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Abstract19

Predicting the dynamics and functions of microbiomes constructed from the bottom-up is a key challenge20

in exploiting them to our benefit. Current ordinary differential equation-based models fail to capture complex21

behaviors that fall outside of a predetermined ecological theory and do not scale well with increasing commu-22

nity complexity and in considering multiple functions. We develop and apply a long short-term memory (LSTM)23

framework to advance our understanding of community assembly and health-relevant metabolite production using24

a synthetic human gut community. A mainstay of deep learning, the LSTM learns a high dimensional data-driven25

non-linear dynamical system model used to design communities with desired metabolite profiles. We show that26

the LSTM model can outperform the widely used generalized Lotka-Volterra model. We build methods decipher27

microbe-microbe and microbe-metabolite interactions from an otherwise black-box model. These methods high-28

light that Actinobacteria, Firmicutes and Proteobacteria are significant drivers of metabolite production whereas29

Bacteroides shape community dynamics. We use the LSTM model to navigate a large multidimensional func-30

tional landscape to identify communities with unique health-relevant metabolite profiles and temporal behaviors.31

In sum, the accuracy of the LSTM model can be exploited for experimental planning and to guide the design of32

synthetic microbiomes with target dynamic functions.33

INTRODUCTION34

Microbial communities perform chemical and physical transformations to shape the properties of nearly every en-35

vironment on Earth from driving biogeochemical cycles to mediating human health and disease. These functions36

performed by microbial communities are shaped by a multitude of abiotic and biotic interactions and vary as a func-37

tion of space and time. The complex dynamics of microbial communities are influenced by pairwise and higher-order38

interactions, wherein interactions between pairs of species can be modified by other community members [1, 2, 3].39

In addition, the interactions between community members can change as a function of time due to variation in the40

abiotic environment as well as environmental modification by the microbial community [4]. Therefore, flexible mod-41

eling frameworks that can capture the complex and temporally changing interactions that determine the dynamic42

behaviors of microbiomes are needed. These predictive modeling frameworks could be used to guide the design of43

precise interventions to manipulate community-level functions to our benefit.44
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The generalized Lotka-Volterra (gLV) model has been widely used to predict community dynamics and deduce45

pairwise microbial interactions shaping community assembly [5]. For example, the gLV model has been used to predict46

the assembly of tens of species based on absolute abundance measurements of lower species richness (i.e. number of47

species) communities [6, 7, 8]. The parameters of the gLV model can be efficiently inferred based on properly collected48

absolute abundance measurements and can provide insight into significant microbial interactions shaping community49

assembly. However, the model does not represent higher-order interactions or microbial community functions beyond50

species growth. To capture such microbial community functions, hybrid gLV models have been developed to predict a51

community-level functional activity based on species abundance [8, 9]. However, these approaches have been limited52

to the prediction of a single community-level function at a single time point. Therefore, new modeling frameworks are53

needed to capture temporal changes in multiple community-level functions, such as tailoring the metabolite profile54

of the human gut microbiome [10].55

Deep machine learning approaches, such as recurrent neural networks (RNNs), are universal function approxi-56

mators [11, 12] that enable greater flexibility compared to gLV models for modeling dynamical systems. However,57

deep learning models often require significantly more model parameters, which poses additional challenges to model58

fitting and generalizability. A particular RNN model architecture called long short-term memory (LSTM) addresses59

challenges associated with training on sequential data by incorporating gating mechanisms that learn to regulate the60

influence of information from previous instances in the sequence [13]. From their initial successes in speech recogni-61

tion [14] and computer vision [15], LSTMs have recently been applied to modeling biological data such as subcellular62

localization of proteins [16] and prediction of biological age from activity collected from wearable devices [17]. Re-63

lated to microbiomes, deep learning frameworks have been applied to predict gut microbiome metabolites based on64

community composition data [18], final community composition based on microbial interactions [19] and end-point65

community composition based on the presence/absence of species [20]. In addition, RNN architectures have been66

used to model phytoplankton [21] and macroinvertebrate [22] community dynamics. Despite achieving reasonable67

prediction performance, previous efforts at modeling ecological system dynamics using RNNs are typically limited68

to handful of organisms (<10), have provided limited model interpretation and have not been leveraged to predict69

temporal changes in community behaviors. In addition, RNN architectures have not been used for bottom-up com-70

munity design, which could be exploited for applications in bioremediation, bioprocessing, agriculture and human71

health [23, 24, 25].72

Here we apply LSTMs to model time dependent changes in species abundance and production of key health-73

relevant metabolites of a diverse 25-member synthetic human gut community. We use the trained model to elucidate74

significant microbe-microbe and microbe-metabolite interactions. The flexibility and accuracy of the LSTM model75

enabled systematic integration into our experimental planning process, in two stages. First the LSTM was fit76

to an initial pilot experiment with low temporal resolution involving a moderate number of synthetic microbial77

communities. These communities were selected uniformly at random from the tens of millions of possible communities78

that could be experimentally explored. The distribution of LSTM metabolite predictions was then used to identify79

sparse sub-communities in the tails of the distribution, communities that we refer to as “corner cases”. A second80

experiment was then performed that expands the training data for the LSTM in the vicinity of these corner cases81

with higher time resolution. The LSTM-guided two-stage experimental planning procedure substantially reduced82

the number of experiments compared to random sampling of the functional landscape with temporal resolution in83

a single stage experiment. Therefore, the LSTM analysis enabled our main findings on dynamical behaviors of84

communities and identified the key species critical for growth and that shape metabolite profiles. Compared to85

the gLV model, the proposed LSTM framework provides a better fit to the experimental data, captures higher-86

order interactions and provides higher accuracy predictions of species abundance and metabolite production. In87

addition, our approach preserves model interpretability through a suitably developed gradient-based framework and88

locally interpretable model-agnostic explanations (LIME) [26]. Using our time-series data of species abundance and89

metabolite concentrations, we demonstrate that the temporal behaviors of the communities cluster into distinct90

groups based on the presence and absence of sets of species. Our results highlight that LSTM models are powerful91

tools for predicting and designing the dynamic behaviors of microbial communities.92

RESULTS93

LSTM accurately predicts microbial community assembly94

Our first objective was to determine if the LSTM model could capture the temporal changes in species abundance in95

response to dilution, which results in changes in nutrient availability and mortality [27]. We tested the effectiveness96

of the proposed LSTM method on the time-resolved species abundance data of a well-characterized twelve-member97

synthetic human gut community [6]. The experimental data consists of species abundance sampled approximately98
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every 12 hours. A total of 175 microbial communities with sizes varying from 2 to 12 were used to train and evaluate99

the proposed LSTM model. To represent temporal variation in cell densities and nutrient availability, the community100

was diluted by 20-fold every 24 hours into fresh media (Fig. 1a). The dilution of the community introduces further101

complexity towards model training with external perturbations to the competitive environment. The experimental102

data was split into non-overlapping training and hold-out test sets, and an appropriate LSTM network was trained103

to predict species abundances at various time points given the information of initial species abundance. The details104

on the train/test split and the number of model hyperparameters are provided in Table S2. We found that a total105

of five LSTM units can predict species abundance at different time points (12, 24, 36, 48 and 60 hours) based on the106

initial species abundance. The output of each LSTM unit is used as an input to the next unit. However, the input107

to the current LSTM unit is randomized between the output from the previous LSTM unit and the true abundance108

at the current time point in the randomized teacher forcing mode of training in order to eliminate temporal bias in109

the prediction of end-point abundances. We did not model the effect of dilution explicitly, since the experimental110

procedure was consistent across all communities. This also highlights the advantage of using black-box approaches,111

such as the LSTM network, where physical parameters such as dilution do not need to be explicitly modeled.112

Despite the periodic change in dilution and variations in the sampling times, the proposed LSTM method ac-113

curately predicts (Pearson R2-scores of 0.74, 0.73, 0.74, 0.70 and 0.69 at time points 12, 24, 36, 48 and 60 hours,114

respectively) not only the end-point species abundance, but also the abundances at intermediate time points on hold-115

out test sets (Fig. 1b-1f). These results demonstrate that the LSTM model can accurately predict the temporal116

changes in species abundance of multi-species communities in the presence of external perturbations.117

LSTM outperforms the generalized Lotka Volterra ecological model118

The gLV model is a widely used ecological model consisting of a coupled set of ordinary differential equations that119

captures the growth dynamics of members of a community based on their intrinsic growth rate and interactions120

with all pairs of constituent community members [6]. Therefore, gLV models are not suited to capture higher-order121

interactions among species or changes in inter-species interactions resulting from variation in the environment. By122

contrast, the LSTM modeling framework is flexible and can capture complex relationships between species as well as123

time-dependent changes in inter-species interactions. To quantify these differences, we characterized the performance124

of the gLV and LSTMmodels in response to third-order interaction perturbations that varied in magnitude to evaluate125

the strengths and limitations of these modeling frameworks.126

We consider a gLV model of a 25-member microbial community whose dynamics are governed by single organism127

growth and whose pairwise interactions match those inferred in a previous study [25]. Using this model, we simulate128

sub-communities that vary in the number of species. Of all the randomly simulated communities, those containing six129

or fewer species are used to train both the gLV and LSTM models (624 training communities), while the remaining130

communities (3299 test communities with 10 or more species) are used as a hold-out test set. The simulated data131

spans 48 hours separated by an interval of 8 hours, reflecting the experimentally feasible periodic sampling interval132

of 8 hours.133

The performances of the trained gLV and LSTM models on the hold-out test sets are similar and are able134

to accurately predict the trends in species abundance (Pearson R2 of 0.89 and 0.85 for gLV and LSTM models,135

respectively) (Fig. 2b,c left). Since the training and test data is based on the gLV model, the performance of the136

gLV is moderately better than the LSTM model. We next explore the scenario where the simulated model comprises137

low magnitude (mild) third-order interactions (third-order interaction coefficients that do not exceed 25% of the138

maximum of the absolute values of the coefficients for the second-order interactions). In this case, the performance139

of the LSTM model is substantially better than the gLV model with the R2-score of 0.85, as opposed to 0.52 for the140

gLV model (Fig. 2b,c, middle). In addition, the LSTM model performs significantly better than the gLV model for141

higher magnitude (moderate) third-order perturbations (third-order interaction coefficients that do not exceed 50%142

of the maximum of the absolute values of the coefficients for second-order interactions) (Fig. 2b,c, right).143

This in silico analysis reflects the significance of adopting more expressive neural network models over severely144

constrained parametric models, such as, gLV. In addition, a key advantage of the proposed LSTM model over the gLV145

model is the amount of time required for training the two models. Note that the gLV equations are coupled nonlinear146

ordinary differential equations, and thus training gLV models requires substantial computational time (nearly 5-6147

hours) whereas the LSTM models can be trained in less than 2 minutes on the same platform. Therefore, the LSTM148

approach is highly suited for real-time training and planning of experiments. The details on the computational149

hardware are provided in the Methods section.150

We also observed a crescent shaped prediction profile, representing an inherent bias and thus indicating that151

the species abundances are underpredicted by the LSTM model for the small community training set (Fig. 2c).152

Using the in silico experiments, we aim to not just compare the performances of the gLV and LSTM models,153

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.461983doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461983
http://creativecommons.org/licenses/by/4.0/


a

0.0 0.2 0.4 0.6 0.8 1.0
True Abundance

0.0

0.2

0.4

0.6

0.8

1.0

t = 12 hrs

m=0.64, R2=0.74
x=y

True Abundance (X
i
)

Predicted Abundance (X
i
)

X
i
(t

1
)

~

X
i
(t

0
) X

i
(t

1
)

~

X
i
(t

final-1
)

LSTM LSTM LSTM

X
i
(t

2
)

~
X

i
(t

final
)

~

P
re

d
ic

te
d

 A
b

u
n

d
a

n
c
e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t = 24 hrs

True Abundance

P
re

d
ic

te
d

 A
b

u
n

d
a

n
c
e

m=0.67, R2=0.73
x=y

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

t = 36 hrs

m=0.62, R2=0.74
x=y

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
t = 48 hrs

m=0.60, R2=0.70
x=y

True Abundance

P
re

d
ic

te
d

 A
b

u
n

d
a

n
c
e

True Abundance

P
re

d
ic

te
d

 A
b

u
n

d
a

n
c
e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
t = 60 hrs

m=0.62, R2=0.69
x=y

True Abundance
P

re
d

ic
te

d
 A

b
u

n
d

a
n

c
e

b c

d e f

X
i

Dilute in Fresh Media

Quantify Species Abundance
12 24 36 48 60

24 48
t(hr)

Figure 1: LSTM model can predict the temporal changes in species abundance in a 12-member synthetic
human gut community in response to dilution. (a) Proposed LSTM modeling methodology for the dynamic prediction
of species abundance in a microbial community. The initial abundance information is an input to the first LSTM cell, the
output of which is trained to predict abundance at the next time point. Consequently, the predicted abundance becomes
an input to another LSTM cell with shared weights to predict the abundance at the subsequent time point. The process
is repeated until measurements at all time points are available. (b) Scatter plot of measured (true) and predicted species
abundance of a 12-member synthetic human gut community at 12 hr (N = 876, p-value = 2.44e − 257). (c) Scatter plot of
measured (true) and predicted abundance at 24 hr (p-value = 6.51e− 257). (d) Scatter plot of measured (true) and predicted
abundance at 36 hr (p-value = 7.42e − 257). (e) Scatter plot of measured (true) and predicted abundance at 48 hr (p-value
= 1.66e− 227). (f) Scatter plot of measured (true) and predicted abundance at 60 hr (p-value = 3.39e− 227).

but also to identify what type of datasets are required for building predictive models of high richness community154

behaviors depending on the nature of their underlying interactions. Thus, we created a new training set consisting of155

communities containing moderately strong third-order interactions which the gLV model fails to capture. To counter156

the aforementioned LSTM bias, we augmented the training set with 100 communities enriched with a larger number157

of species (randomly sampled 11 and 19-member communities). Using this enriched training set, the LSTM network158

accurately predicts the community dynamics of the hold-out set with an R2 of 0.95 (Fig. 2d). Our results show that159

the prediction bias is eliminated when the training set includes a set of higher species richness communities. In sum,160

the LSTM has difficulty predicting the behavior of high richness communities when the training data only consists161

of low richness communities. However, adding a moderate number of high richness communities to the training set162

considerably improves the prediction performance of the LSTM.163

LSTM enables end-point design of multifunctional synthetic human gut microbiomes164

While predicting the abundance of microbial species is useful, the chemical transformations (i.e. functions) per-165

formed by the community are the key design variables for microbiome engineering goals, including benefiting human166

health [28]. Thus, we were motivated to further explore prediction of microbial community functions using the167
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Figure 2: Comparison of generalized Lotka Volterra (gLV) and Long Short Term Memory (LSTM) model
prediction performance of species abundance in a 25-member microbial community in response to third-order
perturbations of varying magnitude. For both models, training data consists of low species richness communities (≤ 6
species, N = 82, 475, p-value < 0.0001). (a) & (d): Data was generated using a gLV model that captures single species
growth and pairwise interactions. Scatter plots of true versus predicted species abundance at t = 48hr using the gLV and
LSTM models, respectively. (b) & (e) Scatter plot of true versus predicted species abundance of the gLV and LSTM models,
respectively when the simulated data is subjected to low magnitude (mild) third-order interactions. (c) & (f) Scatter plot of
true versus predicted species abundance of gLV and LSTM models, respectively when the simulated data is further subjected
to moderately large third order interactions. (g) Scatter plot of true versus predicted species abundance for the LSTM model.
The training set included a set of higher richness communities (50 each of 11 & 19 member communities).

LSTM framework based on our success in predicting community dynamics combined with the ease of incorporating168

additional output variables. Therefore, we applied the LSTM framework to design health-relevant metabolite profiles169

using synthetic human gut communities.170

A core function of gut microbiota is to transform complex dietary substrates into fermentation end products such171

as the beneficial metabolite butyrate, which is a major determinant of gut homeostasis [29]. In a previous study,172

we designed butyrate-producing synthetic human gut microbiomes from a set of 25 prevalent and diverse human173

gut bacteria using a hybrid gLV and statistical model. This hybrid model consists of a gLV model for predicting174

community assembly and a linear regression model with interactions to predict butyrate production from species175

absolute abundance at a given time point [25]. While the hybrid model approach was successful for predicting176

butyrate concentration, designing community-level metabolite profiles rather than optimizing the concentration of177

a single metabolite adds substantial complexity and limited flexibility using the hybrid modeling approach. Thus,178

we leveraged the accuracy and flexibility of LSTM models to design the metabolite profiles of synthetic human gut179

microbiomes. We focused on the fermentation products butyrate, acetate, succinate, and lactate which play important180

roles in the gut microbiome’s impact on host health and interactions with constituent community members [10].181

We used the species abundance and metabolite concentrations from our previous work [25] to train an LSTM182

model. This model uses a feed-forward network (FFN) at the output of the final LSTM unit that maps the end-183

point species abundance to the concentrations of the four metabolites (Fig. 3a). The entire neural-network model184

comprising LSTM units and a feed-forward network is learned in an end-to-end manner during the training process,185
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(i.e., all the network weights are trained simultaneously). Cross-validation of this model (Model M1, Table S1) on186

a set of hold-out community observations shows good agreement between the model predictions and experimental187

measurements for metabolite concentrations and microbial species abundances (Fig. S1). Thus, we used this model188

to design species-rich (i.e. >10 species) microbial communities with tailored metabolite profiles (Fig. 3a).189

We first used the LSTM model M1 to simulate every possible combination of >10 species (26,434,916 commu-190

nities). The simulated communities separate into two regions: one centered around a dense ellipse of high butyrate191

concentration characterized by communities containing the butyrate-producing species Anaerostipes caccae (AC)192

and a second dense ellipse of low butyrate concentration characterized by communities lacking AC (Fig. 3b). This193

bimodality due to the presence/absence of AC is consistent with our previous finding that AC is the strongest driver194

of butyrate production in this system [25]. In addition, the strong negative correlation between lactate and butyrate195

in the AC+ ellipse (R2 = 0.72, p < 0.001, N=14,198,086) is consistent with the ability of AC to convert lactate into196

butyrate [25]. These results demonstrate that the LSTM model can capture the major microbial drivers of metabolite197

production as well as correlations between different metabolites.198

We used our simulated metabolite production landscape to plan informative experiments for testing the capabili-199

ties of our model. First, we designed a set of “distributed” communities that spanned the range of typical metabolite200

concentrations predicted by our model. To this end, we selected 100 communities that fell closest to the centroids of201

100 clusters determined using k-means clustering of the 4-dimensional metabolite space. Second, we designed a set202

of communities to test our model’s ability to predict extreme shifts in metabolite outputs. To do so, we identified203

four “corners” of the distribution in the lactate and butyrate space (Fig. 3b). We next examined the relationship204

between acetate and succinate within each of these corners and found that the distributions varied depending on the205

given corner (Fig. 3b, inset). The total carbon concentration in the fermentation end products across all predicted206

communities displayed a narrow distribution (mean 316 mM, standard deviation 20 mM, Fig. S2). The production207

of the four metabolites are coupled due to the structure of the metabolic networks and fundamental stoichiometric208

constraints [30]. Therefore, the model learned the inherent “trade-off” relationships between these fermentation209

products based on the patterns in our data. We chose a final set of “corner” communities for experimental validation210

by choosing 5 communities from each combination of maximizing or minimizing each metabolite (80 communities211

total, see Methods for details).212

By experimentally characterizing the 180 designed communities, we found that the LSTM model M1 accurately213

predicted the rank order of metabolite concentrations and microbial species abundances, substantially outperforming214

a composite model (gLV and regression) trained on the same data for the majority (59%) of output variables215

(Fig. S3a). Notably, the LSTM model prediction accuracy for the metabolites was similar for both the “distributed”216

and “corner” communities (Fig. S3b-e). These results indicate that our model is useful for designing communities217

with a broad range of metabolite profiles that includes the extremes of the distributions. To understand how well218

our model could separate groups of communities with extreme behaviors, we treated the “corners” as classes and219

quantified the classification accuracy of our model. The model accurately classified the communities when considering220

only butyrate and lactate concentrations. However, the model had poorer separation when acetate and succinate were221

also considered in defining the classes (Fig. S3f). The misclassification rate was higher for small Euclidean distances222

between classes and decreased with the Euclidean distance (Fig. S3g). This implies that the insufficient variation223

in concentrations due to fundamental stoichiometric constraints limited our ability to define 16 distinct classes that224

maximized/minimized each metabolite. While model M1 accurately predicted metabolite concentrations and the225

majority of species abundances, the predictions of several individual species were still quite poor (R2 = 0 − 0.6,226

Fig. S3a). Thus, we used the dataset to improve the model. To this end, we combined the new observations with227

the original observations and randomly partitioned the data into 90% for training and 10% for cross-validation. The228

resulting model (M2, Table S1) was substantially more predictive of species abundances (R2 > 0.5 for all but five229

species FP, RI, CA, BA, CH (Fig. 3c).230

One of the commonly noted limitations of machine learning models is their lack of interpretability for extracting231

biological information about the system. Thus, we used our predictive LSTM model to decipher key relationships232

among variables to deepen our biological understanding of the system. We used local interpretable model-agnostic233

explanations (LIME) [31] to quantify the impact of each species’ presence on the prediction of each metabolite234

concentration and species abundance in each of the sub-communities used to train model M2. We used the median235

impact of each species presence on each of the metabolite concentrations and species abundances across all training236

instances to generate networks that provided key insights into microbe-metabolite (Fig. 3d) and microbe-microbe237

(Fig. 3e) interactions. In general, these networks represent broad design principles for community metabolic output238

by indicating which species have the most consistent and strong impacts on each metabolite and species abundance239

across a wide range of sub-communities. For instance, the metabolite network highlights AC as having the largest240

positive effect on butyrate production with additional positive contribution from EL and negative contribution from241

DP, consistent with the previous hybrid gLV model of butyrate production by this community [25]. Additionally, the242
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number of microbial species impacting each metabolite in these networks trended with the number of microbial species243

in the system that individually produced or consumed each metabolite (Fig. S4). For example, butyrate displayed244

the fewest edges (3) and was produced by the lowest number of individual species (4). By contrast, acetate had the245

most edges (6) and was produced by the largest number of individual species (19). The inferred microbe-metabolite246

network consisted of diverse species including Proteobacteria (DP), Actinobacteria (BA, BP, EL), Firmicutes (AC,247

ER, DL) and one member of Bacteroidetes (PC) but excluded members of Bacteroides. Therefore, while Bacteroides248

exhibited high abundance in many of the communities, they did not substantially impact the measured metabolite249

profiles but instead modulated species growth and thus community assembly (Fig. 3e).250

The LIME explanations of inter-species interactions exhibited a statistically significant correlation with their251

corresponding inter-species interaction parameters from a previously parameterized gLV model of this system [25]252

(Fig. S5). The sign of the interaction was consistent in 80% of the interactions with substantial magnitude (> 0.05253

in both the LIME explanations and gLV parameters). This consistency with previous observations suggests that the254

LSTM model was able to capture the same broad trends in interspecies relationships as gLV (interpreted through255

the average LIME explanation across all observed communities). The LSTM model captured more nuanced context-256

specific behaviors (interpreted as the LIME explanation for one specific community context) than the mathematically257

restricted gLV model, which substantially improved the LSTM model’s predictive capabilities. These results demon-258

strate that the LSTM framework is useful for developing high accuracy predictive models for the design of precise259

community-level metabolite profiles. Our approach also preserves the ability to decipher different types of inter-260

actions in the LSTM model that are explicitly encoded in less accurate and flexible mechanistic models such as261

gLV.262

Sensitivity of prediction accuracy highlights poorly understood species and pairwise263

interactions264

Identification of species that limit prediction performance could guide selection of informative experiments to deepen265

our understanding of the behaviors of poorly predicted communities. Therefore, we evaluated the sensitivity of the266

LSTM model prediction accuracy to species presence/absence and the amount of training data. High sensitivity of267

model prediction performance to the number of training communities indicates that collection of additional exper-268

imental data would continue to improve the model. Additionally, identifying poorly understood communities will269

guide ML-informed planning of experiments. To evaluate the model’s sensitivity to the size of the training dataset,270

we computed the hold-out prediction performance (R2) as a function of the size of the training set by sub-sampling271

the data (Fig. 4a). We used 20-fold cross-validation to predict metabolite concentrations and species abundance.272

Our results show that the ability to improve prediction accuracy as a function of the size of the training data set273

was limited by the variance in species abundance in the training set (Fig. S6). For instance, certain species with274

low variance (e.g. FP, EL, DP, RI) in abundance in the training set also displayed low sensitivity to the amount of275

training data. The high sensitivity of specific metabolites (e.g. lactate) and species (e.g. AC, BH) to the amount of276

training data indicates that further data collection would likely improve the model’s prediction performance.277

To determine how pairwise combinations of species impacted model prediction performance, we used 20-fold cross-278

validation to evaluate the prediction performance (R2) on subsets of the total dataset, where subsets were selected279

based on the presence of individual species or pairs of species (Fig. 4b). Using this approach, we identified individual280

species and species pairs that had the greatest impact on the prediction performance of metabolite concentrations.281

Sample subsets with poor prediction performance highlight individual species and species pairs whose presence282

reduces the model’s ability to make accurate predictions of final metabolite concentrations. Although the subsets283

were much smaller than the total data set (n = 761), calculation of prediction performance was not limited by small284

sample sizes, where the number of communities in each subset ranged from n = 77 to n = 478.285

The interaction network shown in figure Fig. 3d shows the impact of individual species on each metabolite, but286

does not provide information about whether the effect is due to individual species or pairwise interactions. To deter-287

mine whether pairwise interactions influence metabolite concentrations, we quantified how prediction performance288

changed in response to the presence individual species and pairs of species. Specifically, if prediction performance289

taken over a subset of communities containing a given species pair was markedly different than prediction performance290

for the subsets corresponding to the individual species, this suggests the pairwise interaction impacts on metabolite291

production. Using equation 4 (Methods), we found that the prediction performance of lactate and butyrate was292

the least sensitive to species pairs (average decrease in prediction performance for subsets with species pairs of 0.72%293

and 1.10% compared to corresponding single species subsets). However, the prediction performance of acetate and294

succinate was the most sensitive to the presence of species pairs (increase in prediction performance of 6.68% for295

acetate and a decrease of 2.951% for succinate). This difference in prediction performance suggests that pairwise296

interactions influences the production of acetate and succinate, while the production of lactate and butyrate are297
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primarily driven by the action of individual species. The sensitivity of acetate and succinate to pairwise interactions298

is consistent with the inferred interaction network shown in Fig. 3d, which highlights multiple species-metabolite299

interactions for acetate and succinate and a smaller number of strong species-metabolite interactions for butyrate300

and lactate.301

Pairs of certain Bacteroides and butyrate producers including BY-RI, BU-RI, and BY-AC resulted in reduced302

prediction performance of acetate. This suggests that interactions between specific Bacteroides and butyrate pro-303

ducers were important for acetate transformations, which is consistent with the conversion of acetate into butyrate.304

Based on the LIME analysis in Fig. 3d, AC, DP, and BP have the largest impact on lactate. Thus, the hold-out305

prediction performance for lactate was primarily impacted by specific pairs that include these species. In sum,306

these results demonstrate how the model can be used to identify informative experiments for investigating poorly307

understood species and interactions between species, where collection of more data would likely improve prediction308

performance.309

Dynamic measurements of communities reveal design rules for qualitatively distinct310

metabolite trajectories311

We next leveraged the LSTM model’s dynamic capabilities to understand the temporal changes in metabolite con-312

centrations and community assembly. To this end, we chose a representative subset of 95 out of the 180 communities313

from Fig. 3b (Fig. S7a, 60 communities for training, 34 for validation, plus the full 25 species community) and314

experimentally characterized species abundance and metabolite concentrations every 16 hours during community315

assembly (Fig. 5a). We analyzed the dynamic behavior of these communities using a clustering technique to extract316

high level design rules of species presence/absence that determined qualitatively distinct temporal metabolite tra-317

jectories (i.e. broad trends consistent across a set of communities) and exploited the LSTM framework to identify318

context-specific impacts of species on metabolite production (i.e. a more fine-tuned case-by-case analysis).319

The temporal trajectories of species abundance and metabolite concentrations showed a wide range qualitatively320

distinct trends across the 95 communities (Fig. 5b-g). For example, some metabolites concentrations monotonically321

increased (e.g. butyrate in Fig. 5b,c,e,g), monotonically decreased (e.g. lactate in Fig. 5b,c) or exhibited biphasic322

dynamics (e.g. acetate in Fig. 5c). To determine if there were communities with similar temporal changes in323

metabolite concentrations, we clustered communities using a minimal spanning tree [32] on the Euclidean distance324

between the metabolite trajectories of each pair of communities (Fig. 5a). The resulting six clusters exhibited325

high quantitative within-cluster similarity and qualitatively distinct metabolite trajectories (Fig. 5b-g). Clusters326

4 and 5 which contained the largest number of communities had a high fraction of “distributed” communities327

(Fig. 3b). Clusters with a smaller number of communities contained a higher percentage of “corner” communities328

(Fig. S7b,c). Therefore, the use of LSTM results from an initial experiment to identify “corner” communities329

elucidated communities with qualitatively distinct temporal behaviors. These communities were unlikely to be330

discovered via random sampling of sub-communities due to the high density of points towards the center of the331

distribution and low density in the tails of the distribution (Fig. 3b). Additionally, some “corner” communities that332

were similar in metabolite profiles when considering the end-point measurement separated into different clusters when333

considering the dynamic data (e.g. Clusters 2 and 3, which have similar metabolite profiles at 48 hr but qualitatively334

distinct dynamics (Fig. 5b). This demonstrates that using a community design approach to explore the extremes335

of system behaviors with a limited time resolution enabled the identification of additional distinct behaviors when336

the extreme communities were characterized with higher time resolution.337

To identify general patterns in species presence/absence of these communities that could explain the temporal338

behaviors of each cluster, we used a decision tree analysis to identify an interpretable classification scheme (Fig. S7d).339

Using this approach, we observed that the large clusters were separated by relatively simple classification rules (i.e.340

AC+ for cluster 4 and AC- for cluster 5), whereas the smaller clusters had more complex classification rules involving341

larger combinations of species (3-7 species), all involving AC, DP, and DL (Fig. 5a). The influential role of DP342

was corroborated by a previous study showing that DP substantially inhibits butyrate production [25]. In addition,343

the inferred microbe-metabolite networks based on the LSTM model M2 demonstrated that the presence of DL344

was linked to higher acetate and lower succinate production (Fig. 3d), consistent with its key role in shaping345

metabolite dynamics in this system. The variation in the number of communities across clusters is consistent with346

previous observations that species-rich microbial communities tend towards similar behavior(s) (e.g. Clusters 4 and347

5 contained many communities). By contrast, more complex design criteria are required to identify communities348

that deviate from this typical behavior (e.g. Clusters 1-3 and 6 contained few communities) [25].349

While our clustering analysis identified general design rules for metabolite trajectories, there remained unex-350

plained within-cluster variation. Thus, we used the LSTM framework to identify those effects beyond these general351

species presence/absence rules that determine the precise metabolite trajectory of a given community. Simultaneous352
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predictions of species abundance and the concentration of all four metabolites at all time points necessitates specific353

modifications to the LSTM architecture shown in Fig. 1a. In particular, we consider a 29-dimensional input vector354

whose first 25 components correspond to the species abundance, while the remaining 4 components correspond to the355

concentration of metabolites (Fig. 5h). The 29-dimensional feature vector is suitably normalized so that the different356

components have zero mean and unity variance. The feature scaling is important to prevent over reliance on features357

with a broad range of values. The output of each LSTM unit is fed into the input block of the subsequent LSTM unit358

in order to advance the model forward in time. The reason behind concatenating instantaneous species abundances359

with metabolite concentrations can be understood as follows. Prediction of metabolite concentrations at various360

time points requires a time-series model (either using ODEs or LSTM in this case). Further, the future trajectory361

of metabolite concentrations is a function of both the species abundance, as well as the metabolite concentrations362

at the current time instant. Therefore, we concatenate both the metabolite concentrations and species abundances363

to create a 29-dimensional feature vector. The trained LSTM framework on the 60 training communities (model364

M3) displayed good prediction performance on the metabolite concentrations of the 34 validation communities plus365

the full 25-species community (Fig. 5i). The prediction accuracy of species abundance was lower than metabolite366

concentrations, presumably due to the limited number of training set observations of each species (Fig. S8).367

We used a a gradient-based sensitivity analysis of the LSTM model M3 to provide biological insights into the368

contributions of each species on the temporal changes in metabolite concentrations (Fig. 5h,j, Methods). This369

method involves computing partial derivatives of output variables of interest with respect to input variables, which are370

readily available through a single backpropagation pass [33, 34]. As an example case, we applied this analysis approach371

to the full 25-species community, which was grouped into Cluster 4, with the design rule “AC+” (Fig. 5a). Consistent372

with this design rule, we observed strong sensitivity gradients between the abundance of AC and the concentrations of373

butyrate, acetate, and lactate, consistent with our biological understanding of the system [25]. Beyond the “AC+”374

design rule, there was a strong sensitivity gradient between DL and acetate and succinate, consistent with the375

inferred networks based on the LSTM model M2 that used single time point observations (Fig. 3d). Further, the376

contributions of certain species on metabolite production varied as a function of time. For instance, in the initial377

time point, species abundances were similar and thus the contribution of individual species to metabolite production378

is more uniform. However, interactions between species during community assembly enhanced the contribution of379

specific metabolite driver species such as AC. In addition, the contributions of individual species such as PC and BA380

to succinate production peaked at 32 hours and then decreased by 48 hours, highlighting that the effects of these381

species on succinate production were maximized at intermediate time points. In sum, the proposed gradient-based382

method identified the quantitative contributions of each species to metabolite production as a function of time for a383

specific case, identifying context-specific behaviors beyond the previously identified broader design rules. These two384

complementary approaches are useful for identifying design rules for metabolite dynamics. The clustering method385

can identify broad design rules for species presence/absence and the LSTM analysis approach can uncover fine-tuned386

quantitative contributions of species to the temporal changes in community-level functions.387
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Figure 3: LSTM-guided design and interpretability of community-level metabolite production profiles (a)
Schematic of model-training and design of communities with shifted metabolite outputs. (b) Heat map of butyrate and
lactate concentrations of all possible communities predicted by the LSTM model M1. Grey points indicate communities
chosen via k-means clustering to span metabolite design space. Colored boxes indicate “corner” regions defined by 95th

percentile values on each axis with points of the corresponding color indicating designed communities within that “corner”.
Insets show heat maps of acetate and succinate concentrations for all communities within the corresponding boxes on the main
figure. Boxes on the inset indicate “corners” defined by 95th percentile values on each axis with colored points corresponding
to the same points indicated on the main plot. (c) Cross-validation accuracy of LSTM model trained and validated on a
random 90/10 split of all community observations (model M2), evaluated as Pearson correlation R2 for the correlation of
predicted versus measured for each variable (all p-values< 0.05, N and p-value for each test reported in Table S3). Dashed
line indicates R2 = 0.5, which is used as a cutoff for including a variable in the subsequent network diagrams. (d) and (e)
Network representation of median LIME explanations of the LSTM model M2 from (c) for prediction of each metabolite
concentration (d) or species abundance (e) by the presence of each species. Edge widths are proportional to the median
LIME explanation across all communities from (b) used to train the model in units of concentration (for (d)) or normalized
to the species’ self-impact (for (e)). Only explanations for those variables where the cross-validated predictions had R2 > 0.5
are shown. Networks were simplified by using lower thresholds for edge width (5 mM for (d), 0.2 for (e)). Red and blue edges
indicate positive and negative contributions, respectively.
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Figure 4: Hold-out prediction performance on sub-communities provides information about poorly understood
species and interactions between species. (a) Sensitivity of metabolite prediction performance (R2) to the size of the
training dataset. Training datasets were randomly subsampled 30 times using 50% to 100% of the total dataset in increments
of 10%. Each subsampled training set was subject to 20-fold cross-validation to assess prediction performance. Lineplot of
the mean prediction performance over the 30 trials for each percentage of the data. Error bars denote 1 s.d. from the mean.
(b) Schematic scatter plot representing how communities containing species A and B define a poorly predicted subsample of
the full sample set (c) Heatmap of prediction performance (R2) of acetate for each subset of communities containing a given
species (diagonal elements) or pair of species (off-diagonal elements). (d) Heatmap of prediction performance for acetate,
butyrate, lactate, and succinate. A sample subset containing a given species or pair of species included all communities in
which the species were initially present. Predictions for each community were determined using 20-fold cross validation so
that for each model the predicted samples were excluded from the training samples. N and p-values are reported in Table
S3.
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Figure 5: Community metabolite trajectories cluster into qualitatively distinct groups which can be classified
based on presence and absence of key microbial species. (a) Schematic of experiment and network representing a
minimal spanning tree across the 95 communities where weights (indicated by edge length) are equal to the Euclidean distance
between the metabolite trajectories for each community. Node colors indicate clusters determined as described in the Methods.
Red node with black outline annotated with “25” represents the community of all 25 species. Annotations indicate the most
specific microbial species presence/absence rules that describe most data points in the cluster of the corresponding color as
determined by a decision tree classifier (Methods). Communities that deviate from the rules for their cluster are indicated
with a border matching the color of the closest cluster whose rules they do follow. Network visualization generated using
the draw kamada kawai function in networkx (v2.1) for Python 3. (b-g) Temporal changes in metabolite concentrations for
communities within each cluster (indicated by sub-plot border color), with individual communities denoted by transparent
lines. Solid lines and shaded regions represent the mean plus or minus 1 s.d. of all communities in the cluster. (h) Schematic
of LSTM model training and computation of gradients to evaluate impact of species abundance on metabolite concentrations
in a specific community context. (i) Heatmap of model M3 prediction accuracy for four metabolites in the 34 validation
communities at each time point (Pearson correlation R2, N=34 for all tests). (j) Heatmap of the gradient analysis of model
M3 as described in (h) for the full 25-species community. N and p-values are reported in Table S3.
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DISCUSSION388

We have demonstrated that an LSTM modeling framework trained on species abundance and metabolite production389

in synthetic human gut communities can accurately predict multiple functions of microbial communities. This390

model is powerful for designing communities with target metabolite profiles. Due to its flexibility, the LSTM model391

outperforms the widely used gLV model in the presence of higher-order interactions. We leveraged the computational392

efficiency of LSTM model to predict the metabolite profiles of tens of millions of communities. We used these model393

predictions to identify sparsely represented “corner case” communities that maximized/minimized community-level394

production of four health-relevant metabolites. In the absence of a predictive model, these infrequent communities395

would have been difficult to discover among the vast metabolic landscape of possible communities.396

Beyond the model’s predictive capabilities, we showed that biological information including significant microbe-397

metabolite and microbe-microbe interactions, can be extracted from LSTM models. These biological insights could398

enable the discovery of key species and interactions driving community functions of interest. Further, this could399

inform the design of microbial communities from the bottom-up or interventions to manipulate community-level400

behaviors. For example, the inferred microbe-metabolite network highlighted AC is a major ecological driver of several401

metabolites including butyrate, acetate and lactate in our system. In addition, this microbe-metabolite network did402

not include species of the highly abundant genus Bacteroides but instead featured members of Firmicutes (AC,403

ER, DL), Actinobacteria (BA, BP, EL), Proteobacteria DP and Bacteroidetes PC. Notably, Bacteroides displayed404

numerous interactions in the microbe-microbe interaction network, suggesting that they played a key role in the405

growth of constituent community members opposed to production of specific metabolites. Therefore, our model406

suggests that Bacteroides influence broad ecosystem functions such as community growth dynamics whereas species407

highlighted in the microbe-metabolite network contribute to specialized functions such as the production of specific408

metabolites [35]. Therefore, the microbe-metabolite interaction network could be used to identify key species that409

could be targeted for manipulating the dynamics of specific metabolites.410

We performed time-resolved measurements of metabolite production and species abundance using a set of designed411

communities and demonstrated that communities tend towards a typical dynamic behavior (i.e. Clusters 4 and 5).412

Therefore, random sampling of sub-communities from the 25-member system would likely exhibit behaviors similar413

to Clusters 4 and 5. We used the LSTM model to identify “corner cases” communities that produce metabolite414

concentrations near the tails of the metabolite distributions at a single time point. Thus, the model allowed us to415

identify unique sub-clusters with disparate dynamic behaviors. We demonstrated that the endpoint model predictions416

were confirmatory (Fig. 3c) and also led to new discoveries when additional measurements were made in the time417

dimension. Specifically, we found that some “corner cases” communities identified based on prediction of a single418

time-point displayed distinct dynamic trajectories. For instance, Clusters 2 and 3 based on the decision tree classifier419

displayed similar end-point metabolite concentrations (Fig. 5c,d). However, lactate decreased immediately over time420

in Cluster 2 communities but remained high until approximately 30 hr and then decreased in Cluster 3 communities.421

The design rule for Cluster 3 included the presence of lactate producers BU and DL (Fig. S4), suggesting that these422

individual species’ lactate producing capabilities enabled the community to maintain a high lactate concentration for423

an extended period of time in the context of the Cluster 3 communities. While we focused on the production of four424

health-relevant metabolites produced by gut microbiota, a wide range of health-relevant compounds are produced by425

gut bacteria. Therefore, communities that cluster together based on dynamic trends the four measured metabolites426

could separate into new clusters based on the temporal patterns of other compounds produced or degraded by the427

communities.428

Time-resolved measurements were required to reveal the different dynamic behaviors of communities in Clusters429

2 and 3 to improve understanding and design of community functions. The ability to resolve differences in the430

dynamic trajectories of communities requires time sampling when the system behavior is changing as a function of431

time as opposed to time sampling once the system has reached a steady-state (i.e. saturated as a function of time).432

The time to reach steady-state varied across different communities and metabolites of interest. For instance, lactate433

reached steady-state at an earlier time point ( 12 hr) in Cluster 4 communities whereas communities in Cluster 3434

approached steady-state at a later time point ( 48 hr). Therefore, model-guided experimental planning could be used435

to identify the optimal sampling times to resolve differences in community dynamic behaviors. The dynamic behaviors436

of the synthetic communities characterized in vitro may likely exhibit significant differences to their behaviors in437

new environments such as the mammalian gut. However, communities in sub-clusters whose behaviors deviated438

substantially from the typical community behaviors (e.g. Clusters 2 and 3 versus Clusters 4 and 5) may be more439

likely than random to display unique dynamic behaviors in vivo. Future work will investigate whether the in vitro440

dynamic behavior cluster patterns can be used as prior information to guide the design of informative communities441

in new environments for building predictive models.442

While our current approach treated microbiome species composition as the sole set of design variables in a constant443
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environmental background, microbiomes in reality are impacted by differences in the physicochemical composition444

of their environment [36]. Given sufficient observations of community behavior under varied environmental contexts445

(e.g. presence/absence of certain nutrients), our LSTM approach could be further leveraged to design complementary446

species and environmental compositions for desired microbiome functional dynamics. Further, we can leverage the447

wealth of biological information stored in the sequenced genomes of the constituent organisms. Integrating methods448

such as genome scale models [37] with our deep learning framework could leverage genomic information to enable449

predictions when the genomes of the organisms are varied (i.e., alternative strains of the same species with disparate450

metabolic capabilities). In this case, introducing variables representing the presence/absence of specific metabolic451

reactions would potentially enable the model to predict the impact of a species with a varied set of metabolic reactions452

on a given set of functions without new experimental observations. Integrating this information into the model could453

thus enable a mapping between genome information and community-level functions.454

While previous approaches have used machine learning methods to predict microbiome functions based on mi-455

crobiome species composition [18, 19], our approach is a major step forward in predicting the future trajectory of456

microbiome function based on an initial state of species composition. The dynamic nature of our approach enables457

applications to design optimal initial community compositions or interventions to perturb an existing community458

to achieve desired behavior in the future. The flexibility of our approach to various time resolutions is especially459

useful in scenarios where a microbiome may display potentially undesired transients on the path from an initial state460

to a desired final state. For instance, in treatment of gut microbiome dysbiosis, it is important to ensure that any461

transient states of the microbiome are not harmful to the host (e.g. pathogen blooms or overproduction of toxic462

metabolites) as the system approaches a desired healthy state [38]. However, because predictions with increased463

time resolution require more data for model training, the ability of our approach to work simply with initial and464

final observations is useful for scenarios where transient states may be less important, such as in bioprocesses where465

the concentration of products at the time of harvest is the key design objective [39, 40]. Finally, the computational466

efficiency and accuracy of the LSTM model could be exploited in the future for autonomous design and optimization467

of multifunctional communities via computer-controlled design-test-learn cycles [41].468

METHODS469

Strain Maintenance and Culturing470

All anaerobic culturing was carried out in an anaerobic chamber with an atmosphere of 2.5 ± 0.5% H2, 15 ± 1%471

CO2 and balance N2. All prepared media and materials were placed in the chamber at least overnight before use472

to equilibrate with the chamber atmosphere. The strains used in this work were obtained from the sources listed in473

Table S1 and permanent stocks of each were stored in 25% glycerol at −80◦C as previously described [25]. Batches474

of single-use glycerol stocks were produced for each strain by first growing a culture from the permanent stock in475

anaerobic basal broth (ABB) media (Oxoid) to stationary phase, mixing the culture in an equal volume of 50%476

glycerol, and aliquoting 400µL into Matrix Tubes (ThermoFisher) for storage at −80◦C. Quality control for each477

batch of single-use glycerol stocks included (1) plating a sample of the aliquoted mixture onto LB media (Sigma-478

Aldrich) for incubation at 37◦C in ambient air to detect aerobic contaminants and (2) Illumina sequencing of 16S479

rDNA isolated from pellets of the aliquoted mixture to verify the identity of the organism. For each experiment,480

precultures of each species were prepared by thawing a single-use glycerol stock and combining the inoculation481

volume and media listed in Table S1 to a total volume of 5 mL (multiple tubes inoculated if more preculture volume482

needed) for stationary incubation at 37◦C for the preculture incubation time listed in Table S1. All experiments were483

performed in a chemically defined medium (DM38), as previously described [25], the composition of which is provided484

in Table S2. This medium supports the individual growth of all organisms except Faecalibacterium prausnitzii [25].485

Community Culturing Experiments and Sample Collection486

Synthetic communities were assembled using liquid handling-based automation as described previously [25]. Briefly,487

each species’ preculture was diluted to an OD600 of 0.0066 in DM38. Community combinations were arrayed in 96488

deep well (96DW) plates by pipetting equal volumes of each species’ diluted preculture into the appropriate wells489

using a Tecan Evo Liquid Handling Robot inside an anaerobic chamber. For experiments with multiple time points,490

duplicate 96DW plates were prepared for each time point. Each 96DW plate was covered with a semi-permeable491

membrane (Diversified Biotech) and incubated at 37◦C. After the specified time had passed, 96DW plates were492

removed from the incubator and samples were mixed by pipette. Cell density was measured by pipetting 200µL of493

each sample into one 96 well microplate (96W MP) and diluting 20 L of each sample into 180µL of PBS in another494

96W MP and measuring the OD600 of both plates (Tecan F200 Plate Reader). We selected the value that was495
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within the linear range of the instrument for each sample. 200µL of each sample was transferred to a new 96DW496

plate and pelleted by centrifugation at 2400xg for 10 minutes. A supernatant volume of 180µL was removed from497

each sample and transferred to a 96-well microplate for storage at −20◦C and subsequent metabolite quantification498

by high performance liquid chromatography (HPLC). Cell pellets were stored at −80◦C for subsequent genomic499

DNA extraction and 16S rDNA library preparation for Illumina sequencing. 20µL of each supernatant was used to500

quantify pH using a phenol Red assay [42]. Phenol red solution was diluted to 0.05% weight per volume in 0.9%501

w/v NaCl. Bacterial supernatant (20µL) was added to 180µL of phenol red solution in a 96W MP, and absorbance502

was measured at 560 nm (Tecan Spark Plate Reader). A standard curve was produced by fitting the Henderson-503

Hasselbach equation to fresh media with a pH ranging between 3 to 11 measured using a standard electro-chemical504

pH probe (Mettler-Toledo). We used (1) to map the pH values to the absorbance measurements.505

pH = pKa + b · log10

(

A−Amin

Amax −A

)

(1)

The parameters b and pKa were determined using a linear regression between pH and the log term for the standards506

in the linear range of absorbance (pH between 5.2 and 11) with Amax representing the absorbance of the pH 11507

standard, Amin denoting the absorbance of the pH 3 standard and A representing the absorbance of each condition.508

HPLC Quantification of Organic Acids509

Butyrate, succinate, lactate, and acetate concentrations in culture supernatants were quantified as described previ-510

ously [25]. Supernatant samples were thawed in a room temperature water bath before addition of 2µL of H2SO4 to511

precipitate any components that might be incompatible with the running buffer. The samples were then centrifuged512

at 2400xg for 10 minutes and then 150µL of each sample was filtered through a 0.2µm filter using a vacuum manifold513

before transferring 70µL of each sample to an HPLC vial. HPLC analysis was performed using a Shimadzu HPLC514

system equipped with a SPD-20AV UV detector (210 nm). Compounds were separated on a 250× 4.6 mm Rezex c©
515

ROA-Organic acid LC column (Phenomenex Torrance, CA) run with a flow rate of 0.2 ml min−1 and at a column516

temperature of −50◦C. The samples were held at 4◦C prior to injection. Separation was isocratic with a mobile517

phase of HPLC grade water acidified with 0.015 N H2SO4 (415µLL−1). At least two standard sets were run along518

with each sample set. Standards were 100, 20, and 4 mM concentrations of butyrate, succinate, lactate, and acetate,519

respectively. The injection volume for both sample and standard was 25µl. The resultant data was analyzed using520

the Shimadzu LabSolutions software package.521

Genomic DNA Extraction and Sequencing Library Preparation522

Genomic DNA extraction and sequencing library preparation were performed as described previously [25]. Genomic523

DNA was extracted from cell pellets using a modified version of the Qiagen DNeasy Blood and Tissue Kit protocol.524

First, pellets in 96DW plates were removed from −80◦C and thawed in a room temperature water bath. Each pellet525

was resuspended in 180µL of enzymatic lysis buffer (20 mM Tris-HCl (Invitrogen), 2 mM Sodium EDTA (Sigma-526

Aldrich), 1.2% Triton X-100 (Sigma-Aldrich), 20 mg/mL Lysozyme from chicken egg white (Sigma-Aldrich)). Plates527

were then covered with a foil seal and incubated at 37◦C for 30 minutes with orbital shaking at 600 RPM. Then,528

25µL of 20mgmL−1 Proteinase K (VWR) and 200 L of Buffer AL (QIAGEN) were added to each sample before529

mixing with a pipette. Plates were then covered by a foil seal and incubated at 56◦C for 30 minutes with orbital530

shaking at 600 RPM. Next, 200µL of 100% ethanol (Koptec) was added to each sample before mixing and samples531

were transferred to a Nucleic Acid Binding (NAB) plate (Pall) on a vacuum manifold with a 96DW collection plate.532

Each well in the NAB plate was then washed once with 500µL Buffer AW1 (QIAGEN) and once with 500µL of Buffer533

AW2 (QIAGEN). A vacuum was applied to the Pall NAB plate for an additional 10 minutes to remove any excess534

ethanol. Samples were then eluted into a clean 96DW plate from each well using 110µL of Buffer AE (QIAGEN)535

preheated to 56◦C. Genomic DNA samples were stored at −20◦C until further processing.536

Genomic DNA concentrations were measured using a SYBR Green fluorescence assay and then normalized to537

a concentration of 1ngL−1 by diluting in molecular grade water using a Tecan Evo Liquid Handling Robot. First,538

genomic DNA samples were removed from −20◦C and thawed in a room temperature water bath. Then, 1µL of each539

sample was combined with 95µL of SYBR Green (Invitrogen) diluted by a factor of 100 in TE Buffer (Integrated540

DNA Technologies) in a black 384-well microplate. This process was repeated with two replicates of each DNA541

standard with concentrations of 0, 0.5, 1, 2, 4, and 6ngL−1. Each sample was then measured for fluorescence with an542

excitation/emission of 485/535 nm using a Tecan Spark plate reader. Concentrations of each sample were calculated543

using the standard curve and a custom Python script was used to compute the dilution factors and write a worklist544

for the Tecan Evo Liquid Handling Robot to normalize each sample to 1ngL−1 in molecular grade water. Samples545
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with DNA concentration less than 1ngL−1 were not diluted. Diluted genomic DNA samples were stored at −20◦C546

until further processing.547

Amplicon libraries were generated from diluted genomic DNA samples by PCR amplification of the V3-V4 of the548

16S rRNA gene using custom dual-indexed primers for multiplexed next generation amplicon sequencing on Illumina549

platforms [25, 43]. Primers were arrayed in skirted 96 well PCR plates (VWR) using an acoustic liquid handling550

robot (Labcyte Echo 550) such that each well received a different combination of one forward and one reverse primer551

(0.1µL of each). After liquid evaporated, dry primers were stored at −20◦C. Primers were resuspended in 15µL PCR552

master mix (0.2µL Phusion High Fidelity DNA Polymerase (Thermo Scientific), 0.4µL 10 mM dNTP Solution (New553

England Biolabs), 4µL 5x Phusion HF Buffer (Thermo Scientific), 4µL 5M Betaine (Sigma-Aldrich), 6.4µL Water)554

and 5µL of normalized genomic DNA to give a final concentration of 0.05 M of each primer. Primer plates were555

sealed with Microplate B seals (Bio-Rad) and PCR was performed using a Bio-Rad C1000 Thermal Cycler with the556

following program: initial denaturation at 98◦C (30 s); 25 cycles of denaturation at 98◦C (10 s), annealing at 60◦C557

(30 s), extension at 72◦C (60 s); and final extension at 72◦C (10 minutes). 2µL of PCR products from each well were558

pooled and purified using the DNA Clean & Concentrator (Zymo) and eluted in water. The resulting libraries were559

sequenced on an Illumina MiSeq using a MiSeq Reagent Kit v3 (600-cycle) to generate 2x300 paired end reads.560

Bioinformatic Analysis for Quantification of Species Abundance561

Sequencing data were used to quantify species relative abundance as described previously [25, 43]. Sequencing data562

were demultiplexed using Basespace Sequencing Hub’s FastQ Generation program. Custom python scripts were used563

for further data processing as described previously [25, 43]. Paired end reads were merged using PEAR (v0.9.10) [44]564

after which reads without forward and reverse annealing regions were filtered out. A reference database of the565

V3-V5 16S rRNA gene sequences was created using consensus sequences from next-generation sequencing data or566

Sanger sequencing data of monospecies cultures. Sequences were mapped to the reference database using the mothur567

(v1.40.5) [45] command classify.seqs (Wang method with a bootstrap cutoff value of 60). Relative abundance was568

calculated as the read count mapped to each species divided by the total number of reads for each condition. Absolute569

abundance of each species was calculated by multiplying the relative abundance by the OD600 measurement for each570

sample. Samples were excluded from further analysis if .1% of the reads were assigned to a species not expected to571

be in the community (indicating contamination).572

Long Short Term Memory for dynamic prediction on Microbial Communities573

Long short term memory (LSTM) networks belong to the class of recurrent neural networks (RNNs) and model time-574

series data. They were first introduced by Hochreiter et al. [46] to overcome the vanishing or exploding gradients575

problem [47] that occur due to long-term temporal dependencies. Since their inception, LSTMs have been further576

refined [48, 49] and find numerous applications in several domains, including but not limited to neuroscience [50],577

weather forecasting [51], predictive finance [52], Google Voice for speech recognition [53, 52] and Google Allo for578

message suggestion [54].579

Similar to any recurrent neural network, an LSTM network, too, comprises of a network of multiple LSTM units,
each representing the input-output map at a time instant. Fig. 1 shows the schematic of the proposed LSTM network
architecture for abundance prediction. For a microbial community comprising of N species, each LSTM unit models
the dynamics at time t using the following set of equations:

it = σ (Wiixt + bii +Whiht−1 + bhi)

ft = σ (Wifxt + bif +Whfht−1 + bhf )

gt = tanh (Wigxt + big +Whght−1 + bhg)

ot = σ (Wioxt + bio +Whoht−1 + bho)

ct = ft � ct−1 + it � gt

ht = ot � tanh (ct) , (2)

where ht, ct, xt are the hidden state, cell state and input abundance at time t, respectively, and it, ft, gt, ot are580

input, forget, cell and output gates, respectively. σ is the sigmoid function, and � denotes the Hadamard product.581

The parameters {Wmn, bmn} for m,n ∈ {f, g, h, i, o} are trainable and shared across all LSTM units. The output582

gate ot is further used to generate the abundance for next time instant as:583

yt := xt+1 = Wyoot + byo. (3)
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As shown in Fig. 1, yt is fed to the LSTM unit at the next timestep (t + 1), which in turn predicts the species584

abundance at time t + 2. The process is repeated across multiple LSTM units in order to obtain xtfinal . The entire585

architecture is trained to minimize the mean-squared loss between the predicted abundance xtfinal and true abundance586

x̂tfinal
.587

Using Teacher forcing for intermittent time-series forecasting588

The end-goal for the proposed LSTM-network based abundance predictor is to accurately capture the steady-state589

(final) abundance from initial abundance. In typical LSTM networks, the output of the recurrent unit at the previous590

timestep yt−1 is used as an input to the recurrent unit at the current timestep xt. This kind of recurrent model, while591

has the ability to predict final abundance, is incapable to handle he one-step-ahead prediction. The problem is even592

more critical when one tries to anticipate more than a single timestep into the future. Teacher forcing [55] entails593

a training procedure for recurrent networks, such as LSTMs, where ‘true’ abundances at intermittent timesteps are594

used to guide (like a teacher) the model to accurately anticipate one-step-ahead abundance.595

Teacher forcing is an efficient method of training RNN models that use the ground truth from a prior time step596

as input. This is achieved by occasionally replacing the predicted abundance yt−1 from the previous timestep with597

the true abundance x̂t at the current timestep as input abundance to the LSTM unit at the current timestep during598

the training process. Teacher forcing not only stabilizes the training process, it forces the output abundances at all599

times to closely match the corresponding true abundances. This is precisely why we do not just use the ground truth600

abundances at intermittent timesteps in order to robustify the prediction of steady-state abundance. Once trained,601

the inference in such models is achieved by ignoring the ground truth abundances and using the predicted abundance602

from previous instant to roll forward the model in time.603

Metabolite Profiling604

Microbial communities are a rich source of a variety of metabolites that are very commonly used as nutritional supple-605

ments, natural compounds to cure infectious diseases and in sustainable agriculture development. The concentration606

and chemical diversities of metabolites produced in a microbial community is a direct consequence of the diversity of607

interactions between organisms in the community. In essence, the dynamical evolution of relative species abundance608

and intra-community interactions govern the nature and amount of metabolites produced in the community. The609

functional map between species abundance and concentration of metabolites is highly complex and nonlinear, and is610

often approximated using simple regressors involving unary and pairwise interaction terms. In this paper, we model611

the species-metabolite map through appropriate modification of the LSTM network.612

The aforementioned LSTM network for predicting the species abundance is suitably modified to augment four613

additional components that correspond to the concentration of metabolites at each time instant. In particular, the614

species abundance data (of size Nspecies) is concatenated with the metabolite concentration data (of size Nmetabs) to615

form a (Nspecies+Nmetabs)-dimensional feature vector, which is suitably normalized so that the different components616

have zero mean and unity variance. The feature scaling is important to prevent over reliance on features with a617

broad range of values. Concatenation of species abundance data and the metabolite concentration data ensures that618

the future trajectory of metabolite concentrations evolves as a function of both the species abundance, as well as619

the metabolite concentrations at previous time instants. As before, the (Nspecies + Nmetabs)-dimensional output of620

each LSTM unit is fed into the input block of the subsequent LSTM unit in order to advance the model forward in621

time. The model predictions at each time point is then transformed back to the original scale in order to obtain the622

Pearson R2 scores on the unnormalized data. Compared with existing approaches that employ ordinary differential623

equations (ODEs) and multiple linear regression models for predicting metabolites, the proposed architecture enables624

more accurate and rapid estimation of all four metabolites. All the LSTM models were implemented in Python using625

PyTorch on an Intel i7-7700HQ CPU @2.80GHz processor with 16GB RAM and NVIDIA GeForce GTX 1060 (6GB626

GDDR5) GPU. The exact details of the neural network architecture consisting of number of layers, learning rate,627

choices of optimizer and nonlinear activations are described in Table S2.628

Using LSTM Model to Design Multifunctional Communities629

We used the LSTM model trained on previous data (Fig. 3a) to design two sets of communities: a “distributed”630

community set and a “corner” community set. For the “distributed” community set, we first took the predicted631

metabolite concentrations for all communities with .10 species and used k-means clustering with k = 100 (Python 3,632

scikit-learn v0.23.1, sklearn.cluster.Kmeans function) to identify 100 cluster centroids that were distributed across633
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all of the predictions. We then found the closest community to each centroid in terms of Euclidean distance in the634

4-dimensional metabolite concentration space. These 100 communities constituted the “distributed” community set.635

For the “corner” community set, we first defined 4 “corners” in the lactate and butyrate concentration space by636

binning all communities with .10 species as shown in Fig. 3b:637

1. 5% lowest lactate concentration communities, then 5% lowest butyrate concentration of those638

2. 5% lowest lactate concentration communities, then 5% highest butyrate concentration of those639

3. 5% lowest butyrate concentration communities, then 5% lowest lactate concentration of those640

4. 5% lowest butyrate concentration communities, then 5% highest lactate concentration of those641

Within each of those four “corners”, we identified four “sub-corners” in the acetate and succinate concentration space642

by binning communities as shown in Fig. 3b:643

1. 5% lowest acetate concentration communities, then 5% lowest succinate concentration of those644

2. 5% lowest acetate concentration communities, then 5% highest succinate concentration of those645

3. 5% lowest succinate concentration communities, then 5% lowest acetate concentration of those646

4. 5% lowest succinate concentration communities, then 5% highest acetate concentration of those647

This process resulted in 16 “sub-corners” total. For each “sub-corner”, we then chose a random community and then648

identified 4 more communities that were maximally different from that community in terms of which species were649

present (Hamming distance). This overall process resulted in 80 communities constituting the “corner” community650

set.651

Composite Model: gLV Model for Predicting Species Abundance652

To benchmark the performance of the LSTM model for predicting metabolite production, we used a previously653

described Composite Model consisting of a generalized Lotka-Volterra (gLV) model for predicting species abundance654

dynamics and a regression model with interaction terms to predict metabolite concentration at a given time from655

the species abundances at that time [25]. Because our LSTM model was trained on the same dataset as Composite656

Model M3 from [25], we used those gLV model parameters.657

Composite Model: Regression Models for Predicting Metabolite Concentrations658

We used a Bayesian regression model for identifying the gLV parameters with interaction terms based on [56]. Our659

implementation is similar to the model described in [25] for predicting metabolite concentration from community660

composition at a particular time. However, because the regression model from [25] was focused specifically on the661

prediction of butyrate, we adapted the approach to prediction of multiple metabolites. First, we modified the model662

form to include first order and interaction terms for all 25 species, rather than just the butyrate producers. Then,663

we trained 4 regression models, one for each metabolite (butyrate, lactate, acetate, succinate), using the measured664

species abundance and measured metabolite concentrations from the same dataset used to train the LSTM model.665

We trained these models as described previously [25] by using Python scikit-learn [57] to perform L1 regularization to666

minimize the number of nonzero parameters. Regularization coefficients were chosen by using 10-fold cross validation667

and choosing the coefficient value with the lowest median mean-squared error across the training splits.668

Composite Model: Simulations for Prediction669

Custom MATLAB scripts were used to predict community assembly using the gLV model as described previously [25].670

For each community, the growth dynamics were simulated using each parameter set from the posterior distribution671

of the gLV model parameters. The resulting community compositions for each simulation at 48 hours were used as672

an input to the Python regression models to predict the concentration of each metabolite in each community for673

each gLV parameter set. Because of the large number of communities and the large number of parameter sets (i.e.,674

hundreds of simulations per community), we used parallel computing (MATLAB parfor) to complete the simulations675

in a reasonable timeframe (∼1 hr for the communities in Figure S3a).676
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Understanding Relationships Between Variables677

Using LIME678

Black-box methods, such as the LSTM-networks employed in this manuscript, do not offer much insights into679

the underlying mechanics that make them so powerful. Consequently, any potential pitfalls that may come along680

with building such models remain unexplored. For networks that are of significant biological importance, basing681

assumptions on falsehoods can be catastrophic. We overcome this limitation by resorting to Local Interpretable682

Model-Agnostic Explanations (LIME) [26].683

LIME has three key components: (a) Local, i.e., any explanation reflects the behavior of a classifier around the684

sampled instance, (b) Interpretability, i.e., the explanations offered by LIME are interpretable by human, (c) Model-685

Agnostic, i.e., LIME does not require to peak into any model. It generates explanations by analyzing the model’s686

behavior for an input perturbed around its neighborhood. In this manuscript, we employ LIME to explain both687

qualitatively and quantitatively, as to how the abundances of various species affect the concentrations of all four688

metabolites, and if the presence or absence of a given species has any significance on the resulting metabolite profile.689

We carried out the LIME analysis to generate interpretable prediction explanations for model M2 for each690

community instance used to train the model. We used lime v0.2.0.1 for Python 3 (https://github.com/marcotcr/lime)691

to train an explainer on the predictions of the training instances for each output variable (25 species, 4 metabolites)692

and then generated explanation tables for every input variable (species presence/absence) for every training instance.693

We then determined the median value for which the presence of a given species explained the prediction for each694

output variable to generate the networks in Fig. 3d,e.695

Using Prediction Sensitivity696

For each metabolite (Acetate, Butyrate, Lactate, Succinate), fractions of .5, .6, .7, .8, .9, and 1 of the total dataset697

were randomly sampled. Each sub-sampled dataset was subject to 20-fold cross validation to determine the sensitivity698

of held-out prediction performance to the amount of data available for training. This process was repeated 30 times,699

and the average prediction over the 30 trials was used to compute the final held-out prediction performance (R2).700

The sensitivity of the model to the presence of individual species and pairs of species was determined by evaluating701

prediction performance (R2) for subsets of the data containing each species and each possible pair of species. To702

evaluate how prediction performance of each metabolite was affected by the presence of species pairs, we computed703

the average percent difference between prediction performance taken over subsets containing a single species and all704

pairs of species using the following equation,705

Pairwise sensitivity =
100

N2
species

Nspecies
∑

i=1

Nspecies
∑

j 6=i

R2
ij −R2

i

R2
i

, (4)

where R2
i is the prediction performance taken over the subset of samples containing species i, and R2

ij is the prediction706

performance taken over the subset of samples containing species i and j.707

Using Sensitivity Gradients708

Interpretability of neural-network (NN) models continues to be an interesting challenge in machine learning. While709

LIME is a great tool to explain what machine learning classifiers are doing, it is model-agnostic and uses simple710

linear models to approximate local behavior. Model-agnostic characteristic enforces retraining linear models on the711

training data and analyzing local perturbations, before LIME can be used to invoke interpretability. Moreover, the712

type of modifications that need to be performed on the data to get proper explanations are typically use case specific.713

Consequently, model-aware interpretability methods that take into account the weights of an already trained NN are714

more suitable.715

For tasks, such as classification of images and videos, there is a natural way to interpret NN models using class716

activation maps (CAMs) [58]. CAMs assigns appropriate weighting to different convolutional filters and highlights717

part of the images that activate a given output class the most. However, CAMs do not extend to other NN718

architectures, such as LSTMs. Fortunately for us, the answer to interpretability lies in the model training itself.719

Let Y be the output variable of interest whose perturbation with respect to an input x needs to be estimated. The720

effect of x on Y can be approximated through the partial derivative
∂Y

∂x
. For instance, Y may denote butyrate721

concentration in an experiment, while x can be used to represent abundance of one of the species. The sign of the722

partial derivative depicts positive (or negative) correlation between the two variables, while the magnitude represents723

the extent of it. In order to evaluate the partial derivatives, we freeze the weights of the already trained LSTM model724
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and declare the inputs to be variables. A single backpropagation pass then evaluates the partial derivatives of an725

output variable of interest with respect to all the input variables.726

Clustering Metabolite Trajectories727

To generate the clusters from the dynamic community observations (Fig. 5), we used a graph-theoretic divisive cluster-728

ing algorithm [59] based on the minimal spanning tree [60]. We first generated an undirected graph wherein each node729

was a community observed in our experiment and each edge weight was the Euclidean distance between two commu-730

nities based on all metabolite measurements (4 metabolites × 3 time points=12-dimensional space for Euclidean dis-731

tance calculation). We then determined the minimal spanning tree for this graph using the minimum spanning tree732

function in networkx (v2.1) for Python 3. We then used this minimal spanning tree to generate clusters by iteratively733

removing the edge with the largest weight until 6 clusters were formed. In each iteration, if any edge removal resulted734

in a cluster with <5 communities (i.e. minimum cluster size), that edge was returned and the next largest edge was735

removed. The number of clusters and minimum cluster size were chosen based on an elbow method [61], wherein736

scatter plots were made of the mean intracluster distance versus the number of clusters for various minimum cluster737

sizes and a combination of minimum cluster size and number of clusters that fell on the elbow of the plot was chosen.738

Decision Tree Classification of Metabolite Trajectories739

The decision tree shown in Fig. S5d and used to produce the annotations in Fig. 5a was generated using the Deci-740

sionTreeClassifier with the default parameter settings in scikit-learn (v0.23.1) for Python 3 (visualization generated741

using plot tree function from the same).742

Choice of Sample Sizes743

Sample sizes were chosen based on limitations of experimental throughput as increased number of biological replicates744

would have reduced the number of possible different communities that could be observed. We chose a minimum of 2745

biological replicates (for complex communities in our validation set) and some sample types have up to 7 biological746

replicates (such as the full community, which was repeated in most experiments as a control for consistency between747

experimental days).748

DATA & CODE AVAILABILITY Pytorch implementation of the proposed LSTMmodel and the accompanying749

measurements of community composition and metabolite concentrations will be available from GitHub. The750

raw Illumina sequencing data will be available from Zenodo. These datasets and codes will be available at the751

time of submission of the revised manuscript.752
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Figure S1. Cross-validation of LSTM model M1 predictions of species abundance and metabolite 
concentration. Each plot indicates the comparison of predicted versus measured species abundance (N 
= 1736, p = 2.64e-273) (a), butyrate concentration (N = 124, p = 6.19e-13)  (b), acetate concentration (N = 
124, p = 2.58e-30) (c), lactate concentration (N = 124, 2.67e-28) (d), or succinate concentration (N = 124, 
p = 3.34e-9) (e) for cross-validation of model M1 predictions of the validation communities from Clark et al., 
Nature Communications, 2021 (model trained on 110 pairwise communities, 156 communities with 3-5 
species, and 124 communities with 11-17 species; cross-validation shown is prediction of a different set of 
124 communities with 11-17 species, including 82 communities with all 5 butyrate producers A. caccae, E. 
rectale, F. prausnitzii, C. comes and R. intestinalis and 42 communities with the 4 butyrate producers other 
than A. caccae). Each data point indicates the average of biological replicates of a single community. Black 
lines indicate linear regressions with slope (m) and R2 indicated in the legends. Dashed blue line indicates 
x=y. 
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Figure S2. Predicted total carbon in fermentation products. Histogram of the model M1 predicted total 
carbon concentration in butyrate, acetate, lactate, and succinate for all possible communities with >10 
species (26,434,916 communities). 
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Figure S3. Prediction and classification statistics for model M1 predictions of designed community 
sets. (a) Scatter plot of R2 for prediction accuracy (correlation of predicted versus measured) of each 
variable (25 species abundances, 4 metabolite concentrations) by LSTM model M1 versus the Composite 
Model based on the method from Clark et al., Nature Communications, 2021. N and p-values are reported 
in Table S3. (b-e) Prediction accuracy of model M1 for the indicated metabolites. Dashed line indicates the 
linear regression for all data points. Legends indicates the R2 , Spearman Ã2, and RMSE for communities 
from the <corner= set (red) or <distributed= set (blue) for each variable. Solid black lines indicate x=y. (f) 
Confusion matrix for classification of the <corner= communities into their specified classes (shown in Figure 
3b). Values indicate the fraction of communities from each predicted class whose metabolite concentrations 
were closest (Euclidean distance) to the centroid of each class (Measured Class). Colored boxes indicate 
<sub-classes= that fall within the 4 major classes determined in the lactate and butyrate concentration space 
as shown in Figure 3b. (g) Scatter plot of misclassification rate between each pair of classes (values from 
f, fraction of communities misclassified from one class to the other) versus the Euclidean distance between 
the centroids of that pair of classes. 
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Figure S4. Comparison of LIME explanations of LSTM to gLV Parameters. (a) Scatter plot of LIME 
explanations of each species impact on each other species in model M2 versus the corresponding 
interspecies interaction parameter (aij) from the gLV model from Clark et al., Nature Communications, 2021. 
Dashed line indicates the linear regression with the regression parameters shown in the legend. (b) 
Heatmap representation of qualitative agreement/disagreement between specific inter-species interactions 
for the same comparison as in (a). Legend describes what each color represents. 
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Figure S5. Sensitivity of species abundance prediction performance (R2) to the size of the training 
dataset for each species. Training datasets were randomly subsampled 30 times using 50% to 100% of 
the total dataset in increments of 10%. Each subsampled training set was subject to 20-fold cross-validation 
to assess prediction performance. Sub-plots show the mean prediction performance (error bars indicate 
one standard deviation) over the 30 trials for each percentage of the dataset. Subplots were sorted 
according to the variance in species abundance taken over the total dataset. In general, prediction 
performance of low variance species was less likely to improve in response to more training data. N and p-
values are reported in Table S3.  
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Figure S6. Characteristics of the dynamic community behaviors. (a) Minimal spanning tree of a graph 
representation of the 180 communities characterized in Figure 3 where each node represents a community 
the lengths of the edges connecting the nodes represent the Euclidean distance between a pair of 
communities in the 4-dimensional metabolite space. The even spread of the training and validation sets 
across this tree demonstrate that the subset of communities characterized in the dynamic experiment was 
representative of all 180 communities characterized in Figure 3. Blue and red nodes indicate the subset of 
communities chosen for dynamic characterization and used as training and validation examples for LSTM 
model M3 in Figure 5. These subsets were chosen by first performing k-means clustering with k=94 for the 
180 communities and identifying the 94 communities closest to each cluster centroid and then repeating 
this process to subsample 34 of the 94 communities (as the training/validation split). (b) and (c) Scatter 
plots showing where the clusters from Figure 5a fall in the 48-hour metabolite measurement space for 
comparison with Figure 3b. Each datapoint represents a community with the color corresponding to the 
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clusters in Figure 5a. Datapoints with black borders come from the <corner= set. Legend indicates the 
percentage of communities from each cluster that come from the <corner= or <distributed= sets. (d) Decision 
tree classifier explaining which species9 presence determines the clusters of dynamic community behavior 
from Figure 5. Annotations indicate the percentage of communities from each cluster that can be explained 
by the indicated paths, which are also annotated on Figure 5a. 
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Figure S7. Prediction accuracy of model M3 for species abundance. Heatmap represents R2 for the 
prediction accuracy of model M3 of the abundance of each species at each time point in the 34 validation 
communities. 
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