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Abstract

Predicting the dynamics and functions of microbiomes constructed from the bottom-up is a key challenge
in exploiting them to our benefit. Current ordinary differential equation-based models fail to capture complex
behaviors that fall outside of a predetermined ecological theory and do not scale well with increasing commu-
nity complexity and in considering multiple functions. We develop and apply a long short-term memory (LSTM)
framework to advance our understanding of community assembly and health-relevant metabolite production using
a synthetic human gut community. A mainstay of deep learning, the LSTM learns a high dimensional data-driven
non-linear dynamical system model used to design communities with desired metabolite profiles. We show that
the LSTM model can outperform the widely used generalized Lotka-Volterra model. We build methods decipher
microbe-microbe and microbe-metabolite interactions from an otherwise black-box model. These methods high-
light that Actinobacteria, Firmicutes and Proteobacteria are significant drivers of metabolite production whereas
Bacteroides shape community dynamics. We use the LSTM model to navigate a large multidimensional func-
tional landscape to identify communities with unique health-relevant metabolite profiles and temporal behaviors.
In sum, the accuracy of the LSTM model can be exploited for experimental planning and to guide the design of
synthetic microbiomes with target dynamic functions.

INTRODUCTION

Microbial communities perform chemical and physical transformations to shape the properties of nearly every en-
vironment on Earth from driving biogeochemical cycles to mediating human health and disease. These functions
performed by microbial communities are shaped by a multitude of abiotic and biotic interactions and vary as a func-
tion of space and time. The complex dynamics of microbial communities are influenced by pairwise and higher-order
interactions, wherein interactions between pairs of species can be modified by other community members [1, 2, 3].
In addition, the interactions between community members can change as a function of time due to variation in the
abiotic environment as well as environmental modification by the microbial community [4]. Therefore, flexible mod-
eling frameworks that can capture the complex and temporally changing interactions that determine the dynamic
behaviors of microbiomes are needed. These predictive modeling frameworks could be used to guide the design of
precise interventions to manipulate community-level functions to our benefit.
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The generalized Lotka-Volterra (gLV) model has been widely used to predict community dynamics and deduce
pairwise microbial interactions shaping community assembly [5]. For example, the gLV model has been used to predict
the assembly of tens of species based on absolute abundance measurements of lower species richness (i.e. number of
species) communities [6, 7, 8]. The parameters of the gLV model can be efficiently inferred based on properly collected
absolute abundance measurements and can provide insight into significant microbial interactions shaping community
assembly. However, the model does not represent higher-order interactions or microbial community functions beyond
species growth. To capture such microbial community functions, hybrid gLV models have been developed to predict a
community-level functional activity based on species abundance [8, 9]. However, these approaches have been limited
to the prediction of a single community-level function at a single time point. Therefore, new modeling frameworks are
needed to capture temporal changes in multiple community-level functions, such as tailoring the metabolite profile
of the human gut microbiome [10].

Deep machine learning approaches, such as recurrent neural networks (RNNs), are universal function approxi-
mators [11, 12] that enable greater flexibility compared to gLV models for modeling dynamical systems. However,
deep learning models often require significantly more model parameters, which poses additional challenges to model
fitting and generalizability. A particular RNN model architecture called long short-term memory (LSTM) addresses
challenges associated with training on sequential data by incorporating gating mechanisms that learn to regulate the
influence of information from previous instances in the sequence [13]. From their initial successes in speech recogni-
tion [14] and computer vision [15], LSTMs have recently been applied to modeling biological data such as subcellular
localization of proteins [16] and prediction of biological age from activity collected from wearable devices [17]. Re-
lated to microbiomes, deep learning frameworks have been applied to predict gut microbiome metabolites based on
community composition data [18], final community composition based on microbial interactions [19] and end-point
community composition based on the presence/absence of species [20]. In addition, RNN architectures have been
used to model phytoplankton [21] and macroinvertebrate [22] community dynamics. Despite achieving reasonable
prediction performance, previous efforts at modeling ecological system dynamics using RNNs are typically limited
to handful of organisms (<10), have provided limited model interpretation and have not been leveraged to predict
temporal changes in community behaviors. In addition, RNN architectures have not been used for bottom-up com-
munity design, which could be exploited for applications in bioremediation, bioprocessing, agriculture and human
health [23, 24, 25].

Here we apply LSTMs to model time dependent changes in species abundance and production of key health-
relevant metabolites of a diverse 25-member synthetic human gut community. We use the trained model to elucidate
significant microbe-microbe and microbe-metabolite interactions. The flexibility and accuracy of the LSTM model
enabled systematic integration into our experimental planning process, in two stages. First the LSTM was fit
to an initial pilot experiment with low temporal resolution involving a moderate number of synthetic microbial
communities. These communities were selected uniformly at random from the tens of millions of possible communities
that could be experimentally explored. The distribution of LSTM metabolite predictions was then used to identify
sparse sub-communities in the tails of the distribution, communities that we refer to as “corner cases”. A second
experiment was then performed that expands the training data for the LSTM in the vicinity of these corner cases
with higher time resolution. The LSTM-guided two-stage experimental planning procedure substantially reduced
the number of experiments compared to random sampling of the functional landscape with temporal resolution in
a single stage experiment. Therefore, the LSTM analysis enabled our main findings on dynamical behaviors of
communities and identified the key species critical for growth and that shape metabolite profiles. Compared to
the gLV model, the proposed LSTM framework provides a better fit to the experimental data, captures higher-
order interactions and provides higher accuracy predictions of species abundance and metabolite production. In
addition, our approach preserves model interpretability through a suitably developed gradient-based framework and
locally interpretable model-agnostic explanations (LIME) [26]. Using our time-series data of species abundance and
metabolite concentrations, we demonstrate that the temporal behaviors of the communities cluster into distinct
groups based on the presence and absence of sets of species. Our results highlight that LSTM models are powerful
tools for predicting and designing the dynamic behaviors of microbial communities.

RESULTS

LSTM accurately predicts microbial community assembly

Our first objective was to determine if the LSTM model could capture the temporal changes in species abundance in
response to dilution, which results in changes in nutrient availability and mortality [27]. We tested the effectiveness
of the proposed LSTM method on the time-resolved species abundance data of a well-characterized twelve-member
synthetic human gut community [6]. The experimental data consists of species abundance sampled approximately
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every 12 hours. A total of 175 microbial communities with sizes varying from 2 to 12 were used to train and evaluate
the proposed LSTM model. To represent temporal variation in cell densities and nutrient availability, the community
was diluted by 20-fold every 24 hours into fresh media (Fig. 1a). The dilution of the community introduces further
complexity towards model training with external perturbations to the competitive environment. The experimental
data was split into non-overlapping training and hold-out test sets, and an appropriate LSTM network was trained
to predict species abundances at various time points given the information of initial species abundance. The details
on the train/test split and the number of model hyperparameters are provided in Table S2. We found that a total
of five LSTM units can predict species abundance at different time points (12, 24, 36, 48 and 60 hours) based on the
initial species abundance. The output of each LSTM unit is used as an input to the next unit. However, the input
to the current LSTM unit is randomized between the output from the previous LSTM unit and the true abundance
at the current time point in the randomized teacher forcing mode of training in order to eliminate temporal bias in
the prediction of end-point abundances. We did not model the effect of dilution explicitly, since the experimental
procedure was consistent across all communities. This also highlights the advantage of using black-box approaches,
such as the LSTM network, where physical parameters such as dilution do not need to be explicitly modeled.

Despite the periodic change in dilution and variations in the sampling times, the proposed LSTM method ac-
curately predicts (Pearson R2-scores of 0.74, 0.73, 0.74, 0.70 and 0.69 at time points 12, 24, 36, 48 and 60 hours,
respectively) not only the end-point species abundance, but also the abundances at intermediate time points on hold-
out test sets (Fig. 1b-1f). These results demonstrate that the LSTM model can accurately predict the temporal
changes in species abundance of multi-species communities in the presence of external perturbations.

LSTM outperforms the generalized Lotka Volterra ecological model

The gLV model is a widely used ecological model consisting of a coupled set of ordinary differential equations that
captures the growth dynamics of members of a community based on their intrinsic growth rate and interactions
with all pairs of constituent community members [6]. Therefore, gLV models are not suited to capture higher-order
interactions among species or changes in inter-species interactions resulting from variation in the environment. By
contrast, the LSTM modeling framework is flexible and can capture complex relationships between species as well as
time-dependent changes in inter-species interactions. To quantify these differences, we characterized the performance
of the gLV and LSTM models in response to third-order interaction perturbations that varied in magnitude to evaluate
the strengths and limitations of these modeling frameworks.

We consider a gLV model of a 25-member microbial community whose dynamics are governed by single organism
growth and whose pairwise interactions match those inferred in a previous study [25]. Using this model, we simulate
sub-communities that vary in the number of species. Of all the randomly simulated communities, those containing six
or fewer species are used to train both the gLV and LSTM models (624 training communities), while the remaining
communities (3299 test communities with 10 or more species) are used as a hold-out test set. The simulated data
spans 48 hours separated by an interval of 8 hours, reflecting the experimentally feasible periodic sampling interval
of 8 hours.

The performances of the trained gLV and LSTM models on the hold-out test sets are similar and are able
to accurately predict the trends in species abundance (Pearson R? of 0.89 and 0.85 for gLV and LSTM models,
respectively) (Fig. 2b,c left). Since the training and test data is based on the gLV model, the performance of the
gLV is moderately better than the LSTM model. We next explore the scenario where the simulated model comprises
low magnitude (mild) third-order interactions (third-order interaction coefficients that do not exceed 25% of the
maximum of the absolute values of the coefficients for the second-order interactions). In this case, the performance
of the LSTM model is substantially better than the gLV model with the R?-score of 0.85, as opposed to 0.52 for the
gLV model (Fig. 2b,c, middle). In addition, the LSTM model performs significantly better than the gLV model for
higher magnitude (moderate) third-order perturbations (third-order interaction coefficients that do not exceed 50%
of the maximum of the absolute values of the coefficients for second-order interactions) (Fig. 2b,c, right).

This in silico analysis reflects the significance of adopting more expressive neural network models over severely
constrained parametric models, such as, gl.V. In addition, a key advantage of the proposed LSTM model over the gl.V
model is the amount of time required for training the two models. Note that the gLV equations are coupled nonlinear
ordinary differential equations, and thus training gLV models requires substantial computational time (nearly 5-6
hours) whereas the LSTM models can be trained in less than 2 minutes on the same platform. Therefore, the LSTM
approach is highly suited for real-time training and planning of experiments. The details on the computational
hardware are provided in the Methods section.

We also observed a crescent shaped prediction profile, representing an inherent bias and thus indicating that
the species abundances are underpredicted by the LSTM model for the small community training set (Fig. 2c).
Using the in silico experiments, we aim to not just compare the performances of the gLV and LSTM models,
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Figure 1: LSTM model can predict the temporal changes in species abundance in a 12-member synthetic
human gut community in response to dilution. (a) Proposed LSTM modeling methodology for the dynamic prediction
of species abundance in a microbial community. The initial abundance information is an input to the first LSTM cell, the
output of which is trained to predict abundance at the next time point. Consequently, the predicted abundance becomes
an input to another LSTM cell with shared weights to predict the abundance at the subsequent time point. The process
is repeated until measurements at all time points are available. (b) Scatter plot of measured (true) and predicted species
abundance of a 12-member synthetic human gut community at 12 hr (N = 876, p-value = 2.44e — 257). (c) Scatter plot of
measured (true) and predicted abundance at 24 hr (p-value = 6.51e — 257). (d) Scatter plot of measured (true) and predicted
abundance at 36 hr (p-value = 7.42e — 257). (e) Scatter plot of measured (true) and predicted abundance at 48 hr (p-value
= 1.66e — 227). (f) Scatter plot of measured (true) and predicted abundance at 60 hr (p-value = 3.39e — 227).

but also to identify what type of datasets are required for building predictive models of high richness community
behaviors depending on the nature of their underlying interactions. Thus, we created a new training set consisting of
communities containing moderately strong third-order interactions which the gLV model fails to capture. To counter
the aforementioned LSTM bias, we augmented the training set with 100 communities enriched with a larger number
of species (randomly sampled 11 and 19-member communities). Using this enriched training set, the LSTM network
accurately predicts the community dynamics of the hold-out set with an R? of 0.95 (Fig. 2d). Our results show that
the prediction bias is eliminated when the training set includes a set of higher species richness communities. In sum,
the LSTM has difficulty predicting the behavior of high richness communities when the training data only consists
of low richness communities. However, adding a moderate number of high richness communities to the training set
considerably improves the prediction performance of the LSTM.

LSTM enables end-point design of multifunctional synthetic human gut microbiomes

While predicting the abundance of microbial species is useful, the chemical transformations (i.e. functions) per-
formed by the community are the key design variables for microbiome engineering goals, including benefiting human
health [28]. Thus, we were motivated to further explore prediction of microbial community functions using the
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Figure 2: Comparison of generalized Lotka Volterra (gLV) and Long Short Term Memory (LSTM) model
prediction performance of species abundance in a 25-member microbial community in response to third-order
perturbations of varying magnitude. For both models, training data consists of low species richness communities (< 6
species, N = 82,475, p-value < 0.0001). (a) & (d): Data was generated using a gLV model that captures single species
growth and pairwise interactions. Scatter plots of true versus predicted species abundance at ¢ = 48hr using the gLV and
LSTM models, respectively. (b) & (e) Scatter plot of true versus predicted species abundance of the gLV and LSTM models,
respectively when the simulated data is subjected to low magnitude (mild) third-order interactions. (c) & (f) Scatter plot of
true versus predicted species abundance of gLV and LSTM models, respectively when the simulated data is further subjected
to moderately large third order interactions. (g) Scatter plot of true versus predicted species abundance for the LSTM model.
The training set included a set of higher richness communities (50 each of 11 & 19 member communities).

LSTM framework based on our success in predicting community dynamics combined with the ease of incorporating
additional output variables. Therefore, we applied the LSTM framework to design health-relevant metabolite profiles
using synthetic human gut communities.

A core function of gut microbiota is to transform complex dietary substrates into fermentation end products such
as the beneficial metabolite butyrate, which is a major determinant of gut homeostasis [29]. In a previous study,
we designed butyrate-producing synthetic human gut microbiomes from a set of 25 prevalent and diverse human
gut bacteria using a hybrid gLV and statistical model. This hybrid model consists of a gLV model for predicting
community assembly and a linear regression model with interactions to predict butyrate production from species
absolute abundance at a given time point [25]. While the hybrid model approach was successful for predicting
butyrate concentration, designing community-level metabolite profiles rather than optimizing the concentration of
a single metabolite adds substantial complexity and limited flexibility using the hybrid modeling approach. Thus,
we leveraged the accuracy and flexibility of LSTM models to design the metabolite profiles of synthetic human gut
microbiomes. We focused on the fermentation products butyrate, acetate, succinate, and lactate which play important
roles in the gut microbiome’s impact on host health and interactions with constituent community members [10].

We used the species abundance and metabolite concentrations from our previous work [25] to train an LSTM
model. This model uses a feed-forward network (FFN) at the output of the final LSTM unit that maps the end-
point species abundance to the concentrations of the four metabolites (Fig. 3a). The entire neural-network model
comprising LSTM units and a feed-forward network is learned in an end-to-end manner during the training process,
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(i.e., all the network weights are trained simultaneously). Cross-validation of this model (Model M1, Table S1) on
a set of hold-out community observations shows good agreement between the model predictions and experimental
measurements for metabolite concentrations and microbial species abundances (Fig. S1). Thus, we used this model
to design species-rich (i.e. >10 species) microbial communities with tailored metabolite profiles (Fig. 3a).

We first used the LSTM model M1 to simulate every possible combination of >10 species (26,434,916 commu-
nities). The simulated communities separate into two regions: one centered around a dense ellipse of high butyrate
concentration characterized by communities containing the butyrate-producing species Anaerostipes caccae (AC)
and a second dense ellipse of low butyrate concentration characterized by communities lacking AC (Fig. 3b). This
bimodality due to the presence/absence of AC is consistent with our previous finding that AC is the strongest driver
of butyrate production in this system [25]. In addition, the strong negative correlation between lactate and butyrate
in the AC+ ellipse (R? = 0.72, p < 0.001, N=14,198,086) is consistent with the ability of AC to convert lactate into
butyrate [25]. These results demonstrate that the LSTM model can capture the major microbial drivers of metabolite
production as well as correlations between different metabolites.

We used our simulated metabolite production landscape to plan informative experiments for testing the capabili-
ties of our model. First, we designed a set of “distributed” communities that spanned the range of typical metabolite
concentrations predicted by our model. To this end, we selected 100 communities that fell closest to the centroids of
100 clusters determined using k-means clustering of the 4-dimensional metabolite space. Second, we designed a set
of communities to test our model’s ability to predict extreme shifts in metabolite outputs. To do so, we identified
four “corners” of the distribution in the lactate and butyrate space (Fig. 3b). We next examined the relationship
between acetate and succinate within each of these corners and found that the distributions varied depending on the
given corner (Fig. 3b, inset). The total carbon concentration in the fermentation end products across all predicted
communities displayed a narrow distribution (mean 316 mM, standard deviation 20 mM, Fig. S2). The production
of the four metabolites are coupled due to the structure of the metabolic networks and fundamental stoichiometric
constraints [30]. Therefore, the model learned the inherent “trade-off” relationships between these fermentation
products based on the patterns in our data. We chose a final set of “corner” communities for experimental validation
by choosing 5 communities from each combination of maximizing or minimizing each metabolite (80 communities
total, see Methods for details).

By experimentally characterizing the 180 designed communities, we found that the LSTM model M1 accurately
predicted the rank order of metabolite concentrations and microbial species abundances, substantially outperforming
a composite model (gLV and regression) trained on the same data for the majority (59%) of output variables
(Fig. S3a). Notably, the LSTM model prediction accuracy for the metabolites was similar for both the “distributed”
and “corner” communities (Fig. S3b-e). These results indicate that our model is useful for designing communities
with a broad range of metabolite profiles that includes the extremes of the distributions. To understand how well
our model could separate groups of communities with extreme behaviors, we treated the “corners” as classes and
quantified the classification accuracy of our model. The model accurately classified the communities when considering
only butyrate and lactate concentrations. However, the model had poorer separation when acetate and succinate were
also considered in defining the classes (Fig. S3f). The misclassification rate was higher for small Euclidean distances
between classes and decreased with the Euclidean distance (Fig. S3g). This implies that the insufficient variation
in concentrations due to fundamental stoichiometric constraints limited our ability to define 16 distinct classes that
maximized /minimized each metabolite. While model M1 accurately predicted metabolite concentrations and the
majority of species abundances, the predictions of several individual species were still quite poor (R? = 0 — 0.6,
Fig. S3a). Thus, we used the dataset to improve the model. To this end, we combined the new observations with
the original observations and randomly partitioned the data into 90% for training and 10% for cross-validation. The
resulting model (M2, Table S1) was substantially more predictive of species abundances (R? > 0.5 for all but five
species FP, RI, CA, BA, CH (Fig. 3c).

One of the commonly noted limitations of machine learning models is their lack of interpretability for extracting
biological information about the system. Thus, we used our predictive LSTM model to decipher key relationships
among variables to deepen our biological understanding of the system. We used local interpretable model-agnostic
explanations (LIME) [31] to quantify the impact of each species’ presence on the prediction of each metabolite
concentration and species abundance in each of the sub-communities used to train model M2. We used the median
impact of each species presence on each of the metabolite concentrations and species abundances across all training
instances to generate networks that provided key insights into microbe-metabolite (Fig. 3d) and microbe-microbe
(Fig. 3e) interactions. In general, these networks represent broad design principles for community metabolic output
by indicating which species have the most consistent and strong impacts on each metabolite and species abundance
across a wide range of sub-communities. For instance, the metabolite network highlights AC as having the largest
positive effect on butyrate production with additional positive contribution from EL and negative contribution from
DP, consistent with the previous hybrid gLV model of butyrate production by this community [25]. Additionally, the
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number of microbial species impacting each metabolite in these networks trended with the number of microbial species
in the system that individually produced or consumed each metabolite (Fig. S4). For example, butyrate displayed
the fewest edges (3) and was produced by the lowest number of individual species (4). By contrast, acetate had the
most edges (6) and was produced by the largest number of individual species (19). The inferred microbe-metabolite
network consisted of diverse species including Proteobacteria (DP), Actinobacteria (BA, BP, EL), Firmicutes (AC,
ER, DL) and one member of Bacteroidetes (PC) but excluded members of Bacteroides. Therefore, while Bacteroides
exhibited high abundance in many of the communities, they did not substantially impact the measured metabolite
profiles but instead modulated species growth and thus community assembly (Fig. 3e).

The LIME explanations of inter-species interactions exhibited a statistically significant correlation with their
corresponding inter-species interaction parameters from a previously parameterized gLV model of this system [25]
(Fig. S5). The sign of the interaction was consistent in 80% of the interactions with substantial magnitude (> 0.05
in both the LIME explanations and gLV parameters). This consistency with previous observations suggests that the
LSTM model was able to capture the same broad trends in interspecies relationships as gLV (interpreted through
the average LIME explanation across all observed communities). The LSTM model captured more nuanced context-
specific behaviors (interpreted as the LIME explanation for one specific community context) than the mathematically
restricted gLV model, which substantially improved the LSTM model’s predictive capabilities. These results demon-
strate that the LSTM framework is useful for developing high accuracy predictive models for the design of precise
community-level metabolite profiles. Our approach also preserves the ability to decipher different types of inter-
actions in the LSTM model that are explicitly encoded in less accurate and flexible mechanistic models such as
gLV.

Sensitivity of prediction accuracy highlights poorly understood species and pairwise
interactions

Identification of species that limit prediction performance could guide selection of informative experiments to deepen
our understanding of the behaviors of poorly predicted communities. Therefore, we evaluated the sensitivity of the
LSTM model prediction accuracy to species presence/absence and the amount of training data. High sensitivity of
model prediction performance to the number of training communities indicates that collection of additional exper-
imental data would continue to improve the model. Additionally, identifying poorly understood communities will
guide ML-informed planning of experiments. To evaluate the model’s sensitivity to the size of the training dataset,
we computed the hold-out prediction performance (R?) as a function of the size of the training set by sub-sampling
the data (Fig. 4a). We used 20-fold cross-validation to predict metabolite concentrations and species abundance.
Our results show that the ability to improve prediction accuracy as a function of the size of the training data set
was limited by the variance in species abundance in the training set (Fig. S6). For instance, certain species with
low variance (e.g. FP, EL, DP, RI) in abundance in the training set also displayed low sensitivity to the amount of
training data. The high sensitivity of specific metabolites (e.g. lactate) and species (e.g. AC, BH) to the amount of
training data indicates that further data collection would likely improve the model’s prediction performance.

To determine how pairwise combinations of species impacted model prediction performance, we used 20-fold cross-
validation to evaluate the prediction performance (R?) on subsets of the total dataset, where subsets were selected
based on the presence of individual species or pairs of species (Fig. 4b). Using this approach, we identified individual
species and species pairs that had the greatest impact on the prediction performance of metabolite concentrations.
Sample subsets with poor prediction performance highlight individual species and species pairs whose presence
reduces the model’s ability to make accurate predictions of final metabolite concentrations. Although the subsets
were much smaller than the total data set (n = 761), calculation of prediction performance was not limited by small
sample sizes, where the number of communities in each subset ranged from n = 77 to n = 478.

The interaction network shown in figure Fig. 3d shows the impact of individual species on each metabolite, but
does not provide information about whether the effect is due to individual species or pairwise interactions. To deter-
mine whether pairwise interactions influence metabolite concentrations, we quantified how prediction performance
changed in response to the presence individual species and pairs of species. Specifically, if prediction performance
taken over a subset of communities containing a given species pair was markedly different than prediction performance
for the subsets corresponding to the individual species, this suggests the pairwise interaction impacts on metabolite
production. Using equation 4 (Methods), we found that the prediction performance of lactate and butyrate was
the least sensitive to species pairs (average decrease in prediction performance for subsets with species pairs of 0.72%
and 1.10% compared to corresponding single species subsets). However, the prediction performance of acetate and
succinate was the most sensitive to the presence of species pairs (increase in prediction performance of 6.68% for
acetate and a decrease of 2.951% for succinate). This difference in prediction performance suggests that pairwise
interactions influences the production of acetate and succinate, while the production of lactate and butyrate are
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primarily driven by the action of individual species. The sensitivity of acetate and succinate to pairwise interactions
is consistent with the inferred interaction network shown in Fig. 3d, which highlights multiple species-metabolite
interactions for acetate and succinate and a smaller number of strong species-metabolite interactions for butyrate
and lactate.

Pairs of certain Bacteroides and butyrate producers including BY-RI, BU-RI, and BY-AC resulted in reduced
prediction performance of acetate. This suggests that interactions between specific Bacteroides and butyrate pro-
ducers were important for acetate transformations, which is consistent with the conversion of acetate into butyrate.
Based on the LIME analysis in Fig. 3d, AC, DP, and BP have the largest impact on lactate. Thus, the hold-out
prediction performance for lactate was primarily impacted by specific pairs that include these species. In sum,
these results demonstrate how the model can be used to identify informative experiments for investigating poorly
understood species and interactions between species, where collection of more data would likely improve prediction
performance.

Dynamic measurements of communities reveal design rules for qualitatively distinct
metabolite trajectories

We next leveraged the LSTM model’s dynamic capabilities to understand the temporal changes in metabolite con-
centrations and community assembly. To this end, we chose a representative subset of 95 out of the 180 communities
from Fig. 3b (Fig. STa, 60 communities for training, 34 for validation, plus the full 25 species community) and
experimentally characterized species abundance and metabolite concentrations every 16 hours during community
assembly (Fig. 5a). We analyzed the dynamic behavior of these communities using a clustering technique to extract
high level design rules of species presence/absence that determined qualitatively distinct temporal metabolite tra-
jectories (i.e. broad trends consistent across a set of communities) and exploited the LSTM framework to identify
context-specific impacts of species on metabolite production (i.e. a more fine-tuned case-by-case analysis).

The temporal trajectories of species abundance and metabolite concentrations showed a wide range qualitatively
distinct trends across the 95 communities (Fig. 5b-g). For example, some metabolites concentrations monotonically
increased (e.g. butyrate in Fig. 5b,c,e,g), monotonically decreased (e.g. lactate in Fig. 5b,c) or exhibited biphasic
dynamics (e.g. acetate in Fig. 5c¢). To determine if there were communities with similar temporal changes in
metabolite concentrations, we clustered communities using a minimal spanning tree [32] on the Euclidean distance
between the metabolite trajectories of each pair of communities (Fig. 5a). The resulting six clusters exhibited
high quantitative within-cluster similarity and qualitatively distinct metabolite trajectories (Fig. 5b-g). Clusters
4 and 5 which contained the largest number of communities had a high fraction of “distributed” communities
(Fig. 3b). Clusters with a smaller number of communities contained a higher percentage of “corner” communities
(Fig. S7b,c). Therefore, the use of LSTM results from an initial experiment to identify “corner” communities
elucidated communities with qualitatively distinct temporal behaviors. These communities were unlikely to be
discovered via random sampling of sub-communities due to the high density of points towards the center of the
distribution and low density in the tails of the distribution (Fig. 3b). Additionally, some “corner” communities that
were similar in metabolite profiles when considering the end-point measurement separated into different clusters when
considering the dynamic data (e.g. Clusters 2 and 3, which have similar metabolite profiles at 48 hr but qualitatively
distinct dynamics (Fig. 5b). This demonstrates that using a community design approach to explore the extremes
of system behaviors with a limited time resolution enabled the identification of additional distinct behaviors when
the extreme communities were characterized with higher time resolution.

To identify general patterns in species presence/absence of these communities that could explain the temporal
behaviors of each cluster, we used a decision tree analysis to identify an interpretable classification scheme (Fig. S7d).
Using this approach, we observed that the large clusters were separated by relatively simple classification rules (i.e.
ACH for cluster 4 and AC- for cluster 5), whereas the smaller clusters had more complex classification rules involving
larger combinations of species (3-7 species), all involving AC, DP, and DL (Fig. 5a). The influential role of DP
was corroborated by a previous study showing that DP substantially inhibits butyrate production [25]. In addition,
the inferred microbe-metabolite networks based on the LSTM model M2 demonstrated that the presence of DL
was linked to higher acetate and lower succinate production (Fig. 3d), consistent with its key role in shaping
metabolite dynamics in this system. The variation in the number of communities across clusters is consistent with
previous observations that species-rich microbial communities tend towards similar behavior(s) (e.g. Clusters 4 and
5 contained many communities). By contrast, more complex design criteria are required to identify communities
that deviate from this typical behavior (e.g. Clusters 1-3 and 6 contained few communities) [25].

While our clustering analysis identified general design rules for metabolite trajectories, there remained unex-
plained within-cluster variation. Thus, we used the LSTM framework to identify those effects beyond these general
species presence/absence rules that determine the precise metabolite trajectory of a given community. Simultaneous

8


https://doi.org/10.1101/2021.09.27.461983
http://creativecommons.org/licenses/by/4.0/

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.461983; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

predictions of species abundance and the concentration of all four metabolites at all time points necessitates specific
modifications to the LSTM architecture shown in Fig. 1a. In particular, we consider a 29-dimensional input vector
whose first 25 components correspond to the species abundance, while the remaining 4 components correspond to the
concentration of metabolites (Fig. 5h). The 29-dimensional feature vector is suitably normalized so that the different
components have zero mean and unity variance. The feature scaling is important to prevent over reliance on features
with a broad range of values. The output of each LSTM unit is fed into the input block of the subsequent LSTM unit
in order to advance the model forward in time. The reason behind concatenating instantaneous species abundances
with metabolite concentrations can be understood as follows. Prediction of metabolite concentrations at various
time points requires a time-series model (either using ODEs or LSTM in this case). Further, the future trajectory
of metabolite concentrations is a function of both the species abundance, as well as the metabolite concentrations
at the current time instant. Therefore, we concatenate both the metabolite concentrations and species abundances
to create a 29-dimensional feature vector. The trained LSTM framework on the 60 training communities (model
M3) displayed good prediction performance on the metabolite concentrations of the 34 validation communities plus
the full 25-species community (Fig. 5i). The prediction accuracy of species abundance was lower than metabolite
concentrations, presumably due to the limited number of training set observations of each species (Fig. S8).

We used a a gradient-based sensitivity analysis of the LSTM model M3 to provide biological insights into the
contributions of each species on the temporal changes in metabolite concentrations (Fig. 5h,j, Methods). This
method involves computing partial derivatives of output variables of interest with respect to input variables, which are
readily available through a single backpropagation pass [33, 34]. As an example case, we applied this analysis approach
to the full 25-species community, which was grouped into Cluster 4, with the design rule “AC+” (Fig. 5a). Consistent
with this design rule, we observed strong sensitivity gradients between the abundance of AC and the concentrations of
butyrate, acetate, and lactate, consistent with our biological understanding of the system [25]. Beyond the “AC+”
design rule, there was a strong sensitivity gradient between DL and acetate and succinate, consistent with the
inferred networks based on the LSTM model M2 that used single time point observations (Fig. 3d). Further, the
contributions of certain species on metabolite production varied as a function of time. For instance, in the initial
time point, species abundances were similar and thus the contribution of individual species to metabolite production
is more uniform. However, interactions between species during community assembly enhanced the contribution of
specific metabolite driver species such as AC. In addition, the contributions of individual species such as PC and BA
to succinate production peaked at 32 hours and then decreased by 48 hours, highlighting that the effects of these
species on succinate production were maximized at intermediate time points. In sum, the proposed gradient-based
method identified the quantitative contributions of each species to metabolite production as a function of time for a
specific case, identifying context-specific behaviors beyond the previously identified broader design rules. These two
complementary approaches are useful for identifying design rules for metabolite dynamics. The clustering method
can identify broad design rules for species presence/absence and the LSTM analysis approach can uncover fine-tuned
quantitative contributions of species to the temporal changes in community-level functions.
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Figure 3: LSTM-guided design and interpretability of community-level metabolite production profiles (a)
Schematic of model-training and design of communities with shifted metabolite outputs. (b) Heat map of butyrate and
lactate concentrations of all possible communities predicted by the LSTM model M1. Grey points indicate communities
chosen via k-means clustering to span metabolite design space. Colored boxes indicate “corner” regions defined by 95th
percentile values on each axis with points of the corresponding color indicating designed communities within that “corner”.
Insets show heat maps of acetate and succinate concentrations for all communities within the corresponding boxes on the main
figure. Boxes on the inset indicate “corners” defined by 95%® percentile values on each axis with colored points corresponding
to the same points indicated on the main plot. (c) Cross-validation accuracy of LSTM model trained and validated on a
random 90/10 split of all community observations (model M2), evaluated as Pearson correlation R? for the correlation of
predicted versus measured for each variable (all p-values< 0.05, N and p-value for each test reported in Table S3). Dashed
line indicates R* = 0.5, which is used as a cutoff for including a variable in the subsequent network diagrams. (d) and (e)
Network representation of median LIME explanations of the LSTM model M2 from (c) for prediction of each metabolite
concentration (d) or species abundance (e) by the presence of each species. Edge widths are proportional to the median
LIME explanation across all communities from (b) used to train the model in units of concentration (for (d)) or normalized
to the species’ self-impact (for (e)). Only explanations for those variables where the cross-validated predictions had R* > 0.5
are shown. Networks were simplified by using lower thresholds for edge width (5 mM for (d), 0.2 for (e)). Red and blue edges
indicate positive and negative contributions, respectively.
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of 10%. Each subsampled training set was subject to 20-fold cross-validation to assess prediction performance. Lineplot of
the mean prediction performance over the 30 trials for each percentage of the data. Error bars denote 1 s.d. from the mean.
(b) Schematic scatter plot representing how communities containing species A and B define a poorly predicted subsample of
the full sample set (c) Heatmap of prediction performance (R?) of acetate for each subset of communities containing a given
species (diagonal elements) or pair of species (off-diagonal elements). (d) Heatmap of prediction performance for acetate,
butyrate, lactate, and succinate. A sample subset containing a given species or pair of species included all communities in
which the species were initially present. Predictions for each community were determined using 20-fold cross validation so

that for each model the predicted samples were excluded from the training samples. N and p-values are reported in Table
S3.
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Figure 5: Community metabolite trajectories cluster into qualitatively distinct groups which can be classified
based on presence and absence of key microbial species. (a) Schematic of experiment and network representing a
minimal spanning tree across the 95 communities where weights (indicated by edge length) are equal to the Euclidean distance
between the metabolite trajectories for each community. Node colors indicate clusters determined as described in the Methods.
Red node with black outline annotated with “25” represents the community of all 25 species. Annotations indicate the most
specific microbial species presence/absence rules that describe most data points in the cluster of the corresponding color as
determined by a decision tree classifier (Methods). Communities that deviate from the rules for their cluster are indicated
with a border matching the color of the closest cluster whose rules they do follow. Network visualization generated using
the draw _kamada_kawai function in networkx (v2.1) for Python 3. (b-g) Temporal changes in metabolite concentrations for
communities within each cluster (indicated by sub-plot border color), with individual communities denoted by transparent
lines. Solid lines and shaded regions represent the mean plus or minus 1 s.d. of all communities in the cluster. (h) Schematic
of LSTM model training and computation of gradients to evaluate impact of species abundance on metabolite concentrations
in a specific community context. (i) Heatmap of model M3 prediction accuracy for four metabolites in the 34 validation
communities at each time point (Pearson correlation R?, N=34 for all tests). (j) Heatmap of the gradient analysis of model
M3 as described in (h) for the full 25-species community. N and p-values are reported in Table S3.
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DISCUSSION

We have demonstrated that an LSTM modeling framework trained on species abundance and metabolite production
in synthetic human gut communities can accurately predict multiple functions of microbial communities. This
model is powerful for designing communities with target metabolite profiles. Due to its flexibility, the LSTM model
outperforms the widely used gLV model in the presence of higher-order interactions. We leveraged the computational
efficiency of LSTM model to predict the metabolite profiles of tens of millions of communities. We used these model
predictions to identify sparsely represented “corner case” communities that maximized/minimized community-level
production of four health-relevant metabolites. In the absence of a predictive model, these infrequent communities
would have been difficult to discover among the vast metabolic landscape of possible communities.

Beyond the model’s predictive capabilities, we showed that biological information including significant microbe-
metabolite and microbe-microbe interactions, can be extracted from LSTM models. These biological insights could
enable the discovery of key species and interactions driving community functions of interest. Further, this could
inform the design of microbial communities from the bottom-up or interventions to manipulate community-level
behaviors. For example, the inferred microbe-metabolite network highlighted AC is a major ecological driver of several
metabolites including butyrate, acetate and lactate in our system. In addition, this microbe-metabolite network did
not include species of the highly abundant genus Bacteroides but instead featured members of Firmicutes (AC,
ER, DL), Actinobacteria (BA, BP, EL), Proteobacteria DP and Bacteroidetes PC. Notably, Bacteroides displayed
numerous interactions in the microbe-microbe interaction network, suggesting that they played a key role in the
growth of constituent community members opposed to production of specific metabolites. Therefore, our model
suggests that Bacteroides influence broad ecosystem functions such as community growth dynamics whereas species
highlighted in the microbe-metabolite network contribute to specialized functions such as the production of specific
metabolites [35]. Therefore, the microbe-metabolite interaction network could be used to identify key species that
could be targeted for manipulating the dynamics of specific metabolites.

We performed time-resolved measurements of metabolite production and species abundance using a set of designed
communities and demonstrated that communities tend towards a typical dynamic behavior (i.e. Clusters 4 and 5).
Therefore, random sampling of sub-communities from the 25-member system would likely exhibit behaviors similar
to Clusters 4 and 5. We used the LSTM model to identify “corner cases” communities that produce metabolite
concentrations near the tails of the metabolite distributions at a single time point. Thus, the model allowed us to
identify unique sub-clusters with disparate dynamic behaviors. We demonstrated that the endpoint model predictions
were confirmatory (Fig. 3c) and also led to new discoveries when additional measurements were made in the time
dimension. Specifically, we found that some “corner cases” communities identified based on prediction of a single
time-point displayed distinct dynamic trajectories. For instance, Clusters 2 and 3 based on the decision tree classifier
displayed similar end-point metabolite concentrations (Fig. 5¢,d). However, lactate decreased immediately over time
in Cluster 2 communities but remained high until approximately 30 hr and then decreased in Cluster 3 communities.
The design rule for Cluster 3 included the presence of lactate producers BU and DL (Fig. S4), suggesting that these
individual species’ lactate producing capabilities enabled the community to maintain a high lactate concentration for
an extended period of time in the context of the Cluster 3 communities. While we focused on the production of four
health-relevant metabolites produced by gut microbiota, a wide range of health-relevant compounds are produced by
gut bacteria. Therefore, communities that cluster together based on dynamic trends the four measured metabolites
could separate into new clusters based on the temporal patterns of other compounds produced or degraded by the
communities.

Time-resolved measurements were required to reveal the different dynamic behaviors of communities in Clusters
2 and 3 to improve understanding and design of community functions. The ability to resolve differences in the
dynamic trajectories of communities requires time sampling when the system behavior is changing as a function of
time as opposed to time sampling once the system has reached a steady-state (i.e. saturated as a function of time).
The time to reach steady-state varied across different communities and metabolites of interest. For instance, lactate
reached steady-state at an earlier time point ( 12 hr) in Cluster 4 communities whereas communities in Cluster 3
approached steady-state at a later time point ( 48 hr). Therefore, model-guided experimental planning could be used
to identify the optimal sampling times to resolve differences in community dynamic behaviors. The dynamic behaviors
of the synthetic communities characterized in wvitro may likely exhibit significant differences to their behaviors in
new environments such as the mammalian gut. However, communities in sub-clusters whose behaviors deviated
substantially from the typical community behaviors (e.g. Clusters 2 and 3 versus Clusters 4 and 5) may be more
likely than random to display unique dynamic behaviors in vivo. Future work will investigate whether the in wvitro
dynamic behavior cluster patterns can be used as prior information to guide the design of informative communities
in new environments for building predictive models.

While our current approach treated microbiome species composition as the sole set of design variables in a constant
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environmental background, microbiomes in reality are impacted by differences in the physicochemical composition
of their environment [36]. Given sufficient observations of community behavior under varied environmental contexts
(e.g. presence/absence of certain nutrients), our LSTM approach could be further leveraged to design complementary
species and environmental compositions for desired microbiome functional dynamics. Further, we can leverage the
wealth of biological information stored in the sequenced genomes of the constituent organisms. Integrating methods
such as genome scale models [37] with our deep learning framework could leverage genomic information to enable
predictions when the genomes of the organisms are varied (i.e., alternative strains of the same species with disparate
metabolic capabilities). In this case, introducing variables representing the presence/absence of specific metabolic
reactions would potentially enable the model to predict the impact of a species with a varied set of metabolic reactions
on a given set of functions without new experimental observations. Integrating this information into the model could
thus enable a mapping between genome information and community-level functions.

While previous approaches have used machine learning methods to predict microbiome functions based on mi-
crobiome species composition [18, 19], our approach is a major step forward in predicting the future trajectory of
microbiome function based on an initial state of species composition. The dynamic nature of our approach enables
applications to design optimal initial community compositions or interventions to perturb an existing community
to achieve desired behavior in the future. The flexibility of our approach to various time resolutions is especially
useful in scenarios where a microbiome may display potentially undesired transients on the path from an initial state
to a desired final state. For instance, in treatment of gut microbiome dysbiosis, it is important to ensure that any
transient states of the microbiome are not harmful to the host (e.g. pathogen blooms or overproduction of toxic
metabolites) as the system approaches a desired healthy state [38]. However, because predictions with increased
time resolution require more data for model training, the ability of our approach to work simply with initial and
final observations is useful for scenarios where transient states may be less important, such as in bioprocesses where
the concentration of products at the time of harvest is the key design objective [39, 40]. Finally, the computational
efficiency and accuracy of the LSTM model could be exploited in the future for autonomous design and optimization
of multifunctional communities via computer-controlled design-test-learn cycles [41].

METHODS

Strain Maintenance and Culturing

All anaerobic culturing was carried out in an anaerobic chamber with an atmosphere of 2.5 + 0.5% Hs, 15 + 1%
CO3 and balance Ns. All prepared media and materials were placed in the chamber at least overnight before use
to equilibrate with the chamber atmosphere. The strains used in this work were obtained from the sources listed in
Table S1 and permanent stocks of each were stored in 25% glycerol at —80°C as previously described [25]. Batches
of single-use glycerol stocks were produced for each strain by first growing a culture from the permanent stock in
anaerobic basal broth (ABB) media (Oxoid) to stationary phase, mixing the culture in an equal volume of 50%
glycerol, and aliquoting 400pL into Matrix Tubes (ThermoFisher) for storage at —80°C. Quality control for each
batch of single-use glycerol stocks included (1) plating a sample of the aliquoted mixture onto LB media (Sigma-
Aldrich) for incubation at 37°C in ambient air to detect aerobic contaminants and (2) Illumina sequencing of 16S
rDNA isolated from pellets of the aliquoted mixture to verify the identity of the organism. For each experiment,
precultures of each species were prepared by thawing a single-use glycerol stock and combining the inoculation
volume and media listed in Table S1 to a total volume of 5 mL (multiple tubes inoculated if more preculture volume
needed) for stationary incubation at 37°C for the preculture incubation time listed in Table S1. All experiments were
performed in a chemically defined medium (DM38), as previously described [25], the composition of which is provided
in Table S2. This medium supports the individual growth of all organisms except Faecalibacterium prausnitzii [25].

Community Culturing Experiments and Sample Collection

Synthetic communities were assembled using liquid handling-based automation as described previously [25]. Briefly,
each species’ preculture was diluted to an ODggg of 0.0066 in DM38. Community combinations were arrayed in 96
deep well (96DW) plates by pipetting equal volumes of each species’ diluted preculture into the appropriate wells
using a Tecan Evo Liquid Handling Robot inside an anaerobic chamber. For experiments with multiple time points,
duplicate 96DW plates were prepared for each time point. Each 96DW plate was covered with a semi-permeable
membrane (Diversified Biotech) and incubated at 37°C. After the specified time had passed, 96DW plates were
removed from the incubator and samples were mixed by pipette. Cell density was measured by pipetting 200uL of
each sample into one 96 well microplate (96W MP) and diluting 20 L of each sample into 180uL of PBS in another
96W MP and measuring the ODggg of both plates (Tecan F200 Plate Reader). We selected the value that was
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within the linear range of the instrument for each sample. 200uL of each sample was transferred to a new 96DW
plate and pelleted by centrifugation at 2400xg for 10 minutes. A supernatant volume of 180uL was removed from
each sample and transferred to a 96-well microplate for storage at —20°C and subsequent metabolite quantification
by high performance liquid chromatography (HPLC). Cell pellets were stored at —80°C for subsequent genomic
DNA extraction and 16S rDNA library preparation for Illumina sequencing. 20uL of each supernatant was used to
quantify pH using a phenol Red assay [42]. Phenol red solution was diluted to 0.05% weight per volume in 0.9%
w/v NaCl. Bacterial supernatant (20uL) was added to 180uL of phenol red solution in a 96W MP, and absorbance
was measured at 560 nm (Tecan Spark Plate Reader). A standard curve was produced by fitting the Henderson-
Hasselbach equation to fresh media with a pH ranging between 3 to 11 measured using a standard electro-chemical
pH probe (Mettler-Toledo). We used (1) to map the pH values to the absorbance measurements.

A— Amin
pH = pK, + b - logy (A—A> (1)

The parameters b and pK, were determined using a linear regression between pH and the log term for the standards
in the linear range of absorbance (pH between 5.2 and 11) with Ap,.x representing the absorbance of the pH 11
standard, A, denoting the absorbance of the pH 3 standard and A representing the absorbance of each condition.

HPLC Quantification of Organic Acids

Butyrate, succinate, lactate, and acetate concentrations in culture supernatants were quantified as described previ-
ously [25]. Supernatant samples were thawed in a room temperature water bath before addition of 2uL of HoSO4 to
precipitate any components that might be incompatible with the running buffer. The samples were then centrifuged
at 2400xg for 10 minutes and then 150uL of each sample was filtered through a 0.2um filter using a vacuum manifold
before transferring 70uL of each sample to an HPLC vial. HPLC analysis was performed using a Shimadzu HPLC
system equipped with a SPD-20AV UV detector (210 nm). Compounds were separated on a 250 x 4.6 mm Rezex©
ROA-Organic acid LC column (Phenomenex Torrance, CA) run with a flow rate of 0.2 ml min~! and at a column
temperature of —50°C. The samples were held at 4°C prior to injection. Separation was isocratic with a mobile
phase of HPLC grade water acidified with 0.015 N HySOy4 (415uLL™1). At least two standard sets were run along
with each sample set. Standards were 100, 20, and 4 mM concentrations of butyrate, succinate, lactate, and acetate,
respectively. The injection volume for both sample and standard was 25ul. The resultant data was analyzed using
the Shimadzu LabSolutions software package.

Genomic DNA Extraction and Sequencing Library Preparation

Genomic DNA extraction and sequencing library preparation were performed as described previously [25]. Genomic
DNA was extracted from cell pellets using a modified version of the Qiagen DNeasy Blood and Tissue Kit protocol.
First, pellets in 96DW plates were removed from —80°C and thawed in a room temperature water bath. Each pellet
was resuspended in 180uL of enzymatic lysis buffer (20 mM Tris-HC1 (Invitrogen), 2 mM Sodium EDTA (Sigma-
Aldrich), 1.2% Triton X-100 (Sigma-Aldrich), 20 mg/mL Lysozyme from chicken egg white (Sigma-Aldrich)). Plates
were then covered with a foil seal and incubated at 37°C for 30 minutes with orbital shaking at 600 RPM. Then,
25uL of 20mgmL ™" Proteinase K (VWR) and 200 L of Buffer AL (QIAGEN) were added to each sample before
mixing with a pipette. Plates were then covered by a foil seal and incubated at 56°C for 30 minutes with orbital
shaking at 600 RPM. Next, 200uL of 100% ethanol (Koptec) was added to each sample before mixing and samples
were transferred to a Nucleic Acid Binding (NAB) plate (Pall) on a vacuum manifold with a 96DW collection plate.
Each well in the NAB plate was then washed once with 500uL Buffer AW1 (QIAGEN) and once with 500uL of Buffer
AW?2 (QTAGEN). A vacuum was applied to the Pall NAB plate for an additional 10 minutes to remove any excess
ethanol. Samples were then eluted into a clean 96DW plate from each well using 110uL of Buffer AE (QIAGEN)
preheated to 56°C. Genomic DNA samples were stored at —20°C until further processing.

Genomic DNA concentrations were measured using a SYBR Green fluorescence assay and then normalized to
a concentration of 1ngL ™! by diluting in molecular grade water using a Tecan Evo Liquid Handling Robot. First,
genomic DNA samples were removed from —20°C and thawed in a room temperature water bath. Then, 1uL of each
sample was combined with 95uL of SYBR Green (Invitrogen) diluted by a factor of 100 in TE Buffer (Integrated
DNA Technologies) in a black 384-well microplate. This process was repeated with two replicates of each DNA
standard with concentrations of 0, 0.5, 1, 2, 4, and 6ngL.~!. Each sample was then measured for fluorescence with an
excitation/emission of 485/535 nm using a Tecan Spark plate reader. Concentrations of each sample were calculated
using the standard curve and a custom Python script was used to compute the dilution factors and write a worklist
for the Tecan Evo Liquid Handling Robot to normalize each sample to 1ngL ™" in molecular grade water. Samples
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with DNA concentration less than IngL ™! were not diluted. Diluted genomic DNA samples were stored at —20°C
until further processing.

Amplicon libraries were generated from diluted genomic DNA samples by PCR amplification of the V3-V4 of the
16S rRNA gene using custom dual-indexed primers for multiplexed next generation amplicon sequencing on Illumina
platforms [25, 43]. Primers were arrayed in skirted 96 well PCR plates (VWR) using an acoustic liquid handling
robot (Labcyte Echo 550) such that each well received a different combination of one forward and one reverse primer
(0.1uL of each). After liquid evaporated, dry primers were stored at —20°C. Primers were resuspended in 15uL PCR
master mix (0.2uL Phusion High Fidelity DNA Polymerase (Thermo Scientific), 0.4uL 10 mM dNTP Solution (New
England Biolabs), 4uL 5x Phusion HF Buffer (Thermo Scientific), 4uL 5M Betaine (Sigma-Aldrich), 6.4uL. Water)
and 5uls of normalized genomic DNA to give a final concentration of 0.05 M of each primer. Primer plates were
sealed with Microplate B seals (Bio-Rad) and PCR was performed using a Bio-Rad C1000 Thermal Cycler with the
following program: initial denaturation at 98°C (30 s); 25 cycles of denaturation at 98°C (10 s), annealing at 60°C
(30 s), extension at 72°C (60 s); and final extension at 72°C (10 minutes). 2uL of PCR products from each well were
pooled and purified using the DNA Clean & Concentrator (Zymo) and eluted in water. The resulting libraries were
sequenced on an Illumina MiSeq using a MiSeq Reagent Kit v3 (600-cycle) to generate 2x300 paired end reads.

Bioinformatic Analysis for Quantification of Species Abundance

Sequencing data were used to quantify species relative abundance as described previously [25, 43]. Sequencing data
were demultiplexed using Basespace Sequencing Hub’s FastQ Generation program. Custom python scripts were used
for further data processing as described previously [25, 43]. Paired end reads were merged using PEAR (v0.9.10) [44]
after which reads without forward and reverse annealing regions were filtered out. A reference database of the
V3-V5 16S rRNA gene sequences was created using consensus sequences from next-generation sequencing data or
Sanger sequencing data of monospecies cultures. Sequences were mapped to the reference database using the mothur
(v1.40.5) [45] command classify.seqs (Wang method with a bootstrap cutoff value of 60). Relative abundance was
calculated as the read count mapped to each species divided by the total number of reads for each condition. Absolute
abundance of each species was calculated by multiplying the relative abundance by the ODg00 measurement for each
sample. Samples were excluded from further analysis if .1% of the reads were assigned to a species not expected to
be in the community (indicating contamination).

Long Short Term Memory for dynamic prediction on Microbial Communities

Long short term memory (LSTM) networks belong to the class of recurrent neural networks (RNNs) and model time-
series data. They were first introduced by Hochreiter et al. [46] to overcome the vanishing or exploding gradients
problem [47] that occur due to long-term temporal dependencies. Since their inception, LSTMs have been further
refined [48, 49] and find numerous applications in several domains, including but not limited to neuroscience [50],
weather forecasting [51], predictive finance [52], Google Voice for speech recognition [53, 52] and Google Allo for
message suggestion [54].

Similar to any recurrent neural network, an LSTM network, too, comprises of a network of multiple LSTM units,
each representing the input-output map at a time instant. Fig. 1 shows the schematic of the proposed LSTM network
architecture for abundance prediction. For a microbial community comprising of N species, each LSTM unit models
the dynamics at time ¢ using the following set of equations:

iy = 0 (Wi 4 bii + Whihy—1 + bps)

Ji =0 Wisze +big + Whyhi—1 + bpy)

g¢ = tanh (Wigzy + big + Wighi—1 + bpg)

0r = 0 (Wioms 4 bio + Whohi—1 + bro)

e =frtOc1+it ©g

hy = o; ® tanh (¢;) , (2)

where hy, ¢, x; are the hidden state, cell state and input abundance at time ¢, respectively, and i, f;, g¢, o; are
input, forget, cell and output gates, respectively. ¢ is the sigmoid function, and ® denotes the Hadamard product.
The parameters {W,n, bimn} for m,n € {f,g,h,i,0} are trainable and shared across all LSTM units. The output
gate oy is further used to generate the abundance for next time instant as:

Yt = xp41 = Wyoor + byo. (3)
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As shown in Fig. 1, y; is fed to the LSTM unit at the next timestep (¢ + 1), which in turn predicts the species
abundance at time ¢ + 2. The process is repeated across multiple LSTM units in order to obtain z,, . The entire
architecture is trained to minimize the mean-squared loss between the predicted abundance z;,, ., and true abundance

:thinal N

Using Teacher forcing for intermittent time-series forecasting

The end-goal for the proposed LSTM-network based abundance predictor is to accurately capture the steady-state
(final) abundance from initial abundance. In typical LSTM networks, the output of the recurrent unit at the previous
timestep y;_1 is used as an input to the recurrent unit at the current timestep x;. This kind of recurrent model, while
has the ability to predict final abundance, is incapable to handle he one-step-ahead prediction. The problem is even
more critical when one tries to anticipate more than a single timestep into the future. Teacher forcing [55] entails
a training procedure for recurrent networks, such as LSTMs, where ‘true’ abundances at intermittent timesteps are
used to guide (like a teacher) the model to accurately anticipate one-step-ahead abundance.

Teacher forcing is an efficient method of training RNN models that use the ground truth from a prior time step
as input. This is achieved by occasionally replacing the predicted abundance y;_1 from the previous timestep with
the true abundance Z; at the current timestep as input abundance to the LSTM unit at the current timestep during
the training process. Teacher forcing not only stabilizes the training process, it forces the output abundances at all
times to closely match the corresponding true abundances. This is precisely why we do not just use the ground truth
abundances at intermittent timesteps in order to robustify the prediction of steady-state abundance. Once trained,
the inference in such models is achieved by ignoring the ground truth abundances and using the predicted abundance
from previous instant to roll forward the model in time.

Metabolite Profiling

Microbial communities are a rich source of a variety of metabolites that are very commonly used as nutritional supple-
ments, natural compounds to cure infectious diseases and in sustainable agriculture development. The concentration
and chemical diversities of metabolites produced in a microbial community is a direct consequence of the diversity of
interactions between organisms in the community. In essence, the dynamical evolution of relative species abundance
and intra-community interactions govern the nature and amount of metabolites produced in the community. The
functional map between species abundance and concentration of metabolites is highly complex and nonlinear, and is
often approximated using simple regressors involving unary and pairwise interaction terms. In this paper, we model
the species-metabolite map through appropriate modification of the LSTM network.

The aforementioned LSTM network for predicting the species abundance is suitably modified to augment four
additional components that correspond to the concentration of metabolites at each time instant. In particular; the
species abundance data (of size Ngpecies) is concatenated with the metabolite concentration data (of size Nyetabs) t0
form a (Nspecies + Nmetabs )-dimensional feature vector, which is suitably normalized so that the different components
have zero mean and unity variance. The feature scaling is important to prevent over reliance on features with a
broad range of values. Concatenation of species abundance data and the metabolite concentration data ensures that
the future trajectory of metabolite concentrations evolves as a function of both the species abundance, as well as
the metabolite concentrations at previous time instants. As before, the (Ngpecies + Nmetabs)-dimensional output of
each LSTM unit is fed into the input block of the subsequent LSTM unit in order to advance the model forward in
time. The model predictions at each time point is then transformed back to the original scale in order to obtain the
Pearson R? scores on the unnormalized data. Compared with existing approaches that employ ordinary differential
equations (ODEs) and multiple linear regression models for predicting metabolites, the proposed architecture enables
more accurate and rapid estimation of all four metabolites. All the LSTM models were implemented in Python using
PyTorch on an Intel i7-7700HQ CPU @2.80GHz processor with 16GB RAM and NVIDIA GeForce GTX 1060 (6GB
GDDRS5) GPU. The exact details of the neural network architecture consisting of number of layers, learning rate,
choices of optimizer and nonlinear activations are described in Table S2.

Using LSTM Model to Design Multifunctional Communities

We used the LSTM model trained on previous data (Fig. 3a) to design two sets of communities: a “distributed”
community set and a “corner” community set. For the “distributed” community set, we first took the predicted
metabolite concentrations for all communities with .10 species and used k-means clustering with & = 100 (Python 3,
scikit-learn v0.23.1, sklearn.cluster.Kmeans function) to identify 100 cluster centroids that were distributed across
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all of the predictions. We then found the closest community to each centroid in terms of Euclidean distance in the
4-dimensional metabolite concentration space. These 100 communities constituted the “distributed” community set.

For the “corner” community set, we first defined 4 “corners” in the lactate and butyrate concentration space by
binning all communities with .10 species as shown in Fig. 3b:

1. 5% lowest lactate concentration communities, then 5% lowest butyrate concentration of those
2. 5% lowest lactate concentration communities, then 5% highest butyrate concentration of those
3. 5% lowest butyrate concentration communities, then 5% lowest lactate concentration of those
4. 5% lowest butyrate concentration communities, then 5% highest lactate concentration of those

Within each of those four “corners”, we identified four “sub-corners” in the acetate and succinate concentration space
by binning communities as shown in Fig. 3b:

1. 5% lowest acetate concentration communities, then 5% lowest succinate concentration of those
2. 5% lowest acetate concentration communities, then 5% highest succinate concentration of those
3. 5% lowest succinate concentration communities, then 5% lowest acetate concentration of those
4. 5% lowest succinate concentration communities, then 5% highest acetate concentration of those

This process resulted in 16 “sub-corners” total. For each “sub-corner”, we then chose a random community and then
identified 4 more communities that were maximally different from that community in terms of which species were
present (Hamming distance). This overall process resulted in 80 communities constituting the “corner” community
set.

Composite Model: gLV Model for Predicting Species Abundance

To benchmark the performance of the LSTM model for predicting metabolite production, we used a previously
described Composite Model consisting of a generalized Lotka-Volterra (gLV) model for predicting species abundance
dynamics and a regression model with interaction terms to predict metabolite concentration at a given time from
the species abundances at that time [25]. Because our LSTM model was trained on the same dataset as Composite
Model M3 from [25], we used those gLV model parameters.

Composite Model: Regression Models for Predicting Metabolite Concentrations

We used a Bayesian regression model for identifying the gLV parameters with interaction terms based on [56]. Our
implementation is similar to the model described in [25] for predicting metabolite concentration from community
composition at a particular time. However, because the regression model from [25] was focused specifically on the
prediction of butyrate, we adapted the approach to prediction of multiple metabolites. First, we modified the model
form to include first order and interaction terms for all 25 species, rather than just the butyrate producers. Then,
we trained 4 regression models, one for each metabolite (butyrate, lactate, acetate, succinate), using the measured
species abundance and measured metabolite concentrations from the same dataset used to train the LSTM model.
We trained these models as described previously [25] by using Python scikit-learn [57] to perform L1 regularization to
minimize the number of nonzero parameters. Regularization coefficients were chosen by using 10-fold cross validation
and choosing the coefficient value with the lowest median mean-squared error across the training splits.

Composite Model: Simulations for Prediction

Custom MATLAB scripts were used to predict community assembly using the gLV model as described previously [25].
For each community, the growth dynamics were simulated using each parameter set from the posterior distribution
of the gLV model parameters. The resulting community compositions for each simulation at 48 hours were used as
an input to the Python regression models to predict the concentration of each metabolite in each community for
each gLV parameter set. Because of the large number of communities and the large number of parameter sets (i.e.,
hundreds of simulations per community), we used parallel computing (MATLAB parfor) to complete the simulations
in a reasonable timeframe (~1 hr for the communities in Figure S3a).
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Understanding Relationships Between Variables
Using LIME

Black-box methods, such as the LSTM-networks employed in this manuscript, do not offer much insights into
the underlying mechanics that make them so powerful. Consequently, any potential pitfalls that may come along
with building such models remain unexplored. For networks that are of significant biological importance, basing
assumptions on falsehoods can be catastrophic. We overcome this limitation by resorting to Local Interpretable
Model-Agnostic Explanations (LIME) [26].

LIME has three key components: (a) Local, i.e., any explanation reflects the behavior of a classifier around the
sampled instance, (b) Interpretability, i.e., the explanations offered by LIME are interpretable by human, (c) Model-
Agnostic, i.e., LIME does not require to peak into any model. It generates explanations by analyzing the model’s
behavior for an input perturbed around its neighborhood. In this manuscript, we employ LIME to explain both
qualitatively and quantitatively, as to how the abundances of various species affect the concentrations of all four
metabolites, and if the presence or absence of a given species has any significance on the resulting metabolite profile.

We carried out the LIME analysis to generate interpretable prediction explanations for model M2 for each
community instance used to train the model. We used lime v0.2.0.1 for Python 3 (https://github.com/marcoter/lime)
to train an explainer on the predictions of the training instances for each output variable (25 species, 4 metabolites)
and then generated explanation tables for every input variable (species presence/absence) for every training instance.
We then determined the median value for which the presence of a given species explained the prediction for each
output variable to generate the networks in Fig. 3d,e.

Using Prediction Sensitivity

For each metabolite (Acetate, Butyrate, Lactate, Succinate), fractions of .5, .6, .7, .8, .9, and 1 of the total dataset
were randomly sampled. Each sub-sampled dataset was subject to 20-fold cross validation to determine the sensitivity
of held-out prediction performance to the amount of data available for training. This process was repeated 30 times,
and the average prediction over the 30 trials was used to compute the final held-out prediction performance (R?).

The sensitivity of the model to the presence of individual species and pairs of species was determined by evaluating
prediction performance (R?) for subsets of the data containing each species and each possible pair of species. To
evaluate how prediction performance of each metabolite was affected by the presence of species pairs, we computed
the average percent difference between prediction performance taken over subsets containing a single species and all
pairs of species using the following equation,

Nspecies Nspecies
100 % “ R} — R?

N >y TR (4)

species i=1 i

Pairwise sensitivity =

where R? is the prediction performance taken over the subset of samples containing species i, and Rfj is the prediction
performance taken over the subset of samples containing species ¢ and j.

Using Sensitivity Gradients

Interpretability of neural-network (NN) models continues to be an interesting challenge in machine learning. While
LIME is a great tool to explain what machine learning classifiers are doing, it is model-agnostic and uses simple
linear models to approximate local behavior. Model-agnostic characteristic enforces retraining linear models on the
training data and analyzing local perturbations, before LIME can be used to invoke interpretability. Moreover, the
type of modifications that need to be performed on the data to get proper explanations are typically use case specific.
Consequently, model-aware interpretability methods that take into account the weights of an already trained NN are
more suitable.

For tasks, such as classification of images and videos, there is a natural way to interpret NN models using class
activation maps (CAMs) [58]. CAMs assigns appropriate weighting to different convolutional filters and highlights
part of the images that activate a given output class the most. However, CAMs do not extend to other NN
architectures, such as LSTMs. Fortunately for us, the answer to interpretability lies in the model training itself.
Let Y be the output variable of interest whose perturbation with respect to an input x needs to be estimated. The

effect of x on Y can be approximated through the partial derivative —. For instance, Y may denote butyrate

x
concentration in an experiment, while z can be used to represent abundance of one of the species. The sign of the
partial derivative depicts positive (or negative) correlation between the two variables, while the magnitude represents
the extent of it. In order to evaluate the partial derivatives, we freeze the weights of the already trained LSTM model
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and declare the inputs to be variables. A single backpropagation pass then evaluates the partial derivatives of an
output variable of interest with respect to all the input variables.

Clustering Metabolite Trajectories

To generate the clusters from the dynamic community observations (Fig. 5), we used a graph-theoretic divisive cluster-
ing algorithm [59] based on the minimal spanning tree [60]. We first generated an undirected graph wherein each node
was a community observed in our experiment and each edge weight was the Euclidean distance between two commu-
nities based on all metabolite measurements (4 metabolites x 3 time points=12-dimensional space for Euclidean dis-
tance calculation). We then determined the minimal spanning tree for this graph using the minimum_spanning tree
function in networkx (v2.1) for Python 3. We then used this minimal spanning tree to generate clusters by iteratively
removing the edge with the largest weight until 6 clusters were formed. In each iteration, if any edge removal resulted
in a cluster with <5 communities (i.e. minimum cluster size), that edge was returned and the next largest edge was
removed. The number of clusters and minimum cluster size were chosen based on an elbow method [61], wherein
scatter plots were made of the mean intracluster distance versus the number of clusters for various minimum cluster
sizes and a combination of minimum cluster size and number of clusters that fell on the elbow of the plot was chosen.

Decision Tree Classification of Metabolite Trajectories

The decision tree shown in Fig. S5d and used to produce the annotations in Fig. 5a was generated using the Deci-
sionTreeClassifier with the default parameter settings in scikit-learn (v0.23.1) for Python 3 (visualization generated
using plot_tree function from the same).

Choice of Sample Sizes

Sample sizes were chosen based on limitations of experimental throughput as increased number of biological replicates
would have reduced the number of possible different communities that could be observed. We chose a minimum of 2
biological replicates (for complex communities in our validation set) and some sample types have up to 7 biological
replicates (such as the full community, which was repeated in most experiments as a control for consistency between
experimental days).

DATA & CODE AVAILABILITY Pytorch implementation of the proposed LSTM model and the accompanying
measurements of community composition and metabolite concentrations will be available from GitHub. The
raw Illumina sequencing data will be available from Zenodo. These datasets and codes will be available at the
time of submission of the revised manuscript.
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Figure S1. Cross-validation of LSTM model M1 predictions of species abundance and metabolite
concentration. Each plot indicates the comparison of predicted versus measured species abundance (N
= 1736, p = 2.64e-273) (a), butyrate concentration (N = 124, p = 6.19e-13) (b), acetate concentration (N =
124, p = 2.58e-30) (c), lactate concentration (N = 124, 2.67e-28) (d), or succinate concentration (N = 124,
p = 3.34e-9) (e) for cross-validation of model M1 predictions of the validation communities from Clark et al.,
Nature Communications, 2021 (model trained on 110 pairwise communities, 156 communities with 3-5
species, and 124 communities with 11-17 species; cross-validation shown is prediction of a different set of
124 communities with 11-17 species, including 82 communities with all 5 butyrate producers A. caccae, E.
rectale, F. prausnitzii, C. comes and R. intestinalis and 42 communities with the 4 butyrate producers other
than A. caccae). Each data point indicates the average of biological replicates of a single community. Black
lines indicate linear regressions with slope (m) and R? indicated in the legends. Dashed blue line indicates
X=y.
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Figure S2. Predicted total carbon in fermentation products. Histogram of the model M1 predicted total
carbon concentration in butyrate, acetate, lactate, and succinate for all possible communities with >10
species (26,434,916 communities).
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Figure S3. Prediction and classification statistics for model M1 predictions of designed community
sets. (a) Scatter plot of R? for prediction accuracy (correlation of predicted versus measured) of each
variable (25 species abundances, 4 metabolite concentrations) by LSTM model M1 versus the Composite
Model based on the method from Clark et al., Nature Communications, 2021. N and p-values are reported
in Table S3. (b-e) Prediction accuracy of model M1 for the indicated metabolites. Dashed line indicates the
linear regression for all data points. Legends indicates the R? , Spearman p?, and RMSE for communities
from the “corner” set (red) or “distributed” set (blue) for each variable. Solid black lines indicate x=y. (f)
Confusion matrix for classification of the “corner” communities into their specified classes (shown in Figure
3b). Values indicate the fraction of communities from each predicted class whose metabolite concentrations
were closest (Euclidean distance) to the centroid of each class (Measured Class). Colored boxes indicate
“sub-classes” that fall within the 4 major classes determined in the lactate and butyrate concentration space
as shown in Figure 3b. (g) Scatter plot of misclassification rate between each pair of classes (values from
f, fraction of communities misclassified from one class to the other) versus the Euclidean distance between
the centroids of that pair of classes.
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Figure S4. Comparison of LIME explanations of LSTM to gLV Parameters. (a) Scatter plot of LIME
explanations of each species impact on each other species in model M2 versus the corresponding
interspecies interaction parameter (aj)) from the gLV model from Clark et al., Nature Communications, 2021.
Dashed line indicates the linear regression with the regression parameters shown in the legend. (b)
Heatmap representation of qualitative agreement/disagreement between specific inter-species interactions
for the same comparison as in (a). Legend describes what each color represents.
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Figure S5. Sensitivity of species abundance prediction performance (R?) to the size of the training
dataset for each species. Training datasets were randomly subsampled 30 times using 50% to 100% of
the total dataset in increments of 10%. Each subsampled training set was subject to 20-fold cross-validation
to assess prediction performance. Sub-plots show the mean prediction performance (error bars indicate
one standard deviation) over the 30 ftrials for each percentage of the dataset. Subplots were sorted
according to the variance in species abundance taken over the total dataset. In general, prediction
performance of low variance species was less likely to improve in response to more training data. N and p-
values are reported in Table S3.
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Figure S6. Characteristics of the dynamic community behaviors. (a) Minimal spanning tree of a graph
representation of the 180 communities characterized in Figure 3 where each node represents a community
the lengths of the edges connecting the nodes represent the Euclidean distance between a pair of
communities in the 4-dimensional metabolite space. The even spread of the training and validation sets
across this tree demonstrate that the subset of communities characterized in the dynamic experiment was
representative of all 180 communities characterized in Figure 3. Blue and red nodes indicate the subset of
communities chosen for dynamic characterization and used as training and validation examples for LSTM
model M3 in Figure 5. These subsets were chosen by first performing k-means clustering with k=94 for the
180 communities and identifying the 94 communities closest to each cluster centroid and then repeating
this process to subsample 34 of the 94 communities (as the training/validation split). (b) and (c) Scatter
plots showing where the clusters from Figure 5a fall in the 48-hour metabolite measurement space for
comparison with Figure 3b. Each datapoint represents a community with the color corresponding to the
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clusters in Figure 5a. Datapoints with black borders come from the “corner” set. Legend indicates the
percentage of communities from each cluster that come from the “corner” or “distributed” sets. (d) Decision
tree classifier explaining which species’ presence determines the clusters of dynamic community behavior
from Figure 5. Annotations indicate the percentage of communities from each cluster that can be explained
by the indicated paths, which are also annotated on Figure 5a.
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Figure S7. Prediction accuracy of model M3 for species abundance. Heatmap represent; R? for the
prediction accuracy of model M3 of the abundance of each species at each time point in the 34 validation
communities.
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