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Abstract

Humans and other animals demonstrate a remarkable ability to gen-
eralize knowledge across distinct contexts and objects during natural be-
havior. We posit that this ability depends on the geometry of the neural
population representations of these objects and contexts. Specifically,
abstract, or disentangled, neural representations — in which neural popu-
lation activity is a linear function of the variables important for making a
decision — are known to allow for this kind of generalization. Further, re-
cent neurophysiological studies have shown that the brain has sufficiently
abstract representations of some sensory and cognitive variables to en-
able generalization across distinct contexts. However, it is unknown how
these abstract representations emerge. Here, using feedforward neural
networks, we demonstrate a simple mechanism by which these abstract
representations can be produced: The learning of multiple distinct clas-
sification tasks. We demonstrate that, despite heterogeneity in the task
structure, abstract representations that enable reliable generalization can
be produced from a variety of different inputs — including standard non-
linearly mixed inputs, inputs that mimic putative representations from
early sensory areas, and even simple image inputs from a standard ma-
chine learning data set. Thus, we conclude that abstract representations
of sensory and cognitive variables emerge from the multiple behaviors that
animals exhibit in the natural world, and may be pervasive in high-level
brain regions. We make several specific predictions about which variables
will be represented abstractly as well as show how these representations
can be detected.
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1 Introduction

The ability to generalize existing knowledge to novel stimuli or situations is
essential to complex, rapid, and accurate behavior. As an example, when shop-
ping for produce, humans make many different decisions about whether or not
different pieces of produce are ripe — and, consequently, whether to purchase
them. The knowledge we use in the store is often learned from experience with
that fruit at home — thus, generalizing across distinct contexts. Further, the
knowledge that we apply to a fruit that we buy for the first time might be de-
rived from similar fruits — generalizing, for instance, from an apple to a pear.
The determinations themselves are often multi-dimensional and multi-sensory:
both firmness and appearance are important for deciding whether an avocado
is the right level of ripeness. Yet, at the end of this complex process, we make
a binary decision about each piece of fruit: we add it to our cart, or do not —
and get feedback later about whether that was the right decision or not. This
produce shopping example is not unique. Humans and other animals exhibit an
impressive ability to generalize across contexts and between different objects in
many situations. However, the neural underpinnings of this ability to generalize
are not fully understood.

‘We hypothesize that this ability to generalize is tied to the geometry of neural
representations. In particular, neural representations of sensory and cognitive
variables are often highly nonlinear and have high embedding dimension[26] O]
30]. While the nonlinearity of the representations allows flexible learning of new
behaviors[d] and provides metabolically efficient and reliable representations[14],
high-dimensional representations often do not permit generalization of knowl-
edge across related contexts or stimuli[3]. Alternatively, for a representation
with low embedding dimension, a classifier that learns to discriminate between
a single pair of stimuli based on one latent variable may generalize to discrimi-
nate between other pairs of stimuli that differ in other latent variables. Recent
experimental work has shown that low-dimensional, near-linear representations
that could support this ability to generalize exist at the apex of the primate ven-
tral visual stream, for faces in inferotemporal cortex[5], 12, 27]. Further, experi-
mental work in the hippocampus and prefrontal cortex has shown that abstract
representations exist for the sensory and cognitive features related to a complex
cognitive task, and that these representations could support generalization[3].
We refer to low-dimensional, linear representations of task-relevant sensory and
cognitive variables — like in these examples and others[7), 28] — as abstract rep-
resentations.

In the machine learning literature, abstract representations are often referred
to as factorized[2] or disentangled[2] 13} [ [T2] representations of interpretable
stimulus features. Deep learning has been used to produce abstract represen-
tations primarily in the form of unsupervised generative models[I6, [6 [13] (but
see [I8]). In this context, abstract representations are desirable because they
allow potentially novel examples of existing stimulus classes to be produced by
linear interpolation in the abstract representation space (for example, starting
at a known exemplar and changing its orientation by moving linearly along
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a dimension in the abstract representation space that is known to correspond
to orientation)[I3]. However, the machine learning models shown to have good
performance at producing abstract representations often sacrifice reconstruction
performance and can be brittle with respect to hyperparameter choices[13], [18]
(but see []). Importantly for the application of these results from machine
learning to phenomena observed in neuroscience, behaving animals need not
perfectly reconstruct the sensory world — as would be analogous to the gen-
erative autoencoder case — and often behavior is driven by different forms of
external feedback. Instead, behaving animals need to be able to perform a va-
riety of distinct behaviors, or tasks, often applied to similar sensory stimuli —
and these task yield some supervisory information (as in the produce shopping
metaphor above).

While experimental work on animals performing more than a couple of dis-
tinct behavioral tasks remains nearly nonexistent[34], modeling work using re-
current neural networks has shown that the networks often develop represen-
tations that can be reused across distinct, but related tasks[35] — though the
abstractness of these reusable representations was not measured. Thus, the
behavioral constraint of multi-tasking may encourage the learning of abstract
representations of stimulus features that are relevant to multiple tasks. To inves-
tigate this hypothesis, we train feedforward neural network models to perform
multiple distinct tasks on a common stimulus space. In many cases, the rep-
resentations developed in neural networks trained with backpropagation have
been shown to closely mirror the structure of representations that exist in the
brain[25].

Here, we ask how abstract representations — like those observed in higher
brain regions[5], [3] — can be constructed from the nonlinear and high-dimensional
representations observed in early sensory areas[33] 23] 20] 17, 29] [30]. To study
this, we begin by constructing high-dimensional and nonlinear representations of
latent variables, designed to be similar to representations observed in the brain
(see|[Non-abstract input generation in Methods). Then, using a feedforward neu-
ral network model, we test our hypothesis that requiring multiple distinct tasks
to be performed on these latent variables will induce abstract representations.

First, we show analytically that a multi-task setup will produce at least mod-
erately abstract representations. Then, we introduce the multi-tasking model
and show that the representations it produces are even more abstract than
guaranteed by the theory. These abstract representations are surprisingly ro-
bust to heterogeneity and context-dependence in the tasks performed by the
multi-tasking model. In these manipulations, we attempt to mirror the com-
plex structure of real behavior: In particular, some tasks are only performed on
some stimuli (e.g., firmness is more informative about an avocado than an or-
ange) and, in each separate instance, we are only performing one of potentially
many different behaviors (e.g., selecting fruit to eat or to use in a cake). We also
explore the case in which only a fraction of tasks are closely related to the latent
variables, and the remaining larger fraction are not. The multi-tasking model
produces abstract representations in all of these cases. Throughout, we contrast
the abstractness of representations produced by the multi-tasking model with
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those produced by the S-variational autoencoder (3VAE), which is the current
state of the art for producing abstract representations in machine learning. Fi-
nally, we demonstrate two applications of the multi-tasking model: First, we
show that it reliably produces abstract representations from receptive field-like
inputs, which are both highly nonlinear and non-abstract, as well as similar to
the format of representations reported in the brain[33] 23] 20, 17, 29]; second,
we show that the multi-tasking model produces abstract representations in a
generative, machine learning context, which can be used to generate example
images with particular features. Finally, we use this framework to make several
predictions for how neural representations in the brain will be shaped by behav-
ioral context. Overall, our work shows that abstract representations — similar to
those observed in the brain[bl [B] — reliably emerge from learning to multi-task
in multi-dimensional environments. We show that this multi-tasking constraint
produces abstract representations even from the highly nonlinear representa-
tions thought to be developed in early sensory areas, where other methods fail
to recover abstract structure. This indicates that abstract representations may
be a consequence of — as well as a boon to[32] — complex behavior.

2 Results

2.1 Abstract representations allow knowledge to be gen-
eralized across contexts

Information in the world can often be generalized across contexts. For instance,
the texture of a berry with a particular shape is often similar whether that
berry is red or blue (fig. , top); further, berries that are red may taste more
similar to each other, despite differences in shape, than they do to berries that
are blue (fig. [Th, bottom). Learning and taking advantage of this structure in
the sensory world is important for animals that need to quickly react to novel
stimuli that may be related to previously experienced stimuli.

We refer to neural representations as abstract if they reproduce the latent
structure that is present in the sensory world in their geometry. From the exam-
ple above, we can view shape and color as two continuous latent variables that
describe different kinds of berries. An abstract or disentangled representation
of these latent variables is a linear representation of them in neural popula-
tion activity, and would have a low-dimensional rectangular structure in neural
population space (fig. 7 left); a non-abstract representation of these latent
variables would have a non-rectangular, higher-dimensional distorted structure,
such as one created by neurons that each respond only to particular conjunc-
tions of color and shape (fig. , right). The abstract representation has the
desirable quality that, if we learned a neural readout that classifies blue berries
from red berries using berries with only one shape (e.g., the two bottom berries
in fig. , left), then we would not need to modify this classifier to apply it
to berries of a different shape (e.g., the two top berries in fig. , left); this
property does not hold for the non-abstract representation (compare the two
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berries to the left and to the right in fig. , right). This ability to generalize to
novel classes of stimuli is highly desirable for behavior and for machine learning
systems, and it relies on this correspondence between the latent structure of the
sensory world and its representation that we refer to as abstraction.

To quantify the abstractness of a representation, we use two distinct metrics
that are both related to metrics used to quantify abstraction in neural repre-
sentations recorded experimentally[3]. The first tests how well a classifier that
is trained on one half of the stimulus space generalizes to the left out half of
stimulus space (fig. [Ik, top). High classifier generalization performance has
been observed for sensory and cognitive features in neural data recorded from
the hippocampus and prefrontal cortex[3]. The second tests how well a linear
regression model that is trained on one half of the stimulus space generalized
to the left out half of stimulus space (fig. , bottom; this metric is similar to
several metrics used in the machine learning literature[I3] [I5]). The classifier
generalization metric requires that the coarse structure of the representations be
abstract, but is less sensitive to small deviations. The regression generalization
metric is much stricter, and is sensitive to even small deviations from a repre-
sentation that follows the underlying latent variable structure. In some cases,
we also compare these metrics of out-of-distribution generalization to standard
cross-validated performance on the whole latent variable space. Intuitively, the
standard cross-validated performance of both metrics serves as a best case for
their out-of-distribution generalization performance (i.e., the case where what
is learned from only half the representation space is just as informative about
the global representation structure as what would be learned from the whole
representation space). In a perfectly abstract representation, the standard and
out-of-distribution generalization performances would be equal to each other.
Just as similar metrics were used to quantify the abstractness of neural rep-
resentations recorded experimentally, we use the classification and regression
generalization performance to quantify the abstractness of the representations
developed by our feedforward neural network model.

2.2 Understanding the learning dynamics that produce
abstract representations

First, we develop a model to construct non-abstract representations of known
D-dimensional latent variables (here, the latent variables are given a standard
normal distribution — though the results are similar for a uniform distribution,
see [A multiverse analysis of the multi-tasking model and B VAFE in Supplement).
Later, we will use these non-abstract representations as input to our models
that seek to learn abstract representations. To produce these non-abstract rep-
resentations, we train a feedforward neural network with an autoencoder to
satisfy two objectives: First, to maximize the dimensionality of activity in the
representation layer; second, to reconstruct the original stimulus using only its
representation. That is, we want a high dimensional representation that still
preserves all of the information about the input. This transformation produces
a distorted and, to some degree, tangled representation of the latent variables
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Figure 1: The abstraction metrics and input representations. a Illustration of the classifi-
cation tasks. (top) A classification learned between red and blue berries of one shape should
generalize to other shapes. (bottom) A classification between red berries of two different
shapes should generalize to blue berries of different shapes. b Examples of linear, abstract
(left) and nonlinear, non-abstract (right) representations of the four example berries. ¢ Il-
lustration of our two abstraction metrics. For a D = 2-dimensional latent variable (middle),
we split the latent variable distribution into two regions: one used for training (green, left)
and one used for testing (red, right). In the classifier generalization metric, we train a linear
classifier to perform a binary classification of the latent variables using samples from the green
region and test that classifier on samples from the red region (left). The abstract representa-
tion (top left) has good classifier generalization performance; the non-abstract representation
(top right) has poor classifier generalization performance. The regression generalization met-
ric is similar, but uses a linear regression model (right). The abstract representation (bottom
left) has good regression generalization performance; the non-abstract representation (bot-
tom right) has poor regression generalization performance. d We use a feedforward network
to produce high-dimensional representations from our D-dimensional latent variables. The
network is trained to maximize the dimensionality of the representation layer (green), while
also retaining the ability to reconstruct the original latent variables through an autoencoder
(blue lines). e We visualize the structure of the latent variable representation by plotting the
first three principal components (left: original structure; right: representation structure). f
We use both the classifier (left) and regression (right) generalization metrics to quantify that
level of abstraction. In each plot, the left point is for the metric trained and tested on the
whole space, the right point is trained on one half of the space and tested on the other half.
The grey line is chance.

(fig. ) and, for a 5-dimensional latent variable, produces a representation layer
with a dimensionality of approximately 200 (see |Participation ratio-mazimized
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[representations in Methodd for more detail). We visualize this transformation
by constructing concentric squares in the latent variable space (fig. , left) and
then visualizing the representation of these squares produced by the network
(fig. , right). If the concentric square structure is intact in the representa-
tion, then the representation is abstract; otherwise, the representation is non-
abstract. The distorted representation of the latent variables produced here
significantly decreases abstraction, as measured by both classifier (fig. , left)
and regression (fig. [If, right) generalization metrics.

To recover abstract structure from non-abstract representations, we focus
on what we refer to as the multi-tasking model. The multi-tasking model is
a multilayer feedforward neural network model that is trained to perform a
number of different binary classification tasks. These tasks can be viewed as
analogous to the tasks that animals perform, as described above. For instance,
if an animal eats a berry, the animal later receives information about whether
that berry was edible or poisonous. If we assume that the edibility of a berry is
represented by one of our D latent variables, then, in the multi-tasking model,
this classification task corresponds to the model being trained to produce one
output when the latent variable is positive and another output when the latent
variable is negative. Importantly, the model (just like an animal) only has access
to the sign of the latent variable, not its precise value. In the full model, each
classification task does not correspond to a single latent variable, as the number
of tasks P will often exceed the number of latent variables D. Instead, the
tasks are chosen to be random hyperplanes in the latent variable space. To
begin, each classification task hyperplane is chosen to divide the latent variable
space into two balanced halves (as in fig. [Th), though this is later relaxed (see
fig. , b). At first, the model is trained to perform all P classification tasks
simultaneously on each stimulus (fig. , right), though this too is later relaxed
(fig. , b). In all of our analyses, we focus on the representations of the stimuli
that are developed in the layer just prior to the task output layer. This layer is
referred to as the representation layer.

To understand these representations, we consider three distinct solutions to
the simultaneous performance of P classification tasks as formalized here. First,
the representation could split along P separate dimensions of population activ-
ity, where each dimension corresponds to one of the P distinct tasks (fig. ,
left). Second, the representation could consist only of an approximately D-
dimensional sphere (or circle, in two dimensions), which exploits the correlation
structure in the P different tasks (that is, when P > D, the outcomes from
some pairs of tasks are necessarily correlated with each other; fig. 7 middle).
This second type of representation would have high classifier generalization per-
formance but low regression generalization performance: That is, it is partially
abstract in that it would recover the angular structure of the latent variables
(as necessary for the P classification tasks), but not their magnitude (as this
information is not necessary to solve the P tasks). Third, a fully abstract repre-
sentation of the latent variables could be recovered. That is, the representation
could recover both the angular structure of the latent variables, as in the second
possibility, and their magnitude (fig. , right). This would occur only if the
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multi-tasking model does not discard information about the stimuli that is not
necessary for satisfying the tasks, but which is also not explicitly trained to
discard. Surprisingly, as we will see, this third form of representation is most
common in our trained networks, even for more disordered tasks than we have
described so far.

Next, we show analytically that only the second two forms of representation
are likely to be developed in a machine learning system. In particular, we show
that the feedback onto the representation layer increases the strength of the
representation of an approximately D-dimensional component of the activity. If,
instead, the multi-tasking model was to learn P relatively independent response
dimensions, as in the first possibility, then this feedback component would have
to be roughly P-dimensional. In particular, the dynamics of the activity in
the representation layer r(x) across training have the following form for simple
backpropagation:
oL }

@)t =) - B | )

=r(z)* + uBx W sign(Az) — pEx WTWr(x) (2)

where L is the MSE loss function, p is the learning rate, A is the P x D matrix of
random classification tasks, W are the weights between the representation layer
and output layer, and Ex is the expectation over x. Thus, r(x) will become
dominated by a linear transform of sign(Az) as training progresses. So, we show
that,

dim (Ey sign(Ax)sign(Az)") ~ dim (Ex Azz”A") (3)
= min(P, D) (4)

and the approximation becomes closer as D becomes larger (see [The dimen
[sionality of representations in the multi-tasking model in Methods for details).
This means that, given sufficiently long training, the representation layer will
be dominated by a min(P, D)-dimensional representation of the latent variables.
Given that this representation must also be able to satisfy the P tasks, it will
be either of type two or three described above — that is, it will have at least
good classifier generalization performance and may even have good regression
generalization performance.

2.3 Learning multiple classification tasks leads to abstract
representations

We show that feedforward multilayer neural networks, when trained to perform
P > D classification tasks, develop abstract representations of the D latent
variables (as schematized in fig. , right) rather than develop either nonlin-
ear, task-specialized representations or magnitude-collapsed representations (as
schematized in fig. 2, left and middle).

First, we visualize how the representations developed by our model compare
to the abstract latent variables. In particular, we again generate concentric
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squares in latent variable space and show their idealized abstract representation
(fig. [2d, left) alongside the representations actually developed by the model
(fig. right). For only a single task, the representations in the model collapse
along a single dimension, which corresponds to performance of that task (fig. ,
top). While this representation is not abstract, it does mirror distortions in sen-
sory representations that are often observed when animals are overtrained on
single tasks[8| [31]. However, when we include a second task in the training pro-
cedure, abstract representations begin to emerge (fig. , middle). In particular,
the representation layer is dominated by a two-dimensional abstract represen-
tation of a linear combination of two of the latent variables. From our theory
— and confirmed by these simulations — we know that when P < D, then the
dimensionality of this dominating component in the representation layer will
be approximately P. Next, we demonstrate that this abstract structure be-
comes more complete as the number of tasks included in training is increased.
For P = 8 and D = 5, the visualization suggests that the representation has
become fairly abstract (fig. , bottom).

Next, we quantify how the level of abstraction developed in the representa-
tion layer depends on the number of classification tasks used to train the model
(fig-[2k). For each number of classification tasks, we train 10 multi-tasking mod-
els to characterize how the metrics depend on random initial conditions. As the
number of classification tasks P exceeds the dimensionality of the latent vari-
ables D, both the classification and regression generalization metrics saturate
to near their maximum possible values (classifier generalization metric: exceeds
90 % correct with 8 tasks; regression generalization metric: exceeds r? = .8
with 9 tasks; fig. , right of the grey line). Saturation of the classifier gener-
alization metric indicates that the broad organization of the latent variables is
perfectly preserved (but detailed information may have been lost); while satu-
ration of the regression generalization metric indicates that even the magnitude
information that the multi-tasking model did not receive supervised informa-
tion about is preserved and represented in a fully abstract format. Importantly,
both the training and testing set split and the classification boundary for the
classifier generalization metric are randomly selected — they are not the same
as classification tasks used in training.

2.4 Abstract representations emerge even when the clas-
sification tasks are heterogeneous

Next, we test how robust this finding is to changes to the classification tasks
themselves. In particular, we show that our finding holds for three manipula-
tions to the task structure. First, we show that unbalanced tasks (e.g., a more
or less stringent criteria for judging the ripeness of a fruit — so either many more
of the fruit are considered ripe than spoilt or vice versa; fig. [Bh, top left; see
[Unbalanced task partitions in Methods for more details) have a negligible effect
on the emergence of abstract representations (classifier generalization metric:
exceeds 90 % correct with 9 tasks, regression generalization metric: exceeds
r? = .8 with 9 tasks; fig. [3b). Second, we show that contextual tasks (e.g.,
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Figure 2: The emergence of abstraction from classification task learning. a Schematic of
the multi-tasking model. It receives an entangled stimulus representation (as shown in fig. ,
left) and learns to perform P binary classifications of the latent variables. We study the
representations that this induces in the layer prior to the output: the representation layer.
b Different possible solutions the network could learn. (left) The network could learn a
dimension for each classification task and develop binary representations along each of those
P dimensions. (middle) The network could learn a surface that matches the dimensionality D
of the latent variables, but discards information about magnitude; this representation would
have high classifier- but low regression-generalization performance. (right) The network could
learn a fully abstract, approximately D-dimensional representation of the latent variables. ¢
The dimensionality of the representation layer will be approximately D-dimensional (left), as
predicted by eq. @ (right) The first two principal components of the required output of the
network; this structure is consistent with both the middle and right network solutions from
b. d Examples of multi-tasking model representations for different numbers of classification
tasks. We show a schematic of an idealized fully abstract representation (left) alongside the
representation developed by the network (right). (top) When the model learns one task (left,
red line), the representation (right) collapses into one dimension. (middle) When the model
learns two tasks (left, red lines), it recovers more of the stimulus structure (right). (bottom)
When the model learns more tasks than stimulus dimensions (here, stimulus dimension is
five and eight tasks are learned), the model can produce a highly abstract representation of
the original stimuli. e The classifier (left) and regression (right) metrics applied to model
representations with different numbers of tasks.

determining the ripeness of different fruits that occupy only a fraction of la-
tent variable space; fig. [Bh, top right; see [Conteztual task partitions in Methodd
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for more details) produce a moderate increase in the number of tasks required
to learn abstract representations (classifier generalization metric: exceeds 90 %
correct with 14 tasks, regression generalization metric: exceeds r2 = .8 with 14
tasks; fig. ) Third, we show that using training examples with information
from only a single task (e.g., getting only a single data point on each trip to
the store; fig. , bottom, see [Partial information task partitions in Methods for
more details) also only moderately increase the number of tasks necessary to
produce abstract representations (classifier generalization metric: exceeds 90 %
correct with 11 tasks, regression generalization metric: exceeds r2 = .8 with 14
tasks; fig. )

Together, these results indicate the the multi-tasking model reliably pro-
duces abstract representations even given substantial heterogeneity in the amount
of information per stimulus example and the form of that information relative
to the latent variables. Further, these results are also robust to variation in
architecture: Changing the width, depth, and several other parameters of the
multi-tasking model have only minor effects on classification and regression gen-
eralization performance (see |4 multiverse analysis of the multi-tasking model
land BVAE in Supplement).

2.5 The tasks learned by the model shape the representa-
tions

Our result show that the multi-tasking model robustly recovers the latent vari-
ables present in nonlinearly mixed stimulus representations by learning to per-
form classification tasks that are related to those latent variables (that is, the
classification boundary for each task is defined by a vector on those latent vari-
ables). We demonstrate the specificity of this finding in two ways: First, we
train the multi-tasking model on stimulus representations of D = 5 latent vari-
ables using classification tasks that rely on only Diaineq = 3 of those latent
variables (fig. [3¢). As expected, the multi-tasking model learns an abstract rep-
resentation of the trained latent variables (fig. [3, blue line) but do not develop
an abstract representation of the remaining, untrained latent variables (fig. ,
grey line). Second, we construct classification tasks that are not aligned with
the latent variables at all. In particular, we construct grid classification tasks,
in which the latent variable space is divided into grid chambers, where each
chamber has a roughly equal probability of being sampled (fig. [3g, red lines).
Then, we randomly assign the each of the chambers to one of two categories
(fig. B, coloring; see [Grid classification tasks in Methodd for more details). In
this case, there is nothing in the design of the multi-tasking model that privi-
leges a representation of the original latent variables, since they are no longer
useful for learning to perform the multiple grid classification tasks that it must
learn during training. In this case, the multi-tasking model does not recover a
representation of the original latent variables (fig. ) We argue that the multi-
tasking model also follows what would be expected in the natural world: latent
variables are learned as a way to solve multiple related tasks and to generalize
knowledge from one task to another, rather than for their own sake.
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To make this intuition about the grid tasks more explicit, we show that —
in contrast to the latent variable-aligned tasks that we have been using so far —
the outcomes from a particular grid task are likely to be only weakly correlated
with the outcomes from a different, randomly chosen grid task (fig. ) Thus,
rather than having a D-dimensional structure even for P > D tasks, the grid
tasks will have a roughly P-dimensional structure for P tasks. As expected,
the multi-tasking model fails to learn a strongly abstract representation of the
original latent variables, and the representation becomes less abstract as the
grid tasks become higher dimensional (i.e., when the grid has more chambers;
fig. , middle and right, blue and purple lines).

Next, we examine the representations learned by the multi-tasking model
when it must perform a mixture of latent variable-aligned and grid classification
tasks. This situation is also chosen to mimic the natural world, as a set of
latent variables may be relevant to some behaviors (the latent variable-aligned
classification tasks), but an animal may need to perform additional behaviors
on the same set of stimuli that do not follow the latent variable structure (the
grid classification tasks). Here, we train the multi-tasking model to perform
a fixed number of latent variable-aligned tasks, which are sufficient to develop
abstract structure in isolation (here, 15 tasks). However, at the same time,
the model is also being trained to perform various numbers of grid tasks. While
increasing the number of grid tasks does moderately decrease the abstractness of
the developed representation (fig. 7 middle and right), the multi-tasking model
retains strongly abstract representations even while performing more than 45
grid tasks — 3 times as many as the number of latent variable-aligned tasks.

Intuitively, this occurs because the latent variable-aligned tasks are highly
correlated with each other and follow the structure of the D-dimensional la-
tent variable space, while each of the grid tasks has low correlation with any
other grid task (fig. ) Thus, a shared representation structure is developed
to solve all the latent variable-aligned tasks essentially at once (corresponding
to significant fraction of the variance in the target function), while a smaller
nonlinear component is added on to solve each of the grid tasks relatively inde-
pendently. Interestingly, the combination of abstract structure with nonlinear
distortion developed by the multi-tasking model here has also been observed
in the brain and other kinds of feedforward neural networks (though learning
tasks analogous to our grid tasks was not necessary for it to emerge)[3]. We
believe that this compromise between strict abstractness to allow for generaliza-
tion and nonlinear distortion to allow for flexible learning of random tasks|26l, 9]
is fundamental to the neural code.

2.6 Abstract structure can be learned from early sensory-
like representations.

While abstract representations have been widely observed in the brain, many
representations have also been shown to be highly nonlinear[33, 23| 20} 17, [29]
30]. Thus, any mechanism for producing abstract representations, must be able
to produce them from highly nonlinear and non-abstract representations. In
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Figure 3: Abstract representations emerge for heterogeneous tasks, and in spite of high-
dimensional grid tasks. a Schematics of different task manipulations. b (left) Visualization
of the representations developed for contextual tasks P = 25. (middle) Classifier generaliza-
tion performance. (right) Regression generalization performance. ¢ Schematic showing the
training scheme: A subset of latent variables are involved in tasks (left), the rest of the latent
variables are not (right). d (left) Visualization of the trained latent variable representations.
(middle) Classifier generalization performance for the trained and untrained latent variable
dimensions. (right) Regression generalization performance for the trained and untrained la-
tent variable dimensions. e Schematic of the new grid tasks. They are defined by n, the
number of regions along each dimension (top: n = 2; bottom: n = 3), and the dimensionality
of the latent variables, D. There are n” total grid chambers, which are randomly assigned to
category 1 (red) or category 2 (blue). Some grid tasks are aligned with the latent variables
by chance (as in top left), but this fraction is small for even moderate D. f A multi-tasking
model trained only on grid tasks. (left) Visualization of the representation. (middle) Classifier
generalization performance. (right) Regression generalization performance. g The alignment
(cosine similarity) between between randomly chosen tasks for latent variable aligned classi-
fication tasks, n = 2 and D = 5 grid tasks, and n = 3 and D = 5 grid tasks. h As ¢, but for
a multi-tasking model trained with P = 15 latent variable aligned classification tasks and a
variable number of grid tasks.

particular, neural receptive fields in early sensory areas have often been shown
to have a unimodal and roughly Gaussian form, often for multiple stimulus

13


https://doi.org/10.1101/2021.10.20.465187
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465187; this version posted October 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

features[33] 23, 20, 17, [29]. Here, we construct a representation of a D = 2
latent variable using Gaussian receptive fields (fig. [4h, left) which induces a
highly curved geometry in population space (fig. right). Then, we test
whether or not the multi-tasking model can recover abstract representations
from this highly nonlinear format. While this format is lower dimensional than
the dimensionality-maximized input used previously, it is constructed to have
no global structure (i.e., each neuron responds only to a local region of latent
variable space). As a consequence of this receptive field-like format, almost any
binary classification of the input space can be implemented with high accuracy,
but the classifier generalization performance is near chance (fig. , left). This
is a consequence of the lack of global structure in the representation. The
regression metric follows this same pattern: While the standard performance of
a linear regression is relatively high, the regression generalization performance
is at chance (fig. b, right).

Now, we train the multi-tasking model with these receptive field-like repre-
sentations as input. We visualize the representations developed after training,
as before, and show that an imperfect abstract structure is developed for a
moderate number of classification tasks (fig. , left). We compare this learned
representation to the representation learned by a completely unsupervised model
known as the S-variational autoencoder (SVAE), given the same input and ar-
chitecture (see|Comparing the multi-tasking model with the unsupervised 5 VAF]
in Supplement for more details). The BVAE does not develop strongly abstract
representations for this input — and appears to retain much of the curved struc-
ture present in the input (fig. [k, right).

We quantify this result using our classification and regression generalization
metrics. As anticipated by the visualization, the classification metric saturates
performance when supplied with 8 classification tasks (fig. , left, blue line).
The SVAE did not reach above 90 % classifier generalization performance for
any value of 3 that we tested (fig. [{l, left, orange line). In contrast, neither
model saturates performance for the regression generalization metric (fig. ,
right). Because the multi-tasking model receives binary supervisory input and
the SVAE does not receive any supervisory input at all, it is not particularly
surprising that the multi-tasking model develops more abstract representations.
However, we believe the contrast is still informative, as it indicates that abstract
representations are unlikely to emerge by chance or without explicit training on
tasks that are at least coarsely related to the latent variables of interest (and
see [18]).

To understand why the multi-tasking model fails to produce high regression
generalization performance, we inspect the regression residuals. This reveals
that some of the input receptive field structure is still present in the represen-
tations learned by the multi-tasking model, and that this remaining structure
disrupts the regression generalization performance (not shown). This can be
understood by our theory: While we show that the dynamics of the represen-
tation layer increase the strength of a low-dimensional, abstract component of
the stimulus representation, there is no component of the dynamics that ex-
plicitly reduces the strength of remaining high-dimensional components of the
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representation. This is a problem for receptive field-like inputs in particular,
as they already permit almost all classification tasks to be implemented with
high accuracy without any training at all (fig. i, left), and thus the dynamics
do not unfold for long enough to sufficiently increase the relative strength of
this low-dimensional, abstract component of the representation so that it over-
powers all remaining high-dimensional components. This phenomenon is likely
compounded by the low dimensionality of the latent variables (D = 2), which
show noisier learning of abstract representations for our other input type as
well (see|The dependence of learned abstract representations on latent variable
dimensionality in Supplemend and [A_multwerse_analysis_of the multi-tasking
model and S VAFE in Supplement). Thus, representing D > 2 latent variables in
a particular brain region may allow the brain to more reliably learn abstract
representations — though the mechanisms underlying this phenomenon are, to
our knowledge, not well understood.
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Figure 4: Abstract representations can be recovered even from highly nonlinear stimulus
representations. a (left) Schematic of the receptive field inputs. They are arranged with
density and RF width related to the probability density of the Gaussian inputs. (right) Low-
dimensional projection of the RF representation, illustrating its high curvature. b Performance
of the classifier- (left) and regression-metrics (right) on the RF inputs. ¢ (left) Visualization
of the dominant low-dimensional structure learned by the multi-tasking model. (right) Visu-
alization of the dominant low-dimensional structure learned by the matched SVAE with 8 =.
d Quantification of how the abstraction of the representations learned depends on the number
of classification tasksfor the multi-tasking model and g for the SVAE.
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2.7 The multi-tasking model can be used as an abstract,
generative model

While learning abstract representations of multiple stimulus features has many
advantages for neural systems, one specific application of deep learning models
that are trained to produce abstract representations is their ability to be used
in a generative context to produce image examples with chosen latent variable
values. That is, if the representation layer of an autoencoder is abstract, once
the dimensions that correspond to different features are learned, then they can
be combined to generate novel examples due to their linearity. The SVAE
is designed to represent each feature with the activity of a single unit in the
representation layer. This is directly interpretable, but can be brittle in practice
(see fig. nd [18]). In the multi-tasking model, the representation layer has
an abstract representation of the stimulus features, but we do not attempt to
represent these features with the activity of single units. Instead, we learn
linear transformations that reliably recover single dimensions — for example, by
learning a linear regression for a feature of interest. Because the representations
are abstract, once this transformation is learned for each feature, it can be
viewed as equivalent to the SVAE.

Here, we compare the multi-tasking model to the SVAE in a generative
context using a standard machine learning shape dataset[I9]. Importantly, the
multi-tasking model is supplied with categorical information that is related to
the latent variables, as it is throughout the paper, so this comparison does not
put the SVAE and multi-tasking model on equal footing; the SVAE is designed
to develop abstract representations in a fully unsupervised setting. Further, we
also modify the multi-tasking model, as described before, to add an autoencoder.
Now, the multi-tasking model is trained to both satisfy the P classification tasks
as well as reconstruct the original image sample to test its generative properties.

The dataset that we are using has five features that each take on several
values: shape, scale, rotation, x-position, and y-position. The shape feature
takes on three discrete values (heart, oval, square) while the other features all
take on several continuously arranged values (see fig. ) First, we visualize
the representation of x- and y-position developed by both models (fig. , left:
multi-tasking model, right: SVAE). In both cases, the representations appear
to be relatively abstract. Next, we apply our metric to both the multi-tasking
model and SVAE to quantify the abstractness of the representations developed
by the two models for all the features (fig. [fk). While neither model saturates
performance for either metric, the multi-tasking model performs better than the
BVAE on both abstraction metrics. Both models produce representations that
are more abstract than the input images.

Next, we test whether these abstract representations allow flexible genera-
tion of stimuli, as well as generalization in representation space. To do this, we
selected one shape to be left out as a test shape, and then used the represen-
tations corresponding to the other two shapes to learn a linear regression that
decodes shape scale. We then used this linear regression to generate images of
one of the trained shapes at different scales (fig. ,f, top row). Both models
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retained a reasonable degree of shape structure as well as produced an increase
in scale, moving from left to right in the images shown. Next, we attempted
to apply the learned representation of scale to the left out shape. Again, both
models produce shapes with an increase in scale (fig. ,f, bottom row). How-
ever, while the multi-tasking model produces images with the left out shape,
the SVAE does not represent a differentiated shape at all. This issue with the
BVAE has been reported before: To achieve a high level of abstraction in the
representations, the SVAE often sacrifices precision in its reconstruction of the
target image[I3] (but see [4]). In contrast, the multi-tasking model produces
abstract representations while still preserving its ability to reconstruct different
shapes from this dataset.
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Figure 5: The multi-tasking model can be used for image generation. a Example images
from the 2D shapes dataset. b Visualization of the image representation manifold for x-
and y-position from the representation layers of the multi-tasking model (left) and the SVAE
(right). ¢ Quantification of the abstractness of the original dataset (left points), the multi-
tasking model (middle points, P = 50), and the SVAE (right points, 8 = 1) according to both
our classifier- (left) and regression-generalization (right) metrics. In each plot, performance
when training and testing on the whole stimulus set is on the left, and training and testing
on separate halves is on the right; chance for both is shown by the grey line. d An example
traversal of the scale dimension from the image set. e Image reconstruction for the multi-
tasking model with a shape that was present in the training set (top) and that was held out
from the training set (bottom). f The same as d but for the SVAE.
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3 Discussion

We demonstrate that requiring a feedforward neural network to multi-task re-
liably produces abstract representations. Our results center on artificial neural
networks; however, we argue that abstract representations in biological neural
systems could be produced through the same mechanism — as behaving organ-
isms often need to multi-task in the same way as we have modeled here. We
show that the learning of these abstract representations is remarkably reliable.
They are learned even for heterogeneous classification tasks, stimuli with partial
information, in spite of being required to learn additional non-latent variable
aligned tasks, and for local receptive field-like stimulus representations. Further,
multi-tasking more reliably produces abstract representations than the current
state-of-the-art for producing abstract representations in the machine learning
literature, though those models are trained in a fully unsupervised setting (that
is, without the classification task information used by our model). Finally, we
show that our multi-tasking model can be used in a generative context to pro-
duce samples from an image dataset with known latent features. Overall, this
work provides insight into how abstract neural representations may emerge:
Through the multiple constraints and complexity induced by naturalistic be-
havior.

We train our models to perform different binary classifications of latent
variables as a proxy for different behaviors. This is, of course, a highly sim-
plified approach. While feedforward binary classification most closely matches
rapid objection recognition or, for example, go or no-go decisions, it does not
provide an accurate model of behaviors that unfold over longer timescales.
While most the experimental work that shows abstract representations in the
brain[bl B, 12 28], 21] and other models that produce abstract representations
in machine learning systems[16] [6l [I3] have taken a static view of neural activ-
ity, network dynamics could play a role in establishing and sustaining abstract
representations. While some work has shown that training recurrent neural
networks to perform multiple dynamic tasks leads to shared representations of
common task features, the abstractness of these representations has not been
quantified[35]. Future work will probe to what degree our findings here gener-
alize to networks trained to perform dynamic tasks.

3.1 Other methods for quantifying abstractness

Our method of quantifying abstractness in both artificial and biological neural
networks has an important difference from some previously used methods[12].
In particular, the SVAE attempts to isolate the representation of single latent
variables to single units in the network[I3]. Directly applied to neural data,
this leads to the prediction that single neurons should represent single latent
variables in abstract representations[I2]. Our framework differs in that gener-
alization performance depends on the geometry of the representations at the
population level and it is unaffected by whether single neuron activity corre-
sponds to a single latent variable, or to a linear mixture (i.e., a weighted sum)
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of all the latent variables. Given the extensive linear and non-linear mixing
observed already in the brain|24] 5] 26, [B], we believe that this flexibility is an
advantage of our framework for detecting and quantifying the abstractness of
neural representations. Further, we believe that searching for abstract represen-
tations using techniques that are invariant to linear mixing will reveal abstract
representations where they may not have been detected previously — in partic-
ular, a representation can provide perfect generalization performance without
having any neurons that encode only a single latent variable, and thus such a
representation would not be characterized as abstract by many machine learning
abstraction or disentanglement metrics.

3.2 Predictions

For experimental data, our findings predict that an animal trained to perform
multiple distinct tasks on the same set of inputs will develop abstract represen-
tations of the latent variable dimensions that are used in the tasks. In particular,
if the tasks only rely on three dimensions from a five dimensional input, then we
expect strong abstract representations of those three dimensions (as in fig. ,
b), but not of the other two. We expect all of the dimensions to still be repre-
sented in neural activity, however — we just do not expect them to be represented
abstractly. Once this abstract representation is established through training on
multiple tasks, if a new task is introduced that is aligned with these learned
latent variables, we expect the animal to be able to learn and generalize that
task more easily than a task that relies on either the other latent variables or
is totally unaligned with the latent variables (as the grid tasks above). That is,
we expect animals to be able to take advantage of the generalization properties
provided by abstract representations that we have focused on throughout this
work, as suggested by previous experimental work in humans[32].

A recent study in which human participants learned to perform two tasks
while in a functional magnetic resonance (fMRI) scanner provides some evidence
for our predictions[7]. The representations of a D dimensional dimensional stim-
ulus with two task-relevant dimensions (one which was relevant in each of two
contexts) were studied in both the fMRI imaging data and in neural networks
that were trained to perform the two tasks (the setup in this work is similar
to certain manipulations in our study, particularly to the partial information
case shown in fig. , b). They find that the representations developed by a
neural network which develops rich representations (similar to abstract repre-
sentations in our parlance) are more similar to the representations in the fMRI
data than neural networks that develop high-dimensional, non-abstract repre-
sentations. This provides evidence for our central prediction: That abstract
representations emerge through learning to multi-task. However, the conditions
explored in the human and neural network experiments in the study were more
limited than those explored here. In particular, only two tasks were performed,
the stimulus encoding was less nonlinear than in our studies, and the tasks
were always chosen to be orthogonal. Thus, further work will be necessary to
determine the limits of our finding in real brains.
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Several additional predictions can be made from our results with the grid
tasks, which showed that learning many random, relatively uncorrelated tasks
both does not lead to the development of abstract representations alone, but
also does not interfere with abstract representations that are learned from a
subset of tasks that are aligned with the latent variables. First, if an animal is
trained to perform a task analogous to the grid task, then we do not expect it
to show abstract representations of the underlying latent variables — this would
indicate that latent variables are not inferred when they do not support a specific
behavior. Second, we predict that an animal trained to perform some tasks that
are aligned to the latent variables as well as several (potentially more) non-
aligned grid task analogues will still develop abstract representations. Both of
these predictions can be tested directly through neurophysiological experiments
as well as indirectly through behavioral experiments in humans (due to the
putative behavioral consequences of abstract representations[32]).

3.3 Conclusions

Overall, our work indicates that abstract representations in the brain — which
are thought to be important for generalizing knowledge across contexts — emerge
naturally from learning to perform multiple categorizations of the same stimuli.
This insight helps to explain previous observations of abstract representations in
tasks designed with multiple contexts (such as [3]), as well as makes predictions
of conditions in which abstract representations should appear more generally.
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4 Methods
4.1 Code

All of our code for this project is written in Python, making extensive use of
TensorFlow[l] and the broader python scientific computing environment (in-
cluding numpy[I1], scipy, matplotlib, and scikit-learn[22]).

The code is available at the following link: https://github.com/wj2/disentangled
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4.2 Abstraction metrics

Both of our abstraction methods quantify how well a representation that is
learned in one part of the latent variable space (e.g., a particular context) gen-
eralizes to another part of the latent variable space (e.g., a different context).
To make this concrete, in both metrics, we train a decoding model on represen-
tations from only one — randomly chosen — half of the latent variable space and
test that decoding model on representations from the non-overlapping half of
the latent variable space.

4.2.1 The classifier generalization metric

First, we select a random balanced division of the latent variable space. One of
these halves is used for training, the other is used for testing. Then, we select a
second random balanced division of the latent variable space that is orthogonal
to the first division. One of these halves is labeled category 1 and the other
is labeled category 2. As described above, we train a linear classifier on this
categorization using 500 training stimuli from the training half of the space,
and test the classifier’s performance on 500 stimuli from the testing half of the
space. Thus, chance is set to .5 and perfect generalization performance is 1.

4.2.2 The regression generalization metric

As above, except we train a linear ridge regression model to read out all D latent
variables using 500 sample stimulus representations from the training half of
the space. We then test the regression model on 500 stimulus representations
sampled from the testing half of the space. We quantify the performance of the
linear regression with its 72 value:

» . MSE(X, X)

- Var(X) (5)

where X is the true value of the latent variables and X is the prediction from
the linear regression. Because the MSE is unbounded, the r? value can be
arbitrarily negative. However, chance performance is 72 = 0, which would be
the performance if the linear regression always predicted the mean of X, and
r?2 = 1 indicates a perfect match between the true and predicted value.

4.3 Non-abstract input generation

In the main text, we use two methods for generating non-abstract inputs from
a D-dimensional latent variables. We have also performed our analysis using
several other methods, which we also describe here.

4.3.1 Participation ratio-maximized representations

We train a symmetric autoencoder (layers: 100, 200 units) to maximize the
participation ratio[I0] in its 500 unit representation layer. The participation
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ratio is a measure of embedding dimensionality that is roughly equivalent to
the number of principal components that it would take to capture 80 % of the
total variance. The autoencoder ensures that information cannot be completely
lost, while the participation ratio regularization ensures that the representation
will have high-embedding dimension and, therefore, be non-abstract. The per-
formance of our generalization metrics on this input representation is shown in

fig. [Tf.

4.3.2 Receptive field-style representations

This input transformation is constructed to be analogous to the receptive field
representations observed in many early sensory areas[33) 23 20, 17, 29]. In
particular, where single units respond most strongly for a particular conjunction
of the D latent variables, and their response falls off exponentially as distance
from that center point increases.

In this case, we arrange receptive field centers to tile the probability distri-
bution of the D-dimensional latent variables (i.e., for Gaussian latent variables
there will be more receptive field centers clustered in the center, where the prob-
ability density is higher). The width of the receptive fields is inversely related
to probability density (i.e., receptive fields are wider away from the center of
the latent variable distribution). The receptive fields have a Gaussian shape.
That is, for a receptive field ¢ with center p; and width w; where both of these
parameters are vectors in the D-dimensional latent variable space. The response
of a receptive field unit 7 is given by

O~ (25 — pig)®
RE;(2) = exp | =) 4= (6)
- Wi
J
Receptive fields are particularly non-abstract, as shown by the performance of
our generalization metrics directly on the receptive field representations, which
is shown in fig. [p.

4.4 The multi-tasking model

We primarily study the ability of the multi-tasking model to produce abstract
representations according to our classification and regression generalization met-
rics. The multi-tasking model is a feedforward neural network. For figs. 2] and [3]
it has the following parameters:

layer widths 250, 150, 100, 50
representation width | 50

batch size 100

training examples 10000

epochs 200

For fig. [ everything is kept the same except the number of layers is in-
creased:
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layer widths ‘ 250, 200, 100, 100, 50, 50

4.4.1 Full task partitions

In all cases, the models are trained to perform multiple tasks — specifically,
binary classification tasks — on the latent variables. In the simplest case (i.e.,
fig. [2), the task vector can be written as,

T(x) = sign Az (7)

where A is a P X D matrix with randomly chosen elements.

4.4.2 Unbalanced task partitions

For unbalanced partitions, the task vector has the following simple modification,
T(x) = sign [Az + b] (8)

where b is a P-length vector and b; ~ N(0, oofiser). Notice that this decreases
the average mutual information provided by each element of T'(z) about x.

4.4.3 Contextual task partitions

We chose this manipulation to match the contextual nature of natural behavior.
As motivation, we only get information about how something tastes for the
subset of stimuli that we can eat. Here, we formalize this kind of distinction
by choosing P classification tasks that each only provide information during
training in half of the latent variable space.

We can write each element ¢ of the contextual task vector as follows,

(9)

Ti(w) = {sign [Aix+b;] Ciz>0

nan Cizx <0

where nan values are ignored during training and C' is a P x D random matrix.

Thus, each of the classification tasks influences training only within half of the

latent variable space. This further reduces the average information provided
about x by each individual partition.

4.4.4 Partial information task partitions

For contextual task partitions, the contextual information acts on particular
tasks. For our partial information manipulation, we take a similar structure,
but it instead acts on specific training examples. The intuitive motivation for
this manipulation is to mirror another form of contextual behavior: At a given
moment (i.e., sampled training example) an animal is only performing a subset
of all possible tasks P. Thus, for a training example from that moment, only a
subset of tasks should provide information for training.
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Mathematically, we can write this partial information structure as follows.
For each training example x, the task vector is given by,
sign [A;z + b; >M

nan p< M

where p is a uniformly distributed random variable on [0, 1], which is sampled
uniquely for each training example  and M is a parameter also on [0,1] that
sets the fraction of missing information. That is, M = .9 means that, for each
training example, 90 % of tasks will not provide information.

While results are qualitatively similar for many values of M, in the main
text we use a stricter version of this formalization: For each training sample,
one task is randomly selected to provide information and the targets for all other
tasks are set to nan.

4.4.5 Grid classification tasks

The grid tasks explicitly break the latent variable structure. Each dimension is
broken into n parts with roughly equal probability of occurring (see schematic
in fig. ) Thus, there are n” unique grid compartments, each of which is a D-
dimensional volume in latent variable space, and each compartment has roughly
equal probability of being sampled. Then, to define classification tasks on this
space, we randomly assign each compartment to one of the two categories —
there is no enforced spatial dependence.

4.4.6 The dimensionality of representations in the multi-tasking model

First, we consider a deep network trained to perform P balanced classification
tasks on a set of D latent variables X ~ N (0, Ip). We focus on the activity in
the layer just prior to readout, which we refer to as the representation layer and
denote as r(x) for a particular x € X. This representation layer is connected to
the P output units by a linear transform W. In our full multi-tasking model,
we then apply a sigmoid nonlinearity to the output layer. To simplify our
calculation, we leave that out here. The network is trained to minimize error,
according to a loss function which can be written as:

1
E = 3 [sign(Az) - Wr(x))” (11)
where A is a P x D matrix of randomly selected partitions (and it is assumed

to be full rank). To understand how 7(x) will change during training, we write
the update rule for r (to be achieved indirectly by changing preceding weights),

r(x)st = r(z)® — op
(0)* " =r(@)* = g o 12)
= r(z)® + pWT sign(Az) — uWTWr(z) (13)
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Thus, we can see that, over training, r(z) will be made to look more like a
linear transform of the target function, sign(Ax). Next, to link this to abstract
representations, we first observe that Ax produces an abstract representation
of the latent variables X. Then, we show that sign(Az) has approximately
the same dimensionality as Axz. In particular, the covariance matrix M =
Ex [sign(AzzT AT)] has the elements,

2
M;; =1— —arccos A; A; (14)
0

where A; is the ith row of A. To find the dimensionality of sign(Az) we need to
find the dimensionality of M. First, the distribution of dot products between
random vectors is centered on 0 and the variance scales as 1/D. Thus, we can
Taylor expand the elements of the covariance matrix around A;A; = 0, which
yields

2

We identify this as a scalar multiplication of the covariance matrix for the linear,
abstract target Ex [AxxTAT]. Further, we know that the rank of this matrix
is min(P, D). So, this implies that the matrix M also has rank approximately
min(P, D). Deviations from this approximation will produce additional non-zero
eigenvalues, however they are expected to be small.

4.5 The SVAE

The SVAE is an autoencoder designed to produce abstract (or, as referred to in
the machine learning literature, disentangled) representations of the latent vari-
ables underlying a particular dataset[I3]. The SVAE is totally unsupervised,
while the multi-tasking model receives the supervisory task signals. Abstract
representations are encouraged through tuning of the hyperparameter 3, which
controls the strength of regularization in the representation layer, which penal-
izes the distribution of representation layer activity for being different from the
standard normal distribution.

In fig. the SVAE is trained with the same parameters as given in sec-
tion [£.4] — the layers are replicated in reverse for the backwards pass through
the autoencoder. For fig. [] the parameters are as described in section [£:4] In
both cases, instead of fitting models across different numbers of partitions, we
fit the models with different values chosen for 5.

For fig. [5] parameters for the SVAE are as described in section We also
explored numerous other architectures for the SVAE in that figure, but never
obtained qualitatively or quantitatively better results.

4.6 The generative multi-tasking model

To move our multi-tasking model into a generative context, we simply add a
series of layers connected to the representation layer that are trained to repro-
duce the original stimulus. Our objective function then has two parts: The first
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is to satisfy the training classification tasks and the second is to reconstruct the
original input, as with a traditional autoencoder. The generative multi-tasking
model was trained on the 2D shapes dataset (which were resized to be 32 x 32
images) with the following parameters,

layer widths 128x2x2, 128x2x2, 512, 256, 128, 128
representation width | 50

batch size 30

training examples 100000

epochs 200

For the reconstruction part of the model, the given layer list is reversed.

5 Supplement

5.1 Comparing the multi-tasking model with the unsuper-
vised SVAE

We compare the level of abstraction of the representations learned by the multi-
tasking model to those learned by an auto-encoder that is designed to produce
abstract representations. In particular, the -variational autoencoder (BVAE) is
the current state-of-the-art for unsupervised disentangling of latent variables[13]
(and it has many variations[4, [15]). It is designed around a hyperparameter, 3,
that is thought to control the trade-off between the abstractness of the repre-
sentations in the latent variables and reconstruction error for output from the
auto-encoder. That is, increasing 8 is understood to increase the level of ab-
straction in the SVAE representation layer, while decreasing the quality of of
reconstruction of the original input representation.

Using the same architecture as in our multi-tasking model, we trained SVAEs
to disentangle the same set of latent variables as in our other experiments. Ap-
plying the same two metrics as to our other models, we found that the SVAE
produces moderately abstract representations, as quantified by the classifier
generalization metric — though classifier generalization performance does not
saturate to the same level as for the multi-tasking model. The SVAE does not
produce high regression generalization performance for any choice of 8 that we
tested. Because the multi-tasking model receives binary supervisory input and
the SVAE does not receive any supervisory input at all, it is not particularly
surprising that the multi-tasking model develops more abstract representations.
However, we believe the contrast is still informative, as it indicates that abstract
representations are unlikely to emerge by chance or without explicit training on
tasks that are at least coarsely related to the latent variables of interest (and
see [I8]). Further, this multi-tasking approach to producing abstract representa-
tions is less sensitive to changes in model and input parameters than the 5VAE
(see|A multiverse analysis of the multi-tasking model and 5 VAE in Supplemend).
This further indicates the feasibility of the multi-tasking approach in conditions
similar to those found in the brain.

26


https://doi.org/10.1101/2021.10.20.465187
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465187; this version posted October 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

a — ~ ™ b
® | ®|| 5 05
L@@ 3
~ 0.0
I l low-d latent rep S
~ N(O, I,) l
[
PC 1 (au)
1.0 §
1 l Po BVAE
c 0.9 1 c 0.8 1
° c.8
e %
E N 0.8 - g N 0.6
[} E P) E
85 07 o 04
o ° g -
high-d stimulus rep &, ;¢ - S 02 4
0 20 0 20
B B

Figure S.1: The SVAEdoes not reliably produce abstract representations. a A schematic of
the SVAE. It is an autoencoder regularized to produce a low-dimensional representation in its
representation layer. b A purely auto-encoding approach with the SVAE is not supplied with
any classification tasks (left), but does produce moderately abstract representations (right).
¢ The BVAE produces high classifier generalization performance for a small range of 8s (left),
but does not provide high regression generalization performance for any choice of 5 that we
tested (right).

5.2 The dependence of learned abstract representations
on latent variable dimensionality

For both the multi-tasking model and SVAE, our simulations reveal that ab-
stract representations are more readily and consistently produced for higher-
dimensional latent variables (fig. . We believe that this is due to a decrease in
dimensionality expansion per latent dimension as D increases. In particular, for
each of D = 2,3,4,5, the participation ratio after expansions is approximately
200 and the participation ratio per latent variable dimension is approximately

%. However, further work is necessary to confirm this intuition.

5.3 A multiverse analysis of the multi-tasking model and
BVAE

While we have focused on manipulation of the number (and kind) of classifi-
cation tasks provided to the multi-tasking model and to the value of 8 for the
BVAE, both models depend on numerous other parameter choices, which were
essentially arbitrary. The parameters were held constant across the two models,
but these choices can still affect the results produced by both models in differ-
ent ways. To explore the dependence of our results on these other parameter
choices, we performed a multiverse analysis[]. That is, for many of the parame-
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Figure S.2: Abstraction learning depends on latent variable dimensionality. (top to bottom)
Increasing latent variable dimensionality D, from D = 2 to D = 5 (see left inset). (left)
Classifier generalization performance as a function of the number of classification tasks for
the multi-tasking model and 8 for the BVAE. (right) Regression generalization performance
as a function of the number of classification tasks for the multi-tasking model and S for the
BVAE.

ters of our models, we chose several other similarly reasonable parameter values,
and the trained models with those parameters (e.g., using a tanh nonlinearity
instead of the ReLU). In exploring this parameter space, we defined 7128 and
3369 distinct combinations of parameters for the multi-tasking model and SVAE
respectively. Then, for each of these parameter combinations, we trained two
models of the corresponding type and averaged their classification and regres-
sion generalization performance. The parameters varied for each were the same
except for the choices of the number of partitions, values of 3, and we included
a version of the multi-tasking model with and without an autoencoder.

To analyze these results, we fit linear models with ridge regression to account
for the classification and regression generalization performance from the differ-
ent parameter choices. Using only the first order version of this model (that is,
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without fitting interaction terms for the different parameters), the model has
r2 = .62 and r? = .70 for the multi-tasking model and SVAE, respectively. As
expected, for the multi-tasking model, the number of classification tasks has
by far the strongest effect on both classification and regression generalization
performance (fig. ,b), though minor effects on both are produced by almost
all the other parameter choices — and the regression generalization metric is
strongly affected by the dimensionality of the latent variables (fig. ) Sur-
prisingly, while choice of 8 does affect classification and regression generalization
performance for the SVAE, the size of the effect is similar in size to the effects
associated with many of the other parameters — and much smaller than the
increase in both classification and regression generalization performance that is
produced by using a tanh nonlinearity rather than a ReLU nonlinearity.
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