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Summary 

Despite decades of research, there is still a lack of understanding of the role and generating mechanisms 

of the ubiquitous fluctuations and oscillations found in recordings of brain dynamics. Here, we used a 

strength-dependent perturbative framework to provide a causal mechanistic description of how human 

brain function is perched at the delicate balance between fluctuation and oscillation. Applying local 

strength-dependent perturbations and subsequently measuring the perturbative complexity index clearly 

demonstrates that the overall balance of brain dynamics is shifted towards fluctuations for providing 

much needed flexibility. Importantly, stimulation in the fluctuation regime modulates specific resting 

state network, thus providing a mechanistic explanation of experimentally reported brain dynamics. 

Furthermore, this framework generates specific, testable empirical predictions for human stimulation 

studies using strength-dependent rather than constant perturbation. Overall, the strength-dependent 

perturbative framework demonstrates how the human brain is poised on the edge of criticality, between 

fluctuations to oscillations, allowing for maximal flexibility. 
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Introduction 

Already at the birth of neuroscience, a deep problem emerged: namely that local and global recordings 

from inside and outside the brain show very complex fluctuating and oscillating patterns of brain activity 

(Biswal et al., 1995; Destexhe & Contreras, 2006; M. Fox, 2005; Mantini et al., 2007; M. Raichle & 

Mintun, 2006). This gave rise to the fundamental question of the importance of synchronous or 

asynchronous local dynamics as the origin of the dynamical behaviour of brain states (Goldman et al., 

2019, 2020). This distinction is important since fluctuating versus oscillating scenarios emerge from very 

different principles, such as when pressure fluctuations in the water surface give rise to long range 

structures like waves (Phillips, 1957), which is different from when entrainment synchronises oscillating 

biological clocks with the availability of light (Mondragón-Palomino et al., 2011). In global brain 

dynamics, a purely fluctuating scenario will give rises to patterns formed due to noise correlations, 

whereas a purely oscillatory regime would produce patterns arising mainly from cluster synchronisation. 

In both cases, the activity is shaped by the underlying brain anatomy but the generating principles are 

clearly different. Even more, the asynchronous, irregular background dynamics have been associated 

with conscious, responsive brain state, while synchronisation and regular dynamics have been linked 

with reduced states of conscious awareness (Goldman et al., 2019). 

 Deco & Kringelbach have proposed a novel framework based on recent results showing turbulence in 

the brain dynamics, which is based on quantifying the level of local synchronisation in whole-brain 

activity  (Deco, Kemp, et al., 2021; Deco, Perl, et al., 2021; Deco & Kringelbach, 2020). The brain as a 

non-fluid system has been shown to be turbulent in the sense defined by the coupled oscillator framework 

of Kuramoto (Kawamura et al., 2007; Kuramoto, 1984). Furthermore, in terms of brain function, a key 

desirable property of turbulence is its mixing capability due to the energy/information cascade, which 

has been shown to be highly efficient across scales as shown by the power law discovered by 

Kolmogorov (Kolmogorov, 1941b, 1941a). Note that for these power laws, the flow is not provided by 

billions of molecules in a fluid but by the flow of information coming from the interplay and mutual 

entrainment in billions of neurons underlying brain dynamics. 

 Further to these empirical observations, the relevance of whole-brain computational model within this 

analytical framework was demonstrated based on the fact that brain dynamics can be accurately modelled 

by a system of coupled non-linear Stuart-Landau working in a turbulent regime (Deco, Perl, et al., 2021; 

Deco & Kringelbach, 2020), which integrates anatomy and local dynamics (Deco et al., 2018; Deco, 

Kringelbach, et al., 2017; Jobst et al., 2017; Saenger et al., 2017). As it happens, this whole-brain model 

is suited to resolve the question in hand, since it naturally describes the transitions between noise, 
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fluctuation and oscillation. The whole-brain system can produce three radically different regimes, simply 

by varying the local bifurcation parameter: 1) Noise regime – when the parameter is much less than zero, 

2) fluctuating subcritical regime – when the parameter is just below zero; and 3) oscillatory supercritical 

regime – when the parameter is larger than zero. Previous research has shown that the three different 

scenarios of noise (Ghosh et al., 2008; Messé et al., 2014), subcritical (Deco, Kringelbach, et al., 2017; 

Deco & Jirsa, 2012; Ghosh et al., 2008; Hansen et al., 2015) and supercritical (Cabral et al., 2014) are 

equally able to fit the empirical neuroimaging data in terms of functional connectivity. However, it is not 

clear when fitting the whole-brain model to the more sensitive measure of turbulence which regimes are 

able to fit the empirical data.  

 In a complementary direction, empirical perturbations have proved to be an excellent approach to 

provide insights into the complexity of brain dynamics, such as the one proposed by Massimini and 

colleagues. The authors used transcranial magnetic stimulation (TMS) with electroencephalography 

(EEG) to demonstrate perturbation-elicited changes in global brain activity in the perturbative 

complexity index (PCI) between different brain states (wakefulness, sleep, anaesthesia and coma) (Casali 

et al., 2013; Ferrarelli et al., 2010; Massimini et al., 2005). The results showed, for example, that non-

REM sleep is accompanied by a breakdown in cortical effective connectivity, where the stimuli rapidly 

extinguish and do not propagate beyond the stimulation site (Casali et al., 2013; Ferrarelli et al., 2010; 

Massimini et al., 2005). Based on the same strategy, previous experimental research demonstrated that 

stimulation with TMS in specific brain regions can differentially modulates specific networks 

(Santarnecchi et al., 2018; Tik et al., 2017). Computational approaches also demonstrated that constant 

perturbation can also provide clear insights into the complexity of brain dynamics (Deco et al., 2018; 

Goldman et al., 2020; Kunze et al., 2016). 

 To address the question of distinguishing between fluctuation and oscillations in shaping global brain 

dynamics, their origin and balance, we constructed and perturbed whole-brain models taking advantage 

of the recently proposed turbulence framework. Specifically, to disentangle the generative roles of the 

fluctuation (subcritical) and oscillations (supercritical) models, we created a global and local strength-

dependent perturbational framework. This allowed us to observe the evolution of three perturbative 

sensitivity measures, susceptibility, information capacity (defined in the turbulence framework (Deco, 

Perl, et al., 2021)) and the well-known PCI, as a function of the applied global sustained perturbation. 

The stimulation in the fluctuation regime also allows us to provide a mechanistic explanation of 

experimentally reported brain dynamics showing the modulation of specific resting state networks when 

are perturbed. With this approach, we were able to show that using strength-dependent perturbations - 
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instead of the classical flat, constant perturbations - provides the means for disentangling alternative 

model-based hypotheses about the underlying empirical dynamics. Our results show both how and why 

the human brain is poised on the edge of criticality, between fluctuations and oscillations, allowing 

maximal flexibility in information processing. 

 

Results 

In this study, we were interested in revealing the underlying mechanisms of the different dynamical 

regimes available in the resting state (M. Fox, 2005; M. E. Raichle et al., 2001). We extended the well 

stablish perturbative approach to use strength-dependent, non-constant perturbation in a whole-brain 

model fitting the empirical data to provide a causal mechanistic explanation for disentangling fluctuating 

from oscillating regimes in the underlying empirical dynamics. Figure 1 shows the details of our 

framework, which has two key ingredients: 1) a model-based approach which is probed with 2) varying 

levels of strength-dependent perturbations. The whole-brain model is based on the recent breakthrough 

of demonstrating turbulence (Figure 1A) in empirical neuroimaging data (Figure 1B). Turbulence is a 

property found in high-dimensional non-linear systems, where its mixing capability is crucial for giving 

rise to the efficient energy/information cascade, whereby large whirls turns into smaller whirls and 

eventually energy dissipation. Using this novel turbulence framework, we were able to determine the 

vorticity, i.e. the local level of synchronisation, allowing us to extend the standard global time-based 

measure of metastability to become a local-based measure of both space and time for capturing the 

essential features of the underlying brain dynamics. 

 The Hopf whole-brain model can fit the complex spatiotemporal brain dynamics in terms of both 

functional connectivity and turbulence (Figure 1C). More generally, the Hopf whole-brain model 

integrates anatomical connections (Hagmann et al., 2007, 2010; Johansen-Berg & Rushworth, 2009) with 

local dynamics to explain and fit the emergence of global dynamics in empirical data (Deco, Cabral, et 

al., 2017; Deco, Kringelbach, et al., 2017; Freyer et al., 2012; Ipiña et al., 2020; Piccinini et al., 2021) 

(Figure 1D). For decades, brain signals have been recorded with a plethora of different techniques 

showing them to be combinations of at least three different regimes: noise, fluctuating, and oscillatory. 

The non-linear Stuart Landau oscillator is perfect for generating and testing these three regimes, given 

that the local bifurcation parameter in the equation governs the dynamics of each local brain region 

(Figure 1E). Indeed, by varying this parameter the Stuart-Landau equation will produce three radically 

different signals: 1) a noise signal resulting from Gaussian noise added to a fixed point when the 

parameter is much less than zero; 2) a fluctuating stochastically structured signal when the parameter is 
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just below zero; 3) an oscillatory signal when the parameter is larger than zero. Technically, these three 

regimes are termed noise, subcritical and supercritical, respectively. 

 In the following, we show that the subcritical fluctuating and supercritical oscillatory regimes are 

equally able to fit the empirical data in terms of functional connectivity and turbulence (Figure 1F). 

Crucially, however, our framework includes the second ingredient of strength-dependent perturbation, 

which, as shown below, has allowed us to distinguish between the two regimes. We probe the model in 

two ways using both global (Figure 1G) and local strength-dependent perturbations (Figure 1H) and 

measuring the sensitivity of the system through quantifying the elicited susceptibility, information 

capacity and perturbative complexity index. 

 

Hopf whole-brain model of large-scale empirical neuroimaging data 

We first investigated the ability of the three regimes to fit empirical data. We fitted whole-brain models 

of Stuart Landau oscillators in the three regimes to the large-scale neuroimaging resting state fMRI data 

from 1003 healthy human participants in the Human Connectome Project (HCP) (Van Essen et al., 2013). 

We extracted the timeseries in the Schaefer1000 parcellation (Schaefer et al., 2018), a fine-grained atlas 

that allowed quantified turbulence in empirical data (Deco & Kringelbach, 2020).  

 Previous Hopf whole-brain models have successfully fitted functional neuroimaging data with 

different acquisition parameters from many different neuroimaging setups (Donnelly-Kehoe et al., 2019; 

Ipiña et al., 2020; Perl et al., 2021) using a fluctuating regime with a local bifurcation parameter close to 

the bifurcation point. Here we aim to fit both functional connectivity and turbulence of functional 

neuroimaging data. In order to fit turbulence with the Stuart-Landau oscillator in the oscillatory 

supercritical regime, Kuramoto and colleagues (Kawamura et al., 2007) have shown that an extra 

parameter, the so-called shear parameter, is fundamental. Therefore, we extend the Hopf whole-brain 

model to use the appropriate formulation of the Stuart-Landau equation (see Methods) to be able to fit 

the data with the supercritical regime. 

 We explored the parameter space of varying the global coupling (G) and the shear parameter (β). The 

coupling parameter (G) scales the local fibre densities of the anatomical structural connectivity (see 

Methods) to capture the effectivity of the coupling by assuming a single global conductivity parameter. 

The shear parameter (β) acts similar to viscosity in fluid dynamics (Kuramoto, 1984) in that it is able to 

affect both the frequency and amplitude of the generated oscillations (Kawamura et al., 2007). 

Importantly, for the structural connectivity in the whole-brain model, we used a combination of 

exponential distance rule, EDR (Ercsey-Ravasz et al., 2013) and long-range connections, which improve 
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and provide an excellent fit to the available dMRI tractography from humans (Deco, Perl, et al., 2021)(see 

Methods).  

 In order to fit the whole-brain model, we used the following observables: 1) the empirical mean level 

of amplitude turbulence, as the standard deviation of the Kuramoto Local order parameter (D), in fine 

parcellation, and metastability, as the standard deviation of the Kuramoto Global order parameter (M), 

in coarse parcellation; and 2) the grand average functional connectivity (FC) from the neuroimaging 

empirical data (see Methods). For measuring the level of fitting for each: 1) for turbulence/metastability 

measure, we computed the error (eD= abs(Dsim-Demp)/(eM= abs(Msim-Memp)), i.e. by the absolute 

difference between the simulated and empirical amplitude turbulence and 2) for the functional 

connectivity, we computed Euclidean distance (eFC) between the simulated and empirical FC.  

Modelling results for fine-scale parcellation with 1000 regions 

Figure 2 shows the results of fitting the Hopf whole-brain model in the three different regimes (noise, 

fluctuating and oscillatory, see upper row) for the Schaefer1000 parcellation in terms of functional 

connectivity and turbulence. For each of these regimes, we defined a grid of the parameter space (G,β), 

where G is the coupling strength factor, i.e. the global scaling factor of regional connectivity and β, the 

shear parameter (see above and Methods). For each pair in the grid, the whole-brain dynamics were 

simulated 100 times, and we computed the level of fitting between amplitude turbulence (second row) 

and simulated and empirical FC (third row). 

 We found the optimal fitting for turbulence for each of the three regimes, indicated with a star in the 

second row of Figures 2A-C. Figure 2A shows the best fit for the noise regime (a=–1.3) with optimal 

(G,β)=(1.8,0) as the absolute difference between the simulated and empirical turbulence D (here 

eD=0.0473). Figure 2B shows the best fit for the fluctuating regime (a= –0.02) with optimal (G,β)=(1.2, 

0.1), which produces an excellent fit with eD= 4x10-4. Figure 2C shows the best fit for the oscillatory 

regime (a=1.3) with optimal (G,β)=(0.15, 2.2), which also produces an excellent fit with eD=3x10-4. We 

also computed the grid fitting for the FC for all three regimes (Figures 2E-G), with a star in the grid 

indicating the optimal fit of turbulence which is the criterium for selecting the optimal working point 

since this is a more sensitive measure. Note that these points do not correspond to the optimal fitting with 

FC in the three regimes. 

 In summary, both the fluctuating and oscillatory regimes are excellent for fitting the turbulence in the 

empirical data, while the noise regime is not. This is quantified in Figure 2D, which shows the statistical 

comparisons between optimal fitting (indicated with the stars in Figures 2A-C) of the three regimes with 
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turbulence (repeated 20 times 100 simulations) and a horizontal line of D=0.1976 indicates the level of 

empirical turbulence.  

 The results show that the best working point for the noise regime is only giving mean D=0.1484, 

which is significantly worse than both fluctuating and oscillatory regimes (Wilcoxon p<0.001, compare 

noise and fluctuation; Wilcoxon p<0.001, compare noise with oscillatory in Figure 2D).  On the other 

hand, the fitting of the data by the fluctuating and oscillatory regimes is excellent (mean D=0.1972 and 

mean D=0.1973 respectively) but not significantly different (Wilcoxon n.s, comparing second with the 

third bar in Figure 2D). 

 Further bolstering these findings, we also generated model-surrogates (see Methods) to compare with 

the corresponding optimal working point by setting the parameters of the model in the optimal working 

point but increasing β, which is known to suppress turbulence (Deco & Kringelbach, 2020). Hence, we 

produced two surrogate models: surr_fluct for the fluctuating model surrogates using a=-0.02 and (G,β) 

=(1.2, 6) and surr_osc for the oscillatory model surrogates using a=1.3. and (G,β) =(0.15, 6). The results 

clearly show significant differences comparing with the level of turbulence fitting obtained by the 

optimal working point of the model in different regimes (Wilcoxon p<0.001, comparing fluctuation with 

surr_fluct and comparing oscillations with surr_osc). 

 Similarly, we fitted the whole-brain model with the functional connectivity by means of the Euclidean 

distance with the empirical. In Figures 2E-G, we show the fitting for (G,β) for the noise, fluctuating and 

oscillating regimes. We quantify the fit (using the optimal points from the turbulence fitting indicated 

with the stars in Figures 2A-C) in Figure 2H, which shows the statistical comparisons of the three 

regimes with functional connectivity (see Methods). 

 The results show that the best working point for the turbulence fitting for the noise regime is only 

giving a functional connectivity fitting mean ErrFC=0.2594, which is significantly worse than both 

fluctuating and oscillatory regimes (Wilcoxon p<0.001, comparing noise with fluctuations [mean 

ErrFC=0.1422]; Wilcoxon p<0.001, comparing noise with oscillations [mean ErrFC=0.2063] in Figure 

2H). On the other hand, the fluctuating and oscillatory regimes better fit the functional connectivity than 

the noise regime. However, in this case, the fluctuating regime is significantly better than the oscillatory 

regime (Wilcoxon p<0.001, comparing fluctuations with oscillations box in Figure 2H). 

 We also evaluated the functional connectivity fitting for the same model-surrogates generated 

previously (see Methods) to compare with the corresponding optimal working point. The results clearly 

show significant differences with the obtained level of fitting with the optimal working point of the 
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models (Wilcoxon p<0.001, comparing box fluctuations with surr_fluct and box oscillations with 

surr_osc). 

 Finally, in Figure 2I, we demonstrate the amplitude turbulence (the local Kuramoto parameter, R, see 

Methods) at the optimal fitting point of the three whole-brain model regimes contrasted with the 

empirical data (right subpanel) by rendering continuous snapshots for segments separated in time 

rendered on a flatmap of a brain hemisphere.  

Modelling results for less fine parcellation with 68 regions 

Following the precise results of fitting the whole-brain model to the empirical data using a fine 

parcellation, we turned our attention to showing the fitting a less fine parcellation. We found that this 

was also not able to distinguish between fluctuating subcritical and oscillatory supercritical regimes. 

Specifically, we found that the level of fitting the empirical metastability defined as the standard 

deviation of the global Kuramoto order parameters is the same for both regimes. 

 We used during this second analysis a smaller brain parcellation, the Desikan-Killiany with 68 cortical 

regions of interest (ROIs), to be able to establish a node-level perturbative in silico protocol.  We repeated 

the fitting procedure by exploring the parameter space (G,β) for the model in fluctuation supercritical 

and oscillatory subcritical regime. This parcellation is not suitable for computing amplitude turbulence, 

as is defined in Kawamura et al. (Kawamura et al., 2007) and Deco et al. (Deco & Kringelbach, 2020), 

due to the lack of spatial resolution. We thus fitted the metastability, which is the most similar measure 

computable in coarser parcellation (Deco, Kringelbach, et al., 2017). We found the pair (G,β) that 

minimizes the absolute difference between the empirical and simulated levels of metastability.  

 Figure 3 shows the results of fitting the Hopf whole-brain model in the two different regimes 

(fluctuating and oscillatory, see upper row panel A and B) for the Desikan-Killiany parcellation (upper 

row panel C) in terms of functional connectivity and metastability. For each of these regimes, we defined 

a grid of the parameter space (G,β), and for each pair in the grid, we simulated 100 times the whole-brain 

dynamics, and we computed the level of fitting between the metastability (second row) and simulated 

and empirical FC (third row). 

 We found the optimal fitting for the level of metastability for each of the two regimes, indicated with 

a star in the second row of Figures 3A-B. Figure 3A shows the best fit for the fluctuating regime (a=-

0.02) with optimal (G,β)=(2.2,0) with minimal absolute difference between the simulated and empirical 

metastability M (here eM=4x10-3). Figure 3B shows the best fit for the oscillatory regime (a=1.3) with 

optimal (G,β)=(0.4, 2.2), which also produces an excellent fit with eD=1x10-3.  We also computed the 
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grid fitting for the FC, defined as the Euclidean distance between the simulated and empirical FC, for 

two regimes (Figures 3D-E), with a star in the grid indicating the optimal fit of metastability (which is 

the criterium for selecting the optimal working point since this is the most similar measure to turbulence). 

Note that these points do not correspond to the optimal fitting with FC in the two regimes.  

 The statistical comparison between the optimal working point of both model regimes (defined by the 

optimal fitting of the level of metastability, indicated with the stars in Figures 3A-B) is quantified in 

Figure 3C and F.  We simulated 20 times the 100 repetitions of the whole-brain model at each regime 

working point and compare the level of metastability fitting and functional connectivity fitting (see 

Methods).  

 The results show that the fitting of the data by the fluctuating and oscillatory regimes is excellent 

(mean eM=6x10-3 in both cases) and not significantly different (Wilcoxon n.s, comparing first with the 

second bar in the second row of Figure 3C).  On the other hand, the fluctuating regimes better fit the 

functional connectivity than the oscillatory regime (Wilcoxon p<0.001, comparing fluctuations with 

oscillations boxes in Figure 3F). 

 We also generated model-surrogates to compare with the corresponding optimal working point by 

setting the parameters of the model in the optimal working point but increasing β. Hence, we produced 

two surrogate models: surr_fluct for the fluctuating model surrogates using a=-0.02 and (G,β) =(2.2, 3) 

and surr_osc for the oscillatory model surrogates using a=1.3. and (G,β) =(0.4, 3). The results clearly 

show significant differences comparing with the level of metastability fitting obtained by the optimal 

working point of the model in different regimes (Wilcoxon p<0.001, comparing fluctuation with 

surr_fluct box and oscillations with surr_osc boxes in the second row of Figure 3C). The same results 

were obtained for the fitting of the functional connectivity (Wilcoxon p<0.001, comparing fluctuation 

with surr_fluct box and oscillations with surr_osc boxes of Figure 3F).  

 The results also show that it could not distinguish between fluctuating subcritical and oscillatory 

supercritical regimes in coarser parcellation in terms of fitting the empirical data. We then focused our 

analysis on the perturbation response as an approach to disentangle between both models. 

Global strength-dependent perturbation distinguishes between fluctuating and oscillatory regimes 

We implemented a global strength-dependent sustained perturbation that allows us distinguishing 

between fluctuating and oscillatory regimes for both the fine and coarse parcellations (Figure 4). We 

generated an in silico stimulus by adding an external periodic force applied equally to all nodes at the 

optimal working point in both model regimes (see Methods). We varied the strength of the external 

forcing F0 from 0 to 0.001 in steps of 0.0001, and for each amplitude, we simulated 100 times the 
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perturbed and unperturbed model signals. We obtained the local and global Kuramoto order parameters 

(lKoP and gKoP) for the perturbed and unperturbed cases for the fine and coarse parcellation, 

respectively. We then computed the local and global Susceptibility and absolute Information Capacity 

as the mean and standard deviation of the subtraction between the perturbed and unperturbed lKoP and 

gKoP across trials (see Methods). We repeated this computation 20 times and Figure 4C-F shows the 

mean and standard deviation across repetitions. The subcritical fluctuating regime shows a rapid increase 

of the level of local Susceptibility in the fine parcellation (Figure 4C) and the level of global 

Susceptibility in the coarse parcellation (Figure 4D). The global absolute Information Capability also 

rapidly increase while the forcing strength increases (Figure 4E-F dark colors). 

 In the supercritical oscillatory regime, the global Susceptibility and absolute Information Capability 

are constant in both parcellation along F0 (Figure 4C-F light colours). It is remarkable that the level of 

these measurements in this regime keep almost zero for all the strength forcing range, showing that the 

model in that regime do not respond under this global perturbation. 

Local strength-dependent perturbation also distinguishes between fluctuating and oscillatory regimes 

We then used local strength-dependent sustained and non-sustained perturbations that also allows us 

distinguishing between fluctuating and oscillatory regimes (Figure 5). This is demonstrated using the 

less fine parcellation. This reduction of the number of regions allowed us to define a node-by-node 

perturbative approach. Firstly, we explored the model’s regime response by applying a sustained 

perturbation, and then we quantified the response to non-sustained external perturbation by the PCI. 

Susceptibility and Information Capability after local strength-dependent sustained perturbations 

We systematically perturbed the model in each regime optimal working point by adding an external 

periodic force (see Figure 5A and Methods). We performed this in silico stimulation approach by forcing 

the 34 pairs of homotopic nodes (in the parcellation with 68 nodes) with forcing strength ranging from 0 

to 0.02 in 0.001 steps. For each combination of nodes and amplitude, we ran 50 trials with 100 

simulations, each computing the global Kuramoto Order parameter (gKoP) for the perturbed and 

unperturbed case (see Methods). We defined the node-level global Susceptibility and Information 

Capability as the mean and standard deviation across simulations of the subtraction between the node-

perturbed and unperturbed gKoP, and we then averaged across trials. Figure 5A (second and third rows) 

shows the results for oscillatory (supercritical) and fluctuating (subcritical) regimes for both 

measurements. As in the global perturbation experiment, we noticed that the supercritical regime shows 

almost non-response under the perturbation, while the subcritical case presents variations across nodes 
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and forcing amplitude. In this node-level perturbative approach, we can determine a hierarchy of 

perturbative effects by assessing node-by-node perturbation effect while the forcing amplitude increases. 

Figure 5A left panels shows a render onto brain cortex for both measurements in the subcritical regimen 

for 0.01 of forcing strength.  

PCI after local strength-dependent, non-sustained perturbations 

We slightly modified our perturbative approach to bring the in silico stimulation protocol closer to in 

vivo experiments, as proposed by Massimini and colleagues (Casali et al., 2013). We simulated the 

external perturbation as an additive external force by pairs of homotopic nodes as in previous sections, 

but in this case, we focused on the response after the perturbation ends. Specifically, we simulated 600 

volumes with the perturbation active, and we then evaluated the evolution of the signals in the following 

200 volumes without perturbation. To investigate the behaviour of both model regimes, we adapted the 

PCI as is defined in Massimini et al. (Casali et al., 2013) to be applied on simulated BOLD signals (see 

Methods). This index gauges the amount of information contained in the integrated response to an 

external perturbation. Figure 5B displays the evolution of the PCI, computed as the normalised perturbed 

algorithmic complexity (ā̅) minus the background algorithmic complexity (āĀ̅ÿāā), for both model 

regimes, for each pair of nodes and forcing strength. We found that in the oscillatory regime, the 

behaviour of the system after the perturbation is almost the same as the behaviour of the system without 

perturbation (āĀ̅ÿāā~ā)̅, for all nodes and amplitudes (Figure 5B middle right panel). On the other hand, 

assessing the perturbation of the subcritical regime unveils a node hierarchy of the response under 

external perturbations (Figure 5B middle left panel). 

 These local responses under perturbations rendered onto the brain cortex for the maximal forcing 

amplitude is displayed in Figure 5B (right panel). It is remarkable that in the subcritical case, a set of 

nodes present the strongest response in terms of intensity (low values of PCI) and sensitivity (for lower 

forcing amplitudes). Most nodes present a moderate response for perturbations with forcing amplitude 

higher than 0.01, and other nodes remain unaltered.   

Regional heterogeneity and node-hierarchy perturbative organization 

As shown in Figure 6, we also investigated how the node-hierarchy established in the previous section 

can be related to other sources of regional heterogeneity. We used different external sources of local 

heterogeneity, the T1w:T2w ratio and the principal component of transcriptional activity of an extensive 

set of specific brain genes (see Methods). We also compared with the anatomical and functional 

connectivity strength of each region, computed as þÿĀāÿăĄýā/(Ā) = ∑ ÿĄĆ�Ć=1  and �ÿĀāÿăĄýā/(Ā) =
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∑ �ÿĄĆ�Ć=1  (well-known as Global brain connectivity, GBC), respectively, where C is the anatomical 

structural connectivity, and FC is the functional connectivity (see Methods).  Finally, we compared the 

PCI node-hierarchy with the one found with global Susceptibility and Information Capability. We 

observed that the PCI hierarchical organisation is highly correlated with the other two perturbative 

measures obtained in the study. It is remarkable that an important difference between both experiments 

relies on that the first measures are computed after the perturbation while the second measures are 

computed after the perturbation.  

Revealing the causal mechanistic principles of empirical results modulating resting state networks using 

stimulation 

Experimental research has shown that TMS stimulation of specific brain regions can differentially 

modulate specific networks (Santarnecchi et al., 2018; Tik et al., 2017). We wanted to reveal the causal 

mechanistic principles and performed a network-level analysis testing the response of both model 

regimes (fluctuations and oscillations) using the Desikan-Killiany 68 parcellation, where each parcel 

belongs to one of the seven Yeo networks. The existing stimulation protocol was then applied in the same 

manner as in the previous analysis but now using a fixed forcing amplitude (�0 = 0.01). We computed 

the mean functional connectivity for the parcels belonging to each network using both fluctuating and 

oscillating regimes before and after the perturbation.  

 Figure 7A shows the seven Yeo resting state networks rendered on the medial and lateral surface of 

the right hemisphere of the brain. Figure 7B shows the differences between the perturbed and 

unperturbed FC for each model regime and the seven Yeo networks as a function of the perturbed node. 

We found that the fluctuating regime enhances the functionality for all perturbed nodes and all networks, 

while the oscillatory regimen is essentially unaltered. Figure 7C shows boxplots of the level of FC for 

each of the seven Yeo networks for the unperturbed and perturbed case for each model regime. We 

observed that not only the subcritical regime enhances the FC for all network but also allows representing 

different levels depending on the network. In contrast, the subcritical regime is almost constant for all 

networks.  

 Given that we found that only the fluctuating regime is able to modulate the network after perturbation, 

we only used this regime to stimulate a representative region (in red) of different resting state networks 

(Figure 7D, left column). This gives rise to a stabilisation of the respective network.  Figure 7D (middle 

column) shows renderings of the normalised difference between the perturbed and unperturbed activity, 

thresholded to top the 15% for five resting state networks, with the right column showing this change as 

spiderplots of the elicited activity for each seven Yeo resting state network. As can be seen, the stimulated 
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network is also the most stabilised. This result demonstrates the underlying principles for the empirical 

findings of modulation of resting state network following stimulation. This provides crucial empirical 

evidence for the fluctuating regime.  

 

Discussion 

Here we used whole-brain models to address a fundamental question in neuroscience of the origin of the 

fluctuations and oscillations found in global brain dynamics. We used strength-dependent perturbations 

of the whole-brain model fitting the empirical data to give a causal mechanistic description of human 

brain function, showing that this is generated by a delicate balance between fluctuation and oscillation 

on the edge of criticality. These results were obtained using the large-scale Human Connectome 

neuroimaging dataset of 1003 participants, which were subsequently used for massive computational 

whole-brain modelling studies. Crucially, the underlying causal mechanistic principles of empirically 

reported modulation of specific resting state network can be explained by stimulation in the fluctuating 

regime. Overall, the present strength-dependent perturbation framework demonstrates that maximal 

flexibility for the human brain comes from whole-brain dynamics poised on the edge between fluctuating 

and oscillatory regimes. 

 Specifically, we demonstrated that fluctuations and oscillations regimes of the Hopf whole-brain 

model are equally good at fitting the empirical data in terms of turbulence and functional connectivity 

representing asynchronous and synchronous background dynamics. We also demonstrated that strength-

dependent in silico perturbations, either local or global, sustained or non-sustained provide valuable 

insights to unveil which regime is suitable for representing global brain dynamics and its capacity to 

encode external stimuli.  

 

Fluctuating and oscillatory regimes are distinguished by global strength-dependent perturbation  

We found that global strength-dependent and sustained perturbation distinguishes between fluctuating 

and oscillatory regimes. The level of Susceptibility and Information Capability rapidly increase with 

amplitude strength in the subcritical fluctuating regime in fine-scale and coarser parcellations with 1000 

and 68 regions, respectively. Conversely, the level of both measures in the supercritical oscillating regime 

remains almost constant along with the full range of amplitude strength. This result disentangled the two 

models, where the subcritical model clearly outperforms the supercritical model, providing a novel 

indication that the optimal dynamical behaviour is on the edge of criticality, between fluctuations and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2022. ; https://doi.org/10.1101/2021.09.23.461520doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.461520
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

oscillations, as suggested by previous research (Deco et al., 2013; Deco, Kringelbach, et al., 2017; 

Spiegler et al., 2016).  

 Also considering the similarities with the thermodynamic phase transition and bifurcations in 

dynamical system (Bose & Ghosh, 2019), this result can be interpreted in the terms of the statistical 

criticality in brain dynamics. Previous research has demonstrated that the brain dynamics is poised near 

criticality, i.e., near the critical point of a phase transition (Chialvo, 2010; Cocchi et al., 2017), and at 

this point the system has the higher susceptibility, where a small perturbation is able to be propagated 

along the whole system. Following this comparison, we can claim that to be on the edge of the bifurcation 

is comparable to staying close to the critical point of the phase transition and the result of both scenarios 

is to amplify the effect of perturbation and thus increase complexity. 

Local strength-dependent perturbation can distinguish between dynamical regimes 

Furthermore, it is also possible to investigate the model’s regime responses by applying local strength-

dependent in silico perturbations. To this end, we used a less fine parcellation with 68 regions and 

systematically applied an external strength-dependent periodic force to all pairs of homotopic nodes.  We 

also found that local strength-dependent and sustained perturbations efficiently discriminate between 

fluctuating and oscillatory regimes. We found that the node-by-node Susceptibility and Information 

Capacity increase with amplitude strength in the subcritical fluctuating regime, while in the supercritical 

regimen, both measures remain almost constant under the perturbations. Even more, in this node-level 

perturbative approach, we found a hierarchy of perturbative effect by assessing node-by-node response 

to the perturbation while the forcing amplitude increases in terms of Susceptibility and Information 

Capacity measures. These results extend the findings from previous research on elucidating the principles 

of deep brain stimulation (Saenger et al., 2017), transcranial direct current stimulation (Kunze et al., 

2016) and recent research demonstrating in principle how to awaken a model of the sleeping brain (Deco 

et al., 2019; Perl et al., 2021) or how specific functional networks emerge after local stimulation (Spiegler 

et al., 2016, 2020).  

Local strength-dependent, non-sustained perturbations changes the PCI 

Inspired by the pioneering results of perturbing the brain directly revealed by the empirical studies of 

Massimini and colleagues (Casali et al., 2013), we created a perturbative in silico strength-dependent 

local and non-sustained protocol which can provide testable empirical predictions in human participants 

by extending their use of PCI (Casali et al., 2013; Ferrarelli et al., 2010; Goldman et al., 2020; Rosanova 

et al., 2012). We found that in the oscillatory supercritical regime, the behaviour of the system after the 
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perturbation is almost the same as without the perturbation for all nodes and amplitudes. The 

quantification of the response after the perturbation in the subcritical regime unveiled a node hierarchy 

of the response under external perturbations. As such, we were able to represent this hierarchy rendering 

onto the brain the value of the obtained PCI for each node at the maximal forcing amplitude.  

Hierarchical organisation revealed by perturbation of whole-brain model 

We were able to reveal the hierarchical organisation through computing by PCI following local strength-

dependent perturbations and comparing with other sources of regional heterogeneity. We used four of 

heterogeneity: 1) the myelination ratio (T1:T2w ratio), 2) the principal component of transcriptional 

activity of a large set of specific brain genes (Arnatkeviciute et al., 2019; Deco, Kringelbach, et al., 2021; 

Hawrylycz et al., 2012), 3) node-strength of structural and functional connectivity and 4) the hierarchies 

obtained for the Susceptibility and Information Capability computed for the local and sustained strength-

dependent perturbations. We demonstrated that the PCI hierarchical organisation following local 

strength-dependent perturbations is highly correlated with the other two perturbative measures obtained 

in the study, which is correlated with the node-strength of structural and functional connectivity. 

Conversely, the PCI hierarchical organisation does not correlate with the T1:T2w ratio and PC1 of genes 

transcriptional activity. 

 These results show the power of perturbative in silico framework for addressing a fundamental 

question in neuroscience: namely, the role of the local fluctuations and oscillations in shaping the 

emergent global brain dynamical. By investigating the dynamics of the brain through a Hopf whole-brain 

model that allows switching from noisy asynchronous dynamics towards synchronous oscillations (Deco, 

Kringelbach, et al., 2017) we show that both dynamical regimes in microscopic and macroscopic scales 

are associated with different global brain states: while the first seems to be the dynamical background 

need to support a responsive brain state, the second is related to reduced states of consciousness 

(Goldman et al., 2019).  

 However, our framework is capable of distinguishing between both dynamical scenarios, but we also 

found that the perturbative hierarchy can provide an independent source of local information that can be 

used as prior in studies where heterogeneity plays a role (Deco, Kringelbach, et al., 2021; Kringelbach 

et al., 2020). These findings also pose a question regarding the relationship between each regional 

response capability to external stimuli and the role of fluctuations and oscillations. Future research could 

investigate heterogeneous models that allow each region to be in fluctuating or oscillatory regimes, the 

causal link between the local model regime and whole-brain susceptibility. Ultimately, this could help 
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cast new light on the mechanistic interpretation of the local dynamics responsiveness in terms of the 

global response (Destexhe & Contreras, 2006).  

Empirical evidence for the fluctuating regime 

Finally, we evaluated the ability of stimulation in the fluctuating regime for modulating resting state 

networks by studying the functional connectivity over the entire network. This was inspired by 

experimental results demonstrating that different stimuli can bring about network-specific modulation 

(M. D. Fox et al., 2012; Santarnecchi et al., 2018; Tik et al., 2017). The local and sustained stimulations 

in the whole-brain model may approximate invasive stimulation techniques such as deep brain 

stimulation, DBS  (Kringelbach et al., 2007), as well as non-invasive stimulation techniques such as 

transcranial magnetic stimulation, TMS (Dayan et al., 2013).  We compared the dynamically responsive 

networks to external stimulus in different brain targets for both model regimes. In fluctuating/subcritical 

regime, the brain reacts to specific local stimulation with activity patterns that closely mimic the seven 

Yeo resting state networks (Yeo et al., 2011). We found that perturbing a region in a given resting state 

network led to stabilisation of that network. Our results are aligned with previous computational studies 

demonstrating that perturbative approaches are able to predict empirical observation, such as the 

emergence of large-scale functional networks (Spiegler et al., 2016; Yang et al., 2021). Importantly, and 

supporting the superiority of the subcritical, fluctuating regime, in the supercritical oscillation regime the 

brain response remains almost unaltered when perturbing all nodes in the seven Yeo networks. In 

summary, preserving the resting state network structure is better represented by the subcritical regime, 

showing that dynamically responding brain networks are the outcome of a model poised on the edge of 

bifurcation. 

 

Challenges and opportunities for in silico perturbation approaches 

 The findings have been made possible by the whole-brain modelling framework developed over the 

last decade (Breakspear, 2017; Deco, Kringelbach, et al., 2017; Honey et al., 2009; Jirsa et al., 2002) A 

clear advantage of using such data-constrained whole-brain models is its potential use for studying 

stimulation protocols, as this enables an exhaustive search and optimization of all underlying parameters 

and locations in silico, and it may offer insights into the self-organization of widespread networks (Deco 

et al., 2018, 2019). This strategy allowed to computational assess the stimulation-induced transition 

between brain states as an insight of treatments prognosis (Kringelbach & Deco, 2020),  awakening from 

sleep stages (Deco et al., 2019), or defined perturbative metrics as a brain state characterization (Perl et 

al., 2021). 
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    Nevertheless, despite there is much empirical evidence that clearly reflects the change of dynamics 

following perturbations (Angelakis et al., 2014; Ozdemir et al., 2020; Zhang & Song, 2017), and the 

computational in silico results are really promising, the field awaits to confirm the whole-brain modelling 

predictive power. A potential path to doing such experiments could come from generative whole-brain 

models of the brain activity in animals (including non-human primates) (Deco et al., 2014; Ponce-

Alvarez et al., 2021; Shen et al., 2019) that allow performing both models and empirical tests (Yang et 

al., 2021). In the future, these models could be used for investigating the changes in brain state between 

awake and anaesthesia non-human primates (Barttfeld et al., 2015), and suggest potential stimulation 

sites for transitioning between brain states, which can then be directly probed in these animal models. In 

this work, we pursued a novel approach by joining experimental and computational approaches. Our 

findings point to the possibility of strategically defined synthetic brain stimulations close to the specific 

experiments as an extension of the PCI (Casali et al., 2013; Goldman et al., 2020).  

 

 Overall, here we have shed further light on a long-standing question in neuroscience, namely how and 

why brain states are characterised by complex, fluctuating and oscillating dynamics. Our results provide 

new evidence using strength-dependent perturbations of the whole-brain model, revealing that brain 

function emerge at a delicate balance between fluctuation and oscillation on the edge of criticality.  
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Methods 

Neuroimaging ethics 

The Washington University–University of Minnesota (WU-Minn HCP) Consortium obtained full 

informed consent from all participants, and research procedures and ethical guidelines were followed in 

accordance with Washington University institutional review board approval. 

Neuroimaging Participants 

The data set was obtained from the Human Connectome Project (HCP) where we chose a sample of 1000 

participants during resting state. The full informed consent from all participants was obtained by The 

Washington University–University of Minnesota (WU-Minn HCP) Consortium and research procedures 

and ethical guidelines were followed per Washington University institutional review board approval.  

Brain parcellations 

To compute the empirical and simulated level of turbulence in brain dynamics defined as Deco et al. 

(Deco & Kringelbach, 2020), we used the publicly available population atlas of cerebral cortical 

parcellation created by Schaefer and colleagues (Schaefer et al., 2018). They provide several 

parcellations sizes available in surface spaces, as well as MNI152 volumetric space. We used the 

Schaefer parcellation with 1000 brain areas, estimated the Euclidean distances from the MNI space, and 

extracted the timeseries from the HCP surface space version.  

 Desikan and colleagues created an automated labelling system subdividing the human cerebral cortex 

into standard gyral-based neuroanatomical regions identifying 34 cortical ROIs in each hemisphere 

(Desikan et al., 2006). In the second section of this work, we used this parcellation to assess 

systematically the perturbation protocol ROI by ROI.  

Neuroimaging acquisition for fMRI HCP  

The HCP web (http://www.humanconnectome.org/) provides the complete details for the acquisition 

protocol, participants information, and resting-state data. We used one resting-state acquisition of 

approximately 15 minutes, acquired for 1003 HCP participants scanned on a 3-T connectome-Skyra 

scanner (Siemens). 

Preprocessing and extraction of functional timeseries in fMRI resting data 

The resting-state data were preprocessed using FSL (FMRIB Software Library), FreeSurfer, and the 

Connectome Workbench software (Smith et al., 2013) as reported in (Deco, Perl, et al., 2021), which is 
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described in detail on the HCP website. Briefly, the preprocessing included correction for head motion, 

spatial and gradient distortions, intensity normalisation and bias field removal, registration to the T1-

weighted image, transformation to the 2mm Montreal Neurological Institute (MNI) space, and FIX 

artefact removal (Schröder et al., 2015; Smith et al., 2013). Artefactual components were removed by 

using ICA+FIX processing (Independent Component Analysis followed by FMRIB’s ICA-based X-

noiseifier (Griffanti et al., 2014)). Preprocessed timeseries of all grayordinates are in HCP CIFTI 

grayordinates standard space, and available in the surface-based CIFTI file for each participant. 

    Custom-made Matlab scripts were applied using the ft_read_cifti function (Fieldtrip toolbox 

(Oostenveld et al., 2011)) to extract the timeseries of the grayordinates in each node of the Schaefer 

parcellation. Furthermore, the BOLD timeseries were transformed to phase space by filtering the signals 

within the range 0.008-0.08 Hz (M. Fox, 2005), and the low-pass cut-off to filter the physiological noise, 

which tends to dominate higher frequencies (Cordes et al., 2001; M. Fox, 2005). 

Structural connectivity using dMRI 

The structural connectivity was obtained from the Human Connectome Project (HCP) database, which 

contains diffusion spectrum and T2 weighted imaging data from 32 participants. The acquisition 

parameters are described in detail on the HCP website. Briefly, the neuroimaging data were processed 

using a generalised q-sampling imaging algorithm developed in DSI studio (http://dsi-

studio.labsolver.org). A white-matter mask was estimated by segmenting the T2-weighted images and 

images were co-registered to the b0 of the diffusion data by using SPM12. In each participant, 200,000 

fibres were sampled within the white-matter mask. Fibres were transformed into MNI space using Lead-

DBS (Horn & Blankenburg, 2016). We used the standardised methods in Lead-DBS to produce the 

structural connectomes for both Schaefer 1000 parcellation (Schaefer et al., 2018) and Desikan-Killiany 

68 parcellation (Desikan et al., 2006), where the connectivity was normalised to a maximum of 0.2. The 

preprocessing implemented is freely available in the Lead-DBS software package (http://www.lead-

dbs.org/) and is described in detail by Horn and colleagues (Horn et al., 2017). 

Whole-Brain Model 

Whole-brain models have been used during the last decade to describe the most important features of 

brain activity. These models provide an optimum balance between complexity and realism, based on the 

fact that despite the macroscopic collective brain behaviour is an emergent of millions of smalls units 

interacting endowed with independent properties. One of the macroscopic dynamical features is that the 

collective behaviour dynamics can range from fully synchronous to stable asynchronous state governed 
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by random fluctuations. The simplest dynamical system capable of presenting both behaviours is the one 

described by a Stuart Landau non-linear oscillator, which is mathematically described by the normal 

form of a supercritical Hopf bifurcation:   

    
dzdt = (a + iω)z 2 (1 + ��)|z|ÿ2         (1) 

Where z is a complex-valued variable (ÿ = ý + �þ), ω is the intrinsic frequency of the oscillator, and β 

is the shear factor. The bifurcation parameter a changes qualitatively the nature of the solutions of the 

system, if  a>0 the system engage in a limit cycle and presents self-sustained oscillations so-called the 

supercritical regime and when a<0 the dynamics decay to a stable fixed point so-called the subcritical 

regime (Fig. 1E). 

 The coordinated dynamics of the resting state activity are modelled by introducing coupling between 

these oscillators. Previous research has demonstrated that whole-brain models based on Stuart Landau 

oscillators ruling the local dynamical behaviour have the capability to describe the time average 

behaviour (static functional connectivity) and dynamical behaviour (functional connectivity dynamics – 

FCD) on brain dynamics when the coupling between the oscillators is determined by the structural 

connectivity (Deco, Kringelbach, et al., 2017; Hansen et al., 2015; Jobst et al., 2017). Here, based on 

recent work, we assume that the coupling is determined by a combination of the exponential distance 

rule (EDR) and the long-range connection present in the structural connectivity (EDR-LR) (Deco, Perl, 

et al., 2021).  The mathematical expression that rules this coupling factor is: 

    ÿÿĀ = �2�∗ÿÿĀ + ÿý        (2) 

Where, λ stands for the exponential space decay fitted from empirical data and fixed at λ=0.18 mm-1 

(Deco & Kringelbach, 2020), rij is the Euclidian distance between the node i and j and LR are the long-

range connections extracted from the anatomical structural connectivity. The dynamical of the region 

(node) i in the coupled whole-brain system is described in cartesian coordinates: 

 Ă�ă(�ÿ)Ăā = dxidt = aixi + [xi2 + yi2](�yi 2 xi) 2 ωiyi + G ∑ CijNj=1 (xj(t) 2 xi) + �ÿηi(t)  (3) ĂĀă(�ÿ)Ăā = dyidt = aiyi 2 [xi2 + yi2](βýÿ + yi) 2 ωixi + G ∑ CijNj=1 (yj(t) 2 yi) + �ÿηÿ(t)  

 

Where ηi(t) is an additive Gaussian noise with standard deviation ν and G is a factor that scales the 

coupling strength equally for all the nodes.  This whole-brain model has been shown to reproduce 

essential features of brain dynamics observed in different neuroimaging recordings (Deco, Kringelbach, 

et al., 2017; Piccinini et al., 2021) in the subcritical regime (i.e., a<0) and no shearing effect (β=0).  
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Model optimal working point in (β,G) parameter space and regime comparison 

We incorporate the shear factor as a global fitting parameter and the global scaling factor (G). In the first 

part of this study, we fit the level of turbulence using the Schaefer 1000 parcellation. We perform an 

exhaustive exploration of the parameter space (β,G), seeking the optimal working point of the model in 

noise regime (a=-1.3), subcritical regime (a=-0.02) and supercritical regime (a=1.3). In the supercritical 

case, we explore a grid of β=[1.7; 2.5] and G=[0.13; 0.22] in 0.1 steps, whereas in the noise and subcritical 

case we explore a grid of β=[0; 0.8] and G=[0.45; 1.8] in  steps of 0.1 and 0.15, respectively. We generate 

100 simulations with the same number of volumes (1200 volumes) and sampling rate (0.72 s) of empirical 

data for each pair (β,G) on the grid and compute the simulated level of turbulence and functional 

connectivity as the Pearson correlation between nodes signals. We estimated the fitting of level of 

turbulence as the absolute value of the difference between the average of the empirical and simulated 

level of turbulence and the functional connectivity fitting as the Euclidean distance between the empirical 

and simulated FC.  

 For comparing how good each regime is at fitting the empirical data, we generate 100 simulations 

with the same number of volumes (1200 volumes) and sampling rate (0.72 s) as the empirical data at the 

optimal working point of the three regimes. We compute the error of turbulence fitting and the FC fitting 

as the average value across simulations. We repeat 20 times each set of simulations. We also reproduce 

the same amount of simulation for two model surrogates consisting in increase to 6 the value of the shear 

parameter (β) for the optimal working point of the subcritical and supercritical regime.  

 In the second part of this study, we change the parcellation to the Desikan-Killiany parcellation with 

68 nodes. The advantage of this parcellation is that it allows us to establish a systematical perturbation 

protocol at node scale within affordable computational time. The disadvantage is that the level of 

turbulence definition, as in Deco et al. (Deco & Kringelbach, 2020), is not computable in small 

parcellations, i.e., low distance resolution. We fit the level of metastability by computing the absolute 

difference between the empirical and simulated brain signals. We perform an exhaustive exploration of 

the parameter space (β,G), seeking the optimal working point of the model only in supercritical regime 

(a=1.3) and subcritical regime (a=-0.02), we discarded the noise regime in light of the results obtained 

in the fine parcellation analysis. In the supercritical case, we explore a grid of β=[1.9; 2.4] and G=[0.1; 

0.5] in 0.1 and 0.02 steps respectively, while in the subcritical case we explore a grid of β=[0; 1] and 

G=[0; 3.4] in  steps of 0.2 both. We generate 100 simulations with the same number of volumes (1200 

volumes) and sampling rate (0.72 s) of empirical data for each pair (β,G) on the grid and compute the 

simulated level of metastability and the functional connectivity fitting using the Euclidean distances 
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between the empirical and simulated FC  (see Methods below).  For comparing how good each regime 

is at fitting the empirical data, we generate 100 simulations with the same number of volumes (1200 

volumes) and sampling rate (0.72 s) as the empirical data at the optimal working point of the three 

regimes. We compute the error of metastability fitting and the FC fitting as the average value across 

simulations. We repeat 20 times each set of simulations. We also reproduce the same amount of 

simulation for two model surrogates, which increase to 3 the value of the shear parameter (β) for the 

optimal working point of the subcritical and supercritical regimes.  

Perturbative in silico protocol 

We model an external oscillatory perturbation and investigate the response of the whole-brain model 

fitted to the aforementioned observables in each parcellation in different model regimes.  The stimulus 

was represented as an external additive periodic forcing term, given by �Ā = �0Ā cos(�Āþ) +��0Ā sin(�Āþ), in the corresponding real and imaginary part of the node j equation (eq. 3).  The purpose 

of this perturbation was to model the effects of external stimulation (TMS, tACS). In the first part of this 

study, we simulate a global strength-dependent, sustained perturbation by applying the external forcing 

equally for all nodes (F0) at the node’s empirical frequency average (ω). We vary the forcing strength 

(F0) from 0 to 0.001 in 0.0001 steps. We then generate 50 trials with 50 simulations each one for each 

step and compute the perturbed and unperturbed local (global) Kuramoto order parameter in the fine 

(coarse) parcellation. Finally, we assess the behaviour of each model regime using the computation of 

local Susceptibility and Information capability in fine parcellation and through the global Susceptibility 

and local Information capability in coarser parcellation (see Methods below).  

 In the second part of the study, we simulate local strength-dependent, sustained and non-sustained 

perturbations adding an external periodic force by pairs of homotopic nodes. In this way, we obtain 34 

in silico experiments varying the amplitude of the force, F0, from 0 to 0.02 in steps of 0.005 and 

generating 50 trials with 100 simulations each one for each step. 

 We assess the model’s response to the sustained perturbation by computing the global Susceptibility 

and Information Capacity by pairs of homotopic nodes and amplitude. We assess the model’s response 

to the non-sustained perturbation through computing the perturbative complexity index (PCI) for each 

forcing amplitude and pair of perturbed nodes. 

Measure of amplitude turbulence 

The level of amplitude turbulence measure comes from the seminal studies by Kuramoto investigating 

turbulence in coupled oscillators (Kuramoto, 1984) and by Deco and Kringelbach that applied this 
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concept to whole-brain dynamics (Deco & Kringelbach, 2020). Specifically, in a coupled oscillator 

framework, the Kuramoto local order parameter (lKoP) represents a spatial average of the complex phase 

factor of weighted coupling of local oscillators. The modulus of the Kuramoto local order parameter 

(ýĄ(þ)) is considered a measure of the local level of synchronization and is computed as: 

    ýĄ(þ)�ÿ�(ā) = ∑ [ ��ý∑ ā�þþ ]Ć �ÿ�ý(ā)      (4) 

where φp is the phase of the BOLD signal of the node p and Cnp is the strength of the coupling between 

node n and p determined by the exponential distance rule (first term of Eq. 2). We then compute the 

amplitude turbulence, D, as the standard deviation across time and space of the modulus of the lKoP, 

Rn(t): 

    Ā = < ý2 > 2< ý >2        (5) 

where brackets stand for the average across time and space. 

We computed the error in fitting the level of turbulence (eD) as the absolute value of the difference 

between the empirical and simulated level of turbulence:  

 

    �Ā = ÿĀý(ĀĀÿă 2 ĀăăĆ)       (6) 

Measure of metastability 

The level of metastability measure was implemented in previous research to characterize the dynamics 

of the fluctuations in brain activity in different brain states (Deco, Kringelbach, et al., 2017; Jobst et al., 

2017; Piccinini et al., 2021). Briefly, the metastability denotes the variability of the global 

synchronization as measured by the Kuramoto order parameter (gKoP), gR(t),:  

    �ý(þ)�ÿ∅(ā) = ∑ �ÿ�ý(ā)ĄĆ /Ā       (7) 

where φp is the phase of the BOLD signal of the node p and n is the total number of nodes in the 

parcellation. Thus, the metastability is the standard deviation of gR(t) across time: 

    Ā = < �ý2 > 2< �ý >2       (8) 

The fitting of metastability is defined as the absolute difference between the empirical and simulated 

level of metastability: 

    �Ā = ÿĀý(ĀĀÿă 2 ĀăăĆ)       (9) 

Measure of Susceptibility 

We define the whole-brain model susceptibility as the brain’s sensitivity to the processing of external 

periodic stimulations. We perturb the Hopf model in the supercritical and subcritical regime by adding 
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an external periodic force with different amplitudes (see Methods, perturbative in silico protocols).  We 

estimate the sensitivity of the perturbations on the spatiotemporal dynamics following previous work, 

which determines the susceptibility in a system of coupled oscillators based on the response of the 

Kuramoto order parameter (Daido, 2015). In the first part of this study, we extend this concept by 

assessing the variability of the modulus of the local Kuramoto order parameter, i.e., ýĄ�0(þ)  for the 

perturbed case for each value of forcing amplitude (F0), and  ýĄ(þ) for the unperturbed case. We define 

local susceptibility in the following way: 

    χĂąāÿĂ(�0) = <<< ýĄ�0(þ) >ā 2< ýĄ(þ) >ā>āÿÿÿĂ>Ā   (10) 

where <>t,  <>trials and <>s  are the mean averages across time, trials, and space, respectively. 

In the second part of the study, we estimate the sensitivity of these perturbations by measuring the 

modulus of the global Kuramoto order parameter (gKoP), gR(t), as a measurement of the global level of 

synchronization of the n nodes signal (Deco, Kringelbach, et al., 2017): 

 We compute the gKoP (�ýă�0(þ)) for the perturbed case for each value of forcing amplitude (�0) and 

pairs of perturbed nodes (m) and �ý(þ) for the unperturbed case. We define the global Kuramoto order 

parameter and global Susceptibility as follows: 

    χýĂąĀÿĂ(�0, ÿ) = << �ýă�0(þ) >ā 2< �ý(þ) >ā>āÿÿÿĂ   (11) 

where <>t,  <>trials are the mean averages across time and trials.  

Measure of Information Capability 

We define the Information Capability as a measure to capture how different external stimulations are 

encoded in the dynamics. We perturb the model in both regimes as above and compute for the first part 

of the study the perturbed and non-perturbed local Kuramoto order parameter for each forcing amplitude 

and, for the second part, the global Kuramoto order parameter for each forcing amplitude and perturbed 

nodes. The analytical computation of the Information Capability is through the standard deviation across 

trials of the difference between the perturbed Kuramoto order parameters and unperturbed ones. For the 

first part of the study, when we compute the local Kuramoto order parameter is computed as follows: 

 ICĂąā(�0) = << (< ýĄ�0(þ) >ā 2< ýĄ (þ) >ā)2 >āÿÿÿĂ2 (<< ýĄ�0(þ) >ā2< ýĄ (þ) >ā>āÿÿÿĂ)2 >Ā  (12) 

For the second part of the work, we compute the global Kuramoto order parameter and perturb by pairs 

of homotopic nodes (m) at different forcing amplitude (F0): 

 ICýĂ(�0, ÿ) = < (< �ýă�0(þ) >ā 2< gý(þ) >ā)2 >āÿÿÿĂ2 (<< �ýă�0(þ) >ā 2< �ý(þ) >ā>āÿÿÿĂ)2  (13) 
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We then define absolute Information Capability (aIC) as the absolute difference between the IC at each 

forcing strength and the IC at zero-forcing for the global and local. 

Measure of PCI 

We compute the perturbation complexity index (PCI) following the study of Casali and colleagues 

(Casali et al., 2013), where they implemented this index to characterise the empirical response to external 

stimuli in different states of consciousness. We simulate the perturbation described above by an external 

periodic force applied by pairs of homotopic nodes with different forcing amplitudes. For each case, we 

generate 100 simulations with 800 volumes and a sampling rate (0.72 s) for the optimal working point 

of each model regime. The first 600 volumes with the external force perturbing the system and the last 

200 volumes without the perturbation.  : 

    ā�̅ = ā� Ăąý2��ÿ(�)         (14) 

where cL is the Lempev-Ziv complexity as a measure of algorithmic complexity (Lempel & Ziv, 1976), 

L is the length of the binary sequence, and H(L) is the source entropy of a sequence of length L that 

normalise the measure in order to be 1 to random sequences. For this purpose, we create a binary 

spatiotemporal distribution by z-scored the simulated times series after perturbation, ts(n,t), where if 

tszscore(n,t)>2=1 and if tszscore(n,t)<2=0. We then average across simulations the computed PCI for each 

pair of nodes and each forcing amplitude. To assess the response under external perturbation of both 

regimens, we compared the computed value after perturbation, ā�̅(�0, ÿ), with the background level 

computed over simulated signal in each regime working point without perturbation (ā�̅Āÿāā ) 

    �ÿ�(�0, ÿ) = ā�̅(�0, ÿ) 2 ā�̅Āÿāā      (15) 

Regional heterogeneity data 

Here, we use different sources of regional heterogeneity to compare with the node-level hierarchy 

establish by the perturbation response. We consider the ratio T1w:T2w, which is sensitive to myelin 

content (Burt et al., 2018) and the first principal component (PC1) of transcriptional activity for 1,926 

brain-specific genes. To this end, we use data from the Allen Institute Human Brain Atlas (AHBA), 

which comprises microarray data quantifying the transcriptional activity of >20,000 genes in >4,000 

different tissue samples distributed throughout the brain, taken from six post-mortem samples. The 

AHBA data were processed following the pipeline developed in Arnatkevicuite et al. (Arnatkeviciute et 

al., 2019). To adapt the gene expression information into node-level heterogeneity information to 

Desikan-Killiany parcellation, we used the same approach explained in previous work (Deco, 

Kringelbach, et al., 2021).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2022. ; https://doi.org/10.1101/2021.09.23.461520doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.461520
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

Statistical Analyses 

Differences in model fits to empirical properties, as well as the resting state network enhancement, were 

assessed using pairwise Wilcoxon rank sum tests. The significance of each model regime fitting was 

assessed by comparing with model surrogates.  
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Figure 1. Overview of the framework. A) Turbulence provides a good description of the seemingly 

chaotic dynamics of fluids as first described by Leonardo da Vinci (Deco, Kemp, et al., 2021) (left panel 

drawing of turbulent whirls). The physical principles giving rise to turbulence are given by high-

dimensional spacetime non-linear coupled systems. In turbulence, a fundamental property is its mixing 

capability which yields the energy cascade through turning large whirls into smaller whirls and 

eventually energy dissipation (middle panel). Furthermore, the turbulent energy cascade has been shown 

to be highly efficient across scales, as evidenced by a power law (right panel). B) Empirical brain 

dynamics was recently shown to exhibit turbulence (Deco & Kringelbach, 2020). The fMRI resting state 

analysis over 1000 healthy participants (left panel) shows the presence of highly variable, local 

synchronisation vortices across time and space (middle panel). Equally, the turbulent brain regime also 

gives rise to an efficient information cascade obeying a power law (right panel). C) Furthermore, Hopf 

whole-brain models (Deco, Kringelbach, et al., 2017) (left panel) were able to fit both turbulence and 

the empirical data at the same working point (right panel). D) We model brain activity as a system of 

non-linear Stuart Landau oscillators, coupled by known anatomical connectivity. E) The Stuart Landau 

equation (top panel) is suited for describing the transitions between noise and oscillation. By varying the 

local bifurcation parameter, a, the equation will produce three radically different regimes: Noise 

(a<<0), fluctuating subcritical regime (a<0 & a~0) and oscillatory supercritical regime (a>0) (bottom 

panel). F) We evaluated the fitting capacity of the three model regimes in terms of functional connectivity 

and turbulence (with the dashed line showing the empirical level of turbulence). G) However, it is well-

known that physical systems can be more deeply probed by perturbing them. Therefore, we used strength-

dependent perturbations to disentangle the generative roles of the fluctuation (subcritical) and 

oscillations (supercritical) models. We observed the evolution of two key perturbative measures, 

susceptibility and information capacity, as a function of the applied global sustained perturbation. H) 

Finally, in order to generate experimentally testable hypotheses, we used local strength-dependent, non-

sustained perturbations and measured the elicited dynamics in terms of the empirical perturbative 

complexity index (Casali et al., 2013). Specifically, we simulated 600 volumes with the perturbation 

active, and we then evaluated the evolution of the signals in the following 200 volumes without 

perturbation and computed the difference between the PCI after and before perturbation. 
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Figure 2. Model Schaefer1000 fitting of noise, fluctuations, and oscillatory for 1) Turbulence and 2) 

FC. A-C) We explored the bi-dimensional parameter space defined by β and G for noise, fluctuating and 

oscillatory regime (bifurcation parameter a=-1.3, a=-0.02 and a=1.3, respectively, indicated in upper 

row). We computed the level of amplitude turbulence error as the absolute difference between the 

empirical and simulated turbulence. Yellow stars indicate the (β, G) combination that reaches the lowest 

turbulence error in each regime. D) The upper subpanel shows the model fitting scheme in fine 

Schaefer1000 parcellation. The bottom subpanel displays the barplot that indicates the statistical 

distribution of the level of amplitude turbulence obtained by simulating 20 trials with 100 subjects for 

each model regime with the parameters set at the corresponding working point. We also display the 

results of two model-based surrogates created by increasing the shear parameter of each model regime. 

The red dashed line indicates the empirical level of amplitude turbulence averaged across participants. 
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The subcritical, supercritical and empirical level of turbulence are not statistically different (Wilcoxon 

test, ns), the rest of the comparison are statistically significant (Wilcoxon test, P<0.001).  E-G) We 

explored the bi-dimensional parameter space defined by β and G for noise, fluctuating and oscillatory 

regime computed the FC fitting as Euclidean distance between the empirical and simulated FC. Yellow 

stars indicate the (β, G) combination that reaches the lower turbulence error in each regime (the optimal 

working point obtained in panels A-C). H) The barplot indicates the statistical distribution of the FC 

fitting obtained by simulating 20 trials with 100 subjects for each model regime at the corresponding 

working point defined as the minimum turbulence error. We also display the results for the model-based 

surrogates.  All comparisons are statistically significant (Wilcoxon, P<0.001). I) Visualization of the 

change of the local Kuramoto order parameter, R, in space and time reflecting amplitude turbulence in 

a single simulation at the optimal working point of each regime (noise, fluctuating and oscillatory cases) 

and one participant (empirical). This can be appreciated from continuous snapshots for segments 

separated in time rendered on a flatmap of the hemisphere.  
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Figure 3. Model Desikan-Killiany fitting of fluctuations and oscillatory for 1) Metastability and 2) FC 

fitting in. A-B) We explored the bi-dimensional parameter space defined by β and G for fluctuating and 

oscillatory regime (bifurcation parameter a=-0.02 and a=1.3, respectively, indicated in the upper row) 

and computed the level of metastability error as the absolute difference between the empirical and 

simulated metastability. Yellow stars indicate the (β,G) combination that reaches the lowest metastability 

error in each regime. C) The upper subpanel shows the model fitting scheme procedure in coarser 

Desikan-Killiany parcellation. The bottom subpanel displays the barplot that indicates the statistical 

distribution of the metastability error obtained by simulating 20 trials with 100 subjects for each model 

regime with the parameters set at the corresponding working point. We also display the results of two 

model-based surrogates created by increasing the shear parameter of each model regime. The 

comparison between both model’s regimes at fitting the metastability shows that the two regimes are 

equally good (Wilcoxon, ns), while the rest of the comparisons are statistically significant (Wilcoxon, 

P<0.001).  D-E) We explored the bi-dimensional parameter space defined by β and G for fluctuating 

and oscillatory regime computed the FC fitting as Euclidean distance between the empirical and 

simulated FC. Yellow stars indicate the (β,G) combination that reaches the lowest metastability error in 
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each regime (the optimal working point obtained in panels A-B). F) The barplot indicates the statistical 

distribution of the FC fitting obtained by simulating 20 trials with 100 subjects for each model regime at 

the corresponding working point defined as the minimum metastability error. We also display the results 

of two model-based surrogates created by increasing the shear parameter of each model. All 

comparisons are statistically significant (Wilcoxon, P<0.001). 
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Figure 4. Global and sustained strength-dependent perturbation. A) We applied global strength-

dependent, sustained perturbation in Schaefer1000 parcellation, and B) the same perturbation in 

Desikan-Killiany parcellation. C-D) The evolution of local and global Susceptibility (fine parcellation, 

panel C and coarse parcellation, panel D, respectively) as a function of perturbation strength. In dark 

purple is shown the response of the subcritical fluctuating regime, while in light purple, the behaviour 

of the supercritical oscillating regime. The subcritical regime is clearly more susceptible than the 

supercritical regime that is almost unaltered by the perturbation. E-F) The evolution of global absolute 

Information Capacity (fine parcellation, panel E and coarse parcellation, panel F, respectively) as a 

function of perturbation strength. In dark orange is shown the response of the subcritical fluctuating 
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regime, while in light orange, the behaviour of the supercritical oscillating regime. The subcritical 

regime clearly changes the Information Capacity with the perturbation strength comparing with the 

supercritical regime that is almost unaltered by the perturbation.
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Figure 5. Local and Sustained/non-sustained strength-dependent perturbation. A) The evolution of 

Susceptibility (second row) and the absolute Information Capacity (third row) as a function of the 

perturbation strength and the perturbed pairs of homotopic nodes. The middle left panel displays the 

results for the subcritical regime (first row), and the middle right panel shows the response of the 

supercritical regime (first row). The right panels present the perturbative node hierarchy rendered onto 

the brain cortex for both measures (second and third row) for the case of a perturbation strength of 0.01 
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indicated with a box in middle left panel. B) Non-sustained PCI: The PCI is obtained by perturbing by 

pairs of homotopic nodes and different forcing amplitude. In the left column, the PCI results are obtained 

by perturbing the subcritical model in its corresponding working point with an external periodic force 

applied by pairs of homotopic nodes as a function of the amplitude of this forcing. In the right column, 

the same measurement is displayed but, in this case, for the supercritical model in its corresponding 

working point. The right panel shows the node-perturbative hierarchy in terms of PCI of each region for 

the maximum value of the forcing amplitude (indicated with black box in the middle-left panel) rendered 

onto a brain cortex. 
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Figure 6: The correlation between the node-level PCI and other sources of regional-level heterogeneity. 

A) The correlation between node-level PCI and the node-level global Susceptibility is computed with 

significant negative correlation. B)  C) The correlation between the node-level PCI and the first principal 

component of genes expression node information was computed with no correlation between variables. 

D) The same occurs in the correlation computed in blue circles between the node-level PCI and the ratio 

between the T1/T2 MRI. E) The correlation between the node-level PCI and the node functional 

connectivity strength (GBC) is computed obtaining a significant level of negative correlation. F) The 

correlation between the node-level PCI and the node anatomical strength is computed obtaining a 

significant level of negative correlation.  
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Figure 7. Revealing the causal mechanistic principles of empirical results modulating resting state 

networks using stimulation. A) For the reference, the seven Yeo resting state networks are rendered in 

the medial and lateral surface of the right hemisphere of the brain. B) Local and Sustained stimulation 

differentially enhances the resting state networks. The difference in the level of FC between the perturbed 

and unperturbed case is shown for the seven Yeo resting state networks as a function of the perturbed 

node. The subcritical regime enhances the FC for all networks and nodes, while the supercritical regime 

is much smaller and almost constant across nodes and networks. C) The seven subpanels show boxplots 

of the seven Yeo resting state networks with the FC of the two model regimes in the unperturbed and 

perturbed case. The subcritical regime shows higher levels for the 7 networks and while the supercritical 

case remains almost unaltered with the perturbation. The significance of the results was assessed using 

the Wilcoxon rank-sum test, where ∗∗∗ represents p<0.001. D) Left column shows a representative 

region (in red) in different resting state networks being perturbed in the fluctuating regime, which gives 

rise to a stabilisation of the respective network. The middle column is showing a rendering of the 

normalised difference between the perturbed and unperturbed activity, thresholded to top 15%. This can 

be seen in the spiderplots (right column), where the elicited activity is maximal for the stimulated 

network. 
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