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Abstract

Representational Similarity Analysis (RSA) has emerged as a popular method
for relating representational spaces from human brain activity, behavioral
data, and computational models. RSA is based on the comparison of repre-
sentational (dis-)similarity matrices (RDM or RSM), which characterize the
pairwise (dis-)similarities of all conditions across all features (e.g. fMRI voxels
or units of a model). However, classical RSA treats each feature as equally
important. This ‘equal weights’ assumption contrasts with the flexibility of
multivariate decoding, which reweights individual features for predicting a
target variable. As a consequence, classical RSA may lead researchers to
underestimate the correspondence between a model and a brain region and, in
case of model comparison, may lead them to select an inferior model. The aim
of this work is twofold: First, we sought to broadly test feature-reweighted
RSA (FR-RSA) applied to computational models and reveal the extent to
which reweighting model features improves RSM correspondence and affects
model selection. Previous work suggested that reweighting can improve model
selection in RSA but it has remained unclear to what extent these results
generalize across datasets and data modalities. To draw more general con-
clusions, we utilized a range of publicly available datasets and three popular
deep neural networks (DNNs). Second, we propose voxel-reweighted RSA, a
novel use case of FR-RSA that reweights fMRI voxels, mirroring the ratio-
nale of multivariate decoding of optimally combining voxel activity patterns.
We found that reweighting individual model units markedly improved the

*Corresponding authors. (kaniuth@cbs.mpg.de — hebart@cbs.mpg.de)


https://doi.org/10.1101/2021.09.27.462005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462005; this version posted April 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

fit between model RSMs and target RSMs derived from several fMRI and
behavioral datasets and affected model selection, highlighting the importance
of considering FR-RSA. For voxel-reweighted RSA, improvements in RSM
correspondence were even more pronounced, demonstrating the utility of this
novel approach. We additionally show that classical noise ceilings can be
exceeded when FR-RSA is applied and propose an updated approach for
their computation. Taken together, our results broadly validate the use of
FR-RSA for improving the fit between computational models, brain, and
behavioral data, possibly allowing us to better adjudicate between competing
computational models. Further, our results suggest that FR-RSA applied
to brain measurement channels could become an important new method to
assess the correspondence between representational spaces.

Keywords: Representational similarity analysis, multivariate pattern
analysis, functional MRI, MEG, behavior, deep neural networks, noise
ceilings

1. Introduction

A core aim of cognitive neuroscience is to reveal the nature of our neural
representations and determine their role in shaping cognition and overt be-
havior. Central to this aim are comparisons of representations measured in
brain activity data (e.g. fMRI, MEG) with representations derived from com-
putational models or behavior. A powerful framework for such comparisons
is offered through representational similarity analysis (RSA). RSA abstracts
away from the measurement level (e.g. voxels, sensors) to the level of represen-
tational (dis-)similarities, allowing for direct comparisons across modalities,
species, models, and behavior (Kriegeskorte et al., 2008a; Kriegeskorte and
Kievit, 2013). By characterizing representations as (dis-)similarities of activity
patterns, RSA has become a central tool for multivariate pattern analysis,
complementing multivariate decoding (Haynes and Rees, 2006; Hebart and
Baker, 2018) and other methods operating at the level of multivariate activity
patterns (Haxby et al., 2014; Diedrichsen et al., 2018). RSA is not only useful
for identifying the presence of a representational correspondence between
modalities; it also provides a simple yet effective approach for comparing
computational models with behavioral and neuroimaging data.

At the heart of RSA lies the computation of representational (dis-)similarity
matrices (RDMs or RSMs), which characterize the (dis-)similarity of all pairs
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of conditions (e.g. visual stimuli) across all features (e.g. measurement
channels, units of a computational model). While in recent years a lot of
focus has been placed on improving the reliability of RDMs (Walther et al.,
2016; Charest et al., 2018) and identifying the most appropriate dissimilarity
measure (Walther et al., 2016; Bobadilla-Suarez et al., 2020; Ramirez et al.,
2020), much less emphasis has been placed on the contribution of individual
features in the computation of representational (dis-)similarities. In fact,
most RSA approaches assume that each feature is of equal importance and
will thus contribute equally to the final (dis-)similarity estimate. This ’equal
weights’ assumption is at odds with the idea that for a given comparison
of RSMs, some features may carry more information than others. This has
several important consequences. First, for computational models, classical
RSA may underestimate the correspondence between the model and a given
brain region, even though the model may already contain the relevant repre-
sentational space for capturing the brain response. This may lead not only
to suboptimal model performance, but may also affect different models to
different degrees, which in case of model comparisons may lead to the selection
of an inferior model (Khaligh-Razavi and Kriegeskorte, 2014; Peterson et al.,
2016; Jozwik et al., 2017; Storrs et al., 2021). Second, for brain data, classical
RSA may overemphasize the importance of individual brain measurement
channels, treating noisy channels (e.g. voxels) as equally important as chan-
nels that carry signal. This contrasts with the intuition used in multivariate
linear decoding, where each voxel’s importance is reweighted according to
the contribution to the final classification task (Figure la). Surprisingly,
reweighting of individual brain measurement channels is not routinely applied
to the measurement of representational similarities. This suggests large un-
tapped potential for improving the representational correspondence between
computational models, brain activity, and behavior (Figure 1b,c).

The aim of the present study is twofold. First, for the reweighting of
computational model units, we seek to broadly validate the degree to which
feature-reweighted RSA (FR-RSA) can act as a general-purpose method to
relate representational spaces of models to those of brain and behavior. To
achieve this aim, we systematically apply FR-RSA to representations from
deep neural networks (DNN) on the one hand and relate them to diverse
publicly available neuroimaging and behavioral datasets on the other hand.
Second, for the reweighting of brain measurement channels, we demonstrate
the broad applicability of FR-RSA applied to fMRI data—uvozel-reweighted
RSA—for improving the correspondence between representational similarities
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Figure 1: Parallel between multivariate decoding and feature-reweighted RSA
(FR-RSA). (a) Multivariate decoding in fMRI can be described as a linear reweighting of
features (e.g. voxels) to optimize the linear readout of a binary target variable (e.g. stimulus
category). Voxel weights reflect their importance for the final classification objective. (b)
In classical RSA, no reweighting is applied, which assumes that all voxels are equally
important. Relative to multivariate decoding, this underestimates the linear information
contained in multivoxel activation patterns. (c) FR-RSA utilizes linear feature-reweighting
in order to best reflect pairwise (dis-)similarity relative to a target RDM or RSM, thereby
improving the use of multivariate information present in the data.

derived from the brain and from models or behavior. Previewing our results,
we find that reweighting units of a DNN reliably improves the fit between
model, brain, and behavioral RSMs and indeed affects which DNN is selected
as the best model of brain activity (Storrs et al., 2021). This generalizes the
utility of FR-RSA to a broad set of neural network models, brain imaging
methods, behavior, and stimuli. Further, when reweighting is applied to fMRI
voxels, our results demonstrate consistent and pronounced improvements
of RSM correspondence. This suggests that feature reweighting applied at
the level of brain measurements may act as a general-purpose method for
improving the representational correspondence between brains, models, and
behavior. To facilitate future use of this method, we provide a toolbox to
run FR-RSA in Python (https://github.com/ViCCo-Group/frrsa), with
recommendations regarding implementational choices.
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2. Methods

2.1. Datasets and computational models

We sought to evaluate the general applicability of feature-reweighted RSA
(FR-RSA), both when (1) reweighting individual units of a computational
model, as has been done previously with similar approaches (e.g. Peterson
et al., 2016; Jozwik et al., 2017; Storrs et al., 2021) and (2) when reweighting
measurement channels of brain data, an approach which to our knowledge
has not been carried out before. To this end, we used datasets from several
published studies in which participants had been exposed to a range of
object images (Mur et al., 2013; Cichy et al., 2014, 2016; Bankson et al.,
2018; Cichy et al., 2019). The datasets are centered around four sets of
natural object images and reflect a combination of functional MRI data,
magnetoencephalography data, and behavioral similarity judgments. In
addition, for the object images, we extracted neural network activations as
computational models. Together, this makes these datasets well suited for
evaluating FR-RSA across a wide range of possible analyses. One of the
published studies (Bankson et al., 2018) used a twin set of 84 natural object
images, which were tested in separate sets of participants and which we thus
treated as two separate datasets. Another image set (Kriegeskorte et al.,
2008b; Mur et al., 2013; Cichy et al., 2014) consisted of 92 images of human
and non-human faces and bodies, as well as natural and artificial objects.
Finally, another image set (Cichy et al., 2016, 2019) consisted of 118 natural
images. All datasets used in this work were part of studies with approval
by their respective local ethics committee. Details regarding which kinds of
data were available for which image set, as well as the task carried out by
participants, can be found in Table 1.

2.1.1. fMRI data

For the fMRI data associated with two of the image sets (92 and 118),
we used voxel-wise beta estimates for each object. These were provided with
the publicly available datasets and had been estimated by applying a general
linear model to the preprocessed data. The original studies used a Siemens 3T
Trio scanner with a 32-channels head coil and, for the 92 image set, acquired
192 volumes for each participant (gradient-echo EPI sequence: TR = 2,000
ms, TE = 31 ms, flip angle = 80°, FOV read = 192 mm, FOV phase = 100%,
ascending acquisition, gap = 10%, resolution = 2 mm isotropic, slices = 25)
or, for the 118 image set, 648 volumes for each participant (gradient-echo
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EPI sequence: TR = 750 ms, TE = 30 ms, flip angle = 61°, FOV read = 192
mm, FOV phase = 100%, ascending acquisition, slice gap = 20%, resolution
= 3 mm?, slices = 33) (for methodological details, see Cichy et al., 2014,
2016). For simplicity, we focused on early visual cortex (EVC) and higher
visual cortex (HVC) as regions of interest. Since data were provided in MNI
space only, EVC and HVC were defined using anatomical criteria, based on a
projection of the Glasser atlas to MNI space (Glasser et al., 2016). For EVC,
we used a mask of areas V1, V2, and V3.

Image Type of Experimental MEG fMRI MEG Behavior Reference
Set Images Task (n) ROI Type (n)
(n) (chan-
nels)
84 natural images oddball - - - single ar-  Bankson
(Set 1) cropped and detection rangement et al.
placed on gray similarity (2018)
background (n = 16)
84 natural images oddball - - - single ar- Bankson
(Set 2) cropped and detection rangement et al.
placed on gray similarity (2018)
background (n = 16)
92 human and MEG: button Yes Early 204 planar ~ multiple Mur et al.
non-human faces press when (16) visual gradiome- arrange- (2013);
and bodies as  paperclip shown cortex ters, ment Cichy
well as natural (n=15) 102 magne- similarity et al.
and artificial fMRI: button tometers (n = 16) (2014)
objects cropped  press when null Higher
and placed on trial visual
gray background cortex
(n=15)
118 diverse natural MEG: button Yes Barly 204 planar  multiple Cichy
images, on press when (15) visual gradiome- arrange- et al.
natural paperclip shown cortex ters, ment (2016,
background (n=15) 102 magne- similarity 2019)
fMRI: button tometers (n=20)
press when null Higher
trial visual
cortex
(n =15)

Table 1: Overview over the datasets used in this study. For each image set, data
from several measurement modalities were available. For fMRI, we focused on data from
early visual cortex (EVC) and higher visual cortex (HVC). The number of participants,
n, for every measurement modality is stated in parentheses. Note that not all available
datasets from these image sets were used in all analyses, given the exceedingly large number
of possible comparisons.
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For HVC, we used a mask consisting of areas V8 (VO1), PIT, VVC,
FFC, VMV1-3, PHA1-3, TF, and TE2p. For each participant and area, a
conservative preselection of voxels was conducted by selecting only the most
strongly activated 250 voxels (post-hoc analyses including all voxels showed
qualitatively similar yet overall slightly weaker results, results not shown).

2.1.2. MEG data

While human MEG data were available for all image sets, due to the
extensive number of possible comparisons, we focused on MEG data for image
sets 92 and 118. Both MEG datasets had been acquired with 306 channels
at a sampling rate of 1,000 Hz. Data were filtered between 0.03 and 330
Hz and were baseline corrected (for methodological details, see Cichy et al.,
2014, 2016). For image set 92, MEG signals were extracted for each trial
for 100ms before and 1,200ms after stimulus presentation, resulting in 1,301
samples in total. Across all measurement channels, this yielded a data matrix
of size 306 x 92 for every time point and participant. For the image set 118,
MEG signals were extracted for 100ms before and 1,000ms after stimulus
presentation, resulting in 1,101 samples in total. This yielded a data matrix
of size 306 x 118 for every time point and participant.

2.1.3. Behavioral data

The behavioral data of all image sets included in this study were sampled
using either the single (Hout et al., 2013) or multiple object arrangement
method (Kriegeskorte and Mur, 2012). In those tasks, participants are
required to arrange objects in a circular arena according to the perceived
dissimilarity between images by dragging-and-dropping them to different
locations within the arena. Dissimilar images are positioned further away
from each other, while similar images are positioned closer to each other.
Importantly for later analyses, this method directly produces fully-sampled
RDMs, rather than yielding feature vectors that are then converted into
RDMs. The single arrangement method was used for both image sets with 84
images, while the multiple arrangement method was used for image sets 92
and 118. Further details regarding the specifics of behavioral data acquisition
can be found in the original studies (Mur et al., 2013; Bankson et al., 2018;
Cichy et al., 2019).
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2.1.4. Layer activations from chosen deep neural networks

We chose three popular DNN architectures for our investigation: AlexNet
(Krizhevsky et al., 2012), VGG-16 (Simonyan and Zisserman, 2015), and
ResNet-50 (He et al., 2016). We used versions of the DNNs that had been pre-
trained on the 1,000 object classes used in the ImageNet Large-Scale Visual
Recognition Competition (ILSVRC, Russakovsky et al., 2015), implemented
in the Matlab toolbox MatConvNet (Vedaldi and Lenc, 2015). For each DNN,
we extracted activity patterns for each image for a subset of DNN layers. For
AlexNet, we selected all five pooling layers and the first two fully-connected
layers, resulting in seven layers in total. From early to late layers, these layers
had 290400, 186624, 64896, 64896, 43264, 4096, and 4096 units, respectively.
Similarly, for VGG-16, all five pooling layers and the first two fully connected
layers were chosen. From early to late layers, VGG-16’s layers had 802816,
401408, 200704, 100352, 25088, 4096, and 4096 units, respectively. For ResNet-
50, layers convl (802816 units), res2b (802816 units), res3b (401408 units),
res3d (401408 units), resdc (200704 units), resdf (200704 units), and resbc
(100352 units) were chosen as roughly corresponding to the chosen layers in
AlexNet and VGG-16 in terms of network depth. Subsequently, we will refer
to these layers as layers 1 to 7. For each layer, we concatenated all units of
all feature maps into one long vector. This yielded one activity pattern per
stimulus per layer. No dimensionality reduction was conducted for any DNN
layer.

2.2. Constructing classical representational similarity matrices

For the MEG and behavioral data we used the RDMs as provided by the
original studies and transformed them into RSMs. For the MEG data, original
RDMs consisted of pairwise linear support vector machine classification
accuracies, where higher accuracies are supposed to reflect better linear
separability and thus greater dissimilarity (Cichy et al., 2014, 2016). For the
DNN and fMRI activity patterns, when constructing full RSMs, we computed
similarities as the Pearson’s correlation coefficient. Behavioral RDMs were
chosen as the final result from the object arrangement task (see Behavioral
data) and transformed into RSMs.
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2.3. Reweighting features of a given modality to predict similarities in another
modality

2.3.1. Querview over the algorithm

The key differences between classical RSA and FR-RSA are illustrated
in Figure 2. In classical RSA, individual cells in one RSM reflect the overall
similarity of two activity patterns for conditions z and y (e.g. DNN layer
activations for two object images). The resulting RSM, henceforth called
the “predicting RSM”, is then related to another RSM, henceforth called the
“target RSM”. In contrast, the rationale of feature-reweighted RSA is that
individual RSM cells are treated as a linear combination of univariate, feature-
specific similarities. The resulting predicting RSM can thus be conceptualized
as a linear combination of feature-specific RSMs (Figure 2b). The aim of
FR-RSA is then to learn weights that allow the optimal combination of these
feature-specific predicting RSMs in a way that maximizes their correspondence
with the target RSM (note that the same reasoning holds for RDMs). In our
implementation, this is realized using L2-regularized multiple linear regression
in a cross-validation framework.

2.3.2. Rationale of the statistical model
More specifically, in classical RSA with Pearson correlation as the similarity
measure, an RSM cell is quantified by:

COVyy

Toy = — (1)

528y

with z and y referring to the current pair of objects and s, and s, referring
to the standard deviation of the respective object’s activity pattern. Since
the covariance reflects the centered dot product and the correlation coefficient
the scaled covariance, it is possible to alternatively z-transform each object
pattern, which then reduces the correlation coefficient to the product of the
object pairs’ feature values, summed across all features ¢, with a constant
scaling factor p in the denominator denoting the number of features:

22y
(2)
p
In feature-reweighted RSA, this formula simply translates to:
YBiriy;
(3)
p
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a) Classical Step 1 Step 2 Step 3
RSA Extract patterns Compute predicting RSM Relate (e.g. correlate)
to target RSM
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b) Feature- Step 1 Step 2 Step 3
reweighted Extract patterns Reweight feature-specific RSMs Relate cross-validated
RSA prediction to target RSM
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Figure 2: Comparison of classical and feature-reweighted RSA (FR-RSA). (a)
In classical RSA, the predicting RSM is computed across all features before it is related to
the target RSM. (b) In FR-RSA, for the predicting RSM, one RSM for each feature is
computed. Each feature’s RSM receives its own 3 weight to optimally predict the target
RSM using regularized linear regression. All reweighted feature RSMs are then combined
and related to the target RSM.

For a given feature 4, across all object pairs, the same [ weight is learned.
This is equivalent to learning a linear combination of weighted univariate
feature-specific RSMs, as illustrated in Figure 2b. Thus, to accurately com-
bine these features and easily fit feature-specific weights, each pattern is
z-transformed when using Pearson correlation as the similarity measure. Note
that the constant p can be ignored as it affects the scaling of all g weights
equally.

Therefore, the predicting RSM in FR-RSA is a linear combination of
feature-specific RSMs, in which each feature-specific RSM receives its own
B weight. Identifying this weight can be formulated as a multiple regression
problem, in which each feature-specific RSM acts as an individual predictor,
each with its own unique weight. For this multiple regression model, each
feature-specific RSM is flattened so that only its unique upper (or lower)
triangular part is used, since each RSM is symmetric along its diagonal.

There are two potential issues with this multiple regression model. First,
it can contain a very large number of predictors, which is given by the number

10
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of features making up the predicting RSM. Second, given possible redundancy
across features, these predictors may exhibit high covariance (e.g. feature-
specific RSMs for a number of neighboring voxels). To counteract possible
collinearity resulting from these issues, we added a regularization term to the
objective function. Since we did not aim at selecting specific features but
rather to leverage the complete range of information present in the data, we
opted for an L2 regularization, that is, ridge regression (Hoerl and Kennard,
1970), which also offers a closed-form solution. For that purpose we used
fractional ridge regression (Rokem and Kay, 2020), since it allows automatic
evaluation of the entire range of possible hyperparameters.

Finally, to avoid overfitting, we cross-validated the multiple linear ridge
regression model and also conducted a nested cross-validation to establish the
best regularization parameter for each cross-validation iteration. The next
paragraph provides a step-by-step run-through of the algorithm.

2.3.3. The full sequence of feature-reweighted RSA

1. Data from two measurement modalities (e.g. activity patterns from a
specific DNN’s layer and fMRI voxel activities from a pre-defined ROI)
are selected. One of the modalities is declared the predicting dataset for
which feature-reweighted RSMs are computed. The other modality is
the target dataset for which the full RSM is explained by the predicting
dataset. In matrix form, the predicting dataset is provided as a p X
k matrix, while the target dataset reflects a full £ x k£ RSM, with p
referring to the number of measurement channels and £ to the number
of conditions (see Diedrichsen and Kriegeskorte, 2017).

2. Activity patterns for all conditions (e.g. images) of the predicting
dataset are z-transformed (exploratory results when leaving out this
step can be found in Supplemental Figure S1).

3. Data are split randomly into five folds for the outer cross-validation.
Importantly, data are split along the condition axis, so that the outer
training and test set contain non-overlapping sets of condition pairs
(different from Peterson et al., 2016, but similar to Jozwik et al., 2017).
Other cross-validation schemes are possible but we confirmed with
post-hoc analyses that 5-fold cross-validation reflects a good trade-off
between speed and accuracy.

4. For a given outer cross-validation iteration, the outer training set is
again split repeatedly into five folds, yielding an inner training and
inner test set for the inner cross-validation.

11
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5. With the inner cross-validation, the best hyperparameter for ridge
regression is estimated. For ridge regression we used fractional ridge
regression (Rokem and Kay, 2020). Hence, the hyperparameter to
be optimized is the fraction between ordinary least squares and L2-
regularized regression coefficients.

6. Once the best hyperparameter for the current outer cross-validation
iteration has been established, ridge regression is estimated on the outer
training set.

7. The fitted statistical model returns reweighted similarities for the pre-
dicting RSM on the test set. Predicted values that are out of range (e.g.
predicted correlation coefficients smaller than -1 or larger than 1) are
clipped to the nearest permissible value.

8. Finally, predictions are correlated with the respective similarities of the
target RSM using Pearson’s r to evaluate their fit.

Note that in our implementation, the outer 5-fold cross-validation was
repeated ten times and the inner 5-fold cross-validation five times, using
different random splits in each iteration. Hence, for a single analysis, 50 outer
ridge regression models were fitted. For each of these models, Pearson’s r
between the reweighted predicted and the respective target similarities was
derived, so that all 50 Fisher’s z-transformed Pearson’s rs were averaged
across outer cross-validation folds.

2.83.4. Reweighting analyses conducted in this study

The reweighting analyses we carried out can roughly be divided into
two kinds: (1) feature-reweighted RSA applied to DNNs, where activations
are reweighted to predict individual participant’s fMRI or behavioral RSMs,
and (2) voxel-reweighted RSA, where individual participant’s fMRI activity
patterns are reweighted to predict group-averaged behavioral RSMs, DNN
RSMs, or group-averaged MEG RSMs (that is, applying reweighting to
MEG-fMRI fusion, see Cichy et al., 2014).

Thus, for every reweighting analysis conducted, each participant received
one overall score that indicates the correlation between the reweighted predict-
ing RSM and the target RSM. These scores were used for further statistical
analyses (similar to Storrs et al., 2021) and compared to classical RSA. Analy-
ses reweighting DNN units were conducted for all image sets, whereas analyses
reweighting fMRI voxels were conducted only for the image sets with 92 and
118 images. Analyses involving fMRI were conducted separately for both EVC
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and HVC ROIs. Analyses involving MEG were conducted separately for every
time point. For further statistical analyses and graphical presentation of the
results, we averaged every ten samples for results pertaining to MEG data,
yielding MEG results for 130 and 110 samples, respectively. Across image sets
and use cases, on the group level, this resulted in a total of 736 comparisons
of classical and feature-reweighted RSA, reflecting different combinations of a
predicting and target RSM. Due to the large number of individual results, we
only discuss a selection of them in detail in the main text. For a full overview
of all results please refer to the figures. Please note that, in contrast to some
prior work (e.g. Jozwik et al., 2017; Storrs et al., 2021), we did not impose a
non-negativity constraint on the 5 weights for the main set of analyses (see Sup-
plemental Figure S2 for a subset of analyses with non-negativity constraint).
All result files and analysis scripts pertaining to this study are available via an
OSF repository (https://osf.io/8weun/). The toolbox to run FR-RSA in
Python is available via GitHub (https://github.com/ViCCo-Group/frrsa).

2.4. Statistical analyses

2.4.1. Assessing the strength of RSM correspondence

To determine the statistical significance of the correlation between two
RSMs at the group-level, we conducted one-sided Wilcoxon signed-rank tests,
comparing participants’ rank-transformed correlation values against zero (Nili
et al., 2014). Similarly, to test whether RSMs derived from two different
computational models are related, to varying degrees, to an RSM derived
from either human brain activity or human behavior, we performed two-
sided Wilcoxon signed-rank tests. We corrected for multiple comparisons by
controlling the expected false discovery rate at 0.05 (Benjamini and Hochberg,
1995).

2.5. Estimating noise ceilings

Noise ceilings provide an estimate of the best performance any model can
achieve given the noise in the data. As is common in RSA, the upper noise
ceiling is estimated as the mean correlation between the group-average RSM
and each participant-specific RSM. The lower noise ceiling is estimated as the
mean correlation between the group-average RSM and each participant-specific
RSM while iteratively excluding a given participant from the group-average
(Nili et al., 2014).
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2.5.1. Estimating reweighted noise ceilings

When conducting feature-reweighted RSA, geometrically speaking, suc-
cessful reweighting will move the model’s RSM closer to each individual
participant’s RSM (or vice versa when reweighting voxels) (see Figure 3).
However, at the same time, the position of the group-average RSM relative
to the individual participant’s RSMs, which is used for the estimation of the
noise ceiling, remains unchanged. As a consequence, for feature-reweighted
RSA, classical noise ceilings underestimate the best possible performance any
model can achieve since they themselves do not take reweighting into account.
This can lead to results that appear to approach or even exceed the noise
ceiling while in actual fact this comparison is no longer valid. As a remedy,
we propose to also apply reweighting to noise ceilings to get an estimate of the
best performance any model can achieve given the noise in the data and given
that reweighting has been applied. To obtain valid noise ceiling estimates
in the context of feature reweighting, for the reweighted upper noise ceiling,
we applied reweighting to each participant-specific RSM to optimally predict
the group-average RSM and averaged the resulting correlations. For the
lower noise ceiling, we reweighted each participant-specific RSM to optimally
predict the group-average RSM from which the current participant-specific
RSM was left out, again averaging the resulting RSM correlations.

2.5.2. Statistical significance of model relative to noise ceiling

Each correlation between RSMs was tested regarding whether it was
significantly below any of the lower noise ceilings, using uncorrected one-sided
Wilcoxon signed-rank tests. Not controlling the false discovery rate works
against finding a non-significant difference and is therefore a more conservative
procedure (Storrs et al., 2021). Note that when a behavioral RSM is the
target variable, then estimating reweighted noise ceilings is not possible, given
that feature-reweighting cannot be applied without the presence of features
(see Behavioral data). In this case, reweighted noise ceilings are omitted.

3. Results

3.1. Feature-reweighting on simulated data

Prior to conducting feature-reweighted RSA (FR-RSA) on empirical data,
we carried out a simulation in which we tested the degree to which FR-RSA
is able to (1) improve the correspondence between a model RSM and a target
RSM and (2) identify the superior model from a set of competing models.
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Figure 3: Geometrical reasoning for reweighted noise ceiling. In classical RSA,
noise ceilings are calculated based on individual participant’s RSMs (gray circles) and their
respective group average (red circle), to get an estimate of the best performance a given
model RSM (yellow star) could achieve. (a) When a given model’s units are reweighted,
the model iteratively moves closer to each participant’s fMRI RSM. Here, the reweighted
model may be closer to each participant than the group-average is (small panel). (b)
Similarly, when reweighting is applied to individual participant’s fMRI voxels, their RSMs
move closer towards the model RSM. That way, they can then be closer to the model than
the non-reweighted ones are to their mean (small panel). However, when calculating noise
ceilings based on the non-reweighted participant RSMs and their respective group average,
reweighting is not taken into account. (c) Therefore, in either case, noise ceilings should
be calculated based on individual participant’s RSMs that have been reweighted to best
predict the group-average RSM.

While for empirical data it is not possible to know in advance which is the
truly superior model, a simulation can provide a proof of concept for testing
whether FR-RSA is able to recover the original ground truth best model
and thus improve model selection. To this end, we defined a ground truth
representational space G with a predefined covariance structure (Figure 4).
Next, we created a target RSM that was based on features with the same
covariance as G, plus multivariate Gaussian noise on these features. Finally,
we created two models which we designed in a way that Model 1 was the
superior model, while Model 2 was the inferior model.

Model 1 was based on noisy features with the same covariance as G, akin to
the creation of the target RSM. However, we added irrelevant features based
on pure noise. In contrast, Model 2 was based only partially on the ground
truth representational space G but without the addition of irrelevant features.
Therefore, Model 1 contained the complete relevant subspace defined by G
but the final representational space was obscured by the addition of irrelevant
features, while for Model 2, even its original representational space without
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Figure 4: A simulation of the effect of FR-RSA with a known ground truth
representational space. (a) Simulation scheme. We designed a ground truth rep-
resentational space, G, based on which we generated two models. Model 1 was designed
to be the superior model, which contained the ground truth representational space but
was obscured by the addition of a set of non-informative features. Model 2 was designed
to be the inferior model by only partially matching ground truth, without the addition
of non-informative features. For model evaluation, we then compared both models to a
simulated target RSM, which was derived from our ground truth matrix. (b) Results of
the simulation across simulation iterations. For classical RSA, overall performance
was poor, with the inferior Model 2 exhibiting a higher representational correspondence
than the superior Model 1. FR-RSA led to a strong improvement in model performance
for Model 1, with a much weaker improvement for Model 2, highlighting the potential of
FR-RSA to improve representational correspondence while recovering the ground truth
representational space.

the addition of noise would only show a decent correspondence with the target
RSM, making it an inferior model as compared to Model 1. We then repeated
this simulation 100 times. Having created two competing models and a target
RSM, we next conducted classical RSA and FR-RSA on both models, for all
100 simulation iterations. The results of the simulation scheme are presented
in Figure 4. Before reweighting, overall performance of both models was
poor, with a better fit of Model 2 than Model 1, demonstrating that, in this
simulation scheme, classical RSA favored the inferior model. FR-RSA, on the
other hand, yielded a strong increase in the RSM correspondence between
Model 1 and the target, while the increase was much weaker for Model 2.
Please note that a small increase in performance is also expected for the
inferior model, since it was designed to exhibit a partial correspondence with
ground truth. Overall, this simulation highlights both important aspects of
FR-RSA: First, feature reweighting can improve the correspondence between
model and target RSMs. Second, FR-RSA is able to recover the ground truth
model.
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3.2. Reweighting units of computational models
3.2.1. Reweighting model units consistently improves correspondence between
two RSMs

Our first aim was to evaluate whether FR-RSA reliably increases the
correspondence between two RSMs. To this end, we applied FR-RSA to
seven different layers of three different DNNs to predict RSMs of behavior,
higher visual cortex (HVC) or early visual cortex (EVC), as measured with
fMRI in several publicly available datasets (see Datasets and computational
models for details). Figure 5 shows the results of comparing classical RSA
with FR-RSA across all 168 combinations of analyses. Irrespective of the
kind of image set, we found that FR-RSA robustly increased the fit between
two RSMs as compared to classical RSA. A chi-squared test revealed that
a significantly larger proportion of RSM comparisons showed improvements
(144) than comparisons that were worse (24) after reweighting DNN units
(x*(1, N = 168) = 85.71, p < .001). Altogether, in 119 cases (70.83%) the
fit between two RSMs was significantly increased when feature reweighting
was applied to units of DNN layers. In 8 cases (4.76%) FR-RSA performed
significantly worse than classical RSA, while in 41 cases (24.41%) the difference
to classical RSA was not significant. Breaking this down into different types
of analyses, for the prediction of behavioral RSMs, FR-RSA significantly
outperformed classical RSA in 59 cases, with 5 cases that showed significantly
worse performance of FR-RSA and 20 cases with a non-significant difference
between both methods. Similarly, for the prediction of fMRI RSMs, FR-RSA
significantly outperformed classical RSA in 60 cases, performed significantly
worse in 3 cases, and showed non-significant differences in 21 cases. Together,
these results demonstrate that FR-RSA robustly improves the correspondence
between DNNs, brain activity, and behavior.

3.2.2. Reweighting model units influences model selection

Having demonstrated the reliable performance of FR-RSA, we next sought
to evaluate whether applying FR-RSA also leads to changes in the model
selection process: Does the same model produce the best fit to brain or
behavioral data, regardless of whether classical RSA or FR-RSA is used, or can
FR-RSA lead to qualitative changes in the results, leading to different models
that are chosen as optimal (Storrs et al., 2021)7 To this end, we assessed the
relative predictive performance of three common DNN architectures (AlexNet,
VGG-16, ResNet-50) for each of seven layers, when relating their classical and
reweighted RDMs to target RSMs derived from either, behavior, HVC, or
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Figure 5: Comparison of classical RSA with feature-reweighted RSA when
reweighting DNN units. For most comparisons, feature-reweighted RSA reveals a
stronger RSM correspondence than classical RSA (144 stronger, 24 weaker). Of all 168
comparisons, FR-RSA significantly outperformed classical RSA in 119 cases, often leading
to strong increases in the fit between two RSMs.

EVC. These results are shown in Figure 6. In the following we will highlight
a subset of all findings.

Let us first focus on the DNN layers’ scores for the image set 118 and EVC
target RSM (see Figure 6, bottom right panel). Before reweighting, AlexNet
and VGG-16 were correlated significantly with the target RSM across most
layers, while ResNet-50 showed fewer significant effects (range of correlations
across all layers: AlexNet: 0.024 to 0.191, M = 0.079, all layers significant;
VGG-16: -0.034 to 0.087, M = 0.047, layers 2-6 significant; ResNet-50: -0.14
to 0.063, M = -0.011, layers 1, 6, 7 significant; all p < 0.035, FDR corrected).
AlexNet and VGG-16 also performed significantly better than ResNet-50 for
layers 1-6 and 2-5, respectively, while ResNet-50 outperformed AlexNet and
VGG-16 only for layer 7 and layers 1 and 7, respectively (all p < 0.009, FDR
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Figure 6: Detailed comparison of classical and feature-reweighted RSA applied
to DNN units. Each panel shows the predictive performance of three DNNs (blue:
AlexNet, orange: VGG-16, green: ResNet-50) with classical and feature-reweighted RSA
(light and dark hues, respectively), for a target RSM of a given image set as indicated
above each panel. Target RSMs were derived from either behavior, early (EVC) or higher
visual cortex (HVC). In each panel, the dashed gray and the dotted black line indicate
the lower classical and lower reweighted noise ceiling, respectively. In many cases, feature
reweighting leads to an increased fit between RSMs, as can be seen by the dark bars
being generally higher than their light counterparts. In addition, feature reweighting
affected model selection, as indicated by the changes in the relative heights of the different
model bars for dark and light hues. Note that in cases where behavioral RSMs are the
target RSMs, the calculation of reweighted noise ceilings was not possible (see main text).
Error bars indicate 95% confidence intervals computed using bootstrapping. Most fits are
significantly different from zero.

corrected). This picture changed strongly after reweighting DNN units of
each layer. ResNet-50’s performance improved strongly (range of correlations:
0.003 to 0.27, M = 0.209; layers 2-7 significant; p < 0.001, FDR corrected)
and no longer showed a significant difference from reweighted AlexNet’s or
VGG-16’s performance for layers 1-3 and for layers 1 and 4, respectively.
ResNet-50 in fact outperformed AlexNet for layers 4-7 and VGG-16 for layers
2-3 and 5-7, respectively (all p < 0.008, FDR corrected). Based on these
results, which show that ResNet-50 is the superior model across multiple
layers for EVC, it becomes evident that feature-reweighted RSA does, indeed,
affect model selection.

The general pattern that FR-RSA selects another model than classical
RSA as the best model can be observed when shifting the focus from one
specific dataset to all panels in Figure 6. Before feature-reweighting, VGG-16
is very often the best performing model for layer 5 (range of correlations:
0.07 to 0.357; M = .19). For 7/8 combinations of image set and target RSM,
VGG-16 performed significantly better than both AlexNet and ResNet-50 in
layer 5 (all p < 0.004, FDR corrected). After feature-reweighting, though,
ResNet-50 was the superior model (range of correlations: 0.104 to 0.426; M
= .263), being significantly better than AlexNet and VGG-16 in 4/8 and 7/8
cases for layer 5 (all p < 0.006, FDR corrected). Note that, for the remaining
cases, ResNet-50 was never significantly worse than AlexNet or VGG-16. A
similar trend can be observed for layer 6 when comparing non-reweighted
AlexNet to reweighted VGG-16. These results support the notion that model
selection is affected by applying feature-reweighted RSA irrespective of the

20


https://doi.org/10.1101/2021.09.27.462005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462005; this version posted April 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

exact combination of image set and target RSM.

Taken together, there is strong evidence that model selection is influenced
by applying feature-reweighted RSA to DNN units. These results highlight
the importance of considering alternatives to classical RSA for comparing
competing models and suggest the general utility of FR-RSA for adjudicating
amongst them.

3.8. Vozel-reweighted RSA: Reweighting individual vozels improves prediction
of model RSMs, MEG data, and behavior

The second major aim of this study was to explore a novel use case of
feature-reweighting: rather than reweighting individual units of a compu-
tational model, we tested the degree to which reweighting brain measure-
ments can improve the ability to predict a computational model’s RSM. This
approach parallels multivariate decoding, which also reweights individual
measurement channels (e.g. voxels) to maximize the fit with a target variable.
To this end, we applied FR-RSA to fMRI data from higher and early visual
cortex to predict RSMs either from behavior, DNN layers, or MEG time points
(MEG-fMRI fusion). The results of all 568 comparisons between classical RSA
and voxel-reweighted RSA are shown in Figure 7. FR-RSA applied to voxels
overwhelmingly increased the correspondence between various predicting and
target RSMs. A chi-squared test revealed that a significantly larger proportion
of RSM comparisons showed improvements (370) than comparisons that were
worse (198) after reweighting fMRI voxels (x?(1, N = 568) = 52.09, p <
.001). Overall, in 235 cases (41.37%) the fit between two RSMs increased
significantly, in 66 (11.62%) cases FR-RSA performed significantly worse than
classical RSA, and in 267 (47.01%) cases the difference to classical RSA was
not significant. Again, breaking this down into different types of analyses,
for the prediction of behavioral RSMs, FR-RSA significantly outperformed
classical RSA in all 4 cases. Similarly, for the prediction of DNN RSMs, FR-
RSA significantly outperformed classical RSA in 80 cases, never performed
significantly worse, and showed non-significant differences in 4 cases. Finally,
when predicting MEG RSMs, FR-RSA significantly outperformed classical
RSA in 151 cases, performed significantly worse in 66 cases, and showed
non-significant differences in 263 cases. Please note that a large number of the
MEG comparisons include MEG samples during which likely no information
was present at all. Yet, we chose all time points for a conservative estimate.

Focusing on individual results, Figure 8 shows how well reweighted fMRI
voxels from two different ROIs explain behavioral RSMs with classical and
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Figure 7: Comparison of classical RSA with feature-reweighted RSA when
reweighting fMRI voxels. For most comparisons, feature-reweighted RSA reveals
a stronger RSM correspondence than classical RSA when applied to voxels (370 vs. 198).
FR-RSA significantly outperformed classical RSA in 235 cases, often leading to very strong
increases in the fit between two RSMs.

FR-RSA. While EVC voxels already predicted behavioral RSMs significantly
before reweighting (r = 0.054 and r = 0.053 for image set 92 and 118,
respectively), these correlations were increased significantly after reweighting
(r =0.117 and r = 0.098; p < 0.001 FDR corrected for all correlations, p <
0.05 uncorrected for the differences). The improvement in RSM correlations
was even stronger for HVC: the RSM correspondence before reweighting (r =
0.209 and r = 0.165) was again significantly improved after reweighting took
place (r = 0.414 and r = 0.333; p < 0.001 FDR corrected for all correlations,
p < 0.001 uncorrected for the differences).

Figure 9 shows the relative correspondence of the three DNN architectures
for each of seven layers, when relating their RSMs to either classical or
reweighted voxel RSMs derived from either HVC or EVC. Overall, reweighting
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Figure 8: Voxel-reweighted RSA improves the prediction of behavioral similarity
from EVC and HVC. Results across both image sets (92, 118) and regions of interest
(EVC, HVC) yield consistent increases in representational similarity when applying voxel-
reweighted RSA. The dashed gray line indicates the lower classical noise ceiling. The
computation of a reweighted noise ceiling was not possible (see main text). Error bars
indicate 95% confidence intervals computed using bootstrapping.

individual voxels led to even stronger improvements in RSM correspondence
than reweighting DNN units, at times approaching the reweighted lower noise
ceiling. In all four panels in Figure 9, all of the 8 RSM correlations for
classical RSA are significantly below the classical lower noise ceiling (all p
< 0.04, uncorrected). However, for voxel-reweighted RSA, there were seven
cases in which a DNN layer’s RSM and brain RSM correlated to an extent
that was not significantly different from the reweighted lower noise ceiling.
These results demonstrate that voxel reweighted RSA can strongly improve
the fit between RSMs.
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Figure 9: Detailed comparison of classical and voxel-reweighted RSA. Reweighting
of individual fMRI voxels leads to strong and consistent increases in the fit between RSMs.
Each panel shows how well the RSMs of three DNNs (purple: AlexNet, red: VGG-16,
yellow: ResNet-50) can be explained with classical and feature-reweighted RSA (light and
dark hues, respectively), when applied to either higher (HVC) or early visual cortex (EVC)
RSM of a given image set as indicated above each panel. In each panel, the dashed gray
and the dotted black line indicate the lower classical and lower reweighted noise ceiling,
respectively. Error bars indicate 95% confidence intervals computed using bootstrapping.
Most fits are significantly different from zero.

3.4. Reweighting amplifies existing and reveals new peaks when applied to
MEG-fMRI fusion

To test whether results generalize beyond the prediction of DNN layer
and behavioral RSMs, we conducted MEG-fMRI fusion with classical and
feature-reweighted RSA for two datasets for which fMRI and MEG data
were available (Figure 10). For each participant separately, we reweighted
fMRI voxels at each time point of MEG data, to best predict MEG similarity.
For most time points, classical and FR-RSA each yielded a representational
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similarity significantly larger than zero, as indicated by the purple and red
horizontal lines in Figure 10, respectively. Further, for many time points,
there were significant differences between classical and FR-RSA (uncorrected),
as indicated by the black horizontal line in Figure 10. Overall, FR-RSA
revealed peaks which would not have been detected using classical RSA, and
it also markedly increased existing peaks.
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Figure 10: Voxel-reweighted RSA applied to MEG-fMRI fusion. MEG-fMRI fusion
can be improved consistently by applying voxel-reweighted RSA, amplifying existing peaks
and yielding new ones. Each panel reflects a combination of one image set and brain region,
with MEG-fMRI fusion for classical (purple) and feature-reweighed (red) RSA. Purple and
red dots indicate time points for which classical and voxel-reweighted RSA yield RSM
correlations significantly bigger than zero, respectively. Black dots indicate time points
with significant differences between classical and voxel-reweighted RSA (all uncorrected).
Shaded areas indicate 95% confidence intervals computed using bootstrapping.
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3.5. The effect of reweighted noise ceilings on the interpretation of reweighted
RSM correspondences

As argued earlier, for feature-reweighted RSA, classical noise ceilings un-
derestimate the best possible performance any model can achieve, invalidating
inferences based on classical noise ceilings (see Estimating reweighted noise
ceilings). Traditionally, models numerically exceeding the lower noise ceiling
are often interpreted as fully explaining the data at hand (Khaligh-Razavi
and Kriegeskorte, 2014). To identify whether we find cases where reweighting
noise ceilings would change this interpretation of results, we inspected all
736 combinations of analyses, counted the number of cases that numerically
exceeded the classical lower noise ceiling, and compared this with the num-
ber of cases that numerically exceeded the reweighted lower noise ceiling.
Note that of all 736 combinations, only those 168 entered this analysis for
which reweighted noise ceilings could be computed. Indeed, a total of 21
reweighting analyses (12.5%) exceeded the classical lower noise ceiling, while
no reweighting analysis exceeded the reweighted lower noise ceiling, a signifi-
cant difference as revealed by a chi-squared test (x*(1, N = 21) = 21, p <
0.001). Therefore, following this tradition would lead to an inflated number
of results that are reported as fully capturing the data. However, while four
analyses even numerically exceeded the classical upper noise ceiling, it is also
important to note that none of these results were significant. Thus, while
we did not find empirical evidence for results significantly above the classical
upper noise ceiling, reweighted noise ceilings are required to prevent biased
assessment of a model’s performance.

3.6. Does feature reweighting lead to positively biased results?

The analyses presented so far demonstrate that feature-reweighted RSA
often increases RSM correspondence and influences model selection. However,
it is also necessary to assess whether feature-reweighting leads to positively
biased results, meaning above-chance representational similarities despite the
absence of any association between representational spaces.

To this end, we carried out a randomization procedure by permuting the
condition labels of the target RSM while leaving intact the order of the labels
of the predicting RSM. In this case, feature-reweighting should, on average, not
lead to an improved RSM correspondence. For a given randomization iteration,
we applied the same shuffling to the RSMs of all participants, computed
the representational similarity using Pearson’s correlation, and averaged
the resulting correlation coefficients, leading to one group mean correlation
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coefficient for a given permutation. We then repeated this procedure 100
times to generate a distribution of group mean representational similarities
for a given combination of predicting and target RSM. This randomization
procedure was conducted for four separate such combinations. In all cases,
the RSM correspondence yielded a distribution centered around zero (range
of means: -0.0003 to 0.0017, see Supplemental Figure S3 for a depiction of
empirical null distributions). Together, this showcases that FR-RSA does not
lead to positively biased representational similarities.

4. Discussion

RSA is widely used to assess the correspondence between brains, behavior,
and models and select amongst several candidates the model that best explains
a given representational space (Kriegeskorte et al., 2008a; Kriegeskorte and
Kievit, 2013). In this work, we evaluated a powerful extension of classical
RSA called feature-reweighted RSA (FR-RSA) in which individual features
of a predicting RSM are reweighted to maximize the fit with a target RSM.
Using fMRI, MEG, and behavioral data from multiple neuroscientific studies
as well as several DNNs as computational models, we broadly validated the
general applicability of this approach. Further, we present an important novel
use case of FR-RSA by applying feature reweighting to brain measurement
channels; compared to classical RSA, voxel-reweighted RSA leverages more of
the multivariate information content present in human brain (dis-)similarity
data, thus nicely complementing existing multivariate decoding techniques.
Altogether, we find strong and robust increases in the fit between RSMs.
Changes in the model selection process were also often observed when applying
feature-reweighting as opposed to classical RSA. Based on these results, we
suggest that FR-RSA applied to brain measurement channels could become an
important new method to assess the match between representational spaces.

4.1. Past developments of reweighted RSA approaches: Similarities and dif-
ferences

Classical RSA as introduced by Kriegeskorte et al. (2008a) has been
studied extensively as a research method. Below, we will briefly outline
past developments leading up to our contribution, as well as similarities and
differences to our approach. Khaligh-Razavi and Kriegeskorte (2014) were
the first to propose reweighting in the form of layer-reweighted RSA, where
an entire layer of a computational model (in this case a DNN) receives a

27


https://doi.org/10.1101/2021.09.27.462005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462005; this version posted April 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

single weight to predict a target RDM. Peterson et al. (2016) were the first
to use feature-reweighted RSA (FR-RSA), by reweighting individual DNN
units of a fully-connected layer using ridge regression to predict behavioral
RSMs. Jozwik et al. (2017) applied a similar approach to predict human
object similarity judgments from entire feature maps of convolutional DNN
layers or individual units of fully-connected layers. Finally, Storrs et al. (2021)
recently proposed a two-stage RSA approach applied to RDMs of human
inferior temporal cortex, first reweighting principal components of DNN layers
and then combining individual layers together with another reweighting step.
When comparing multiple trained DNNs with each other, regarding how well
they predict inferior temporal cortex activity after reweighting, they found
that performance differences between DNNs were strongly diminished.

While these studies each contributed important novel information and
already highlighted the potential value of FR-RSA, our study (1) broadly and
systematically validates FR-RSA across numerous behavioral and neuroimag-
ing datasets, thus confirming the value of FR-RSA beyond individual previous
studies, (2) provides a new use case of FR-RSA by applying reweighting to
individual voxels, offering a powerful new method for assessing the fit of brain
data with models and behavior, and (3) introduces feature-reweighted noise
ceilings, providing a more suitable approach for evaluating the upper limit of
the predictive performance of any model given the available data.

While all previous FR-RSA approaches have in common the reweighting
of individual features, there are also important differences. Several previ-
ous approaches (Jozwik et al., 2016, 2017; Storrs et al., 2021) have limited
themselves to non-negative weights given that true dissimilarities can only be
positive, while our proposed FR-RSA approach avoids this constraint. As a
consequence, our approach not only stretches or squeezes individual features,
but can also invert their values. If a researcher assumes that each feature of
the model in question should be regarded as a distinct property (like color or
orientation) that corresponds to a separate similarity matrix, weights should
be non-negative to avoid illegal feature-specific (dis-)similarities. If, though,
one regards features not as distinct properties, but merely as features, we
believe that, given the potential information contained in individual units,
it makes sense to allow weights to take on any value to possibly counteract
contributions of otherwise overrepresented features. However, given the pre-
vious use of the non-negativity constraint, we repeated a subset of analyses
with such a constraint and found results to be similar (see Supplemental
Figure S2). Further, our approach additionally uses an L2 penalty similar
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to Peterson et al. (2016) and Jozwik et al. (2017), but in contrast to Jozwik
et al. (2016) and Storrs et al. (2021). This choice of regularization, how-
ever, is reasonable given the expected collinearity of features. While Storrs
et al. (2021) countered multicollinearity with principal components regres-
sion, our choice of ridge regression provides smoother shrinkage of regression
parameters and may lead to slightly improved prediction (Hastie et al., 2009).
Finally, during cross-validation, Peterson et al. (2016) left out individual
object pair similarities, while we and others (e.g. Jozwik et al., 2017) left out
entire objects, thus avoiding potential leakage effects given that object pair
similarities are not all independent. While Storrs et al. (2021) cross-validated
across both participants and stimuli and used bootstrapping for estimating
statistical significance, our approach of cross-validating across stimuli alone
leaves the option to carry out reweighting at the participant level, thus al-
lowing classical statistical analyses for inferring that the effect found in each
participant is present in the population. Beyond being computationally more
efficient, FR-RSA at the participant level offers an approach with well-known
statistical properties for the generalization to the population, which may be
more challenging for double cross-validation that mixes the sources of variance
for objects and participants.

4.2. A novel approach for feature reweighting

Further, different from all previous developments, we present a novel
approach for feature reweighting, by applying it to brain activity patterns:
voxel-reweighted RSA. This application was motivated by classical multi-
variate decoding. In multivariate decoding, individual voxels receive their
own weights which reflect their importance in optimally conducting a linear
read-out of a binary (e.g. stimulus category) or a continuous target variable
(e.g. stimulus size). However, in the context of RSA, where all voxels receive
equal weights, this approach to our knowledge has not been applied previously.
Thus, relative to multivariate decoding, classical RSA may underestimate
the linear information content of multivariate measurements. By reweighting
individual voxels to optimally predict (dis-)similarity, feature-reweighted RSA
can leverage more of the rich multivariate information content of the data.

4.3. Reweighted noise ceilings for reweighted RSA approaches

The fit between a model and data is limited by the quality of the model
and the noise in the data. Noise ceilings provide an estimate of the best
performance any model can achieve and thus allow us to tell how far off
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a given model is, given the noise in the data. However, when reweighting
individual features, classical noise ceilings underestimate this upper perfor-
mance threshold, since they themselves do not take reweighting into account.
This can lead to a situation in which reweighted RSMs may exceed the
classical lower noise ceiling but not the reweighted lower noise ceiling, thus
leading to falsely interpreting the reweighted RSM to explain the data at
hand when only considering classical noise ceilings, a result we confirmed
empirically. In the context of feature reweighting, we therefore suggest calcu-
lating reweighted noise ceilings, which again provide a sensible performance
corridor for reweighted RSMs. Note that previous adaptations regarding
the calculation of noise ceilings address different problems, such as how to
calculate noise ceilings for a model that received weights when fitted to a
single group-average target RDM (or RSM) (Storrs et al., 2020).

4.4. Use cases for feature-reweighted RSA

While FR-RSA generally yielded strong improvements of the correspon-
dence between computational models and brain data and also affected which
model was selected among competing models, it may be argued that, while
feature reweighting is computationally feasible, it should not be applied to
model RSMs in general (see Storrs et al., 2021, for a previous discussion of
this topic). According to this line of reasoning, the representational similarity
between a model and a given dataset already provides a good estimate of
the explanatory power of this model, and reweighting the model’s features
would be akin to testing the performance of a different model. To illustrate
this line of reasoning, assume for a moment that a model RSM is built not
from computational models but originates from an experimental design with
several factors. For example, in an experiment, participants may have been
presented with images of faces with different degrees of 3D rotation, which
can be quantified by the three parameters pitch, roll, and yaw. Each of the
three orientation directions would thus constitute a feature. A model RSM
in this experiment could simply quantify the similarity of face orientation
between faces integrated across all features. When a researcher is interested
primarily in the fit of such a static model, we would argue that reweighting of
individual model features should not be applied since it would change what
hypothesis is tested. However, if each model feature is treated as a separate
variable of interest, for which the contribution to a target RSM is unknown,
then reweighting can improve the fit, and indeed, this approach is already
commonly used in practice when conducting RSA in a multiple regression
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framework (e.g. Jozwik et al., 2016; Groen et al., 2018; Hebart and Baker,
2018).

Likewise, for computational models, when the model is treated as a
good approximation of all relevant aspects of a brain or behavioral dataset,
we would argue that reweighting should not be carried out. For example,
a learned DNN model can, among others, be characterized as a product
of its architecture (e.g. number of layers and units per layer, transition
functions, etc.), its learning objective (e.g. object classification), and the
stimuli and object classes that had been used during training (Kietzmann
et al., 2019; Richards et al., 2019). When testing the degree to which all
of these aspects are already representative of brain and behavioral datasets,
applying reweighting may distort this assessment. However, it is well known
that commonly used datasets for training DNNs do not reflect the categories
most relevant to humans (Hebart et al., 2019; Mehrer et al., 2021), and
that the learning objective of ventral visual cortex is known to go beyond
simple object classification (Kravitz et al., 2013). Thus, successful feature
reweighting promises to yield a better match beyond the images a DNN had
been trained on and beyond its limited training objective, possibly better
reflecting the explanatory power of a DNN architecture trained on object
images. Likewise, in principle, the reweighting can even be reversed in the
DNN weights between layers, yielding a better match to the target RSM
without affecting model performance. More generally, when interested merely
in the information contained in a given computational model, we would argue
that FR-RSA can be applied more liberally. Thus, whether FR-RSA should
be applied to features of a computational model depends entirely on what
aspects of the computational model are supposed to be fixed and what aspects
are allowed to vary. Crucially, researchers should be explicit about this choice
in their studies to avoid confusion and draw valid conclusions.

When it comes to reweighting of measurement channels (e.g. voxel-
reweighted RSA), the applicability of this approach again depends on the
aims of the researcher and their assumption about the nature of the represen-
tations studied. When interested in testing the existence of representational
similarity alone (i.e. “Does the model show any fit to activity patterns in brain
region X?”), which is a very common goal for RSA, we argue that reweighting
of measurement channels (e.g. voxel-reweighted RSA) can be carried out more
generally. Drawing the parallel to multivariate decoding, voxel-reweighted
RSA would allow weighting individual voxels in a way that reflects a plau-
sible lower bound of the potential representations that can be read-out by
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downstream regions (Kriegeskorte and Bandettini, 2007). Whether these
representations are indeed used by other brain regions or behavior remains an
empirical question for both multivariate decoding and RSA (Williams et al.,
2007; Ritchie et al., 2019). Given its increased statistical power, applying
FR-RSA to measurement channels promises to advance our understanding of
representational content in a way similar to how multivariate decoding has
leveraged information contained in measured brain activity patterns.

However, when using RSA for carrying out model comparisons (i.e. “Which
model best explains activity patterns in brain region X?”), there are certain
restrictions to the use of voxel reweighting. Assume for the moment that we
are dealing with the ventral visual cortex as a region of interest and that this
region includes face-selective clusters (e.g. fusiform face area, FFA). Ventral
visual cortex is known to represent objects in a distributed fashion, while
FFA responds more uniformly to images of faces. When comparing a simpler
model that tests for face selectivity alone against a more complex model
testing for object selectivity including faces, the simpler model may win over
the more complex one simply because feature reweighting may focus on face
selective voxels for the simpler model, which may be easier to fit than the
more complex model that is based on representations with more distributed
voxel activity patterns. Thus, for model comparisons, voxel-reweighted RSA
would not be testing the degree to which an entire region is well-suited for
characterizing a model but may focus on selective parts of these regions, which
may even be different for each model. In such a case, finding a subspace of
the predicting RSM that best fits the target RSM does not imply that this
subspace is (or should be) reflective of the entire target. This may, of course,
be a desirable side effect of FR-RSA, and, indeed, the feature weights could
be inspected to test the degree to which this is the case. However, if one
would like to treat a region as carrying a more-or-less homogeneously and
widely-distributed representation, then voxel-reweighted RSA may complicate
model comparisons.

Based on these considerations, if a researcher has the theoretical possibility
to reweight either, model units or fMRI voxels, we argue that, for model
comparison, it is the model units that ought to be reweighted. If model
comparison is not of interest and the primary aim is assessing whether a
model and brain RSM show any correspondence, we argue that one may
default to voxel reweighting.
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4.5. Possible extensions of feature-reweighted RSA

There are several ways to refine feature-reweighting in the context of
RSA. First, other penalization regimes could be applied. Instead of using
an L2-penalty, one could either use an L1-penalty or a combination of L1-
and L2-penalization (or pruning, see Tarigopula et al., 2021). We opted
for the L2-penalization since we did not want to select a subset of features
(as any penalization regime utilizing the L1-norm would do) and since an
L1-penalization would incur a greater computational load. Second, one could
not only penalize the predictors’ variances but also their covariance so that
all features that exhibit a high covariance with other features are penalized.
This approach might, however, strongly increase the computational load of
the fitting procedure. A third possible extension of feature-reweighting would
be to fit weights bidirectionally. That way, both RSMs would receive weights
to optimally predict the other RSM, possibly using a latent vector approach
(e.g. canonical correlation analysis). Fourth, the fitting procedure could be
repeated so that the residuals of the first fitting procedure are predicted
by a linear weighted combination of some other predicting RSM. Finally, a
feature-reweighting that automatically selects the best reweighting options
from those just mentioned could be combined with reweighting entire layers
of a DNN (i.e. two-stage RSA, Storrs et al., 2021). The bottleneck for
implementing such a procedure will be computational limits with regards to
CPU and RAM resources and the complexity of cross-validation schemes for
identifying hyperparameters and splitting data in independent folds.

4.6. Considerations when using FR-RSA

In addition to broadly validating feature-reweighting and exploring a novel
use case of it, we also provide an implementation of FR-RSA in Python
(https://github.com/ViCCo-Group/frrsa). In the following, we would like
to provide important considerations when using FR-RSA and mention possible
drawbacks.

The first aspect to consider is that FR-RSA utilizes cross-validation
to prevent overfitting and nested cross-validation to identify the optimal
regularization parameter for ridge regression. Both outer and inner cross-
validation require data to be split into independent training and test sets.
Please note that the cross-validation was performed across images and not
runs as is common in multivariate decoding. For the outer cross-validation,
by default, FR-RSA uses 5-fold cross-validation, repeated ten times with
different random splits. On a subset of the analyzed data (i.e. for 36 different
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combinations of predicting RSM, target RSM, and image set), we assessed
different fold sizes of the outer cross-validation post-hoc and found results
to be largely unaffected (see Supplemental Figure S4). We opted for 5-fold
cross-validation because it provides enough data for stable estimation of the
statistical models in the training set, while at the same time not consuming
too many computational resources for actually fitting the models. This cross-
validation was repeated ten times to make sure that many different object
pairs will at some point be part of training or test folds. For the inner cross-
validation, 5-fold cross-validation is used and repeated five times with different
random splits. We tested different numbers of repetition post-hoc and found
that results were largely unaffected by how the inner cross-validation was set
up (see Supplemental Figure S5). We opted to repeat the inner cross-validation
five times as a good balance between how well the best hyperparameter for
a given outer cross-validation is estimated (more repetitions should lead to
a better estimation) and computational load. Note that increasing either
the fold size or the number of repetitions can have noticeable effects on the
computation resources needed to run the algorithm.

Further, a question researchers who want to deploy FR-RSA might have
is what is the minimum number of conditions FR-RSA requires to be used
successfully and how FR-RSA performance scales with this number. On a
subset of the analyzed data (i.e. for 120 different combinations of predicting
RSM, target RSM, and image set), we repeatedly subsampled from all available
conditions (in our case images) and assessed how FR-RSA performed in
comparison to classical RSA. We found that, on average, FR-RSA almost
always performed better than classical RSA, with the performance of FR-RSA
increasing with the number of drawn images (see Supplemental Figure S6).
The results indicate that FR-RSA can be used successfully with a comparably
small number of conditions but benefits from more conditions.

A drawback of FR-RSA, in comparison to classical RSA, is the higher
computational load, specifically for models with a large number of features,
such as early layers of a DNN. For many different computational problem sizes
without non-negativity constraint on the 5 weights, we measured how much
time and RAM were needed to solve the problem when the § weights were
allowed to take on any value (see Supplemental Figures S7 and S8). Note,
however, that computational resources are much higher when imposing a
non-negativity constraint and that the resources needed might also depend on
the hardware of the machine in question, the operating system that machine
uses, and other software-specific factors.
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4.7. Conclusion

Representational Similarity Analysis (RSA) has emerged as a popular tool
for relating representational spaces of the brain, computational models, and
behavior to each other (Kriegeskorte et al., 2008a). As such, it can reveal
which model best captures how the brain represents relations between stimuli.
Feature-reweighted RSA, the approach we investigated here, not only consis-
tently increases the fit between RSMs, but also affects which models are best
at reproducing a given brain’s representational geometry. Further, when ap-
plied not to model units but to brain measurement channels, voxel-reweighted
RSA more fully leverages the information content present in representational
spaces of the brain and thus nicely complements classical multivariate decod-
ing. Overall, FR-RSA is well suited to become a general-purpose method
for measuring the information content shared between representations in
computational models, brain, and behavior, and may improve our ability as
scientists to adjudicate between competing models.
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