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The temporal activity of many biological systems, including neural circuits, exhibits fluctua-

tions simultaneously varying over a large range of timescales.

The mechanisms leading to this

temporal heterogeneity are yet unknown. Here we show that random neural networks endowed
with a distribution of self-couplings, representing functional neural clusters of different sizes,

generate multiple timescales activity spanning several orders of magnitude.

When driven by a

time-dependent broadband input, slow and fast neural clusters preferentially entrain slow and
fast spectral components of the input, respectively, suggesting a potential mechanism for spectral

demixing in cortical circuits. occur.

I. INTRODUCTION

Experimental evidence shows that the temporal ac-
tivity of many physical and biological systems exhibits
fluctuations simultaneously varying over a large range
of timescales. In condensed matter physics for example,
spin glasses typically exhibit aging and relaxation effects
whose timescales span several orders of magnitude [1]. In
biological systems, metabolic networks of E. coli generate
fluxes rate with a power-low distribution [2, 3]. And yeast
cultures release gases in frequency distributions that re-
veal activity across many orders of magnitude [4], en-
dowing them with robust and flexible responses to the
environment [5].

In the mammalian brain, a hierarchy of timescales in
the activity of single neurons is observed across differ-
ent cortical areas from occipital to frontal regions [6-8].
Moreover, neurons within the same local circuit exhibit
a large range of timescales from milliseconds to minutes
[9, 10]. This heterogeneity of neuronal timescales was ob-
served in awake animals during periods of ongoing activ-
ity, in the absence of external stimuli or behavioral tasks,
suggesting that multiple timescales of neural activity may
be an intrinsic property of recurrent cortical circuits. Re-
cent studies highlighted the benefits of leveraging compu-
tations on multiple timescales when performing complex
tasks in primates [11] as well as in artificial neural net-
works [12]. However, the neural mechanisms underlying
the emergence of multiple timescales are not yet under-
stood. We suggest here such mechanism.

We focus on random neuronal networks whose units
are recurrently connected, with couplings that are cho-
sen randomly. In our model, each network unit repre-
sents a functional cluster of cortical neurons with similar
response properties. We interpret the unit’s self-coupling
as evident to the cluster size and the recurrent cou-
pling strength of its neurons. In the case where the self-
couplings are zero or weak (order 1/v/N), random net-
works are known to undergo a phase transition from si-

lence to chaos when the variance of the random couplings
exceeds a critical value [13]. When the self-couplings
are strong (order 1) and are all equal, a third phase ap-
pears featuring multiple stable fixed points accompanied
by long transient activity [14]. In all these cases, all net-
work units exhibit the same intrinsic timescale, estimated
from their autocorrelation function.

Here, we demonstrate a novel class of recurrent net-
works, capable of generating temporally heterogeneous
activity whose multiple timescales span several orders of
magnitude. We show that when the self-couplings are
heterogeneous, a reservoir of multiple timescales emerges,
where each unit’s intrinsic timescale depends both on its
own self-coupling and the network’s self-coupling distri-
bution. We analytically study the dynamics of a sin-
gle unit in the limit of large self-coupling, revealing a
new metastable regime described by colored noise-driven
transitions between potential wells. We also study the
stimulus-response properties of our networks with het-
erogeneous self-couplings. In networks with zero or weak
self-couplings chaotic activity is suppressed best at a sin-
gle resonant frequency [15]. However, when we drive our
networks with a time-dependent broadband input fea-
turing a superposition of multiple frequencies, we find
that the chaotic activity is suppressed across multiple
frequencies which depend on the units’ respective self-
couplings. We see that units with large and small self-
couplings are preferentially entrained by the low and high
frequency components of the input, respectively. This
spectral specificity suggests that a reservoir of timescales
may be a natural mechanism for cortical circuits to flex-
ibly demix different spectral features of complex time-
varying inputs.

Random networks with heterogeneous self-
couplings. We consider a recurrent network of N rate
units obeying the dynamical equations

N

= —xi+si0(xi) + 9y Jijb(;) (1)

Jj=1

d:vi
dt
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FIG. 1. Transition to chaos with multiple self-couplings:
Fixed point solutions and stability. a-i) The fixed point curve
ZTa — Sa tanhxq, from Eq. (4), for s > 1. Stable solutions
are allowed within the dark green region. b-i) The shape of a
unit’s contribution to stability ¢~ = (5o — cosh z,?) 2, from
Eq. (7). Stable solutions of xo — sq tanhzo = 7, filled blue
circles in (a-i), with different |z| values contribute differently
to stability. At the edge of chaos only a fixed point configu-
ration with all units contributing most to stability (minimal
g~ ') is stable, light green region in (a-i). a-ii) The curve
Za — Satanhz, for sq < 1. a-iii) A possible distribution of
the Gaussian mean-field 7. A representative fixed point so-
lution is illustrated by the dashed blue line: for s < 1 a
single solution exists for all values of 7, (filled blue circle in
a-ii);For so > 1 multiple solutions exist (a-i) for some values
of n; some of them lead to instability (empty blue circle in
a-1). The other two solutions may lead to stability (filled blue
circles in a-ii), although only one of them will remain stable
at the edge of chaos (encircled with green line in a-i).

where the random couplings J;; from unit j to unit 4
are drawn independently from a Gaussian distribution
with mean 0 and variance 1/N; g represents the network
gain and we chose a transfer function ¢(x) = tanh(z).
We measure time in units of 1 ms. The self-couplings
s; are drawn from a distribution P(s). The special case
of equal self-couplings (s; = s) was studied in [14] and
a summary of the results are brought in the Appendix
for convenience. Here we study the network properties
in relation to both discrete and continuous distributions
P(s).

Using standard methods of statistical field theory
[16, 17], in the limit of large N we can average over re-
alizations of the disordered couplings J;; to derive a set
of self-consistent dynamic mean field equations for each
population of units x, with self-coupling strength s, € S

dx,,
dt
In our notation, S denotes the set of different values of
self-couplings s, indexed by a € A, and we denote by
N, the number of units with the same self-coupling s,
and accordingly by n, = N, /N their fraction. The mean

= —&y + 8o tanh(zy) + n(t) . (2)

2

field n(t) is the same for all units and has zero mean
(n(t)) = 0 and autocorrelation

(n(t) n (t+7)) =gC(r)
C(r) = Y na(dlza(®]glzalt +7)]) 3)

a€cA

where (-) denotes an average over the mean field.
Stable fixed-points and transition to chaos. Net-

works with heterogeneous self-couplings exhibit a com-

plex landscape of fixed points z}, obtained as the self-

consistent solutions to the static version of Eq. (2) and
Eq. (3), namely

To — Sa tanh(zy) =1, (4)
where the mean field  has zero mean and variance
n? =g*C
C= ZAna<¢[xa]Q> . (5)
ac

The solution for each unit depends on its respective s,
(Fig. 1). If s, < 1 a single interval around zero is avail-
able. For s, > 1, for a range of values of 7, x} can take
values in one of three possible intervals. However, the
available solutions in the latter case are further restricted
by stability conditions.

We can derive the stability condition by expanding the
dynamical equations (1) around the fixed point and re-
quiring that all eigenvalues of the corresponding stability
matrix are negative. An eigenvalue of the stability matrix
exists at a point z in the complex plain if [14, 18]

2 2
. Z - < [1— tanh*(z)] 2> ~1 (6

by (241 — 54 (1 — tanh*(z4))]

Since the denominator of the expression above is z plus
the slope of the curve in Fig. 1a-i, a solution whose value
xk gives a negative slope (available when s, > 1) leads
to a vanishing value of the denominator at some posi-
tive z and hence to a positive eigenvalue and instability.
Hence, the n, fraction of units with s, > 1 at a stable
fixed point are restricted to have support on two disjoint
intervals [z} (sq) < 2, (sa)] U [25(5a) > 2t (sa)]. We re-
fer to this regime as multi-modal, a direct generalization
of the stable fixed points regime found in [14] for a single
self-coupling s > 1, characterized by transient dynamics
leading to an exponentially large number of stable fixed
points. For the n, portion of units with s, < 1, the sta-
ble fixed point is supported by a single interval around
Z€ro.

A fixed point solution becomes unstable as soon as an
eigenvalue occurs at z = 0, obtaining from Eq. (6) the
stability condition

7Y nale) <1, (7)

acA

2
where ¢, = [sa — COShQ(l'a)} . For s, > 1 the two possi-
ble consistent solutions to (4) that may result in a stable
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FIG. 2. Dynamical and fixed point properties of networks with two self-couplings. a) Ratio of autocorrelation timescales 72 /71
of units with self-couplings s2 and s1, respectively (7; is estimated as the half width at half max of a unit’s autocorrelation
function, see panels iv-vi), in a network with ny = ne = 0.5 and g = 2 and varying s1,s2. A central chaotic phase separates
four different stable fixed point regions with or without transient activity. Black curves represent the transition from chaotic
to stable fixed point regimes. i)-iii) Activity across time during the initial transient epoch (left) and distributions of unit
values at their stable fixed points (right), for networks with N = 1000 and (i) s1 = 3.2,s2 = —1.5, (ii) s1 = 3.2, s2 = 1.2, (iii)
s1 = 3.2,s2 = 3.2. iv) - vi) Activity across time (left) and normalized autocorrelation functions C(7)/C(0), (right) of units
with (iv) s1 = 0.8,82 = —1.5, (v) s1 = 0.8,s2 = 0.8, (vi) s1 = 0.8,s2 = 3.2. b) Timescale ratio 72/7 for fixed s;1 = 1 and

varying Sa.

fixed point (from the two disjoint intervals in Fig. 1la-i),
contribute differently to g,. Larger |z}| decreases ¢ *
(Fig. 1b-i), thus improving stability. Choices for distri-
butions of z, along the two intervals become more re-
stricted as g increases or s, decreases, since both render
higher values for the stability condition, Eq. 7, forcing
more solutions of x; to decrease g, !. This restricts a
larger fraction of x, at the fixed points to the one so-
lution with higher absolute value. At the transition to
chaos, a single last and most stable solution exists with all
x; values chosen with their higher absolute value z?, (Fig.
la-i, light green segments). For those with s, < 1 only
one solution is available, obtained by the distribution of
n through consistency (4) at the fixed point. In this
configuration, the most stable solution is exactly tran-
sitioning from stability to instability where (7) reaches
unity. Hence the transition from stable fixed points to
chaos occurs for a choice of g and P(s) such that solv-
ing consistently (4) and (5) leads to saturate the stability
condition (7) at one.

We illustrate the discussion above in the case of a net-
work with two sub-populations with n; and no =1 —ny
portions of the units with self-couplings s; and s, re-
spectively. In the (s1, s2) plane, this model gives rise to
a phase portrait with a single chaotic region separating
four disconnected stable fixed-point regions (Fig. 2a).
A unit’s activity is determined by its own self-coupling,
the network’s distribution of self-couplings and g. When
both self-couplings are greater than one (s1,s2 > 1)
the fixed point distribution in each sub-population is

When s; > 1 and s9 < 1,
the solutions for the respective sub-populations are lo-
calized around bi-modal fixed points and around zero,

respectively (Fig. 2a-i). When both s1,s2 < 1, the only
possibility for a stable fixed point is the trivial solution,
with all z; = 0 (Fig. 2a, decay region). In the case
of a Gaussian distribution of self-couplings in the stable
fixed point regime, a complex landscape of stable fixed
points emerges which continuously interpolates between
the zero (for units with s; < 1) and the multiple values
bi-modal cases (for units with s; > 1) within the same
network (Fig. 3a).

A reservoir of timescales. In the chaotic phase we
can estimate the intrinsic timescale 7; of a unit x; from its
autocorrelation function C(7) = (¢[z;(t)]|d[z:i(t+7)])+ as
the half width at its autocorrelation half maximum (Fig.
2a-vi, 71 and 7). The chaotic phase in the network,
Eq. (1), is characterized by a large range of timescales
that can be simultaneously realized across the units with
different self-couplings. As a first example, in the net-
work with two self-couplings, we found a parametric sep-
aration of timescales between the two sub-populations s;
and so in the chaotic region, where the ratio of timescales
To/T1 is a supra-linear function of the self-couplings ratio
sa/s1 (Fig. 2Db).

In a case of a lognormal distribution of self-couplings,
in the chaotic regime the network generates a reservoir
of multiple timescale 7; of chaotic activity across network
units, spanning across several orders of magnitude (Fig.
3b). For long tailed distributions such as the lognormal,
mean field theory can generate predictions for rare units
with large self-couplings from the tail end of the distribu-
tion by solving (2) and the continuous version of (3), see
Appendix, highlighting the exponential relation between
a units self-coupling and its autocorrelation decay time.

Separation of timescales in the bistable chaotic
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FIG. 3. Continuous distributions of self-couplings. a) In a

network with a Gaussian distribution of self-couplings (mean
u = 1 and variance o2 = 9), the stable fixed point regime
exhibits a distribution of fixed point values interpolating be-
tween around the zero fixed point (for units with s; < 1) and
the multi-modal case (for units with s; > 1). The purple
curve represents solutions to x = stanh(z). b) In a network
with a lognormal distribution of self-couplings (parameters
u = 0.2 and ¢® = 1), autocorrelation timescales 7; in the
chaotic phase span several orders of magnitude as functions
of the units’ self-couplings s; (purple curve shows the dynamic
mean-field predictions for 7;).

regime. To gain an analytical understanding of the
parametric separation of timescales in networks with het-
erogeneous self-couplings, we consider the special case
of a network with two self-couplings where a large sub-
population (N7 = N — 1) with s; = 1 comprises all
but one slow probe unit, xo, with large self-coupling
s > s1. The probe unit obeys the dynamical equa-
tion dxo/dt = f(x2) +n(t), with f(x) = —x + se¢(x). In
the large N limit, we can neglect the backreaction of the
probe unit on the mean field and approximate the latter
as an external Gaussian colored noise 7(t) with autocor-
relation g2C(7) = g?(¢[x1(t)]p[z1(¢t+7)]), independent of
x9. The noise 7n(t) can be parameterized by its strength,
defined as D = [ dr C(7) and its timescale (color) 7.
For large sq, the dynamics of the probe unit x5 can be
captured by a bi-stable chaotic phase whereby its activ-
ity is localized around the critical points zo = & ~ 45
(Fig. 4a-i) and switches between them at random times.
In the regime of strong colored noise (as we have here,
with 7 ~ 7.9 > 1), the stationary probability distribu-
tion p(x) (for x = zq, Fig. 4a-ii,b) satisfies the unified
colored noise approximation to the Fokker Planck equa-
tion [19, 20]:

Z 7 |h(x)| exp [~Uess(x)/D] (®)

where Z is a normalization constant h( = 1 - 7'1 f (x),
and the effective potential Uesf(z) = — f fWh(y)dy is
given by

Ueff:$2/2—8210gCOSh< )+ f( ) - mzn . (9)

p(r) =

The distribution p(x) has support in the region h(x) >
0 comprising two disjoint intervals |z| > x. where

4

tanh(z.)? = 1 — 1;—;'21 (Fig. 4b).
around the two minima z* ~ +s5 of U, ¢#- The main ef-
fect of the strong color 71 > 1 is to sharply decrease the
variance of the distribution around the minima z*. This
is evident from comparing the colored noise with a white
noise, when the latter is driving the same bi-stable probe
dro/dt = —xz9 + sod(x2) + £(t), where £(t) is a white
noise with an equivalent strength to the colored noise,
Fig. 4a-iv,v,vi. The naive potential for the white noise
case U = 12/2 — sy logcosh(z) is obtained from (8) by
sending 71 — 0 in the prefactor h and in potential Ueyy.
It results in wider activity distribution compared to our
network generated colored noise, in agreement with the
simulations, Fig. 4a.,b.

In our network generated colored noise the probe unit’s
temporal dynamics is captured by the mean first passage
time (T') for the escape out of the potential well:

~ 27, JU, () p" (2 5) exp (g) . (10)

p(z) is concentrated

where A = p(x¢) — Uesp(z—) and p = Ueps + Dlogh.
We evaluated the integrals by steepest descent around
z~ and —xzy, where tanh(zf)? ~ 1 — 1/2s5. The
agreement between (10) and simulation results improves
with increasing so, as expected on theoretical ground
[19, 20](Fig. 4c). The asymptotic scaling for large so
is

T1 -+ 1 [52

log((T) ~ 21> [5— salog(s2)] - (1)

In this slow probe regime, we thus achieved a para-
metric separation of timescales between the popula-
tion xy, with its intrinsic timescale 71, and the probe
unit o whose activity fluctuations exhibit two separate
timescales: the slow timescale T of the bistable switching
and the fast timescale 7 of the fluctuations around the
metastable states (obtained by expanding the dynamical
equation around the meta-stable values & = +s5). One
can generalize this metastable regime to a network with
N — p units which belong to a group with s; = 1 and
p < N slow probe units x,, for @« = 2,...,p + 1, with
large self-couplings s,. The slow dynamics of each probe
unit x, is captured by its own bistable switching time T,
in (10) and all slow units are driven by a shared external
colored noise 7(t) with timescale 71. In summary, in our
model multiple timescales can be robustly generated with
specific values, varying over several orders of magnitude.

Demixing of time-dependent broadband input.
Previous work in random networks with no self-couplings
(s; = 01in (1)) showed that stimulus-driven suppression of
chaos is enhanced at a particular input frequency, related
to the network’s intrinsic timescale [15]. We investigated
whether in our network with two different self-couplings
s1 < S92, in the chaotic regime, the stimulus-dependent
suppression of chaos exhibited different features in the
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FIG. 4. Separation of timescales and metastable regime. (a) Examples of bistable activity. i,iv - time courses; ii,v - histograms
of unit’s value across time; iii,vi - histograms of dwell times. (a-i,ii,iii) An example of a probe unit z2 with s = 5, embedded
in a neural network with N = 1000 units, Ny = N — 1 units with s1 = 1 and ¢ = 1.5. (a-iv,v,vi) An example of a probe
unit driven by white noise. (b) The unified colored noise approximation stationary probability distribution p(z2) (dark blue
curve, Eq. (8), its support excludes the shaded gray area) from the effective potential Uess (dashed blue curve) captures well
the activity histogram (same as (a-ii)); whereas the white noise distribution p(z2) (dark green curve, obtained from the naive
potential U, dashed green curve) captures the probe unit’s activity (same as (a-v)) when driven by white noise, and deviates
significantly from the activity distribution when the probe is embedded in our network. (c) Average dwell times,(T), in the
bistable states. Simulation results, mean and 95% CI (blue curve and light blue background, respectively; An example for the
full distribution of T is given in (a-iii)). Mean-field prediction (purple curve). The mean first passage time from the unified
colored noise approximation (Eq. (10), black curve) captures well the simulated dwell times. An approximation for the unified
colored noise (Eq. (11), gray dashed line) achieves good results as well. the white noise average dwell times are significantly
different (green curve).
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FIG. 5. Network response to broadband input. (a) Power spectrum density of a network driven by time-dependent input com-
prising a superposition of 11 sinusoidal frequencies (see main text for details). Maroon and navy curves represent average power
spectrum density in s; and s2 populations, respectively; circles indicate the peak in the power spectrum density amplitudes at
each frequency; amplitude A = 0.5; N1 = N2 = 1000, g = 3.0, s1 = 1 and s2 = 4. (b) Modulation index, Eq. (12), of the power
spectrum density amplitudes as a function of frequency in networks with s; = 1 and various s2. The green circles mark the
cutoff frequency f. where the modulation index changes sign. (c) Cutoff period, 2mw, !, as a function of self coupling s for
different input amplitudes. An inversely proportional relation between the cut off period and the amplitude of the broadband
signal is present.

two sub-populations, depending on their different intrin- slower, or faster, spectral components of the broadband
sic timescale. We drove each network unit z; with an ex- stimulus respectively (Fig. 5a). We quantified this effect
ternal broadband stimulus I;(t) = A Zle sin(2w fit+6;)  using a spectral modulation index

consisting of the superposition of L sinusoidal inputs of

different Trequencies f; in the range 1 200 Hz, with an m(f) = [(Po) = PO)/(P(H + A (12)
equal amplitude A = 0.5 and random phases 6;. We where P,(f) is the power-spectrum peak of sub-
found that the sub-population with a slow, or fast, in- population a at the frequency f (Fig. 5b). A posi-
trinsic timescale preferentially entrained its activity with tive7 or negative7 value of m(f) reveals a Stronger, or
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weaker, respectively, entrainment at frequency f in the
sub-population sy compared to s;. m(f) exhibited a
crossover behavior whereby the low frequency component
of the input predominantly entrained the slow population
s2, while the fast component of the input predominantly
entrained the fast population s;. When fixing s; = 1 and
varying ss, we found that the dependence of the crossover
frequency f. on so was strong at low input amplitudes
and was progressively tamed at larger input amplitudes
(Fig. 5¢). This is consistent with the fact that the input
amplitude completely suppresses chaos beyond a certain
critical value, as previously reported in network’s with
no self-couplings [15].

Discussion. Previous neural mechanisms for gener-
ating multiple timescales of neural activity relied on sin-
gle cell biophysical properties [21]. Network mechanisms
previously proposed were based on self-tuned criticality
with anti-hebbian plasticity [22], spatially tuned connec-
tivity gradients [23], or multiple block-structured connec-
tivity [24]. Here, we demonstrated a new robust and bio-
logically plausible network mechanism whereby multiple
timescales emerge across units with heterogeneous self-
couplings. In our model, heterogeneous self-couplings
can be interpreted as representing the self-interaction of
neural clusters of different sizes, consistent with experi-
mental [25-29] and theoretical evidence [30, 31]. In our
model, the dynamics of units with large self-couplings,
exhibiting slow switching between bistable states, can be
captured analytically using the universal colored noise
approximation to the Fokker-Planck equation [19, 20],
a promising new tool to investigate neural network dy-
namics. This slow switching regime may underlie the
emergence of metastable activity, ubiquitously observed

6

in the population spiking activity of behaving mammals
[32-38].

What is the functional relevance of neural circuits ex-
hibiting a reservoir of multiple timescales? The presence
of long timescales deeply in the chaotic regime is a new
feature of our model which may be beneficial for mem-
ory capacity away from the edge of chaos [39]. More-
over, we found that, in our model, time-dependent broad-
band inputs suppress chaos in a population-specific way,
whereby slow (fast) subpopulations preferentially entrain
slow (fast) spectral components of the input. This mech-
anism may thus endow recurrent networks with a natural
and robust tool to spatially demix complex temporal in-
puts [12] as observed in visual cortex [40]. Third, the
presence of multiple timescales may be beneficial for per-
forming flexible computations involving simultaneously
fast and slow timescales, such as in role-switching tasks
[11]; or as observed in time cells in the hippocampus
[41, 42]. A promising direction for future investigation
is the exploration of the computational properties of our
model in the context of reservoir computing [43] or re-
current networks trained to perform complex cognitive
tasks [44].
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Appendix - Dynamical regions of networks with
identical self-couplings, a summary

It is constructive to quickly survey the results of Stern

7

et al. [14] who studied the special case of including a
single value self-coupling s for all clusters in the network,
P(s;) = 05,5, In this case the dynamics of all units in
the network follow:

dx i
dt

N
= —w; + stanh(z;) + ¢y Jo(x;),  (13)

i=1

Two variables determine the network dynamics, the
network gain g and the self-coupling value s. The net-
work gain g defines the strength of the network impact
on its units. It brings the network into chaotic activity,
without self-coupling (s = 0), for values g > 1 [13]. The
self-coupling s generates bi-stability. Without network
impact (g = 0) the dynamical equation 13 for each unit
becomes

dzx i
dt

= —x; + stanh(z;), (14)

which has two stable solutions for s > 1 (Appendix Fig.
la), both at © # 0. For s < 1 (Appendix Fig. 1b) a
single stable solution exists at x = 0.

When small values of network gain g are introduced to
the network dynamics, Eq. (13), with identical bi-stable
units (s > 1), each unit solution jitters around one of
its two possible fixed points. After an irregular activity
the network settle into a stable fixed point. This gen-
erates a region of transient irregular activity with stable
fixed points (Appendix Fig. 1c). As g increases and
s decreases, different possible fixed point configurations
lose their stability (as a result, the typical time spent in
the transient activity increases). When the critical line
Se &= 14 0.1571n(0.443g + 1) is crossed, no fixed point
remains stable and the network activity becomes chaotic
[14]. The “last” stable fixed point at the transition line
has a unique configuration with all unit values located
farthest from « = 0 (Appendix Fig. la, light green lines).
Additional decrease of s and g leads to a region where
any initial activity of the network decays and the trivial
solution (z; = 0 for all 7) is stable (Appendix Fig. 1c).

Appendix - Mean field theory with multiple
self-couplings

We derive the dynamic mean-field theory in the limit
N — oo by using the moment generating functional [45,
46]. For the derivation we follow the Martin-Siggia-Rose-
De Dominicis-Janssen path integral approach formalism
[47] as appears extensively in [17], we borrow their no-
tations as well. For our model, Eq. (1), the moment
generating functional is given by:

N
Z = /Dli exp l/dtZii(t)((at + Dai(t) — sip(x4(1)))

- Z Ti(t) Jij(x; (t))l ;
o (15)
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FIG. 6. Network dynamics with identical self-couplings,

adopted from [14]. a,b) Graphical solutions to Eq. (14). a)
For s > 1 there are two stable non zero solutions (full black
circles) and an unstable solution at zero (open black circle).
The green background over the z-axis denotes the regions of
allowed activity values at the stable fixed point on the tran-
sition line to chaos (solid red curve in (c)). b) For s < 1
there is a single stable solution (full black circle) at zero. c)
Regions of the network dynamics over a range of s and g val-
ues. Below the long dashed blue line any initial activity in
the network decays to zero. Above the solid red curve, the
network exhibits transient irregular activity that eventually
settles into one out of a number of possible nonzero stable
fixed points. In the region between these two curves, the net-
work activity is chaotic. Colored circles denote, according to
their locations on the phase diagram and with respect to their
colors, the values of s (ranging from 1.6 to 0.4 in steps of 0.2)
and g = 1.5, used for the autocorrelation functions C(7) in
(d) *. e) Widths at 1/2 peak (values of 7’s in the main text
notation) of the autocorrelation functions in (d).

2 Corrected version

where Dz = [[, Dx; and Dz = [[, DZ;/2mi. To start,
we calculate (Z(J));. We take advantage of the self-
averaging nature of our model, particularly by averaging
over the quenched disorder, J. The couplings, J;;, are
ii.d. variables extracted from a normal distribution and
appear only in the last term in (15). We hence focus our
current calculation step on that term, and we derive the
result to the leading term in NV, yielding:

/dew\/i p {7 ‘Zﬂ exp [f/dtici(t)Jiﬂ)(:cj(t))}

i#£]
g2
) (N Ej B(z;(t))o(;

_exp|: /dtdt <Zx

The result above suggests that all the units in our net-

(16)

MN.

8

work are coupled to one another equivalently (by being
coupled only to sums that depend on all units’ activity).
To further decouple the network, we define the quantity

_g
)= 5 X ol 0)ote(t)

We enforce this definition by multiplying the disordered
averaged moment generating functional with the appro-
priate Dirac delta function, §, in its integral form:

1= [ dQu] - 1+Z¢%

:/dQ1dQ2 exp @y | — ngl + Z ¢(z;(t))
J

z;(t'))]

¢ ()],

where d@s is an integral over the imaginary axis (in-
cluding its 1/(2mi) factor). We can now rewrite the dis-
ordered averaged moment generating functional, using
(16) to replace its last term, the definition of @4, and
with multiplying the functional by the § function above.
All together we get:

(Z(J)) ) = /dQlsz exp Hﬁ /dtdt'Q1Q2 +N Y naln[Zd]|,

acA

Zo = /Di:aDa:a exp |:/dtia(t) (0 + )aa(t) — sad(za(t)))+

t)Za(t')+

+%/dtdt'i’a(t)Q1(t

-|—/dtdt'¢(ma(t))Q2(t,t/)¢(ﬂ3a(t,))}7
(17)

with n, = N, /N the fraction of units with self-couplings
So across the population, for « € A. In the expression
above we made use of the fact that @1 and @2, now in
a role of auxiliary fields, couple to sums of the fields x?
and ¢? and hence the generating functional for z; and
Z; can be factorized with identical multiplications of Z,.
Note that in our network, due to the dependency on s;,
x;-s are equivalent as long as s;-s are equivalent. Hence,
the factorization is for Z, for all x; with s; = s,. Now
each factor Z,, includes the functional integrals Dz, and
Dz, for a single unit with self-coupling s,,.

In the large N limit we evaluate the auxiliary fields
in (17) by the saddle point approach (we note variable
valued at the saddle point by %), obtaining:

0=

/dtdt Q1Q2+ Y nalnfZa]| ,

acA

mu[
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and yielding the saddle point values (Q7, Q3):

0= g (¢, t) +ZZ8Q2tt')Q

S Qi) =g 3 nald(a

a€cA

())d(xa(t))) = g°C(7),
(18)

QQ” +ZZ 8Q1tt/

E na Ia

a€cA

(19)
< Q5 (¢, t)

(t) =0,

where C(7), with 7 = f(t,t’), represents the average au-
tocorrelation function of the network (as was defined in
the main text). The second saddle point Q3 = 0 vanishes
due to (Z4(t)Za(t")) = 0 as can be immediately extended
from [17, 45]. The action at the saddle point reduces to
the sum of actions for individual, non-interacting units
with self-coupling s,. All units are coupled to a common
external field Q7. Inserting the saddle point values back
into Eq. (17), we obtain Z* = [[(Z%)N> where

z N/Da:ana expz /dm‘a (0 + Dz (t)

acA

2
_ sagb(xa(t))) + %/dtdt/ja(t)C(T)i'a(t’)).
(20)

9

Thus in the large N limit the network dynamics are re-
duced to those of a number of A units z(t), each repre-
sents the sub-population with self-couplings s, and fol-
lows dynamics governed by

—a(t) = —za(t) + sadlza(t)] + n(t) (21)

for all & € A and where 7(t) is a Gaussian mean field
with autocorrelation

() =g* > nald(@

acA

D)p(xa(t)).  (22)

The results above can be immediately extended for the
continuous case of self-coupling distribution P(s) yield-
ing:

() = ¢ / p(5)(a(s, D)o (x(s, t))ds  (23)

with p(s) the density function of the self-couplings distri-
bution in the network and the units dynamics dependent
on their respective self-couplings:

%x(s t) = —x(s,t) + shlx(s,t)] + n(t) . (24)
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