking the Var(f,,,) asthe nominator, whichis
negatively biased by failing to taking into consideration of family and subject dependence, thisisa
conservative comparison in terms of improvement in relative efficiency by using FEMA. For example, a
relative efficiency of 2 meansthat anaive LM analysis would require twice or more the sample size to

obtain the same accuracy as we obtain with FEMA.

Results:

Simulations

Compared to REML-LME, FEMA dramatically reduced the computational time without using parallel
processing (Figure 2a). With data entries equivalent to ABCD release 4.0 (n = 18K), FEMA obtained
results from 5000 voxels within seconds, whereas the REML solver required more than 33 hours to
finish (Figure 2b). Meanwhile, the statistical power was equivalent between FEMA and REML-LME
across different sizes of input observations (Figure 2b). Thetype | errors were well controlled for both
FEMA and REML-LME regardless of the underlying true number of random effects configurations,
despite that effect binning being held constant at 20 (Figure 2c). When we simulated the scenario of mis-
specifying the number of random effectsin FEMA, such asusing K = 20 for 5000 voxels with 100
different random effects, the estimated fixed effects were still robust (Figure 2d). Even with K much
smaller than the number of true random effect configurations (100), the mean squared errors are almost
the same as for the LME. The differences were negligible compared to the range of true values
(differencesin MSE: < 1le-7, true coefficient value range: -0.02 ~ 0.02). On the other hand, since the
computational time of FEMA only scales linearly with the number of bins (Supplementary Figure 1),
users can increase the resolutions of random effects without worrying about the feasibility of analyzing

whole-brain data.
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Empirical results - developmental changes on fractional anisotropy across voxels

To showcase the utility of FEMA, we performed voxelwise analysis on a measure derived from
diffuson MRI data of ABCD release 4.0. We examined the rate of change in FA while controlling for
age at recruitment, sex, scanner, household income, highest parental education, and first 10 genetic
principal components. The variable of interest in the regression mode! is the change of age between two
scans. The subject-wise repeated measures (S) and family relatedness (F) were specified as random
interceptsin FEMA. Despite large numbers of voxels (100x100x130), eligible observations (n=13,428
entries), clusters of families (N = 8197), and repeated imaging scans (5,022 second scans), FEMA
finished the analyses in 60 seconds without the use of parallel computing. The estimated random effects
indicate modest family effects across voxels and large variations in longitudinal stability (Figure 3A).
The random effects have distinct anatomical distributions despite no spatial priors being used in the
estimation process (Figure 3B for the variance in longitudinal stability, S, and Figure 3C for the variance
in family effects, F). Removing the F and S variability from the residuals results in improvement of
statistical power, and the voxels with high family effects or longitudinal stability benefit the most;
relative efficiency increases two-fold in the majority (Figure 3D). For the fixed effects, the annualized
rate of changein FA was most evident within the bilateral cingulum (Figure 3E), many voxels of which

survived the multiple comparison corrected threshold (p = 0.01/total number of voxels = 7.7e-9; Figure

3F).

Empirical results - developmental changes on resting state functional connectivities across cortical and

subcortical regions

14
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The versatility of FEMA also allows us to examine the annualized rate of change in resting state
connectivities (cortical parcels and subcortical regions, Figure 4). With the same model configuration as
the voxelwise analysis on FA, we examined how the resting state connectivities across cortical and
subcortical regions changed over time (582 ROIs in total, J= 169071 unique connectivities). FEMA
showed that the resting state connectivities had relatively low family effects and modest longitudinal
stability (Figure 4A). Nevertheless, the inference on the fixed effect of annualized rate of change still
benefited from having the S and F partitioned out from the residuals (Figure 4B). As shown in Figure 4C
and 4D, both S and F seem to follow the modularization of the connectivity groups, also referred to as
functional networks or communities (Baria et a., 2011; Gordon et al., 2016; Gordon et al., 2020) . The
rate of change was most evident in the connections within networks (Figure 4E), as increased
connectivities with age within each network were statistically significant after Bonferroni correction.
Several between-network connectivities were also significantly increased, such as between somatomotor
regions and auditory/visual cortices, and between cingulate and dorsal attention regions, reflecting the

ongoing cross modular integration during this developmental period.

Discussion

The aim of the study was to develop and validate the FEMA tool as away to make whole brain LME
analyses feasible. We have shown that, while the statistical power and type | errors are equivalent
between FEMA and REML-LME, the computational times were dramatically reduced in FEMA,
making it possible to perform large scale, whole brain imaging analyses quickly and efficiently,
regardless of imaging modality. FEMA is robust to model misspecification and when there is strong
evidence for family effects and longitudinal stabilities, FEMA can greatly improve power for statistical

inference by partitioning out this variability from the residual errors.
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Applying the FEMA tool to longitudinal multimodal brain imaging data with more than 13K
observations showed an interesting pattern of human brain changes throughout early adolescent
development in terms of tissue microstructure (Figure 3) and resting-state functional connectivity
networks (Figure 4). For both imaging modalities, there were widespread changes with age across the
brain, highlighting the benefit of using a voxelwise analysis.

A further benefit of using FEMA isthat we can map the estimated family and subject random
effects across the brain. Longitudinal stability showed larger effects compared to family for both
modalities. For FA, voxels nearer the cortical surface showed greater longitudinal stability than voxels
more inferior in the brain and across subcortical regions. This potentially highlights how the
microstructure of the cortical sheet may act as aunique ‘fingerprint’ afforded to each subject that is
stable over time. Subcortical voxels showed greater family effects, which may highlight that FA in
theseregions is either heritable or is related to experiencing a common environment. With this model
design, it isdifficult to tease apart these factors, as our measure of family is based only on whether
individuals belong to the same family unit. Future work will aim to incorporate genetic relatedness and
other environmental datato better partition these random effects. The resting-state functional
connectivity networks showed a similar difference in random effect sizesasFA, i.e., higher longitudinal
stability than family effects, across multiple networks. The dorsal attention, fronto-parietal and visual
attention networks appeared to show the greatest longitudinal stability, highlighting that connectivity
within these networks may be particularly reliable within an individual over early adolescence.

To conclude, FEMA yields statistical power and control of type | errors equivalent to classical
LME, while the computational speed isimproved by orders of magnitude. We found annualized changes
in voxelwise FA and functional connectomes in early adolescence, highlighting a critical time of

maturing connections among cortical and subcortical regions. We were further able to examine the
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topographical patterns of longitudinal stability and family effects. These results demonstrate the
potential of FEMA, which enables researchers to rapidly examine the relationships between voxelwise
neuroimaging metrics and variables of interest while considering repeated measures, family structures,

and complex study designs as those arising from repeated measures and family structures.

Code Availability
FEMA is publicly available on github (https://github.com/cmig-research-group/FEMA). The

devel opment version can be obtained by sending the request to authors.

Data Availability
Adolescent data used in the preparation of this article were obtained from the Adolescent Brain

Cognitive Development~ Study (ABCD Study®) (https://abcdstudy.org), held in the NIMH Data

Archive (NDA).
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Figure Legends

Figure 1. Estimation procedures of FEMA. First panel illustrates the example of model set up, with
random effects from family (F), repeated measures (S), and random errors (E). The second step involves
estimating the random effects through moment estimator (Panel 11). After binning voxelsimagesinto K

groups, the fixed effects are derived via weighted least square (Pand I11).

Figure 2. Results from simulations. Red indicates results from FEMA. Blue are results from REML-
LME. A. CPU time as afunction of sample size, estimating 5000 voxels. B. Statistical power of
detecting effect with Cohen'sd greater than 0.005. The blue and red lines/dots are overlapping with each
other, showing no distinction between two approaches. C. Type | errors given different number of true
random effect configurations, holding the binning number constant at 20. D. Mean square errors of the
fixed effects as a function of number of random effects bins, holding the true number of random effect

configurations at 100.

Figure 3. Rate of changes on fractional anisotropy (FA) among ABCD participants. A. Digtribution
of random effects on FA across all voxels. F is the variations attributable for living in the same family; S
is the subject specific variations, capturing the longitudinal stability of a given measurement; E isthe
independent random errors. B. Spatial distribution of S. C. Spatial distribution of F. D. The
improvement of the power comparing FEMA to LM, as a function of S+F. The x axisisthe sum of the S
and Fwhilethey axisistherelative efficiency. Larger the ratios indicate better in the statistical power.
E. Effect size distribution of the rate of change on FA across major fiber tracts. The distribution of Z

statistics was grouped based on the location of the voxels on the major fiber tracts, showing as gray
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colored violin plots in panel F. The corresponding Bonferroni threshold is shown by the red dashed lines

in the plot.

Figure 4. Rate of changes on resting state connectivitiesamong ABCD participants. A. Distribution
of random effects on the connectivities across all cortical parcels and subcortical regions. Fisthe
variations attributable for living in the same family; Sis the subject specific variations, capturing the
longitudinal stability of a given measurement; E is the independent random errors. B. Distribution of S
across connectomes, grouped according to the functional networks. C. Distribution of F. D. The
improvement of the power comparing FEMA to LM, asafunction of S+F. The x axisisthe sum of the S
and F whilethey axisisthe relative efficiency. Larger ratios indicate better statistical power. E. Effect
size distribution of the rate of change on connectivity across brain regions, grouped according to the
functional networks. The associations have been threshold according to the significance level in 0.05

after Bonferroni correction.
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Figure 1.

I. FEMA model set up
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