

1 **Multiple paths lead to salt tolerance - pre-adaptation vs dynamic responses**
2 **from two closely related extremophytes**
3

4 Kieu-Nga Tran¹, Guannan Wang¹, Dong-Ha Oh¹, John C. Larkin¹, Aaron P. Smith¹, Maheshi
5 Dassanayake^{1*}
6

7 ¹Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA

8 *Address correspondence to: maheshid@lsu.edu
9

10 **Keywords:** Extremophyte, *Schrenkia parvula*, *Eutrema salsugineum*, omics, convergent
11 response, pre-adaptation, stress-preparedness, dynamic response
12

13 **Abstract**

14 Salt tolerance is a complex trait with much of the underlying genetic variation and
15 integrated response strategies yet to be discovered from stress adapted plants. *Schrenkia*
16 *parvula* and *Eutrema salsugineum* are salt-tolerant extremophytes related to *Arabidopsis*
17 *thaliana* in Brassicaceae. We investigated their response strategies contrasted against the salt-
18 sensitive model, *A. thaliana* to cope with salt stresses via transcriptomic, metabolomic, and
19 ionomic adjustments. The extremophytes exemplified divergent routes to achieve nutrient
20 balance, build osmotolerance, boost antioxidant capacity, and extend transcriptomic support
21 for modified ion transport and stress signaling. Those led to similar molecular phenotypes
22 adapted to salt stress in the extremophytes, absent in *A. thaliana*. The predominant
23 transcriptomic signals in all three species were associated with salt stress. However, root
24 architecture modulation mediated by negative regulation of auxin and ABA signaling supported
25 minimally-affected root growth unique to each extremophyte during salt treatments. Overall, *E.*
26 *salsugineum* exhibited pre-adapted responses at the metabolome level, whereas *S. parvula*
27 showed dynamic metabolomic responses coupled to a pre-adapted transcriptome to survive
28 salt stress. Our work shows that the two extremophytes share common salt tolerance features,
29 but differ substantially in pathways leading to the convergent, adaptive traits.

30 **Introduction**

31 Plants differ greatly in their tolerance to salt stress and there is a metabolic cost for
32 adaptation to salt stress, reflected by differences in growth and yield when grown in high saline
33 soils ^{1,2}. Approximately 2% of angiosperms are adapted to grow in high saline environments
34 while the remaining 98%, including most crop plants, are highly sensitive to salt stress ^{3,4}.
35 Previous studies have largely used salt-sensitive model plants or crops to understand genetic
36 mechanisms underlying salt tolerance. Consequently, we understand more about functional
37 aspects of individual genes or more specifically their maladapted variants and how they
38 function in genomic backgrounds sensitive to salinity stress. However, insights from
39 comparative studies using salt-tolerant extremophytes contrasted with a salt-sensitive model
40 offer a promising prospect for discovery of evolutionarily successful tolerance mechanisms that
41 are absent or underdeveloped in the salt-sensitive plants ^{5,6}. This allows us to rethink the
42 functional space of genes and their influence on co-regulated pathways leading to salt
43 tolerance unexplored before.

44 Excess salt exerts osmotic, oxidative, ionic, and water-deficit stresses ⁷⁻⁹. Multiple
45 genetic mechanisms mediated by ABA-dependent as well as ABA-independent pathways have
46 been shown to modulate salt stress responses in *A. thaliana*, all major crops, and selected
47 halophytes ^{8,108,10,11}. These studies collectively support the view that salt stress-adapted plants
48 show a highly coordinated response to survive salt stress that requires synergistic coordination
49 between root and shoot responses. Despite the complexity of adapting to salt stress at the
50 whole plant level, angiosperm lineages have evolved this complex trait repeatedly ^{12,13}.
51 Therefore, it is one of the main complex traits studied for convergent evolution in plants.
52 Despite the significant body of work on salt stress adaptation in plants, we still have a large gap
53 in understanding which pathways synergistically act to achieve salt stress adaptation, and how
54 a common set of orthologs from closely related plants mediate this adaptation ¹⁴.

55

56 *Schrenkia parvula* and *Eutrema salsugineum* (Brassicaceae) are two leading
57 extremophyte models equipped with foundational genomic resources which facilitate
58 comparative studies with *Arabidopsis thaliana* ^{6,15,16}. These extremophytes show remarkable

59 salt resilient growth even at salinities reaching seawater strengths ^{6,17,18}. While *S. parvula* is
60 found near salt lakes in the Irano-Turanian region ^{4,19}, *E. salsugineum* has a wider distribution
61 from coastal to inland saline fields in the northern temperate to sub-arctic regions ²⁰. Despite
62 several studies highlighting metabolomic and transcriptomic responses of these extremophytes
63 to salt stress ²⁰⁻²⁴, molecular mechanisms determining how they have convergently achieved
64 salt adapted growth remains unknown.

65 In this study, we used a multi-omics experimental design integrating transcriptomics,
66 metabolomics, and ionomics to investigate the coordinated cellular responses and the
67 associated genetic mechanisms employed by *S. parvula*, *E. salsugineum*, and *A. thaliana* to
68 survive salt stress at variable success levels. We examined the spatio-temporal coordination of
69 multiple genetic pathways used by the three models at different salt stress intensities. Both
70 extremophytes showed distinct molecular phenotypes suggesting induction of complementary
71 cellular processes that used core pathways present in all plants, but with modifications to those
72 in ways that optimized balance between stress tolerance and growth.

73

74 **Results**

75 Previous studies using either *S. parvula* or *E. salsugineum* in a comparative study with *A.*
76 *thaliana* have successfully used 150 mM NaCl to elicit salt stress responses in the extremophyte
77 while avoiding induction of immediate tissue necrosis in *A. thaliana* in the short term ⁶. We
78 grew *S. parvula*, *E. salsugineum*, and *A. thaliana* hydroponically for 28 days; then transferred
79 them to a medium supplemented with 150 mM NaCl for comparative studies including *A.*
80 *thaliana* (Figure S1A). *Arabidopsis thaliana* did not show severe stress symptoms until four days
81 of exposure to salt. Therefore, we decided to capture the short-term effects of salt at 0, 3, 24,
82 and 72 hr after salt treatment to include timepoints that would precede the onset of stress
83 phenotypes (Figure S1). Additionally, for the extremophytes, 250 mM NaCl was used to further
84 examine their salt stress responses. We used the initial three timepoints to detect immediate
85 responses of the ionome and the transcriptome to salt and used 0 hr and the latter two
86 timepoints to detect the subsequent metabolome alterations (Figure S1B).

87

88 **High tissue tolerance to Na accumulation vs limiting Na accumulation within tissues**

89 All three species accumulated Na as the duration of the treatment or the concentration
90 of NaCl increased (Figure 1A). *Arabidopsis thaliana* shoots showed a 19-fold increase of Na
91 compared to control within 3 hours of exposure to salt. It accumulated more Na in shoots than
92 in roots and did not limit Na accumulation in roots as much as *S. parvula*. Tissue accumulation
93 of Na was lowest in *S. parvula* compared to the other two species. Interestingly, *E. salsugineum*
94 allowed higher Na accumulation in both roots and shoots compared to *S. parvula*, at levels
95 similar to those observed for *A. thaliana* roots under salt stress (Figure 1A). This suggests that *S.*
96 *parvula* limited total Na accumulation in tissues while *E. salsugineum* showed high tissue
97 tolerance to Na accumulation, a trend maintained for 250 mM NaCl treatments in the two
98 extremophytes (Figure 1A).

99 High Na levels interfere with K and other nutrient uptake in plants (Munns and Tester,
100 2008). We examined whether Na accumulation triggered nutrient imbalance in any of the test
101 species by quantifying the abundance of 13 plant nutrients during salt treatments. The K level
102 significantly dropped within 3 hr in *A. thaliana* roots, but did not change in either
103 extremophyte, regardless of the duration and intensity of the Na treatments (Figure 1B). In
104 shoots, we did not observe any significant changes in K levels by salt treatments in any of the
105 three species. When we examined the profiles of all quantified nutrients, shoots exhibited
106 minimal changes in response to salt stress compared to roots (Figure 1C). Intriguingly, *A.*
107 *thaliana* roots showed significant depletion of 6 out of 13 nutrients under salt treatments
108 whereas both extremophytes showed minimal nutrient disturbances (Figure 1C and Table S1).
109 We then examined nutrient compositions in the control samples (basal levels) to identify
110 nutrients preferentially enriched in any of the species (Figure 1D and Table S1). Notably, Ca and
111 Mg, which are known to regulate specificity of Non-Selective Cation Channels (NSCCs)²⁵, were
112 found at higher basal levels in *S. parvula* roots compared to other species. Similarly, Cu and Co
113 were high in *E. salsugineum* whereas Fe, P, K, and Mo were high in *A. thaliana*.

114

115 **Primary metabolite pools decreased from high basal levels in *E. salsugineum* but increased**
116 **from low basal levels in *S. parvula* upon salt treatments**

117 Salt stress requires metabolic adjustments in plants⁷. Therefore, we examined the
118 metabolite adjustment strategies of the two extremophytes in comparison to salt-sensitive *A.*
119 *thaliana*. We quantified a total of 716 metabolites using GC-MS for each species (see Methods),
120 of which 182 with known specific identities were referred to as "known metabolites" while the
121 remaining were collectively referred to as "unknown metabolites" in this study (Table S2). The
122 overall quantified metabolite pool in roots showed a relatively strong correlation in metabolite
123 abundance between selected pairwise comparisons resulting in two distinct trends (Figure 2A).
124 First, the control groups of *S. parvula* and *A. thaliana* exhibited the highest pairwise correlation,
125 and this correlation decreased as the duration of salt treatment increased (Figure 2A, upper
126 panel). Second, *S. parvula* and *E. salsugineum* profiles were moderately correlated at control
127 conditions, but upon salt treatments, this correlation became stronger, indicating that the
128 majority of metabolites in the extremophytes adjusted to similar levels in the roots. At 150 mM
129 NaCl, this increase in correlation between *S. parvula* and *E. salsugineum* was only apparent at
130 72 hr, but at the higher NaCl concentration of 250 mM, their root metabolite profiles were
131 strongly correlated even at 24 hr (Figure 2A, lower panel). In contrast to roots, the shoot
132 metabolomes of *S. parvula* and *E. salsugineum* remained divergent following salt treatments
133 (Figure S2A).

134 Under salt treatments, metabolite abundances in both *A. thaliana* and *E. salsugineum*
135 roots largely decreased while *S. parvula* metabolite abundances increased (Figure 2B). This
136 trend for *S. parvula* was not upheld in shoots, where metabolite abundances in all three species
137 predominantly decreased (Figure S2B). We next examined if the dynamically changing
138 metabolites were categorically associated with sugars and amino acids often known for their
139 roles as organic osmolytes (Slama et al., 2015). Figure 2C shows percent abundance among the
140 three species at control levels in roots, for all sugars, amino acids, and their immediate
141 derivatives (see Methods) quantified in our study that showed a significant difference in
142 abundance among the three species. Even before the salt treatment, *E. salsugineum* had
143 accumulated much higher levels for most of these metabolites than the other species. For
144 instance, the abundance of sucrose in *E. salsugineum* accounted for 98.6% of the combined
145 sucrose abundance in the roots of all three species (Figure 2C) and this was 155- and 131-fold

146 higher than that in *A. thaliana* and *S. parvula*, respectively (Table S2). Similarly, glucose,
147 raffinose, fructose, and proline were more abundant in *E. salsugineum* compared to the other
148 species (Figures 2C and Table S2).

149 We checked whether one extremophyte maintained a higher basal abundance for key
150 metabolites associated with osmoregulation while the other extremophyte actively induced
151 those when exposed to salt, eventually converging to a metabolic status distinct from that of *A.*
152 *thaliana* under salt stress in roots, as we observed in Figure 2A. We clustered abundance
153 profiles of all known metabolites exhibiting significant changes in abundance at the basal level
154 among the three species or in at least one stress condition in any species (Figure 2D). Two
155 readily identifiable clusters (box outlined in Figure 2D) showed lower metabolite abundances in
156 *A. thaliana* and control/150 mM-24 hr *S. parvula* samples compared to *E. salsugineum*, but
157 each of those metabolites increased exclusively in *S. parvula* upon prolonged/higher salt
158 treatment to match the constitutive high level found in *E. salsugineum*. These clusters were
159 enriched in metabolites known for their role as osmoprotectants or antioxidants²⁶, including
160 sucrose, fructose, glucose, GABA, proline, and dehydroascorbic acid (full list in Table S3). These
161 results indicate a basal level metabolic “preparedness” in *E. salsugineum* roots compared to
162 active induction of many osmoprotectants and antioxidants in *S. parvula* when responding to
163 salt treatments. On the other hand, *A. thaliana* lacks neither a preadapted- nor a dynamic-
164 strategy found in the two extremophytes.

165

166 ***Arabidopsis thaliana* showed stronger transcriptomic responses compared to the
167 extremophytes during salt stress**

168 Previous studies have reported that nearly 20% of the *A. thaliana* transcriptome
169 responds to salt stress^{21,23}. We tested if the transcriptomic responses from *A. thaliana* aligned
170 more with either extremophyte or if the extremophytes showed a largely overlapping response
171 that was distinct from *A. thaliana*. The overall root and shoot transcriptome profiles were
172 grouped into species-tissue clusters (Figure 3A). These dominant species-level distinctions in
173 transcript profiles were further illustrated by pairwise correlations of entire transcriptome
174 profiles (Figure S3). Unlike metabolite profiles (Figures 2A), none of the transcriptome

175 comparisons showed strong correlations between species in any pairwise comparison (Figure
176 S3).

177 Among differentially expressed genes (DEGs) in the roots of all three species, we
178 observed more transcripts induced by salt treatments than suppressed (Figure 3B, left panels).
179 The majority of these DEGs were identified in ortholog groups (OGs) (see Methods) (Figure 3B,
180 right panels, and Table S4). *Arabidopsis thaliana* showed the largest number of DEGs in
181 response to salt stress in both roots and shoots. Interestingly, the *A. thaliana* shoot
182 transcriptome had more than twice the number of DEGs observed in the root transcriptome in
183 response to salt stress (Figure 3B), although the nutrient profiles under salt stress in shoots
184 showed minimal changes compared to roots (Figure 1C). *Arabidopsis thaliana* also had
185 thousands of salt-responsive DEGs compared to remarkably fewer DEGs in the extremophytes
186 especially in shoots (Figure 3B).

187 We next examined if transcriptomic changes associated with cellular homeostasis in *A.*
188 *thaliana* entailed processes already maintained or induced in the extremophytes during salt
189 treatments. This search was done at two levels. First, we clustered all 1-to-1 orthologs based on
190 their basal expression levels (from control samples); filtered the clusters to show expression
191 patterns that differed at least in one species compared to the other two; and identified
192 enriched functional processes in each cluster (Table 1). Responses associated with abiotic stress
193 were among the most highly representative processes in each of these clusters. Second, we
194 investigated the changes in transcriptomic profiles during salt treatments by identifying
195 functional clusters enriched among all ortholog groups (OGs) that included at least one DEG in a
196 species, considering roots and shoots separately (Figure 3C and Table S5 and S6). Response to
197 stress formed the largest functional cluster including the highest number of OGs in both roots
198 and shoots (RC1 and SC1 in Figure 3C), which were further sub-clustered to highlight various
199 salt responsive pathways mediated by auxin and ABA regulation and oxidative stress responses
200 (Figure S4). Amino acid metabolism (RC2) and sugar metabolism (RC3) formed the next two
201 largest root clusters followed by transmembrane transport (RC4) and ion transport (RC5)
202 (Figure 3C). In shoots, the second and third largest functional clusters (SC2 and SC3 in Figure 3C)
203 suggested cellular processes involved in plant development and growth/cell cycle, in which the

204 majority of the *A. thaliana* orthologs were salt-repressed. The extremophytes showed
205 enrichment of similar functional processes associated with abiotic stresses when treated with
206 the 250 mM NaCl concentration (Figure S5).

207 We have identified ortholog clusters showing salt-responsive co-expression across time
208 points within tissues among species. We presented the two most dominant co-expression
209 clusters in roots and shoots (Figure 3D and Table S7). In roots, the largest co-expression cluster
210 showed that *A. thaliana* orthologs were substantially salt-induced, compared to a much smaller
211 magnitude of induction seen in the extremophyte orthologs (Figure 3D, left panel). In shoots,
212 the largest co-expression cluster included *A. thaliana* orthologs suppressed in response to salt,
213 while expression of the extremophyte orthologs was stable (Figure 3D, right panel).

214

215 **The predominant transcriptomic signature in roots supports divergent auxin-dependent root
216 growth during salt stress**

217 In all three species, response to stress was the most significantly enriched function in
218 roots among ortholog sets showing either different basal-level expression (Table 1) or salt-
219 responses (Figure 3C) among species. The largest representative function among all subclusters
220 were response to hormones in all ortholog sets, especially in roots (Table 1, Figures S4A, S5A,
221 and S5C). Hormonal regulation plays an important role in salt stress responses²⁷. Furthermore,
222 our comparative ortholog expression profiling suggested that regulation of hormone signal
223 transduction differed among the target species (Figures 4A, S6, and Table S8). Genes mediating
224 auxin response via auxin/indole acetic acid (Aux/IAA) repressors²⁸ and the type 2C protein
225 phosphatases (PP2Cs) that negatively regulate abscisic acid (ABA) signaling²⁹ showed
226 contrasting salt-responsive expression among the three species. Specifically, in response to salt,
227 15 out of 24 *AUX/IAAs* and *PP2Cs* orthologs in *A. thaliana* and *E. salsugineum* were significantly
228 induced whereas none of those orthologs in *S. parvula* showed any change (Figures 4A, S6, and
229 Table S8). When the basal expression of these orthologs were examined, 11 out of 17 *E.*
230 *salsugineum* *AUX/IAA* orthologs and 5 out of 7 *S. parvula* *PP2C* orthologs showed higher basal
231 expression compared to their respective orthologs in the other species (Figure 4A bottom
232 panel, and Table S8). In contrast, expression patterns of orthologs encoding regulators of other

233 steps in the auxin and ABA signaling pathway as well as other hormone signaling pathways
234 showed much fewer or no differences among the three species (Figures S6, and Table S8).

235 Auxin and ABA suppress root elongation and lateral root initiation during salt stress in *A.*
236 *thaliana*^{30,31}. Therefore, we wanted to investigate if auxin and ABA signaling pathways that
237 showed significant alterations in their expression profiles in the target species could lead to
238 distinct root phenotypes indicated by genetic studies in *A. thaliana*. We first selected all known
239 genes involved in primary root development (GO:0080022) and lateral root development
240 (GO:0048527) and checked for functionally verified phenotypes associated with those genes
241 that describe root growth in *A. thaliana*. We curated a list of orthologs that directly led to root
242 growth promotion or suppression if they are highly expressed or suppressed (see full list of
243 references used for the selected genotype-phenotype associations in Table S9). Next, we
244 assigned a binary category of promotion or suppression of root growth to each ortholog based
245 on their high or low basal expression levels in one species compared to the other two. The final
246 set of 35 single copy orthologs were assigned to a root growth map (Figure 4B) and a gene
247 network for lateral root development (Figure S7, modified from De Rybel et al., 2010³²; Banda
248 et al., 2019³³). We found 27 orthologs in *S. parvula* that suggested increased primary root
249 elongation or suppressed lateral root initiation, while 23 orthologs in *E. salsugineum* suggested
250 slower primary and lateral root growth when compared to the remaining two species (Figures
251 4B and S7). Contrastingly, *A. thaliana* showed 25 orthologs that supported its fast primary root
252 growth and increased lateral root number. Notably, the majority (71%) of these 35 orthologs
253 were annotated as auxin-responsive genes (Figure 4B).

254 In line with the observed differences in expression of orthologs associated with root
255 development (Figure 4B and S7), *S. parvula* and *A. thaliana* seedlings indeed have comparable
256 primary root lengths at control conditions, longer than primary roots in *E. salsugineum* (Figures
257 4C and D). Moreover, *S. parvula* showed uncompromised primary root growth compared to *E.*
258 *salsugineum* and *A. thaliana* when treated with salt for an extended time (Figures 4C, D, and
259 S8). *Schrenkia parvula* and *Eutrema salsugineum* seedlings also had fewer lateral roots
260 compared to *A. thaliana* at control conditions (Figure 4E). However, lateral root growth,
261 assessed using total lateral root number and density during a week-long salt treatment,

262 indicated that *S. parvula* not only sustained uninterrupted root growth but also induced lateral
263 root initiation albeit lower initial numbers during salt treatments, in contrast to the responses
264 observed for *A. thaliana* and *E. salsugineum* (Figures 4E, F, and S8).

265 To further identify orthologs in *S. parvula* that support its unique pattern of
266 uninterrupted primary root growth and lateral root initiation during salt stress, we checked co-
267 expression clusters that included differentially expressed ortholog groups (DEOGs) in roots. We
268 found two clusters where *S. parvula* showed a distinct expression pattern compared to the
269 other two species (Figure 4G). The first cluster showed salt-induced expression unique to *S.*
270 *parvula*. This accounted for 11% (294 ortholog groups) of all DEOGs in roots (Table S10). The
271 second cluster with 113 OGs (5% of all root DEOGs) showed induction of genes in response to
272 salt stress in *A. thaliana* and *E. salsugineum* while the orthologs in *S. parvula* did not alter their
273 expression (Figure 4G). Interestingly, within these two clusters, nearly 50% of orthologs did not
274 have a GO annotation describing a specific pathway or molecular function implying the
275 substantial unexplored functional gene space of these orthologs (Table S10).

276

277 **Transcriptome-metabolome coordination in extremophytes provides protection from salt
278 stress**

279 There were 7,852 differentially expressed ortholog groups (DEOGs) and 634
280 differentially abundant metabolites (DAMs) collectively in the three species in response to all
281 salt treatments (Figures 2 and 3, Table S2 and 4). The difference in % change in response to salt
282 between DAMs and DEGs was the lowest in *A. thaliana*, while in extremophytes metabolic
283 responses were relatively larger compared to the overall transcriptomic response during salt
284 treatments (Figures 5A and S9A). This indicates that there is more preparedness at the
285 transcriptome level to respond to salt along with a dynamically responsive metabolome in the
286 extremophytes than in *A. thaliana*.

287 The second and third largest functional clusters over-represented among differentially
288 expressed ortholog groups (DEOGs) in roots were amino acid and sugar metabolism (550
289 DEOGs) (Figure 3C, RC2 and RC3). Additionally, the overall metabolite response indicated a high
290 correlation of the metabolomes between the two extremophytes *S. parvula* and *E. salsugineum*

291 during salt treatments, and the DAMs shared between the extremophytes were enriched in
292 amino acids and sugars (Figure 2). Collectively, these findings led us to examine whether a
293 coordinated transcriptomic response (i.e. DEGs associated with amino acid and sugar
294 metabolism) support a salt-induced metabolic response (i.e. DAMs that are amino acids and
295 sugars) in the extremophytes. In line with the global trend (Figure 5A), we observed fewer DEGs
296 associated with amino acid and sugar metabolism in both extremophyte roots than in *A.*
297 *thaliana* roots, but more amino acid and sugar metabolites were found as DAMs in
298 extremophytes in roots (Figure 5B).

299 Given the established role of amino acids and sugars as organic osmoprotectants during
300 salt stress²⁶, we focused on highly responsive DAMs that are also osmoprotectants and the key
301 genes that encode proteins involved in the synthesis of those metabolites (Figures 5C and D,
302 and S9A). Proline was one of the most significant DAMs found in the roots of both
303 extremophytes. It was not only found at a higher basal level in the extremophytes than in *A.*
304 *thaliana*, but also its abundance further increased with salt treatments specifically in the
305 extremophytes (Figure 5C). Concordant with this increase in proline abundance, both
306 extremophytes increased their transcript levels for *pyrroline-5-carboxylate synthetase (P5CS1)*,
307 which encodes the primary proline biosynthesis enzyme, and decreased expression for *Pro-*
308 *dehydrogenase (ProDH1)*, which encodes an enzyme involved in proline catabolism (Figures 5C
309 and S9B). Additionally, shikimic acid-derived amino acids, tyrosine, and phenylalanine
310 (precursors of phenylpropanoids) showed higher basal level abundances or significant
311 inductions in roots of both extremophytes compared to *A. thaliana* (Figure 5C). Interestingly,
312 genes coding for the enzymes directly involved in the conversion of phosphoenolpyruvate to
313 shikimic acid such as DAHPS1, DAHPS2, DHQS, DHQ, SK1, ESPS, and CS were not detected as
314 DEGs in any of the three species (Figure S9C). However, *MYB15*, a master regulator of shikimic
315 acid biosynthesis pathway (Chen et al., 2006), was highly induced in all three species (Figure
316 5C). *Chorismate mutases 1 (CM1)*, coding for the enzyme involved in the first committed step of
317 tyrosine and phenylalanine biosynthesis was further induced in *E. salsugineum*, while it was
318 constitutively expressed at a high level in *S. parvula* (Figure 5C).

319 *Eutrema salsugineum* maintained a higher basal abundance than the other two species
320 for multiple sugars in roots that are commonly used as organic osmolytes in plants, while these
321 metabolites increased their abundances in response to salt in *S. parvula* (Figure 5D). The genes
322 encoding enzymes involved in the biosynthesis of these metabolites such as *sucrose synthase 1*
323 (*SUS1*), *cell wall invertase 1* (*cwlN1*), *galactinol synthase 2* (*GalS2*), and *raffinose synthase* were
324 mostly induced under salt or constitutively highly expressed in the extremophytes (Figure 5D).
325 A similar concordant alignment of DAMs to DEGs, or maintenance of high constitutive
326 abundance of metabolites with high basal expression of genes were also found for metabolites
327 and their associated genes in the extremophytes, known for their functions as antioxidants (for
328 example, dehydroascorbic acid pathway highlighted in Figure S9D).

329

330 **Coordination between nutrient balance and gene expression associated with ion transport**

331 Ion and membrane transport represented the two remaining major functionally
332 enriched clusters in roots that included 156 DEOGs (Figure 3C, RC4 and RC5). As noted earlier,
333 nutrient balance in the extremophytes was maintained during salt treatments, unlike that in *A.*
334 *thaliana* (Figure 1C). To examine how the transcriptomic response specifically supported better
335 nutrient balance in the extremophytes compared to *A. thaliana* (Figure 1), we first investigated
336 all 148 transporter genes associated with Na/K transport (based on Araport11 (Cheng et al.,
337 2017)) in the following four categories: (1) aquaporins (*PIP*s, *NIP*s, *TIP*s, and *SIP*s), (2) cation
338 transporters (*CAX*s, *NHX*s, *KEA*s, *CHX*s, *KUP*s, *HKT1*, and *TRH1*), (3) non-selective cation channels
339 (*CNGC*s and *GLR*s), and (4) K channels (*SKOR*, *GORK*, *AKT*s and *KCO*s). We found 109
340 corresponding one-to-one ortholog groups (OGs), among which 64 OGs were differentially
341 expressed at basal expression among the three species (Table S11). We focused on the OGs
342 encoding transporters and channels that were differentially expressed at basal levels in both
343 extremophytes compared to *A. thaliana* (Figure 6A). Genes encoding transporters known to
344 exclude Na from the cell (*SOS1*), transporters involved in Ca uptake and transport (*CNGC1*,
345 *CNGC12*, *CAX1*, and *CAX5*), K channel (*KAT1*), and endosomal K transporter (*KEA5*) that aid in
346 pH and ion homeostasis^{34,35} showed higher basal expression in the two extremophytes than in
347 *A. thaliana*, while genes involved in K efflux/Na influx to the cell or water transport such as

348 *TIP1;1*, *PIP2;2*, *SIP1;2*, *SIP2;1*, *KUP5/6/10/11*, and *NHX3* were lower expressed in the
349 extremophytes (Figure 6A, Table S11). *NHX1/2*, the main transporters involved in Na
350 sequestration into the vacuole³⁶, showed higher basal level expression in *E. salsugineum*
351 compared to the other two species (Table S11). This observation aligns with *E. salsugineum*
352 showing a higher Na sequestration (also higher tissue tolerance) than *S. parvula* and *A. thaliana*
353 (Figure 1A).

354 We then examined how these genes in different transporter classes changed in
355 expression in the three species when treated with salt (Figure 6B and Table S12). Interestingly,
356 the majority of the genes across the four categories were either significantly induced or
357 constant in expression during salt treatments in *S. parvula*, whereas *A. thaliana* and *E.*
358 *salsugineum* had a mixed response (Figure 6B). *Eutrema salsugineum* mostly repressed the
359 expression of genes encoding non-selective cation channels (e.g. *GLRs*) in response to all salt
360 treatments (Figure 6B and Table S12). Other observable trends included the induction of *CHX17*
361 (functions in K uptake) identified as the only induced transporter in all three species in our
362 selected set; a 50-fold induction of *CHX2* (involved in Na transport to vacuole) in *A. thaliana*
363 (Table S12); and *GORK* as the only K channel up-regulated in *E. salsugineum* under salt
364 treatment while maintaining high basal level expression in *S. parvula*.

365 We next expanded the focus on the transporter genes to include copy number variation
366 among species and expression partitioned to paralogs present in each species (Figure 6C). We
367 searched for transporter gene orthologs with increased copy numbers in the extremophytes
368 and found, *SpNIP6;1/2* in *S. parvula*, *EsCNGC4;1/2* in *E. salsugineum*, *SpKUP9;1/2* and
369 *EsKUP9;1/2* in both extremophytes (Figure 6C, top panels, and Table S13). All extremophyte
370 paralogs either showed differential expression in response to salt or high constitutive
371 expression compared to *A. thaliana* (Figure 6C, bottom panels).

372 Finally, we examined the expression profiles of all non-Na/K transporters involved in
373 nutrient uptake that were included in DEOGs in Figure 3C functional clusters RC4 and RC5
374 (Figure 6D and Table S13). Notably, *S. parvula* induced orthologs encoding a large and diverse
375 set of transporters involved in nutrient uptake upon salt treatments, while *A. thaliana* and *E.*

376 *salsugineum* showed salt-induction of a limited group of genes associated with Fe, Zn, and Cu
377 uptake (e.g. *FER1/2/3*, *MTPB1*, *ZF14*, *ZIP2/11*) (Figure 6D).

378

379 **Discussion**

380 While the direct flow of Na ions into plant tissue is unavoidable in saline soils, plants
381 show adaptations at varying degrees to limit accumulation of Na or mitigate cellular toxicity
382 caused by Na in tissues^{2,3,7}. Figure 7 summarizes the most notable ionomic, metabolomic,
383 transcriptomic, and phenotypic adjustments that distinguish the three model plants used in this
384 study when responding to salt treatments. Overall, *S. parvula* and *E. salsugineum* show similar
385 levels of salt tolerance, but they achieve this tolerance by different means. *Schrenkia parvula*
386 exhibits uncompromised primary root growth and nutrient uptake while limiting Na uptake.
387 This coincides with an increase in amino acids and sugars that can serve as nitrogen-carbon
388 sources, organic osmolytes, and antioxidants beneficial during salt stress. In contrast, *E.*
389 *salsugineum* does not restrict Na accumulation in roots, and grows much more slowly under
390 salt stress. It accumulates sugars and amino acids at remarkably high levels compared to the
391 other two species. We find that the two extremophytes regulate different ortholog groups in
392 the same pathways in response to salt stress in multiple comparisons. The divergent responses
393 observed across multiple –omics data lead to a convergently salt tolerant phenotype in the
394 extremophytes (Figure 7).

395

396 **Divergent response to Na accumulation and convergent outcome in maintaining nutrient 397 balance during salt stress in extremophytes**

398 Unlike *A. thaliana*, which fails to maintain its nutrient balance under salt stress as the Na
399 content within tissues increases (Figure 1A-C), the two extremophytes present two distinct
400 paths for regulating Na levels in roots. *Schrenkia parvula* regulates Na accumulation to
401 maintain it at levels observed for control conditions, while preventing the loss or maintaining
402 the uptake of K and Ca. In contrast, *E. salsugineum* does not show such a restriction to Na
403 accumulation in roots but reaches the same outcome as *S. parvula*, such that a significant loss
404 of K and Ca is prevented.

405 Regulation of Ca and K is a critical requirement for ion homeostasis and response to
406 excess Na^{3,7}. Ca activates Na efflux via the SOS2-SOS3 signaling pathway, which in turn
407 activates the plasma membrane localized Na-exporter, *SOS1*³⁷. Additionally, Ca regulates the
408 plasma membrane localized non-selective cation channels (NSCCs), which are reportedly a main
409 entry point of Na into roots^{38,39}. Genes encoding NSCCs were highly suppressed in *E.*
410 *salsugineum* during salt stress, consistent with previous findings⁴⁰ (Figure 6B and 7). However,
411 counterintuitively, these NSCCs were induced or unaltered in *S. parvula* during salt treatments
412 (Figure 6B), despite it having a relatively smaller Na content than salt-treated *E. salsugineum*
413 (Figure 1A). The high basal level of Ca in *S. parvula* roots may alleviate Na-induced cellular
414 toxicity by increasing the selectivity of NSCCs to limit Na entry³⁹ (Figure 1D).

415 Halophytes are known for their ability to maintain high K/Na ratios when exposed to
416 salt, although the species-dependent ratios may vary among halophytes^{3,41,42}. Under salt
417 stress, Na-induced membrane depolarization at the root epidermis could be reversed by the
418 activation of the K outward rectifying channel, *GORK*, by releasing cytosolic K as seen in *A.*
419 *thaliana* root hairs^{43,44}. *GORK* expression in roots was induced in *E. salsugineum* when exposed
420 to 250 mM NaCl and maintained at a high basal level in *S. parvula*, compared to *A. thaliana*
421 (Tables S4 and 12). Therefore, GORK channels may help to prevent the membrane from further
422 depolarization in extremophytes at high salinities. It is unclear how the extremophytes regulate
423 their K transporters to allow K uptake and simultaneously prevent excessive leakage of K during
424 salt stress. The extremophytes seems to have an alternative co-regulation of Na and K
425 transporters different from *A. thaliana*. One such modified pathway in the extremophytes
426 points to a possible synergistic activity between GORK and KAT1 (K channels) synchronized with
427 Na exclusion mediated by SOS1 to regulate cytosolic K levels, pH, and ion homeostasis when
428 exposed to salt. Coordinated expression of *GORK* and *KAT1* has been reported for guard cells in
429 *A. thaliana*^{45,46}. Compared to *A. thaliana*, *KAT1* is highly expressed at basal expression in the
430 roots of both extremophytes (Figure 6A). Notably, the expression of these K channels is
431 regulated by ABA and auxin signaling pathways, which are modified in both extremophytes
432 compared to *A. thaliana* in conjunction with root growth modulation in response to salt
433 (Figures 4, S7, and 7)⁴⁷. Intracellular K transport, as seen with *KEA5* (a K transporter in the

434 trans-Golgi network) and *KUP9* (mediates K and auxin transport from the endoplasmic
435 reticulum)^{34,48} appear to be differently regulated between the extremophytes and *A. thaliana*
436 (Figures 6A and 7). It would be interesting to investigate whether the *KUP9* duplication in the
437 extremophytes has led to divergent salt-responsive regulation in auxin homeostasis, and
438 consequently lead to resilient root growth.

439

440 **Metabolic preadaptation or a dynamic response to achieve salt-adaptation in extremophytes**

441 Sugars, amino acids, or their derivatives are used in all plants for osmoregulation during
442 salt stress²⁶. The most striking metabolic feature among the three species in our study is the
443 extraordinarily high levels of sugars and amino acids in *E. salsugineum* even in control
444 conditions compared to the other two species (Figures 2C and 7). The *E. salsugineum*
445 metabolite profiles we observed are consistent with earlier studies that examined selected
446 metabolites in *E. salsugineum*^{49–51}. *Eutrema salsugineum* leaves and seedlings are metabolically
447 preadapted to salt stress^{20–22}. Our results reinforce this view and extend these observations to
448 roots (Figures 2C and 7). In contrast, *S. parvula* maintains much lower levels of sugars and
449 amino acids comparable to levels seen in *A. thaliana* in control conditions and increases their
450 levels in response to salt to the high basal level present in *E. salsugineum* (Figures 2 and 7).
451 Complementary to this dynamic metabolic response, *S. parvula* exhibits a higher degree of
452 transcriptome preadaptation to salt stress, having fewer DEGs in both roots and shoots in
453 comparison to the other two species (Figures 3B and 5A).

454 Proline is among the most studied osmoprotectants and antioxidants in plants^{3,52}.
455 While the key proline biosynthesis gene, *P5CS1*, was induced by salt in all three species,
456 *ProDH1*, encoding an enzyme that degrades proline, was suppressed only in the extremophytes,
457 coincident to significant proline accumulation during salt stress (Figure 5C). *ProDH1* is
458 suppressed by sucrose in *A. thaliana*⁵³. Our results suggest a novel regulatory mode for proline
459 accumulation via high sucrose levels (facilitated by induced *SUS1* which is regulated by osmotic
460 stress independent of ABA⁵⁴ that may lead to the suppression of *ProDH1*, and thereby allowing
461 proline accumulation in the extremophytes (Figure 5D).

462 High levels of sugars and amino acids may serve as a carbon or nitrogen source to
463 maintain growth when photosynthesis and nitrogen acquisition decrease with abiotic stress
464 ^{27,51,55}. *Eutrema salsugineum* roots grow much slower than *A. thaliana* and *S. parvula* primary
465 roots under control conditions (Figure S8). A high proportional allocation of sugars such as
466 sucrose and raffinose together with amino acids known for nitrogen storage, especially proline,
467 is a common trait associated with slow-growing plants ^{56,57}. Some of these metabolites that are
468 high at basal levels may have added benefits for serving as osmoprotectants or antioxidants
469 when a slow-growing annual such as *E. salsugineum* experiences high salinity levels.
470 *Schrenkia parvula* dynamically accumulates these metabolites during salt treatments,
471 without an indication of compromised growth, to match the levels maintained in *E.*
472 *salsugineum* (Figures 4 and 5) ⁵⁸.

473

474 **Divergent root transcriptional networks with convergent stress-resilient growth in**
475 **extremophytes**

476 *Schrenkia parvula* and *Eutrema salsugineum* have lower lateral root densities
477 compared to *A. thaliana* (Figure 4F). Auxin is a major hormone that regulates root architecture
478 including lateral root development ⁵⁹. Lateral roots are initiated by binding of auxin to its
479 receptor TIR1, resulting in degradation of the auxin signaling repressors, Aux/IAAs ⁶⁰. In both
480 extremophyte, the *TIR1* orthologs are suppressed in control conditions coincident to
481 suppression of multiple *Aux/IAAs* and other downstream transcription factors in control or salt-
482 treated conditions, a pattern collectively supporting the observed limited lateral root initiation
483 ³³ (Figures 4B and S7). The two extremophytes either show a slower root growth rate (in *E.*
484 *salsugineum*) or higher primary root growth rate (in *S. parvula*) coupled with lower lateral root
485 density, which may reduce the total contact area with salt. Interestingly, the transcriptional
486 network mediated by auxin and other hormones in the extremophytes indicates multiple
487 regulatory points for root growth modulation leading to different root architectures (Figure S7).

488 Molecular phenotypes suggesting transcriptional preadaptation to multiple abiotic
489 stresses have been reported for *S. parvula* and *E. salsugineum* separately ^{20,21,23,61–63}. Our work
490 indicates that orthologs of stress- associated functional gene clusters that exhibit

491 transcriptional preadaptation in one extremophyte are in many instances dynamically induced
492 by salt in the other extremophyte and ultimately match the expression level found in the
493 preadapted species (e.g. Figure 4G). This highlights independent and divergent regulation of
494 orthologs even between closely related extremophytes in response to the same salt
495 treatments, demonstrating different adaptive strategies.

496 Our study highlights different combinatorial expression modules for stress-optimized
497 growth used by these two extremophytes to adapt to high salinities. For example, the selective
498 release of repression in auxin and ABA signaling pathways likely leads to different *S. parvula*
499 and *E. salsugineum* root growth strategies absent in *A. thaliana* and needs further investigation
500 to identify additional regulatory dependencies using targeted studies in the extremophyte
501 models. Similarly, comparisons from multiple extremophytes can serve as training data to
502 identify compatible regulatory pathways that can coexist but are currently absent in crops. Such
503 pathways need to be evaluated for their functionality to metabolic cost to decide whether
504 constitutive expression (as pre-adaptive traits) or induced expression (as dynamic responses)
505 offer an optimum strategy depending on the stress being constant or intermittent in certain
506 environments. The scarcity of halophytes implies a high metabolic cost and complex regulation
507 required for salt adaptation enabling coordinated growth from cellular to whole plant level⁶⁴.
508 Extremophytes provide a direct resource when modeling stress resilient growth using core
509 pathways critical to deliver growth and survival during environmental stress⁶⁵. For sustainable
510 global food security, our crops need to be diversified; less dependent on fresh water and high
511 nutrient soils; while being adapted to varying levels of marginal soils with different salinities
512^{66,67}. Therefore, basic research examining genetic regulation underlying stress-optimized growth
513 will be a prerequisite when selecting new crops in light of a climate crisis.

514

515 **Materials and methods**

516 **Plant growth and treatments**

517 *Schrenkia parvula* (ecotype Lake Tuz, Turkey; Arabidopsis Biological Resource
518 Center/ABRC germplasm CS22663), *Eutrema salsugineum* (ecotype Shandong, China; ABRC
519 germplasm CS22504), and *Arabidopsis thaliana* (ecotype Col-0) seeds were surface-sterilized

520 and stratified at 4 °C for 7 days (for *A. thaliana* and *S. parvula*) or 14 days (for *E. salsugineum*).
521 Stratified seeds were germinated and grown in a hydroponic system as described by Conn et al.,
522 (2013)⁶⁸ for transcriptomic, ionomic, and metabolomic experiments (Figure S1B). The plants
523 were grown in aerated 1/5x Hoagland's solution in a growth cabinet set to 22-23 °C,
524 photosynthetic photon flux density at 80-120 mM m⁻²s⁻¹, and a 12 hr light / 12 hr dark cycle.
525 Fresh Hoagland's solution was replaced every two weeks. Four-week-old plants were randomly
526 placed in 1/5x Hoagland's solution with and without NaCl for indicated duration in each
527 experiment.

528

529 **Root growth analysis**

530 Stratified seeds were germinated on 1/4x MS medium. Five-day old seedlings were
531 transferred to 1/4x MS plates supplied with 150 mM NaCl. Root growth was recorded every two
532 days for one week. Control and treated seedlings were scanned and analyzed using ImageJ⁶⁹ to
533 quantify primary root length and number of lateral roots. Three biological replicates were used
534 with 7 seedlings per replicate from each species.

535

536 **Elemental analysis**

537 Elemental quantification was conducted for Na, K, Ca, P, S, Mg, Fe, B, Zn, Mn, Mo, Cu,
538 Ni, and Co using Inductively Coupled Plasma - Mass Spectrometry (ICP-MS, Elan 6000 DRC-
539 PerkinElmer SCIEX) at the US Department of Agricultural Research Service at Donald Danforth
540 Plant Science Center. We used dried root and shoot samples from 3-4 biological replicates from
541 each condition harvested at 3 and 24 hr (Figure S1) processed as described in Baxter et al.,
542 (2014)⁷⁰. Changes in element contents were calculated as the log₂ fold change of the element
543 level in treated samples over that in control samples and visualized with the pheatmap in R.
544 Significant differences between treatments within species were determined by one-way
545 ANOVA followed by Tukey post-hoc test using agricolae in R with an adjusted *p*-value cutoff of
546 0.05. Basal level of each element per species was calculated as a % contribution from each
547 species that added to 100% for each element, using the following formula: $X_i / (At_i + Sp_i + Es_i) * 100$
548 where X_i represents the abundance of element *i* in *A. thaliana*, *S. parvula* and *E. salsugineum*,

549 respectively. Only elements that showed significant differences in abundance among the three
550 species were visualized on ternary diagrams using ggtern in R.

551

552 **Metabolite analysis**

553 Untargeted high throughput metabolite profiling was conducted using gas
554 chromatography-mass spectrometry (GC-MS) service at the West Coast Metabolomics Center,
555 University of California Davis. Root and shoot samples in 4 biological replicates were harvested
556 at 24 and 72 hr (Figure S1B), flash frozen in liquid N₂, and processed as described in Fiehn,
557 (2016)⁷¹ and quantified as described in Pantha et al., (2021)⁶³.

558 Pearson correlation coefficients for each test condition were calculated between species
559 using Log₂ median-normalized relative metabolite abundances. Significant differences in
560 metabolite abundances across treatments within species (differently abundant metabolites,
561 DAMs) was determined by one-way ANOVA followed by Tukey post-hoc test using agricolae in R
562 with an adjusted *p*-value cutoff of 0.05. Structurally annotated (known) metabolites were
563 further categorized into functional groups according to the refmet database
564 (<https://www.metabolomicsworkbench.org/databases/refmet/index.php>) and Kyoto
565 Encyclopedia of Genes and Genomes (KEGG). Metabolites were clustered into amino acids,
566 sugars, nucleic acids, and other organic acids. Derivatives or precursors of those were included
567 in the same metabolite category if those metabolites were found to be within three steps of the
568 main metabolite category identified in a KEGG pathway (Table S2). Basal level of each
569 metabolite per species was calculated as a % contribution from each species that added to
570 100% for each metabolite as described for the elemental basal level calculation. Metabolites
571 that showed significant differences in abundance at basal level or under salt treatments in at
572 least one species were used for K-mean clustering (k= 9) ⁷². The metabolite profiles across
573 samples were done using pheatmap in R.

574

575 **Orthologous group identification**

576 Ortholog groups were identified using *S. parvula* gene models version 2.2 from
577 Phytozome (<https://phytozome-next.jgi.doe.gov/>); *A. thaliana* gene models version 10 (TAIR10)

578 from TAIR (<https://www.arabidopsis.org/download/>), and *E. salsugineum* gene models version
579 210.3 from CoGe (<https://genomevolution.org/coge/>). Reciprocal gene pairs between species
580 were identified using blastp with default parameters and an e-value cutoff of 1E-5. These pairs
581 were filtered using a custom python script to convert a blast tabular output into a table of one
582 query-subject pair per line by consolidating High-scoring Segment Pairs (HSPs); and based on
583 calculated proportion of query and subject covered by HSPs (coverage) and approximate
584 proportion of identical sequences within HSPs (identity). Pairs with an alignment coverage
585 smaller than 50% of the query or the subject were removed. This ortholog-pair list included
586 pairs with the highest bit score optimized for highest % coverage, and % identity. Ortholog pairs
587 were additionally filtered to exclude any orthologs that had a more than $\pm 30\%$ length
588 difference in the coding sequence between the two sequences. A total of 16,591 one-to-one
589 ortholog groups were identified among the three species and used for all downstream analyses
590 (Table S3).

591

592 **Gene expression profiling and analysis**

593 Total RNA was extracted from control and treated samples at 3 and 24 hr with three
594 biological replicates (Figure S1) using Qiagen RNeasy Plant Mini kit (Qiagen, Hilden, Germany),
595 with an on-column DNase treatment. mRNA enriched samples were converted to libraries using
596 True-Seq stranded RNAseq Sample Prep kit (Illumina, San Diego, CA, USA), multiplexed, and
597 sequenced on a HiSeq4000 (Illumina) platform at the Roy K. Carver Biotechnology Center,
598 University of Illinois at Urbana-Champaign. A minimum of >15 million 50-nucleotide single-end
599 reads per sample were generated for a total of 78 RNAseq samples.

600 After quality checks, the reads were mapped to reference transcript model sequences of
601 gene models in each species (described earlier) using Bowtie ⁷³ with -m 1 --best -n 1 -l 50. A
602 custom python script was used to count uniquely mapped reads for each gene model.
603 Differentially expressed genes (DEGs) across treatments within each species were identified
604 using DESeq2 ⁷⁴ with an adjusted *p*-value ≤ 0.01 . Genes were further filtered using the following
605 criteria: 1) $|\log_2 \text{fold change}| \geq 1$ or 2) $|\log_2 \text{fold change}| \geq 0.5$ if normalized mean expression
606 across samples ≥ 100 . Reads per kilobase per million reads (RPKM) were calculated for each

607 gene from the raw read counts for all samples. These RPKM values were \log_2 -transformed and
608 median-normalized when used in PCA-UMAP⁷⁵ and for co-expression cluster determinations.
609 Co-expression clusters were identified using fuzzy K-mean clustering with a membership cutoff
610 ≥ 0.4 or binary clustering based on \log_2 fold change. \log_2 fold changes were computed for all
611 ortholog groups (OGs) from three species, subsequently used to calculate Pearson correlation
612 coefficients when comparing transcriptome profiles between species/samples. Ortholog groups
613 where at least one of the genes in the group was identified as a DEG in any species under any
614 stress condition was considered to be a differentially expressed ortholog group (DEOG).

615 To compare the basal expression levels of orthologs among species, we generated a raw
616 count matrix based on reads uniquely mapped to coding sequences (CDS) for the 16,591
617 orthologs from control samples. Orthologs that are differently expressed between any two of
618 the three species were identified using DESeq2 at an adjusted *p*-value ≤ 0.001 in a pairwise
619 manner. We next assigned the expression of each gene within any given OG as High (H),
620 Medium (M), and Low (L) based on their relative expression level, which resulted in 12 clusters.
621 The six largest clusters in both roots and shoots highlighted the expression difference in one
622 species compared to the other two species. OGs assigned to these clusters were represented by
623 HLH, LHL, HHL, LLH, LHH, and HLL (expression profiles). Each expression profile was then
624 subjected to functional gene enrichment analysis.

625 BiNGO⁷⁶ was used to identify Gene Ontology (GO) terms enriched in selected DEGs and
626 DEOGs. To reduce the redundancy between enriched GO terms, we further grouped them into
627 GO clusters using GOMCL⁷⁷ with settings for -Ct 0.5 -I 1.5 -Sig 0.05 -hm -nw -hgt -d -gosize 3500
628 -gotype BP. Sub-clustering of selected clusters was performed using GOMCL-sub with the same
629 parameters.

630 OrthNets for selected genes were generated using the CLfinder-OrthNet pipeline with
631 the reciprocal blastp results as input using default OrthNet settings⁷⁸, and visualized in
632 Cytoscape.

633

634 **Curated gene sets for primary metabolism, hormone signaling, root development, and**
635 **transporter functions**

636 OGs and DEOGs that showed significant differences at basal level/control condition or
637 under treatments were mapped to the KEGG pathways associated with primary metabolism,
638 hormone regulation, or root development. Log₂ fold changes were computed for all selected
639 OGs and visualized with pheatmap in R. Genes involved in root development were identified
640 from Gene Ontology annotations, GO:0048527 for lateral root development and GO:0080022
641 for primary root development. Genes coding for transport functions associated with K/Na
642 transport were mined from Araport 11. To assess the correlation between changes at the
643 transcriptomic level and the metabolic level, we calculated the percentage of DEGs and
644 differently abundant metabolites (DAMs) in each species at early (3 hr for transcriptome and 24
645 hr for metabolome) and late (24 hr for transcriptome and 72 hr for metabolome) response to
646 salt. Percentage of DEGs was calculated by dividing the number of DEGs by the total number of
647 expressed genes (RPKM ≥ 1) in each species. Similarly, the percentage of DAMs was calculated
648 by dividing the number of DAMs by the total number of quantified metabolites within a species.
649 We extracted DEGs and DAMs related to amino acid and sugar metabolism based on GO
650 (GO:0006520 for amino acid metabolism and GO:0005975 for carbohydrate metabolism). The
651 count of DEGs and DAMs were separately normalized to the total number of genes and
652 metabolites in each of the two categories.

653

654 **Data availability**

655 All Illumina sequence data are deposited at National Center for Biotechnology Information
656 BioProject PRJNA63667. Mapped RNAseq data can be browsed using genome browsers created
657 for *Schrenkia parvula* and *Eutrema salsugineum* at www.lsugenomics.org.

658

659 **Acknowledgement**

660 This work was supported by the US National Science Foundation IOS-EDGE
661 1923589/20196, NSF-MCB-1616827, US Department of Energy BER-DE-SC0020358, Next-
662 Generation BioGreen21 Program of Republic of Korea (PJ01317301) awards. Graduate students
663 K.T., G.W. were supported by an Economic Development Assistantship from LSU. We thank the
664 LSU High Performance Computing facility for providing computational resources;
665 undergraduate students Jordan Vivien, Christine Tran, Ashley Doan, and Jason Garcia at LSU for

666 assisting with plant growth and phenotyping; Drs. Alvaro Hernandez and John Cheeseman at
667 University of Illinois for providing assistance with Illumina sequencing.

668
669 **Author contribution:** K.T. prepared plant samples and conducted data analyses; K.T., G.W., D-
670 H.O., J.L., A.S., and M.D. contributed to data interpretation. K.T. and M.D. wrote the manuscript
671 with input from all co-authors who revised and approved the final manuscript. M.D.
672 conceptualized and supervised the overall project.

673
674 **Main figure captions and tables**

675 **Figure 1.** Sodium accumulation and its effect on nutrient balance in the extremophytes
676 compared to *A. thaliana* under salt stress. [A] Na and [B] K content in roots and shoots. Data are
677 mean \pm SD ($n \geq 4$, at least 4 plants per replicate). Significant differences between treatment
678 groups were determined by ANOVA with Tukey's test applied to within species comparisons.
679 Asterisks indicate significant difference ($p \leq 0.05$) between the treated samples and their
680 respective controls. Open circles indicate biological replicates. [C] Salt stress-induced changes in
681 macro- and micro-nutrient content. [D] Percent abundance of nutrients that showed significant
682 differences in abundance at control conditions among the three species. Significant difference
683 in elemental abundance was determined by one-way ANOVA with post-hoc Tukey's test at $p \leq$
684 0.05. The three axes of the ternary plots are marked with *A. thaliana*, *S. parvula*, and *E.*
685 *salsugineum*. The gridlines in species-designated colors point to % abundance of the element
686 from the corresponding species over the total abundance of that element from all three
687 species. Thus, gridlines of each color nearest to each data point lead to the relative %
688 abundance in each species.

689 **Figure 2.** Overall metabolic preparedness and adjustments in the roots of the extremophytes
690 compared to *A. thaliana*. [A] Pairwise Pearson correlations of the abundance of 716 quantified
691 metabolites across all conditions and species. Blue dots indicate 182 metabolites with known
692 structures, and grey dots represent 534 unknown metabolites. [B] Number of metabolites that
693 significantly changed in abundance (DAMs) in each species compared to its respective controls.
694 [C] Basal level percent abundances of sugars, amino acids, and their derivatives in the three

695 species. [D] Hierarchical clustering of known metabolites shown in [B and C]. Blue box highlights
696 clusters of interest. Columns indicate metabolites and rows indicate samples. Sample names for
697 treated conditions are given as treatment concentration and duration, separated by a dash.
698 Treatment concentrations are 150 and 250 mM NaCl; treatment durations are 24 and 72 hr.
699 Significant differences were determined by one-way ANOVA with post-hoc Tukey's test at $p \leq$
700 0.05 (n = 4, at least 4 plants per replicate).

701 **Figure 3.** Transcriptomic overview of *Schrenkia parvula*, *Eutrema salsugineum*, and
702 *Arabidopsis thaliana* in response to salt. [A] Overall clustering of transcriptomes in shoots and
703 roots from all replicates in all conditions using one-to-one ortholog groups (OGs). [B] Number of
704 differentially expressed genes (DEGs) in response to salt treatments. DEGs were identified using
705 DESeq2 at $p\text{-adj} \leq 0.01$ (n = 3, at least 4 plants per replicate). [C] Functional clusters enriched
706 among differentially expressed ortholog groups (DEOGs) that included a DEG from at least one
707 species in roots (RC, root cluster) and shoots (SC-shoot cluster). Functional annotations were
708 based on GO annotations assigned to DEOGs. The bar graph assigned to each cluster represents
709 percent allocation of induced (red) and suppressed (blue) DEGs with the percentage of genes
710 that did not significantly change in each species given in the white space. [D] Dominant gene
711 expression clusters of DEOGs across time points and species from roots and shoots that
712 included an *A. thaliana* ortholog that was either induced or suppressed in response to 150 mM
713 NaCl treatment. The average gene expression at each condition is indicated by a dot and
714 connected by a black line for each species. Individual gene expression is indicated by grey lines.

715 **Figure 4.** Root growth responses in line with gene expression associated with auxin and ABA
716 signaling in *Arabidopsis thaliana*, *Schrenkia parvula*, and *Eutrema salsugineum* when treated
717 with salt. [A] Salt-induced changes in expression of auxin/indole acetic acid (Aux/IAA)
718 repressors and type 2C protein phosphatases (PP2Cs) that regulate auxin and ABA signaling. [B]
719 Curated genes from lateral root development (GO:0048527) and primary root development
720 (GO:0080022) used to infer root growth phenotypes based on functional genetic studies in *A.*
721 *thaliana*. Ortholog expression levels are categorized as high (yellow), low (turquoise), and
722 indistinguishable (no-color) based on their relative basal expression among the three species.
723 Their inferred effect on root growth is indicated by the arrowheads (up for promoting growth

724 and down for suppressing growth). Genes associated with auxin, ABA, and other hormones
725 were labeled in pink, gold, and black respectively. [C] Root growth examined with and without
726 salt. [D] Primary root growth, [E] number of lateral roots, and [F] lateral root density of 13-day-
727 old seedlings that were treated with 150 mM NaCl for 8 days. Data are given as mean \pm SD (n =
728 3, at least 7 plants per replicate). Open circles indicate individual measurements. Asterisks
729 indicate significant differences ($p \leq 0.05$) between treated samples and their respective control
730 samples, determined by one-way ANOVA with post-hoc Tukey's test. [G] Gene co-expression
731 clusters of differentially expressed ortholog groups (DEOGs) that showed similar expression
732 pattern in *A. thaliana* and *E. salsugineum* roots compared to a different pattern observed for *S.*
733 *parvula* under salt stress. Left panel includes DEOGs that are uniquely upregulated in *S. parvula*;
734 right panel includes DEOGs that are co-upregulated in *A. thaliana* and *E. salsugineum*. The
735 average gene expression at each condition is indicated by a dot and connected by a black line
736 for each species. Individual gene expression is indicated by grey lines.

737 **Figure 5.** Coordination between differentially expressed genes (DEGs) and differently abundant
738 metabolites (DAMs) during responses to salt in *Arabidopsis thaliana*, *Schrenkia parvula*, and
739 *Eutrema salsugineum*. [A] The difference in the percentage of DEGs and DAMs in response to
740 salt treatments. [B] Percentage of DEGs and DAMs involved in the metabolism of amino acids,
741 sugars, and their immediate derivatives. DEGs were categorized based on their GO annotations:
742 GO:0006520 for cellular amino acid metabolism and GO:0005975 for carbohydrate metabolism.
743 Selected pathways in [C] amino acid and [D] sugar metabolism with concordant DAMs and
744 DEGs. Line graphs represent normalized log2 relative metabolite abundance. Boxplots
745 represent normalized gene expression values. Center line in the boxplots indicates median; box
746 indicates interquartile range (IQR); whiskers show $1.5 \times$ IQR. Asterisks indicate significant
747 difference between the treated samples and their respective controls (n = 3-4). Early (E) and
748 late (L) responses for transcripts refer to 3 and 24 hr, respectively. E and L responses for
749 metabolites refer to 24 and 72 hr, respectively. Metabolites are shown in the backbone of the
750 pathway while genes encoding for key enzymes/transcription factors are placed next to the
751 arrows. Metabolites that were quantified in the current study are given in black while those not
752 quantified are in grey.

753 **Figure 6.** Transcriptomic support for Na and nutrient transport in *Arabidopsis thaliana*,
754 *Schrenkia parvula*, and *Eutrema salsugineum*. [A] Basal expression comparison of genes
755 encoding putative Na/K transporters and channels in the roots. The dashed lines indicate 2-fold
756 differences in gene expression between the extremophytes and *A. thaliana* to highlight genes
757 either highly suppressed or highly induced in the extremophytes in roots at control conditions.
758 [B] Expression changes of transporters/channels associated with Na/K transport activity during
759 salt treatments. [C] Selected cation transporters that showed a higher gene copy number in
760 extremophytes and their expression during salt treatments. Nodes assigned with species colors
761 show the ortholog network. Edges show homology relationships, either co-linear reciprocal
762 orthologs (cl-rc), co-linear unidirectional orthologs (cl-uni), transposed -unidirectional
763 duplicates (tr-uni), or tandem duplicated-unidirectional paralogs (td-uni). RPKM: reads per
764 kilobase of transcript per million reads mapped. Asterisks indicate significant difference
765 between the salt treated samples and their respective controls (n = 3, at least 4 plants per
766 replicate) at $*p\text{-adj} \leq 0.05$ and $**p\text{-adj} \leq 0.01$. [D] Salt-induced changes in the expression of
767 genes associated with the transport of nutrients altered in the ionome (identified in Figure 3C).
768 Sample names are shown on the left indicating treatment concentrations (150 and 250 mM
769 NaCl) and durations (3 and 24 hr).

770 **Figure 7.** Focal responses to salt stress prevalent in roots of extremophytes compared to *A.*
771 *thaliana* through ionomic, metabolomic and transcriptomic adjustments coupled to root
772 growth. Ionomic balance is highlighted for Na, K, and Ca. Data are mean \pm SD (n \geq 4, at least 4
773 plants per replicate). Significant differences between treatment groups were determined by
774 ANOVA with Tukey's test within species. Asterisks indicate significant difference ($p \leq 0.05$)
775 between the treated samples and their respective controls. Open circles indicate the biological
776 replicates. Top 9 metabolites enriched in the extremophytes. Fru, fructose; Asn, asparagine;
777 Raf, raffinose; DHA, dehydroascorbic acid; Pro, proline; Shkm, shikimic acid; Suc, sucrose;
778 GABA, gamma-aminobutyric acid; Gln, glutamine. Relative expression changes associated with
779 ion transport and stress signaling. *KEA5*, K efflux antiporter 5; *KUP9*, K uptake permease 9;
780 *KAT1*, K channel in *Arabidopsis thaliana* 1; *GLRs*, glutamate-like receptors; *NHX1/2*, Na/H
781 exchanger1/2; *V-ATPases*, vacuoles-ATPases; *SOS1*, salt overly sensitive 1; *GORK*, gated

782 outwardly-rectifying K channel. Relative root growth compared to control root growth in *A.*
783 *thaliana*.

784 **Table 1.** Cellular processes enriched among ortholog clusters identified based on their basal
785 expression levels in shoots (S) and roots (R) of *S. parvula* (purple), *E. salsugineum* (red), and *A.*
786 *thaliana* (green).

787

788 **Supplementary figure captions**

789 **Figure S1.** Effect of salt stress on *Schrenkia parvula* (Sp), *Eutrema salsugineum* (Es), and
790 *Arabidopsis thaliana* (At). [A] Four-week-old hydroponically grown plants and the salt
791 concentrations examined in this study. DAT: Days after treatment. [B] Sampling scheme for
792 ionomic, metabolomic, and transcriptomic profiling. There were at least 4 replicates per
793 condition used for ionomic and metabolomic profiling, and 3 replicates per condition for
794 transcriptomic profiling with at least 4 plants included per replicate.

795 **Figure S2.** Overall metabolic adjustments in the shoots of the extremophytes compared to *A.*
796 *thaliana*. [A] Pairwise Pearson correlations of the abundance of 716 quantified metabolites
797 across all conditions and species. Blue dots indicate 182 metabolites with known structures, and
798 grey dots represent 534 unknown metabolites. [B] Number of metabolites that significantly
799 changed in abundance (DAMs) in each species compared to its respective control. [C] Basal level
800 percent abundances of sugars, amino acids, and their derivatives in the three species.
801 Significant differences were determined by one-way ANOVA with post-hoc Tukey's test at $p \leq$
802 0.05 ($n = 4$, at least 4 plants per replicate).

803 **Figure S3.** Pairwise comparison of transcriptomes of *Schrenkia parvula*, *Eutrema salsugineum*,
804 and *Arabidopsis thaliana* during response to salt treatments. Pearson correlations of [A] root
805 and [B] shoot transcriptomes were calculated using differentially expressed ortholog pairs which
806 included DEGs from at least one condition in one species. The axis labels are composed of
807 species, treatment concentrations, and treatment durations. Axis color codes represent *S.*
808 *parvula* (Sp) in purple, *E. salsugineum* (Es) in red, and *A. thaliana* (At) in green. Treatment
809 concentrations include 150 and 250 mM NaCl; treatment durations include 3 and 24 hr.

810 **Figure S4.** Functional processes in subclusters of the largest functional cluster (response to
811 stresses) shown in Figure 3C. [A] Root RC1 cluster and its sub-clusters. [B] Shoot SC1 cluster and
812 its sub-clusters. Similarity between functional clusters are based on overlap coefficient
813 determined using GOMCL. Cumulative gene representation for sub-clusters in RC1 and SC1 for
814 [C] roots and [D] shoots. Differentially expressed ortholog groups (DEOGs) are counted for
815 cumulative representation in each subcluster. RC: root cluster; SC: shoot cluster.

816 **Figure S5.** Species dependent responses to salt treatments in *Schrenkia parvula* and *Eutrema*
817 *salsugineum*. Differentially expressed genes (DEGs) in *S. parvula* [A] root and [B] shoot and *E.*
818 *salsugineum* [C] root and [D] shoot in response to 150 and 250 mM NaCl stress at 3 and 24 hr.
819 Yellow points in each panel show DEGs that were uniquely differentially expressed at 250 mM
820 NaCl treatments. Functionally enriched processes for these unique DEGs are shown in the
821 horizontal bar graphs given as insets outlined in yellow for each panel. Differentially expressed
822 genes were identified at $p\text{-adj} \leq 0.01$ ($n = 3$, at least 4 plants per replicate).

823 **Figure S6.** Expression of orthologs associated with hormonal signaling pathways in response to
824 salt in *Arabidopsis thaliana* (At), *Schrenkia parvula* (Sp), and *Eutrema salsugineum* (Es). Genes
825 were selected based on their KEGG annotations. Only genes that were significantly different at
826 either basal expression among species or under salt treatments compared to the control are
827 shown.

828 **Figure S7.** Lateral root development gene network adapted from De Rybel et al., 2010³² and
829 Banda et al., 2019³³. The expression levels of orthologs (in black) were represented as high (H),
830 medium (M), or low (L) relative to each other at basal expression in each ortholog group.
831 Regulatory pathways that were consistently modulated in *S. parvula* or *E. salsugineum* implied
832 to inhibit lateral root formation are marked in turquoise ribbons. Expression pathway leading to
833 the induction of lateral root formation in *A. thaliana* is highlighted in gold ribbons. Genes in the
834 network that were not differently expressed among the three species are marked in light grey.

835 **Figure S8.** *Eutrema salsugineum*, *Schrenkia parvula*, and *Arabidopsis thaliana* seedlings
836 treated with 150 mM NaCl for 11 days. *Schrenkia parvula* (Sp) promoted uninterrupted
837 primary root growth while *E. salsugineum* (Es) showed slower primary root growth with
838 reduced lateral root number. *A. thaliana* (At) roots showed severe primary and lateral root

839 growth inhibition under salt stress.

840 **Figure S9.** Overall concordant metabolomic and transcriptomic responses and proline, shikimic
841 acid, and ascorbic acid pathway alignments between genes and metabolites. [A] Percentage of
842 differentially expressed genes (DEGs) and differently abundant metabolites (DAMs) in response
843 to salt treatments. Pathways involved in [B] proline metabolism, [C] the conversion from
844 phosphoenolpyruvate to chorismite, and [D] ascorbic acid metabolism. Line graphs represent
845 normalized log₂ relative metabolite abundance. Boxplots represent normalized gene expression
846 values. Center line in the boxplots indicate median; box indicates interquartile range (IQR);
847 whiskers show 1.5 × IQR. Asterisks indicate significant difference between the treated samples
848 and their respective controls (n = 3-4). Early (E) and late (L) responses for transcripts refer to 3
849 and 24 hr, respectively. E and L responses for metabolites refer to 24 and 72 hr, respectively.
850 Metabolites are shown in the backbone of the pathway while genes encoding for key
851 enzymes/transcription factors are placed next to the arrows. Metabolites that were quantified
852 in the current study are given in black while those not quantified are in grey.

853

854 **References**

- 855 1. Flowers, T. J., Munns, R. & Colmer, T. D. Sodium chloride toxicity and the cellular basis of
856 salt tolerance in halophytes. *Ann. Bot.* **115**, 419–431 (2015).
- 857 2. Santiago-Rosario, L. Y., Harms, K. E., Elderd, B. D., Hart, P. B. & Dassanayake, M. No
858 escape: The influence of substrate sodium on plant growth and tissue sodium responses.
859 *Ecol. Evol.* **11**, 14231–14249 (2021).
- 860 3. Flowers, T. J. & Colmer, T. D. Salinity tolerance in halophytes. *New Phytol.* **179**, 945–963
861 (2008).
- 862 4. Hajiboland, R., Bahrami-Rad, S., Akhani, H. & Poschenrieder, C. Salt tolerance
863 mechanisms in three Irano-Turanian Brassicaceae halophytes relatives of *Arabidopsis*
864 *thaliana*. *J. Plant Res.* **131**, 1029–1046 (2018).
- 865 5. Oh, D.-H., Dassanayake, M., Bohnert, H. J. & Cheeseman, J. M. Life at the extreme:
866 lessons from the genome. *Genome Biol.* **13**, 241 (2012).
- 867 6. Kazachkova, Y. *et al.* Halophytism: What Have We Learnt From *Arabidopsis thaliana*

868 Relative Model Systems? *Plant Physiol.* **178**, 972–988 (2018).

869 7. Pantha, P. & Dassanayake, M. Living with Salt. *Innov.* **1**, 100050 (2020).

870 8. Zhao, C., Zhang, H., Song, C., Zhu, J. & Shabala, S. Mechanisms of Plant Responses and
871 Adaptation to Soil Salinity. *Innov.* **1**, 100017 (2020).

872 9. van Zelm, E., Zhang, Y. & Testerink, C. Salt Tolerance Mechanisms of Plants. *Annu. Rev.*
873 *Plant Biol.* **71**, 403–433 (2020).

874 10. Takahashi, F. & Shinozaki, K. Long-distance signaling in plant stress response. *Curr. Opin.*
875 *Plant Biol.* **47**, 106–111 (2019).

876 11. Takahashi, Y. *et al.* MAP3Kinase-dependent SnRK2-kinase activation is required for
877 abscisic acid signal transduction and rapid osmotic stress response. *Nat. Commun.* **11**, 12
878 (2020).

879 12. Flowers, T. J., Galal, H. K. & Bromham, L. Evolution of halophytes: multiple origins of salt
880 tolerance in land plants. *Funct. Plant Biol.* **37**, 604 (2010).

881 13. Bennett, T. H., Flowers, T. J. & Bromham, L. Repeated evolution of salt-tolerance in
882 grasses. *Biol. Lett.* **9**, 20130029 (2013).

883 14. Isayenkov, S. V. & Maathuis, F. J. M. Plant Salinity Stress: Many Unanswered Questions
884 Remain. *Front. Plant Sci.* **10**, 80 (2019).

885 15. Dassanayake, M. *et al.* The genome of the extremophile crucifer *Thellungiella parvula*.
886 *Nat. Genet.* **43**, 913–918 (2011).

887 16. Wu, H.-J. *et al.* Insights into salt tolerance from the genome of *Thellungiella salsuginea*.
888 *Proc. Natl. Acad. Sci.* **109**, 12219–12224 (2012).

889 17. Inan, G. *et al.* Salt Cress. A Halophyte and Cryophyte *Arabidopsis* Relative Model System
890 and Its Applicability to Molecular Genetic Analyses of Growth and Development of
891 Extremophiles. *Plant Physiol.* **135**, 1718–1737 (2004).

892 18. Orsini, F. *et al.* A comparative study of salt tolerance parameters in 11 wild relatives of
893 *Arabidopsis thaliana*. *J. Exp. Bot.* **61**, 3787–3798 (2010).

894 19. Tug, G. N., Yaprak, A. E. & Vural, M. The Floristical, Ecological, and Syntaxonomical
895 Characteristics of Salt Marshes and Salt Steppes in Turkey. in *Sabkha Ecosystems* 413–
896 446 (Springer, 2019). doi:10.1007/978-3-030-04417-6_26.

897 20. Lee, Y. P. *et al.* Salt stress responses in a geographically diverse collection of
898 Eutrema/Thellungiella spp. accessions. *Funct. Plant Biol.* **43**, 590–606 (2016).

899 21. Gong, Q., Li, P., Ma, S., Indu Rupassara, S. & Bohnert, H. J. Salinity stress adaptation
900 competence in the extremophile Thellungiella halophila in comparison with its relative
901 *Arabidopsis thaliana*. *Plant J.* **44**, 826–839 (2005).

902 22. Kazachkova, Y. *et al.* Growth Platform-Dependent and -Independent Phenotypic and
903 Metabolic Responses of *Arabidopsis* and Its Halophytic Relative, *Eutrema salsugineum*, to
904 Salt Stress. *Plant Physiol.* **162**, 1583–1598 (2013).

905 23. Oh, D.-H. *et al.* Genome Structures and Transcriptomes Signify Niche Adaptation for the
906 Multiple-Ion-Tolerant Extremophyte *Schrenkia parvula*. *Plant Physiol.* **164**, 2123–2138
907 (2014).

908 24. Prerostova, S. *et al.* Hormonal dynamics during salt stress responses of salt-sensitive
909 *Arabidopsis thaliana* and salt-tolerant *TheLLungiella salsuginea*. *Plant Sci.* **264**, 188–198
910 (2017).

911 25. Shabala, S. *et al.* Extracellular Ca²⁺ ameliorates NaCl-induced K⁺ loss from *Arabidopsis*
912 root and leaf cells by controlling plasma membrane K⁺-permeable channels. *Plant
913 Physiol.* **141**, 1653–1665 (2006).

914 26. Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. & Savouré, A. Diversity, distribution and
915 roles of osmoprotective compounds accumulated in halophytes under abiotic stress.
916 *Ann. Bot.* **115**, 433–447 (2015).

917 27. Yu, Z. *et al.* How Plant Hormones Mediate Salt Stress Responses. *Trends Plant Sci.* **25**,
918 1117–1130 (2020).

919 28. Gallei, M., Luschnig, C. & Friml, J. Auxin signalling in growth: Schrödinger's cat out of the
920 bag. *Curr. Opin. Plant Biol.* **53**, 43–49 (2020).

921 29. Hauser, F., Waadt, R. & Schroeder, J. I. Evolution of Abscisic Acid Synthesis and Signaling
922 Mechanisms. *Curr. Biol.* **21**, R346–R355 (2011).

923 30. Ding, Z. & De Smet, I. Localised ABA signalling mediates root growth plasticity. *Trends
924 Plant Sci.* **18**, 533–535 (2013).

925 31. Ding, Z. J. *et al.* Transcription factor WRKY46 modulates the development of *Arabidopsis*

926 lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin
927 homeostasis. *Plant J.* **84**, 56–69 (2015).

928 32. De Rybel, B. *et al.* A Novel Aux/IAA28 Signaling Cascade Activates GATA23-Dependent
929 Specification of Lateral Root Founder Cell Identity. *Curr. Biol.* **20**, 1697–1706 (2010).

930 33. Banda, J. *et al.* Lateral Root Formation in Arabidopsis: A Well-Ordered Lexit. *Trends
931 Plant Sci.* **24**, 826–839 (2019).

932 34. Zhu, X. *et al.* K⁺ Efflux Antiporters 4, 5, and 6 Mediate pH and K⁺ Homeostasis in
933 Endomembrane Compartments. *Plant Physiol.* **178**, 1657–1678 (2018).

934 35. Sustr, M., Soukup, A. & Tylöva, E. Potassium in Root Growth and Development. *Plants* **8**,
935 435 (2019).

936 36. Bassil, E. *et al.* The Arabidopsis Na⁺/H⁺ Antiporters NHX1 and NHX2 Control Vacuolar pH
937 and K⁺ Homeostasis to Regulate Growth, Flower Development, and Reproduction. *Plant
938 Cell* **23**, 3482–3497 (2011).

939 37. Halfter, U., Ishitani, M. & Zhu, J.-K. The Arabidopsis SOS2 protein kinase physically
940 interacts with and is activated by the calcium-binding protein SOS3. *Proc. Natl. Acad. Sci.
941* **97**, 3735–3740 (2000).

942 38. Demidchik, V. & Tester, M. Sodium Fluxes through Nonselective Cation Channels in the
943 Plasma Membrane of Protoplasts from Arabidopsis Roots. *Plant Physiol.* **128**, 379–387
944 (2002).

945 39. Han, S., Wang, C., Wang, W. & Jiang, J. Mitogen-activated protein kinase 6 controls root
946 growth in Arabidopsis by modulating Ca²⁺-based Na⁺ flux in root cell under salt stress. *J.
947 Plant Physiol.* **171**, 26–34 (2014).

948 40. Volkov, V. & Amtmann, A. *Thellungiella halophila*, a salt-tolerant relative of Arabidopsis
949 *thaliana*, has specific root ion-channel features supporting K⁺/Na⁺ homeostasis under
950 salinity stress. *Plant J.* **48**, 342–353 (2006).

951 41. Cuin, T. A., Betts, S. A., Chalmandrier, R. & Shabala, S. A root's ability to retain K⁺
952 correlates with salt tolerance in wheat. *J. Exp. Bot.* **59**, 2697–2706 (2008).

953 42. Sun, J. *et al.* Calcium mediates root K⁺/Na⁺ homeostasis in poplar species differing in salt
954 tolerance. *Tree Physiol.* **29**, 1175–1186 (2009).

955 43. Ivashikina, N. *et al.* K⁺ channel profile and electrical properties of *Arabidopsis* root hairs.
956 *FEBS Lett.* **508**, 463–469 (2001).

957 44. Shabala, S. & Cuin, T. A. Potassium transport and plant salt tolerance. *Physiol. Plant.* **133**,
958 651–669 (2008).

959 45. Ache, P. *et al.* GORK, a delayed outward rectifier expressed in guard cells of *Arabidopsis*
960 *thaliana*, is a K(+)-selective, K(+)-sensing ion channel. *FEBS Lett.* **486**, 93–8 (2000).

961 46. Philipp, K. *et al.* Auxin activates KAT1 and KAT2, two K⁺-channel genes expressed in
962 seedlings of *Arabidopsis thaliana*. *Plant J.* **37**, 815–827 (2004).

963 47. Sun, Y. *et al.* Divergence in a stress regulatory network underlies differential growth
964 control. *bioRxiv* (2021) doi:10.1101/2020.11.18.349449.

965 48. Zhang, M. *et al.* KUP9 maintains root meristem activity by regulating K⁺ and auxin
966 homeostasis in response to low K. *EMBO Rep.* **21**, e50164 (2020).

967 49. Eshel, G. *et al.* *Anastatica hierochuntica*, an *Arabidopsis* Desert Relative, Is Tolerant to
968 Multiple Abiotic Stresses and Exhibits Species-Specific and Common Stress Tolerance
969 Strategies with Its Halophytic Relative, *Eutrema* (*Thellungiella*) *salsugineum*. *Front. Plant*
970 *Sci.* **7**, 1–18 (2017).

971 50. Yin, J., Gosney, M. J., Dilkes, B. P. & Mickelbart, M. V. Dark period transcriptomic and
972 metabolic profiling of two diverse *Eutrema salsugineum* accessions. *Plant Direct* **2**,
973 e00032 (2018).

974 51. Pinheiro, C. *et al.* Distinctive phytohormonal and metabolic profiles of *Arabidopsis*
975 *thaliana* and *Eutrema salsugineum* under similar soil drying. *Planta* **249**, 1417–1433
976 (2019).

977 52. Bartels, D. & Dinakar, C. Balancing salinity stress responses in halophytes and non-
978 halophytes: a comparison between *Thellungiella* and *Arabidopsis thaliana*. *Funct. Plant*
979 *Biol.* **40**, 819 (2013).

980 53. Funck, D., Eckard, S. & Müller, G. Non-redundant functions of two proline dehydrogenase
981 isoforms in *Arabidopsis*. *BMC Plant Biol.* **10**, 70 (2010).

982 54. Déjardin, A., Sokolov, L. N. & Kleczkowski, L. A. Sugar/osmoticum levels modulate
983 differential abscisic acid-independent expression of two stress-responsive sucrose

984 synthase genes in *Arabidopsis*. *Biochem. J.* **344**, 503–509 (1999).

985 55. Grime, J. & Hunt, R. Relative Growth-Rate : Its Range and Adaptive Significance in a Local
986 Flora. *J. Ecol.* **63**, 393–422 (1975).

987 56. Poorter, H. Interspecific variation in relative growth rate: on ecological causes and
988 physiological consequences. *Causes consequences Var. growth rate Product. High. plants*
989 **24**, 45–68 (1989).

990 57. Atkinson, R. R. L., Burrell, M. M., Osborne, C. P., Rose, K. E. & Rees, M. A non-targeted
991 metabolomics approach to quantifying differences in root storage between fast- and
992 slow-growing plants. *New Phytol.* **196**, 200–211 (2012).

993 58. Tran, K.-N. *et al.* Balancing growth amidst salinity stress – lifestyle perspectives from the
994 extremophyte model *Schrenkia parvula*. *bioRxiv* 6 (2021)
995 doi:<https://doi.org/10.1101/2021.08.27.457575>.

996 59. Wang, Y., Li, K. & Li, X. Auxin redistribution modulates plastic development of root
997 system architecture under salt stress in *Arabidopsis thaliana*. *J. Plant Physiol.* **166**, 1637–
998 1645 (2009).

999 60. Lakehal, A. *et al.* A Molecular Framework for the Control of Adventitious Rooting by
1000 TIR1/AFB2-Aux/IAA-Dependent Auxin Signaling in *Arabidopsis*. *Mol. Plant* **12**, 1499–1514
1001 (2019).

1002 61. Simopoulos, C. M. A. *et al.* Coding and long non-coding RNAs provide evidence of distinct
1003 transcriptional reprogramming for two ecotypes of the extremophile plant *Eutrema*
1004 *salsugineum* undergoing water deficit stress. *BMC Genomics* **21**, 396 (2020).

1005 62. Wang, G. *et al.* Cross species multi-omics reveals cell wall sequestration and elevated
1006 global transcript abundance as mechanisms of boron tolerance in plants. *New Phytol.*
1007 **230**, 1985–2000 (2021).

1008 63. Pantha, P., Oh, D.-H., Longstreth, D. & Dassanayake, M. Living with high potassium: an
1009 asset or a hindrance. *bioRxiv* 2021.07.01.450778 (2021) doi:[10.1101/2021.07.01.450778](https://doi.org/10.1101/2021.07.01.450778).

1010 64. Flowers, T. J. & Colmer, T. D. Plant salt tolerance: Adaptations in halophytes. *Ann. Bot.*
1011 **115**, 327–331 (2015).

1012 65. Zandalinas, S. I., Fritschi, F. B. & Mittler, R. Global Warming, Climate Change, and

1013 Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. *Trends*
1014 *Plant Sci.* **26**, 588–599 (2021).

1015 66. Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D. & Schroeder, J. I. Genetic
1016 strategies for improving crop yields. *Nature* **575**, 109–118 (2019).

1017 67. Pareek, A., Dhankher, O. P. & Foyer, C. H. Mitigating the impact of climate change on
1018 plant productivity and ecosystem sustainability. *J. Exp. Bot.* **71**, 451–456 (2020).

1019 68. Conn, S. J. *et al.* Protocol: Optimising hydroponic growth systems for nutritional and
1020 physiological analysis of *Arabidopsis thaliana* and other plants. *Plant Methods* **9**, 1–11
1021 (2013).

1022 69. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image
1023 analysis. *Nat. Methods* **9**, 671–675 (2012).

1024 70. Baxter, I. R. *et al.* Single-Kernel Ionomic Profiles Are Highly Heritable Indicators of Genetic
1025 and Environmental Influences on Elemental Accumulation in Maize Grain (*Zea mays*).
1026 *PLoS One* **9**, e87628 (2014).

1027 71. Fiehn, O. Metabolomics by Gas Chromatography–Mass Spectrometry: Combined
1028 Targeted and Untargeted Profiling. *Curr. Protoc. Mol. Biol.* **114**, 1–43 (2016).

1029 72. Mannor, S. *et al.* K-Means Clustering. in *Encyclopedia of Machine Learning* 563–564
1030 (Springer US, 2011). doi:10.1007/978-0-387-30164-8_425.

1031 73. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. Ultrafast and memory-efficient
1032 alignment of short DNA sequences to the human genome. *Genome Biol.* **10**, R25 (2009).

1033 74. Love, M. I., Anders, S. & Huber, W. *Differential analysis of count data - the DESeq2*
1034 *package*. *Genome Biology* vol. 15 (2014).

1035 75. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation
1036 and Projection. *J. Open Source Softw.* **3**, 861 (2018).

1037 76. Maere, S., Heymans, K. & Kuiper, M. BiNGO: A Cytoscape plugin to assess
1038 overrepresentation of Gene Ontology categories in Biological Networks. *Bioinformatics*
1039 **21**, 3448–3449 (2005).

1040 77. Wang, G., Oh, D. H. & Dassanayake, M. GOMCL: A toolkit to cluster, evaluate, and extract
1041 non-redundant associations of Gene Ontology-based functions. *BMC Bioinformatics* **21**,

1042 1–9 (2020).

1043 78. Oh, D.-H. & Dassanayake, M. Landscape of gene transposition–duplication within the

1044 Brassicaceae family. *DNA Res.* **26**, 21–36 (2019).

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

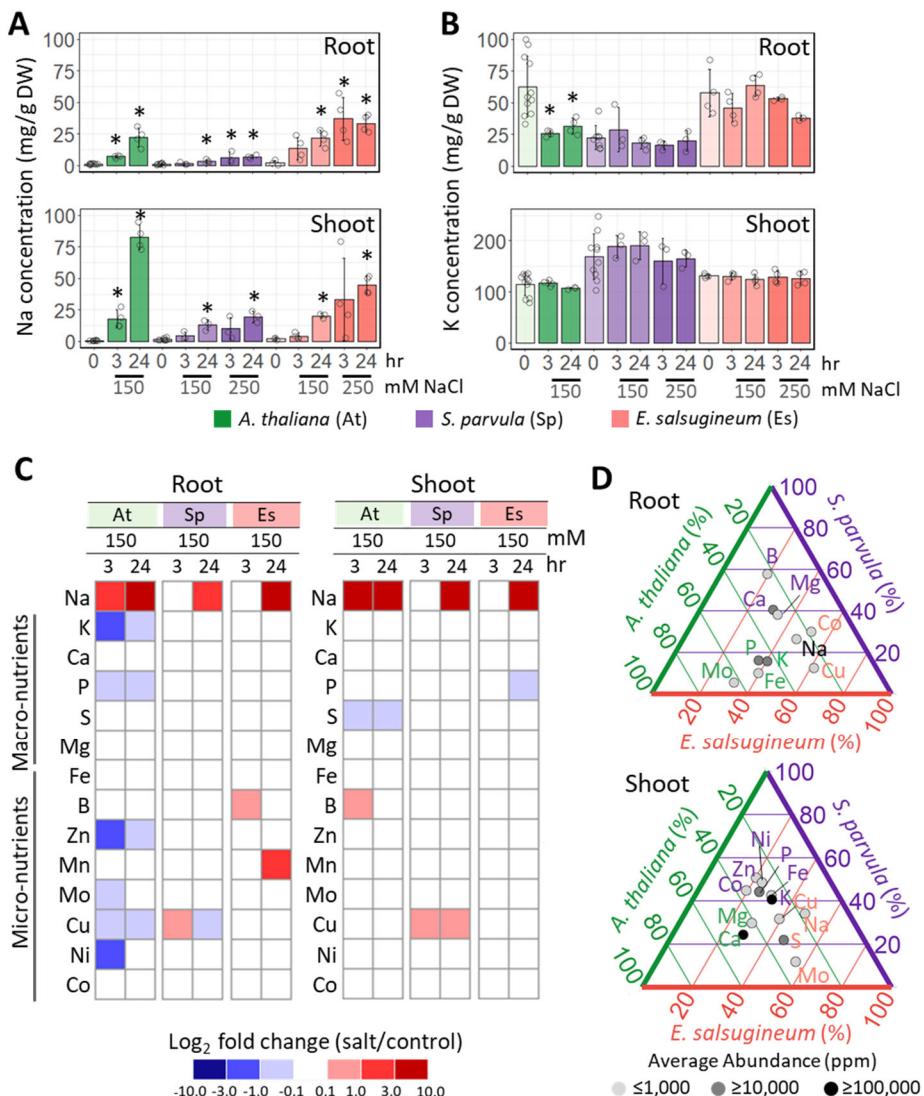
1062

1063

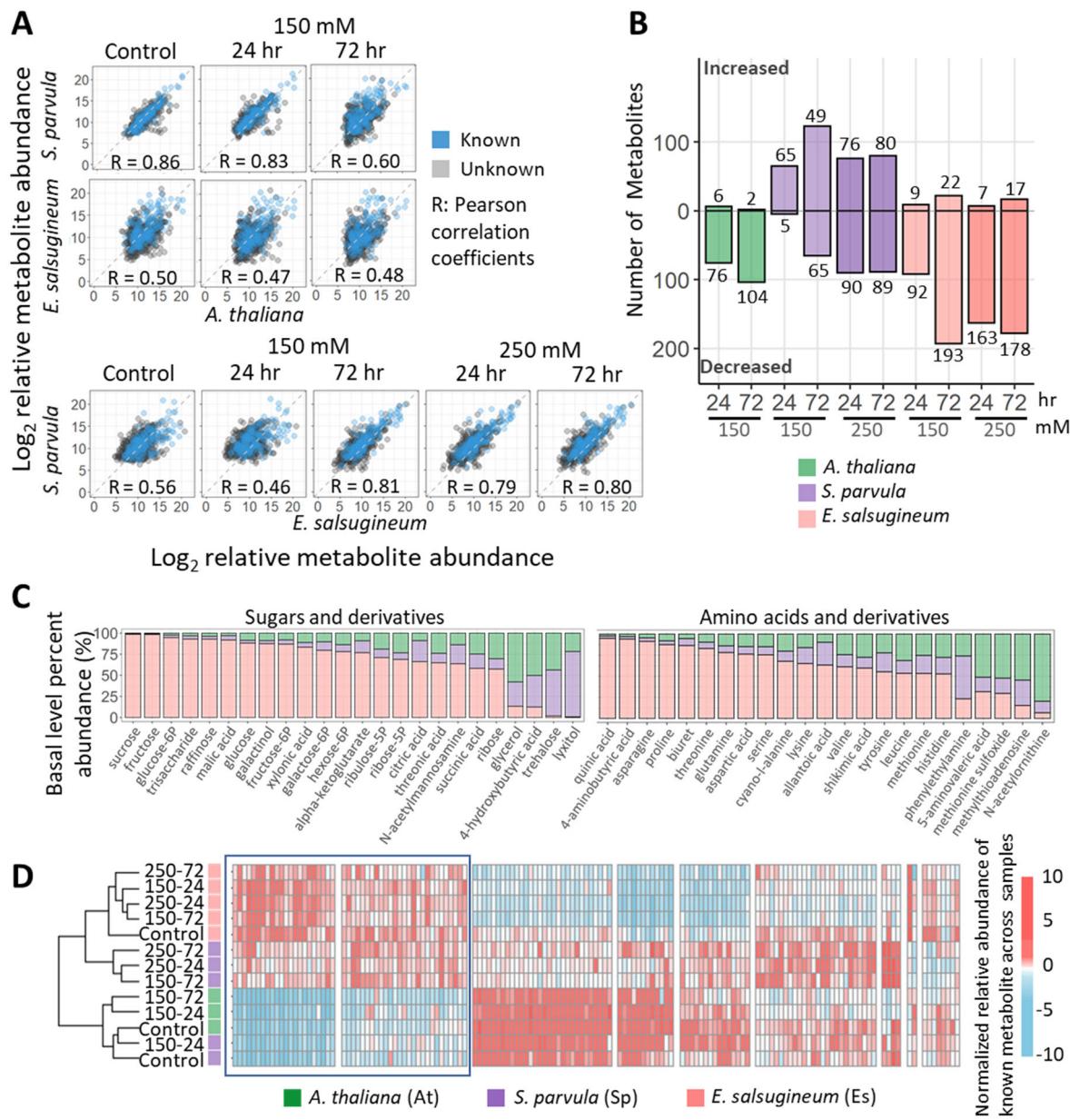
1064

1065

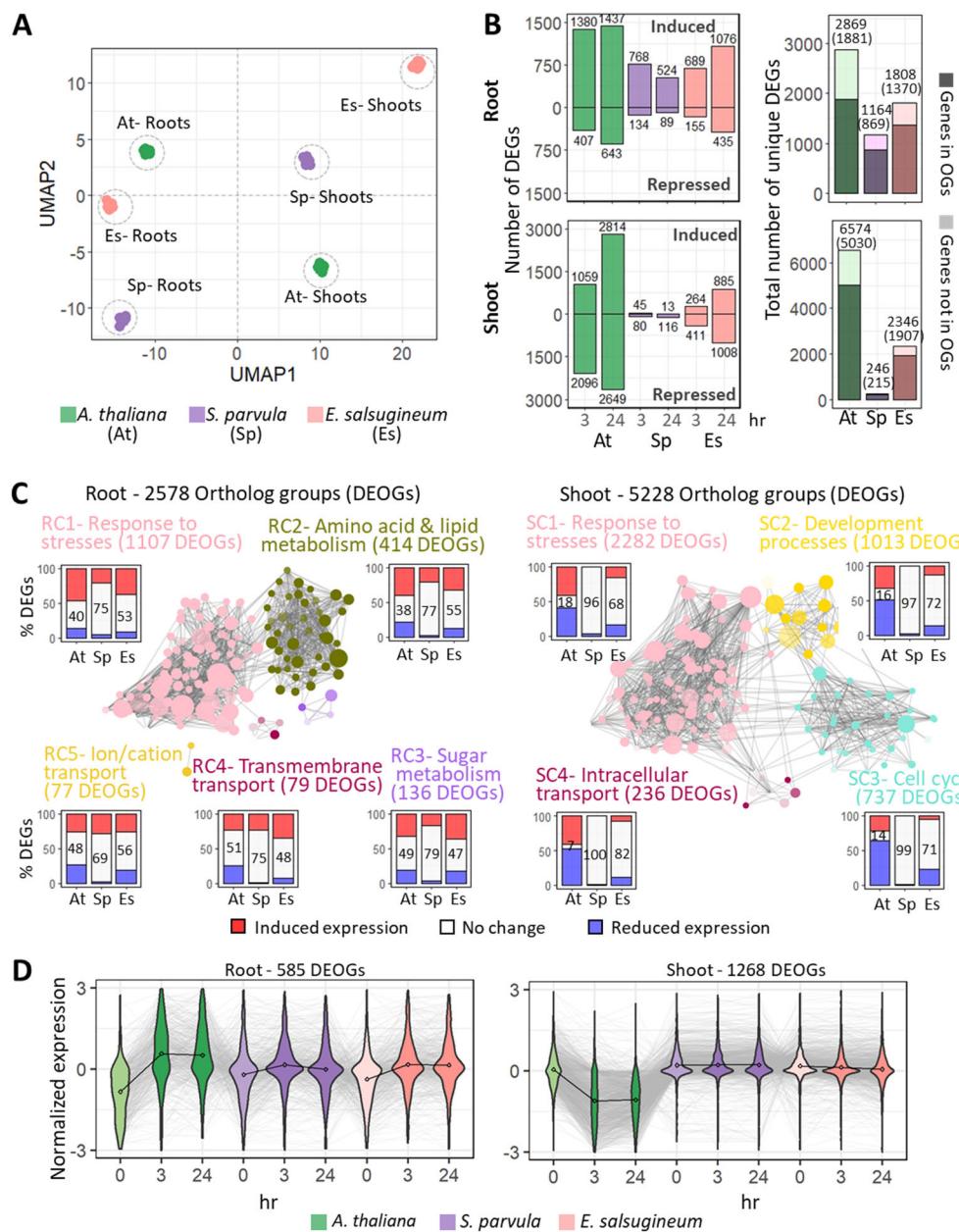
1066

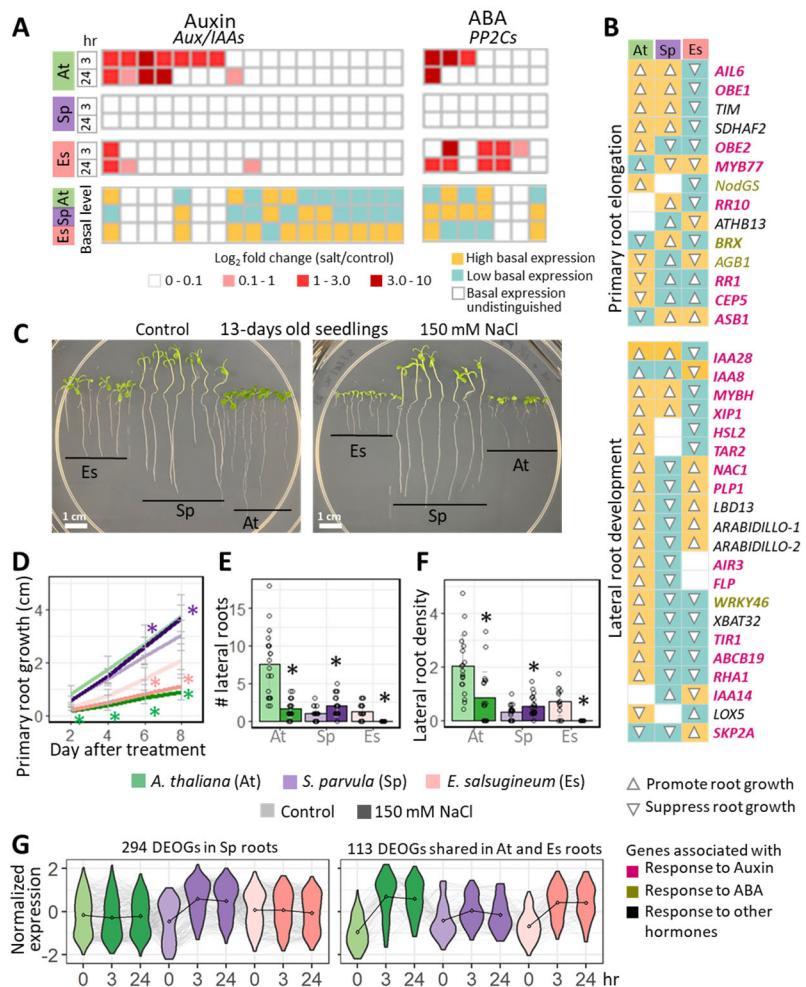

1067

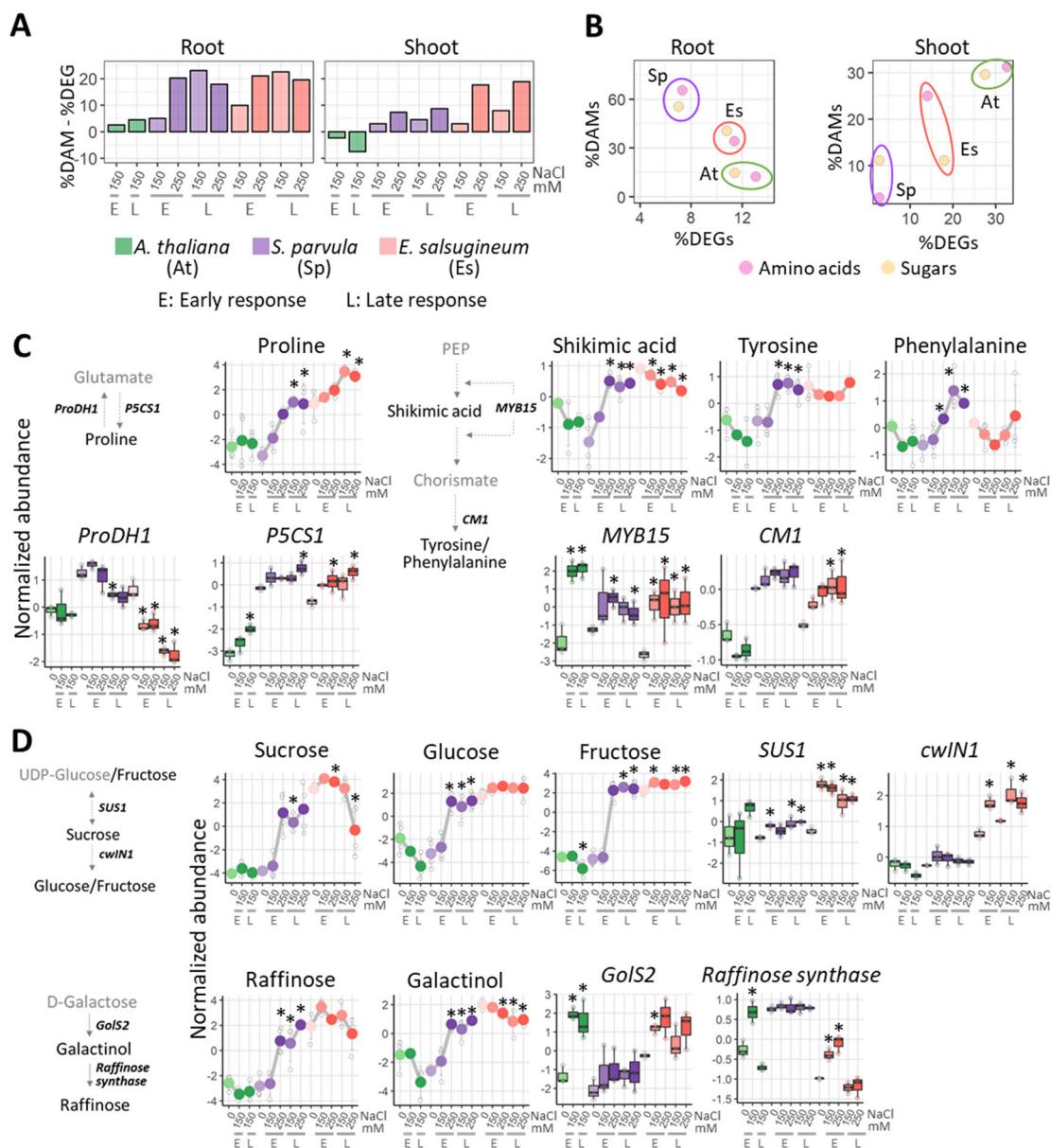
1068


1069

1070


1071 **Main figures and tables**


Figure 1. Sodium accumulation and its effect on nutrient balance in the extremophytes compared to *A. thaliana* under salt stress. [A] Na and [B] K content in roots and shoots. Data are mean \pm SD ($n \geq 4$, at least 4 plants per replicate). Significant differences between treatment groups were determined by ANOVA with Tukey's test applied to within species comparisons. Asterisks indicate significant difference ($p \leq 0.05$) between the treated samples and their respective controls. Open circles indicate biological replicates. [C] Salt stress-induced changes in macro- and micro-nutrient content. [D] Percent abundance of nutrients that showed significant differences in abundance at control conditions among the three species. Significant difference in elemental abundance was determined by one-way ANOVA with post-hoc Tukey's test at $p \leq 0.05$. The three axes of the ternary plots are marked with *A. thaliana*, *S. parvula*, and *E. salsugineum*. The gridlines in species-designated colors point to % abundance of the element from the corresponding species over the total abundance of that element from all three species. Thus, gridlines of each color nearest to each data point lead to the relative % abundance in each species.


Figure 2. Overall metabolic preparedness and adjustments in the roots of the extremophytes compared to *A. thaliana*. [A] Pairwise Pearson correlations of the abundance of 716 quantified metabolites across all conditions and species. Blue dots indicate 182 metabolites with known structures, and grey dots represent 534 unknown metabolites. [B] Number of metabolites that significantly changed in abundance (DAMs) in each species compared to its respective controls. [C] Basal level percent abundances of sugars, amino acids, and their derivatives in the three species. [D] Hierarchical clustering of known metabolites shown in [B and C]. Blue box highlights clusters of interest. Columns indicate metabolites and rows indicate samples. Sample names for treated conditions are given as treatment concentration and duration, separated by a dash. Treatment concentrations are 150 and 250 mM NaCl; treatment durations are 24 and 72 hr. Significant differences were determined by one-way ANOVA with post-hoc Tukey's test at $p \leq 0.05$ ($n = 4$, at least 4 plants per replicate).

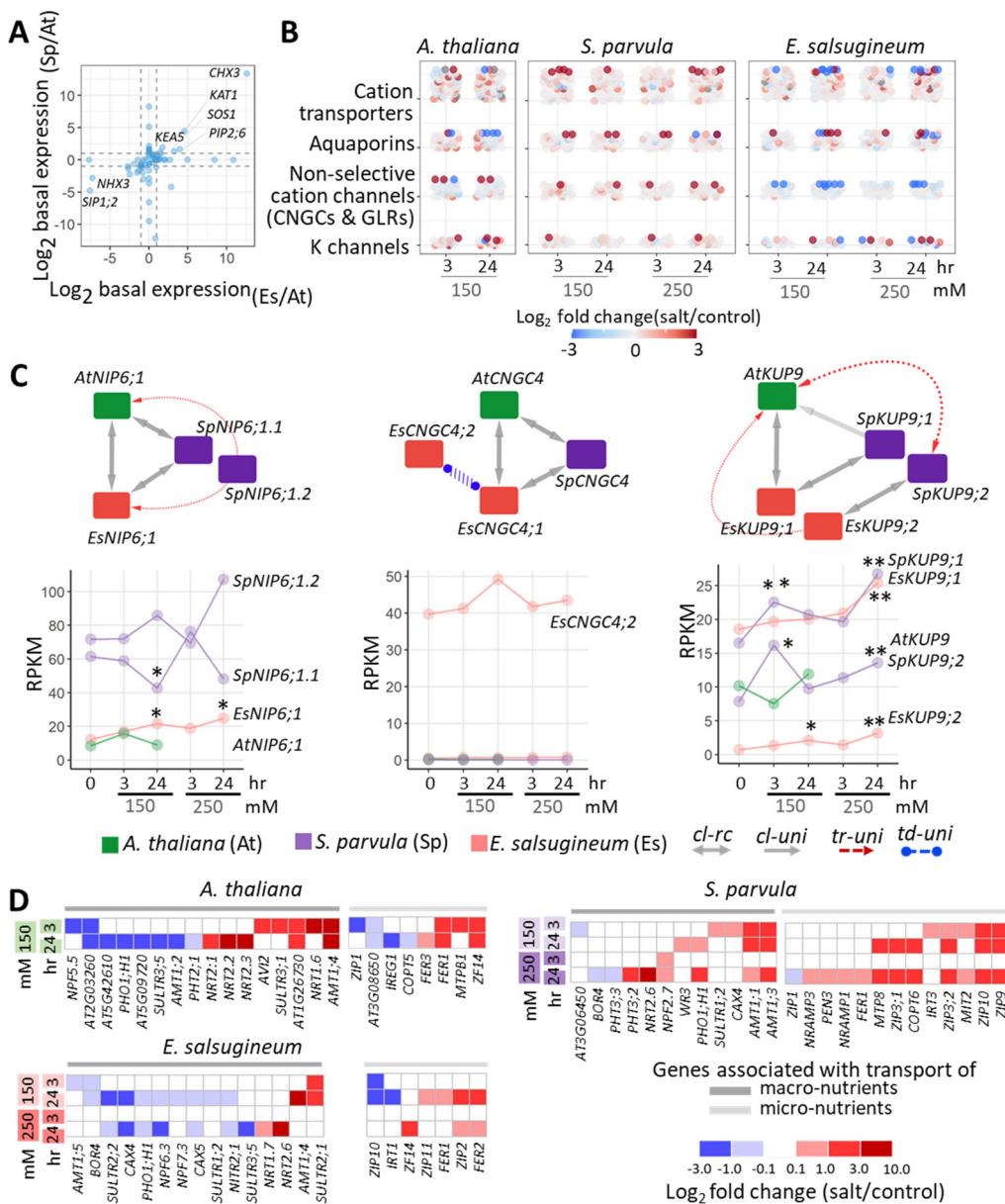

Figure 3. Transcriptomic overview of *Schrenkia parvula*, *Eutrema salsugineum*, and *Arabidopsis thaliana* in response to salt. [A] Overall clustering of transcriptomes in shoots and roots from all replicates in all conditions using one-to-one ortholog groups (OGs). [B] Number of differentially expressed genes (DEGs) in response to salt treatments. DEGs were identified using DESeq2 at $p\text{-adj} \leq 0.01$ ($n = 3$, at least 4 plants per replicate). [C] Functional clusters enriched among differentially expressed ortholog groups (DEOGs) that included a DEG from at least one species in roots (RC, root cluster) and shoots (SC-shoot cluster). Functional annotations were based on GO annotations assigned to DEOGs. The bar graph assigned to each cluster represents percent allocation of induced (red) and suppressed (blue) DEGs with the percentage of genes that did not significantly change in each species given in the white space. [D] Dominant gene expression clusters of DEOGs across time points and species from roots and shoots that included an *A. thaliana* ortholog that was either induced or suppressed in response to 150 mM NaCl treatment. The average gene expression at each condition is indicated by a dot and connected by a black line for each species. Individual gene expression is indicated by grey lines.

Figure 4. Root growth responses in line with gene expression associated with auxin and ABA signaling in *Arabidopsis thaliana*, *Schrenkia parvula*, and *Eutrema salsugineum* when treated with salt. [A] Salt-induced changes in expression of auxin/indole acetic acid (Aux/IAA) repressors and type 2C protein phosphatases (PP2Cs) that regulate auxin and ABA signaling. [B] Curated genes from lateral root development (GO:0048527) and primary root development (GO:0080022) used to infer root growth phenotypes based on functional genetic studies in *A. thaliana*. Ortholog expression levels are categorized as high (yellow), low (turquoise), and indistinguishable (no-color) based on their relative basal expression among the three species. Their inferred effect on root growth is indicated by the arrowheads (up for promoting growth and down for suppressing growth). Genes associated with auxin, ABA, and other hormones were labeled in pink, gold, and black respectively. [C] Root growth examined with and without salt. [D] Primary root growth, [E] number of lateral roots, and [F] lateral root density of 13-day-old seedlings that were treated with 150 mM NaCl for 8 days. Data are given as mean \pm SD ($n = 3$, at least 7 plants per replicate). Open circles indicate individual measurements. Asterisks indicate significant differences ($p \leq 0.05$) between treated samples and their respective control samples, determined by one-way ANOVA with post-hoc Tukey's test. [G] Gene co-expression clusters of differentially expressed ortholog groups (DEOGs) that showed similar expression pattern in *A. thaliana* and *E. salsugineum* roots compared to a different pattern observed for *S. parvula* under salt stress. Left panel includes DEOGs that are uniquely upregulated in *S. parvula*; right panel includes DEOGs that are co-upregulated in *A. thaliana* and *E. salsugineum*. The average gene expression at each condition is indicated by a dot and connected by a black line for each species. Individual gene expression is indicated by grey lines.

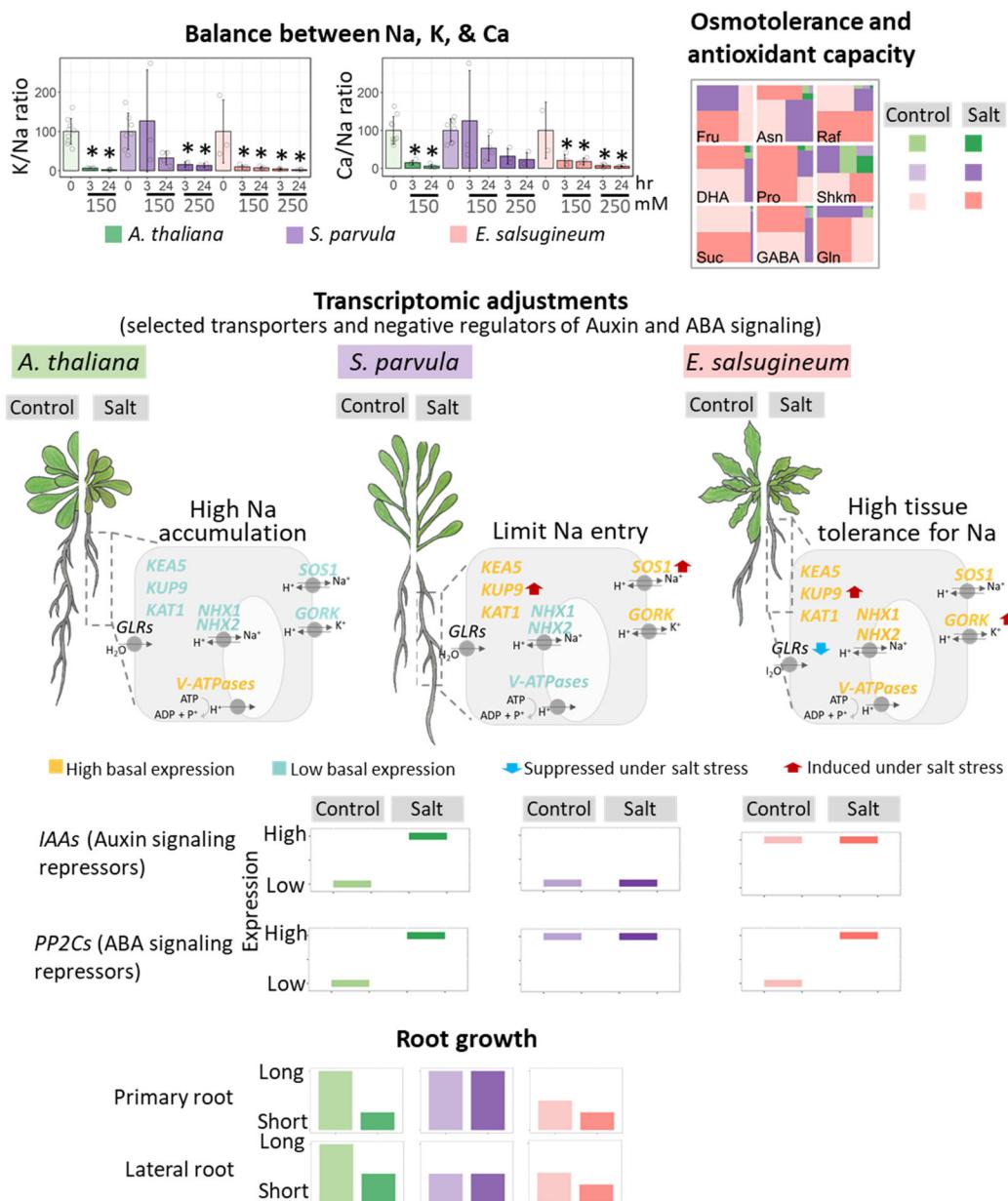
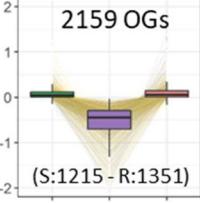
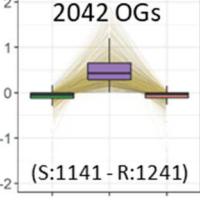
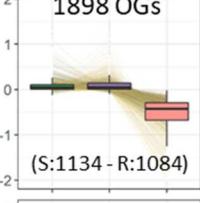
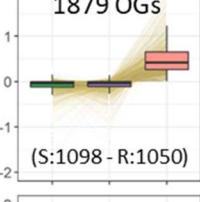
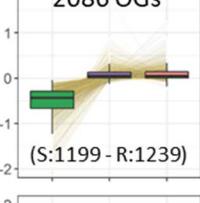
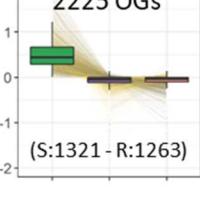


Figure 5. Coordination between differentially expressed genes (DEGs) and differently abundant metabolites (DAMs) during responses to salt in *Arabidopsis thaliana*, *Schrenkia parvula*, and *Eutrema salsugineum*. [A] The difference in the percentage of DEGs and DAMs in response to salt treatments. [B] Percentage of DEGs and DAMs involved in the metabolism of amino acids, sugars, and their immediate derivatives. DEGs were categorized based on their GO annotations: GO:0006520 for cellular amino acid metabolism and GO:0005975 for carbohydrate metabolism. Selected pathways in [C] amino acid and [D] sugar metabolism with concordant DAMs and DEGs. Line graphs represent normalized log₂ relative metabolite abundance. Boxplots represent normalized gene expression values. Center line in the boxplots indicates median; box indicates interquartile range (IQR); whiskers show 1.5 × IQR. Asterisks indicate significant difference between the treated samples and their respective controls (n = 3-4). Early (E) and late (L) responses for transcripts refer to 3 and 24 hr, respectively. E and L responses for metabolites refer to 24 and 72 hr, respectively. Metabolites are shown in the backbone of the pathway while genes encoding for key enzymes/transcription factors are placed next to the arrows. Metabolites that were quantified in the current study are given in black while those not quantified are in grey.







Figure 6. Transcriptomic support for Na and nutrient transport in *Arabidopsis thaliana*, *Schrenkia parvula*, and *Eutrema salsugineum*. [A] Basal expression comparison of genes encoding putative Na/K transporters and channels in the roots. The dashed lines indicate 2-fold differences in gene expression between the extremophytes and *A. thaliana* to highlight genes either highly suppressed or highly induced in the extremophytes in roots at control conditions. [B] Expression changes of transporters/channels associated with Na/K transport activity during salt treatments. [C] Selected cation transporters that showed a higher gene copy number in extremophytes and their expression during salt treatments. Nodes assigned with species colors show the ortholog network. Edges show homology relationships, either co-linear reciprocal orthologs (cl-rc), co-linear unidirectional orthologs (cl-uni), transposed -unidirectional duplicates (tr-uni), or tandem duplicated-unidirectional paralogs (td-uni). RPKM: reads per kilobase of transcript per million reads mapped. Asterisks indicate significant difference between the salt treated samples and their respective controls ($n = 3$, at least 4 plants per replicate) at $*p\text{-adj} \leq 0.05$ and $**p\text{-adj} \leq 0.01$. [D] Salt-induced changes in the expression of genes associated with the transport of nutrients altered in the ionome (identified in Figure 3C). Sample names are shown on the left indicating treatment concentrations (150 and 250 mM NaCl) and durations (3 and 24 hr).

Coordinated responses to salt stress in roots

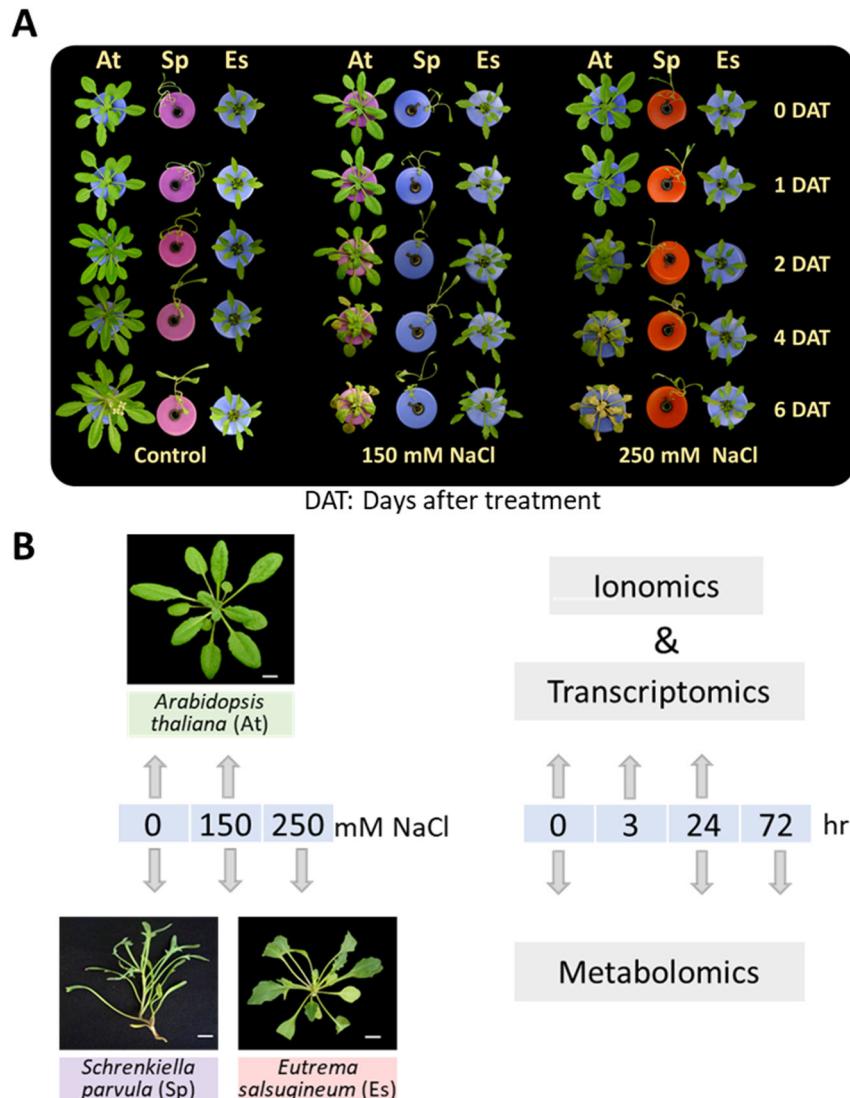


Figure 7. Focal responses to salt stress prevalent in roots of extremophytes compared to *A. thaliana* through ionomic, metabolomic and transcriptomic adjustments coupled to root growth. Ionomic balance is highlighted for Na, K, and Ca. Data are mean \pm SD ($n \geq 4$, at least 4 plants per replicate). Significant differences between treatment groups were determined by ANOVA with Tukey's test within species. Asterisks indicate significant difference ($p \leq 0.05$) between the treated samples and their respective controls. Open circles indicate the biological replicates. Top 9 metabolites enriched in the extremophytes. Fru, fructose; Asn, asparagine; Raf, raffinose; DHA, dehydroascorbic acid; Pro, proline; Shkm, shikimic acid; Suc, sucrose; GABA, gamma-aminobutyric acid; Gln, glutamine. Relative expression changes associated with ion transport and stress signaling. *KEA5*, K efflux antiporter 5; *KUP9*, K uptake permease 9; *KAT1*, K channel in *Arabidopsis thaliana* 1; *GLRs*, glutamate-like receptors; *NHX1/2*, Na/H exchanger1/2; *V-ATPases*, vacuoles-ATPases; *SOS1*, salt overly sensitive 1; *GORK*, gated outwardly-rectifying K channel. Relative root growth compared to control root growth in *A. thaliana*.

Table 1. Cellular processes enriched among ortholog clusters identified based on their basal expression levels in shoots (S) and roots (R) of *S. parvula* (purple), *E. salsugineum* (red), and *A. thaliana* (green).

Co-expression cluster	Cluster ID	# of assigned GO terms	# of genes	Cumulative % representation of genes	Representative function
	1	101	703	51.4%	Hormone and abiotic/biotic stimuli signaling
	2	58	458	70.2%	Ion and vesicular transport
	3	65	417	77.6%	Organ development
	4	26	337	82.5%	Transcriptional control of organ development
	1	74	708	63.8%	Hormone and abiotic stimuli regulation
	2	83	497	88.1%	RNA and amino acid processes
	3	53	437	99.4%	Organelle biogenesis
	4	6	23	99.8%	Phospholipid metabolism
	1	160	776	67.4%	Hormone and abiotic stimuli regulation
	2	100	520	88.9%	RNA and amino acid processes
	3	29	376	99.0%	Ion and vesicular transport
	4	4	112	99.7%	Homeostasis processes
	1	32	606	52.8%	Organ development
	2	58	519	74.0%	Hormone and abiotic/biotic stimuli signaling
	3	21	324	80.6%	Transcriptional regulation of development
	4	11	291	88.7%	Lipid metabolism
	1	44	671	65.8%	RNA metabolism and gene expression
	2	11	331	82.9%	Shoot and flower development
	3	19	268	91.5%	Cell cycle regulation
	4	4	159	95.5%	Abiotic stimuli responses
	1	106	775	55.3%	Hormone and abiotic/biotic stimuli signaling
	2	92	572	72.6%	Organ development and reproduction
	3	74	398	84.4%	Amino acid & lipid metabolism
	4	43	348	92.1%	Ion and vesicular transport

1080 **Supplementary figures**

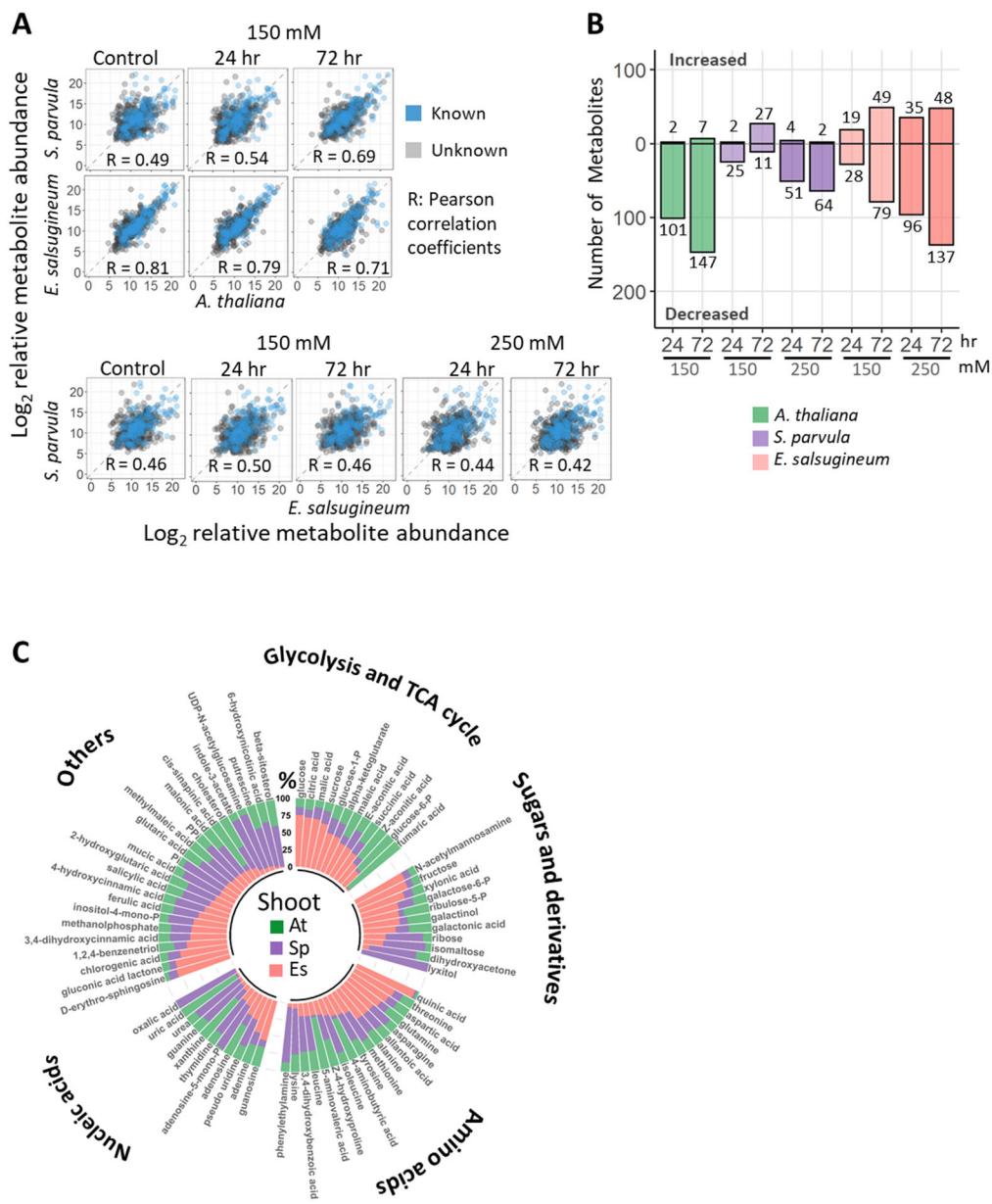
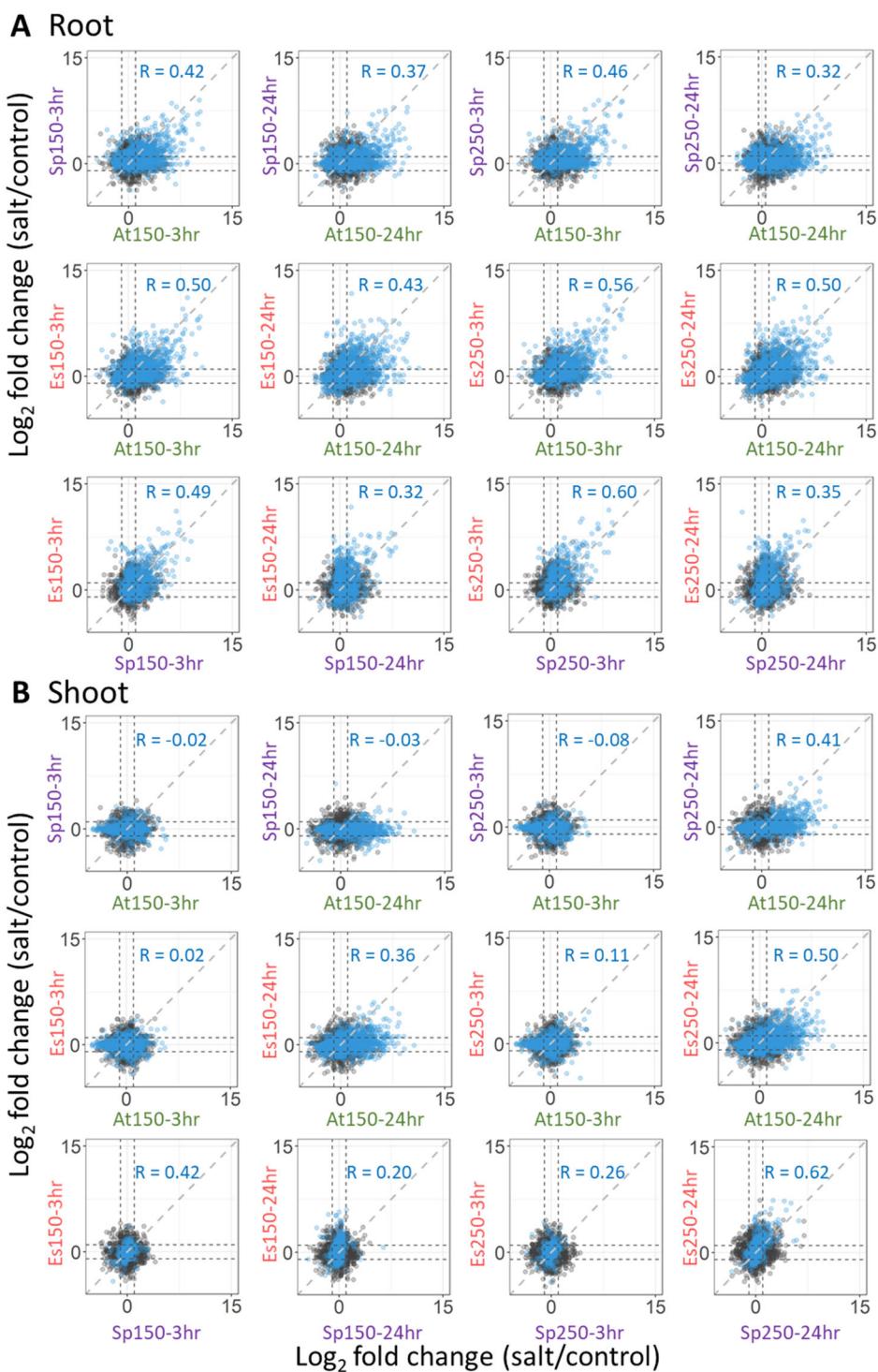


Figure S1. Effect of salt stress on *Schrenkia parvula* (Sp), *Eutrema salsugineum* (Es), and *Arabidopsis thaliana* (At). [A] Four-week-old hydroponically grown plants and the salt concentrations examined in this study. DAT: Days after treatment. [B] Sampling scheme for ionomic, metabolomic, and transcriptomic profiling. There were at least 4 replicates per condition used for ionomic and metabolomic profiling, and 3 replicates per condition for transcriptomic profiling with at least 4 plants included per replicate.


1081

1082

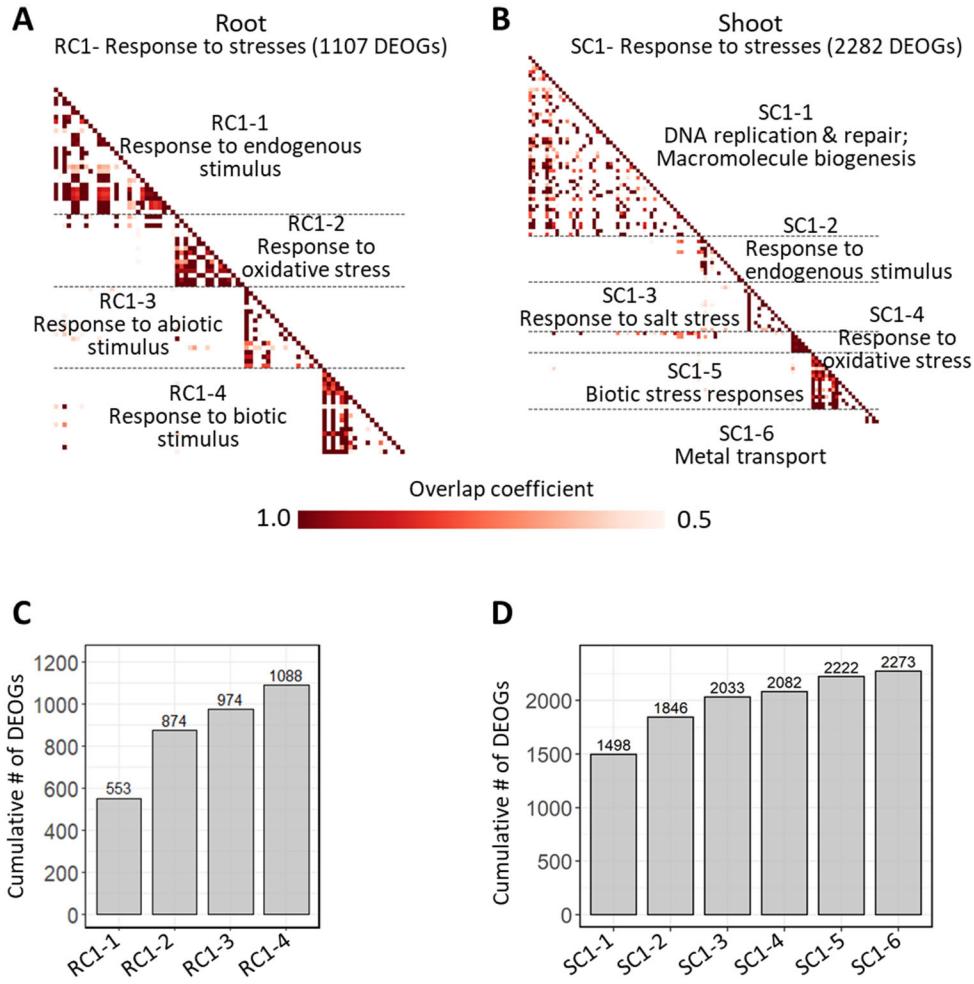

1083

Figure S2. Overall metabolic adjustments in the shoots of the extremophytes compared to *A. thaliana*. [A] Pairwise Pearson correlations of the abundance of 716 quantified metabolites across all conditions and species. Blue dots indicate 182 metabolites with known structures, and grey dots represent 534 unknown metabolites. [B] Number of metabolites that significantly changed in abundance (DAMs) in each species compared to its respective control. [C] Basal level percent abundances of sugars, amino acids, and their derivatives in the three species. Significant differences were determined by one-way ANOVA with post-hoc Tukey's test at $p \leq 0.05$ ($n = 4$, at least 4 plants per replicate).

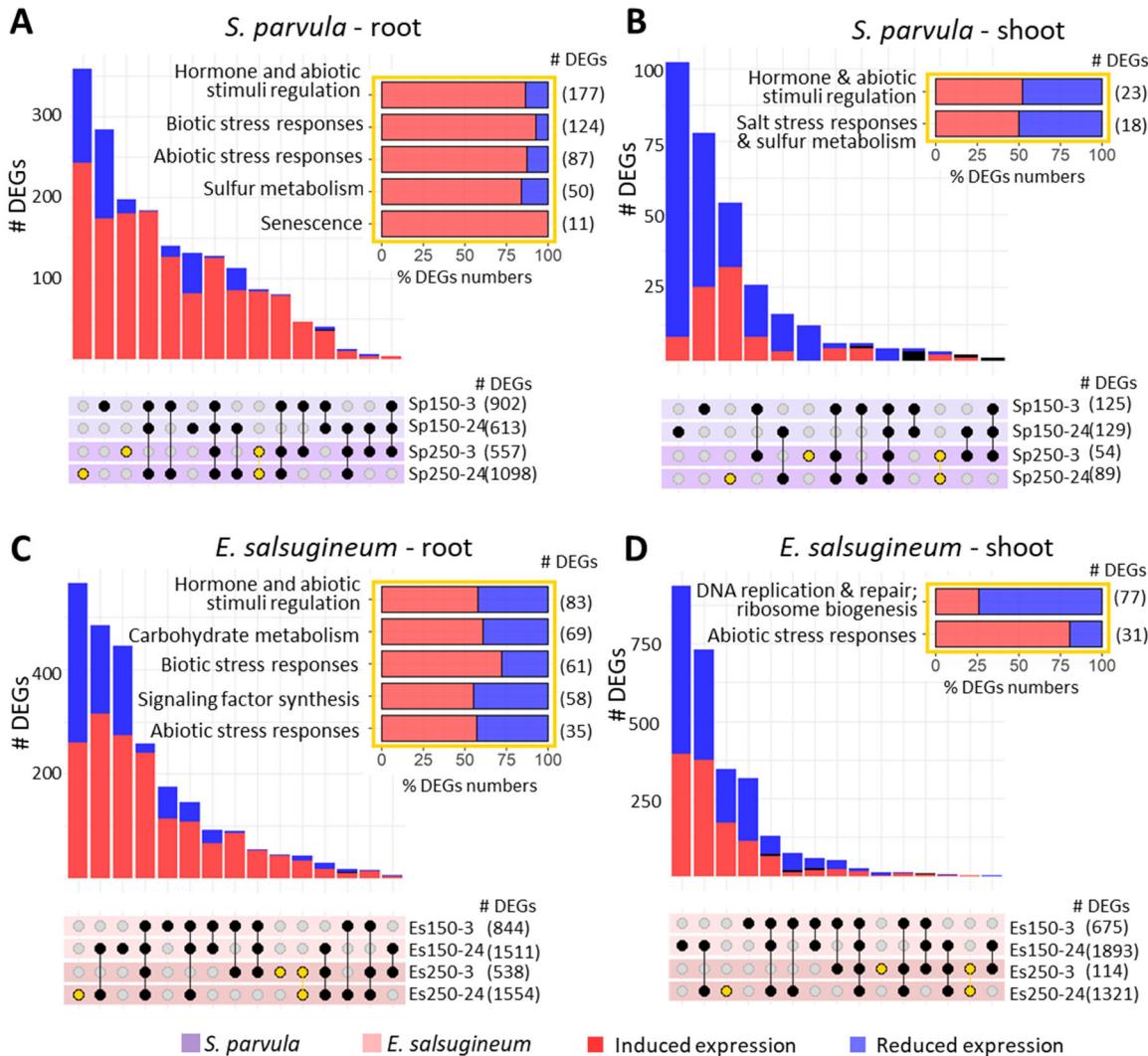
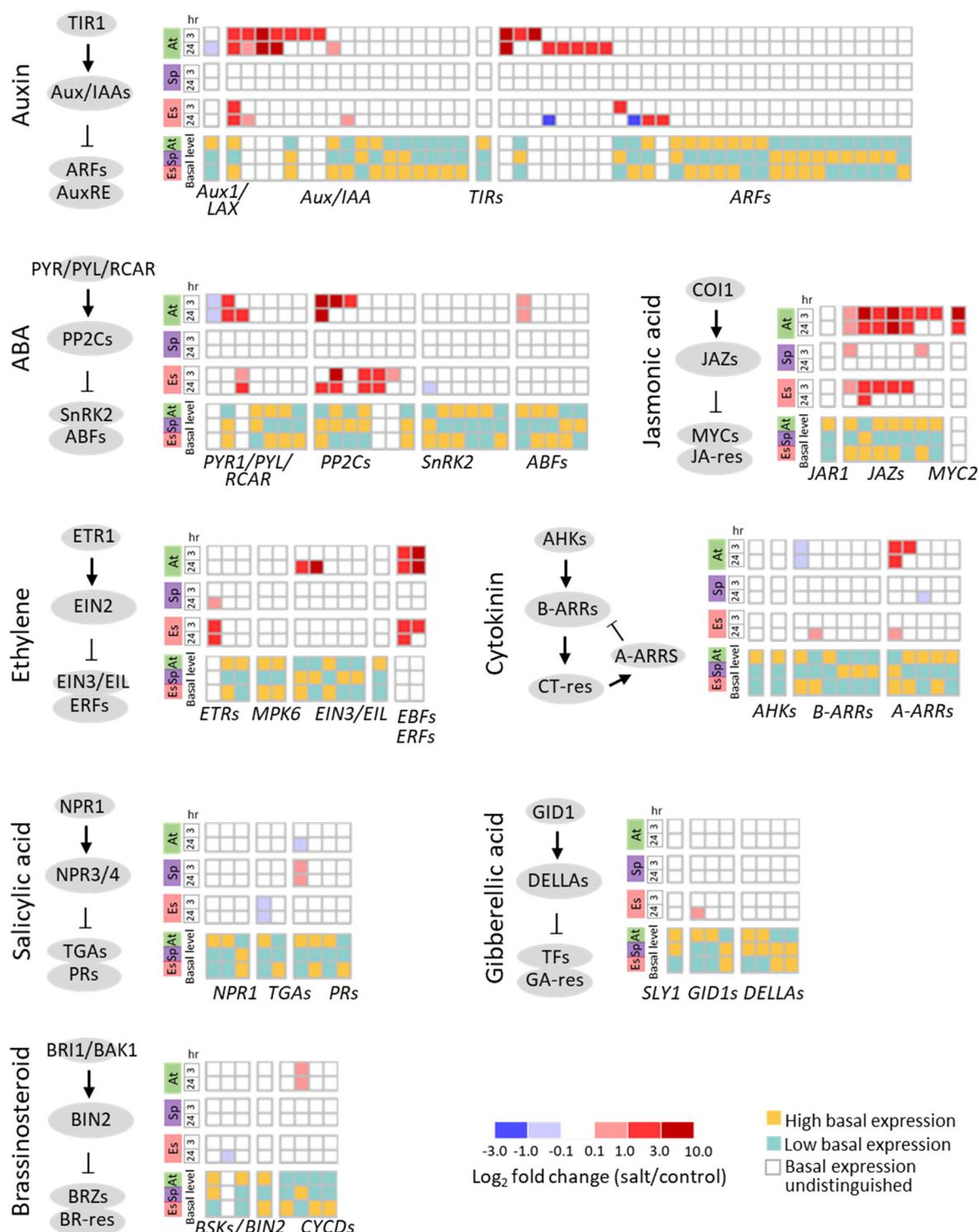
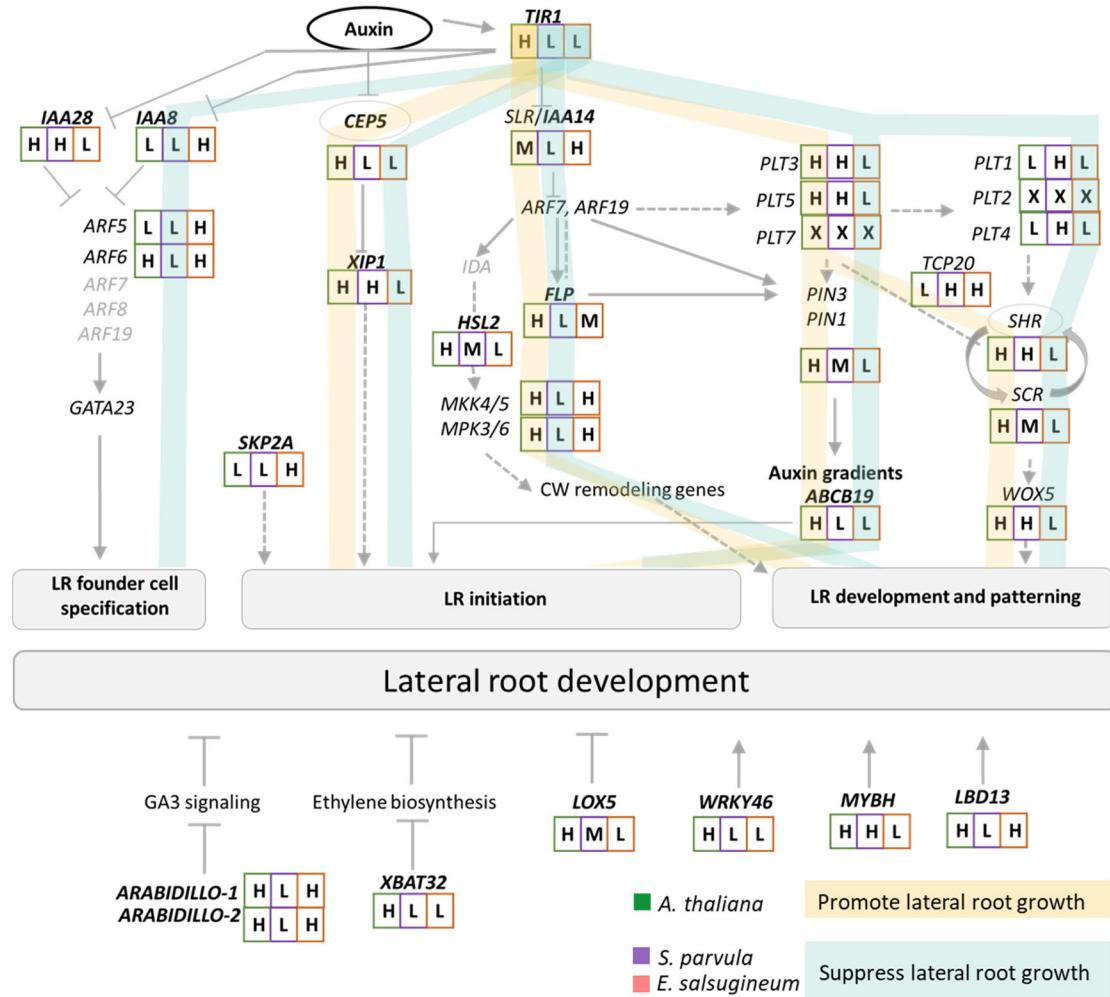


Figure S3. Pairwise comparison of transcriptomes of *Schrenkia parvula*, *Eutrema salsugineum*, and *Arabidopsis thaliana* during response to salt treatments. Pearson correlations of [A] root and [B] shoot transcriptomes were calculated using differentially expressed ortholog pairs which included DEGs from at least one condition in one species. The axis labels are composed of species, treatment concentrations, and treatment durations. Axis color codes represent *S. parvula* (Sp) in purple, *E. salsugineum* (Es) in red, and *A. thaliana* (At) in green. Treatment concentrations include 150 and 250 mM NaCl; treatment durations include 3 and 24 hr.

Figure S4. Functional processes in subclusters of the largest functional cluster (response to stresses) shown in Figure 3C. [A] Root RC1 cluster and its sub-clusters. [B] Shoot SC1 cluster and its sub-clusters. Similarity between functional clusters are based on overlap coefficient determined using GOMCL. Cumulative gene representation for sub-clusters in RC1 and SC1 for [C] roots and [D] shoots. Differentially expressed ortholog groups (DEOGs) are counted for cumulative representation in each subcluster. RC: root cluster; SC: shoot cluster.


1087


Figure S5. Species dependent responses to salt treatments in *Schrenkia parvula* and *Eutrema salsugineum*. Differentially expressed genes (DEGs) in *S. parvula* [A] root and [B] shoot and *E. salsugineum* [C] root and [D] shoot in response to 150 and 250 mM NaCl stress at 3 and 24 hr. Yellow points in each panel show DEGs that were uniquely differentially expressed at 250 mM NaCl treatments. Functionally enriched processes for these unique DEGs are shown in the horizontal bar graphs given as insets outlined in yellow for each panel. Differentially expressed genes were identified at $p\text{-adj} \leq 0.01$ ($n = 3$, at least 4 plants per replicate).

1088

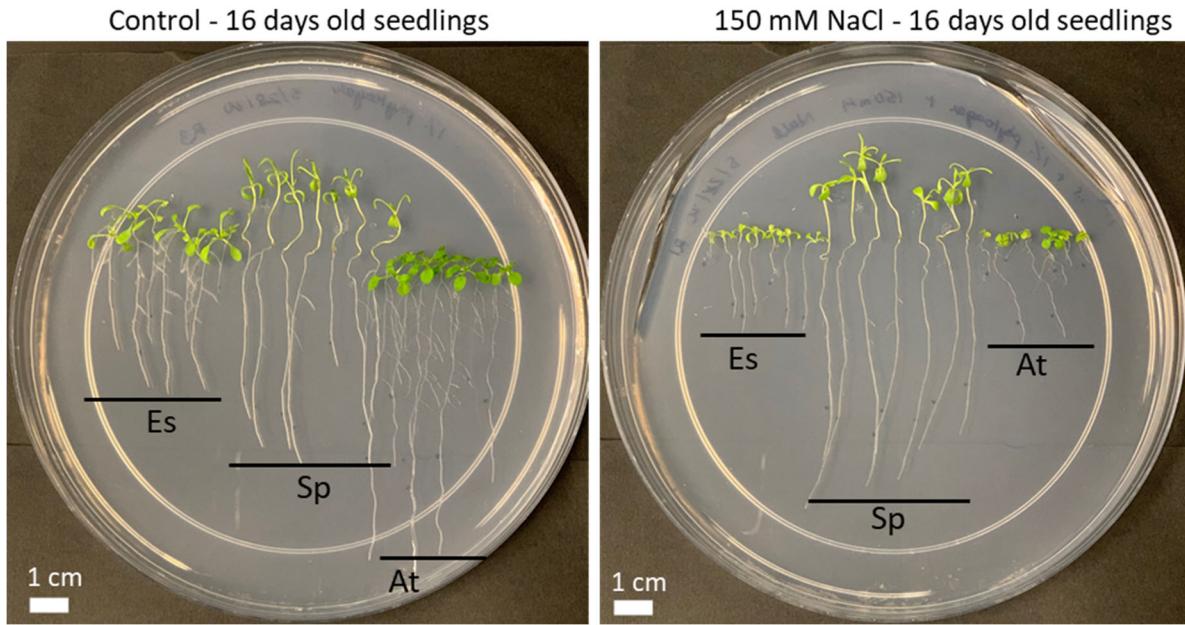

1089

Figure S6. Expression of orthologs associated with hormonal signaling pathways in response to salt in *Arabidopsis thaliana* (At), *Schrenkia parvula* (Sp), and *Eutrema salsugineum* (Es). Genes were selected based on their KEGG annotations. Only genes that were significantly different at either basal expression among species or under salt treatments compared to the control are shown.

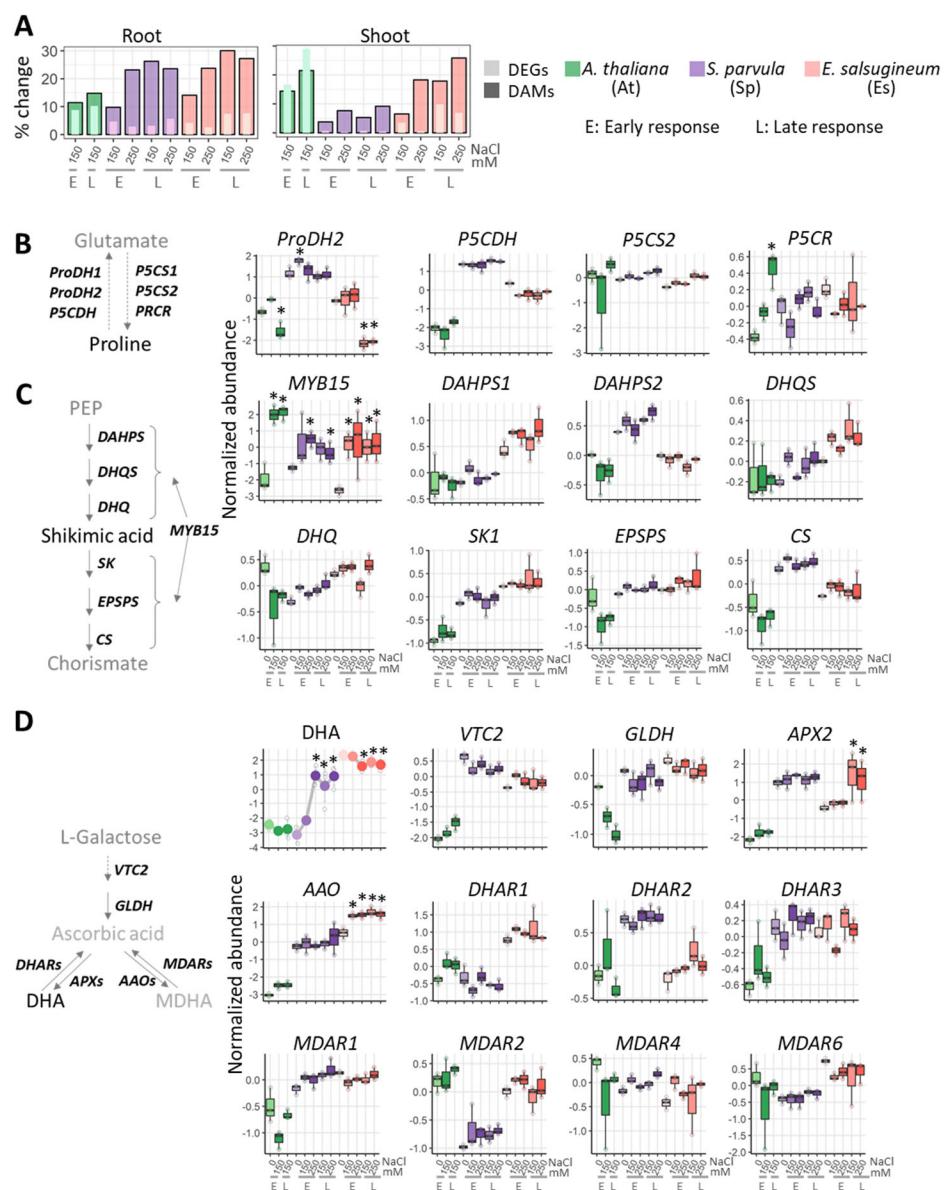


Figure S7. Lateral root development gene network adapted from De Rybel et al., 2010³² and Banda et al., 2019³³. The expression levels of orthologs (in black) were represented as high (H), medium (M), or low (L) relative to each other at basal expression in each ortholog group. Regulatory pathways that were consistently modulated in *S. parvula* or *E. salsugineum* implied to inhibit lateral root formation are marked in turquoise ribbons. Expression pathway leading to the induction of lateral root formation in *A. thaliana* is highlighted in gold ribbons. Genes in the network that were not differently expressed among the three species are marked in light grey.

Figure S8. *Eutrema salsugineum*, *Schrenkia parvula*, and *Arabidopsis thaliana* seedlings treated with 150 mM NaCl for 11 days. *Schrenkia parvula* (Sp) promoted uninterrupted primary root growth while *E. salsugineum* (Es) showed slower primary root growth with reduced lateral root number. *A. thaliana* (At) roots showed severe primary and lateral root growth inhibition under salt stress.

1092

Figure S9. Overall concordant metabolomic and transcriptomic responses and proline, shikimic acid, and ascorbic acid pathway alignments between genes and metabolites. [A] Percentage of differentially expressed genes (DEGs) and differently abundant metabolites (DAMs) in response to salt treatments. Pathways involved in [B] proline metabolism, [C] the conversion from phosphoenolpyruvate to chorismate, and [D] ascorbic acid metabolism. Line graphs represent normalized log₂ relative metabolite abundance. Boxplots represent normalized gene expression values. Center line in the boxplots indicate median; box indicates interquartile range (IQR); whiskers show 1.5 × IQR. Asterisks indicate significant difference between the treated samples and their respective controls (n = 3-4). Early (E) and late (L) responses for transcripts refer to 3 and 24 hr, respectively. E and L responses for metabolites refer to 24 and 72 hr, respectively. Metabolites are shown in the backbone of the pathway while genes encoding for key enzymes/transcription factors are placed next to the arrows. Metabolites that were quantified in the current study are given in black while those not quantified are in grey.