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Summary 

To achieve the computational goal of rapidly recognizing miscellaneous objects in the 

environment despite large variations in their appearance, our mind represents objects 

in a high-dimensional object space to provide separable category information and 

enable the extraction of different kinds of information necessary for various levels of 

the visual processing. To implement this abstract and complex object space, the 

ventral temporal cortex (VTC) develops different object-selective regions with certain 

topological organization as the physical substrate. However, the principle that governs 

the topological organization of object selectivities in the VTC remains unclear. Here, 

equipped with the wiring cost minimization principle constrained by the wiring length 

of neurons in human temporal lobe, we constructed a hybrid self-organizing map 

(SOM) model as an artificial VTC (VTC-SOM) to explain how the abstract and 

complex object space is faithfully implemented in the brain. In two in silico 

experiments with the empirical brain imaging and single-unit data, our VTC-SOM 

predicted the topological structure of fine-scale functional regions (face-, object-, 

body-, and place-selective regions) and the boundary (i.e., middle Fusiform Sulcus) in 

large-scale abstract functional maps (animate vs. inanimate, real-word large-size vs. 

small-size, central vs. peripheral), with no significant loss in functionality (e.g., 

categorical selectivity, a hierarchy of view-invariant representations). These findings 

illustrated that the simple principle utilized in our model, rather than multiple 

hypotheses such as temporal associations, conceptual knowledge, and computational 

demands together, was apparently sufficient to determine the topological organization 

of object-selectivities in the VTC. In this way, the high-dimensional object space is 

implemented in a two-dimensional cortical surface of the brain faithfully. 
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Introduction 

The natural world we live in includes various kinds of objects. To make sense of and 

interact with the world, we need to identify, discriminate, and categorize these objects 

into groups based on their characteristics. How is this diversity of objects represented 

in mind? It is suggested that objects are represented metaphorically as points in a 

high-dimensional object space in our minds (Hebart, Zheng, Pereira, & Baker, 2020). 

The concept of such an abstract object space thus offers a framework for 

understanding the importance of linkage between the mind and the physical world 

(Love & Roads, 2021; Nosofsky, Sanders, Meagher, & Douglas, 2018; Riesenhuber, 

2020). However, regarding the fundamental question of how the brain produces the 

mind (Shiffrin, Bassett, Kriegeskorte, & Tenenbaum, 2020), it is still unclear, in 

particular, how the abstract and complex multi-dimensional object space is physically 

implemented in a two-dimensional cortical surface of our brain (Bao, She, McGill, & 

Tsao, 2020; DiCarlo & Cox, 2007). 

 A candidate cortical region for the implementation of the object space is human 

ventral temporal cortex (VTC), a large area dedicated to the complex task of object 

recognition and containing numerous subregions with distinct selectivities for specific 

object categories (Grill-Spector & Malach, 2004; Grill-Spector & Weiner, 2014; 

Hasson, Levy, Behrmann, Hendler, & Malach, 2002; Op de Beeck, Haushofer, & 

Kanwisher, 2008). In this region, neurons specialized for processing specific 

categories of objects are clustered into discrete brain subregions, e.g., lateral occipital 

complex (LOC), fusiform face area (FFA), parahippocampal place area (PPA), and 

extrastriate body area (EBA), with apparent selectivity discontinuities at the 

boundaries of these regions (Downing, Jiang, Shuman, & Kanwisher, 2001; Epstein & 

Kanwisher, 1998; Haxby, Gobbini, Furey, Ishai, Schouten, & Pietrini, 2001; 

Kanwisher, McDermott, & Chun, 1997; Nasr, Liu, Devaney, Yue, Rajimehr, 

Ungerleider, & Tootell, 2011; Weiner & Grill-Spector, 2013). In addition, all these 

specialized functional regions are distributed and even partially overlapped along the 

VTC, exhibiting a certain kind of large-scale topographical organization. For instance, 

within the VTC, it is known that the middle fusiform sulcus (MFS) separates the real-

world small-size, animate, and central maps from the large-size, inanimate, and 

peripheral maps, respectively. Here we asked whether the cortical map of the VTC is 
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the physical implementation of the object space and, specifically, what principles 

might govern the layout of such a map. 

Theoretically, the object selectivities in VTC might be organized in any spatial 

layout by any principle as long as it can faithfully transform the high-dimensional 

object space into a two-dimensional cortical map. However, the remarkable 

systematicity and consistency of the layout across individuals indicates that biological 

constraints must be the core of such an organization principle. Proposed by Ramon y 

Cajal and further developed by many others (Chklovskii & Koulakov, 2004; 

Koulakov & Chklovskii, 2001; Weigand, Sartori, & Cuntz, 2017), the wiring cost 

minimization principle, which minimizes the axonal and dendritic wiring cost 

associated with long-range connections, has been considered as a leading factor 

deriving maps in the brain. Here we incorporated this principle into a hybrid self-

organizing map (SOM) model to explain the emergence of the topographical 

organization in the VTC.  

There are two essential features of our computational model. First, unlike 

previous SOM models that usually take as input the stimulus space (or pixel space) to 

simulate the lower visual cortex (Bednar & Miikkulainen, 2003; Durbin & Mitchison, 

1990; Durbin & Willshaw, 1987; Kohonen, 1989; Konkle, 2021; Linsker, 1988), our 

SOM model takes a high-dimensional object representation space as the input and 

outputs a tuned map (i.e., an artificial cortical surface of the VTC), in which nearby 

units in the map project to nearby points in the object space (Figure 1). The high-

dimensional object representation space is obtained via a pre-trained deep 

convolutional neural network (DCNN), the AlexNet, because numerous studies have 

demonstrated a striking similarity in the response profile and functional hierarchy 

between the AlexNet and human ventral visual cortex (e.g., Cichy, Khosla, Pantazis, 

Torralba, & Oliva, 2016; Guclu & van Gerven, 2015; Khaligh-Razavi & 

Kriegeskorte, 2014; Liu, Zhen, & Liu, 2020; Wen, Shi, Zhang, Lu, Cao, & Liu, 2018; 

Yamins, Hong, Cadieu, Solomon, Seibert, & DiCarlo, 2014). Second and critically, 

the parameter of our SOM is biologically-constrained by the lateral wring span (i.e., 

lateral projection span of axon and dendrite) of neurons in the human temporal lobe to 

specifically simulate wiring optimization in human VTC. 

Having established the artificial VTC (hereafter referred to as the VTC-SOM), 

we then carried out two in silico experiments to systematically examine its functional 

specialization, topographic organization, and functionality reservation, including (1) 
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qualitatively exploring the emergence of functional regions for four well-studied 

object categories (i.e., face, scene, object, and body) and their topological relations, 

and the similarity in the topographic organization of large-scale abstract functional 

maps (i.e., animacy, real-word object-size, and eccentricity bias maps) between the 

VTC-SOM and the human VTC identified with the functional magnetic resonance 

imaging (fMRI); and (2) quantitively testing of functionality reservation of the object-

selective regions and networks in the VTC-SOM using the neurophysiological data 

recorded in the monkey inferior temporal cortex (ITC), a functionally homologous 

region to human VTC (Kriegeskorte, Mur, Ruff, Kiani, Bodurka, Esteky, Tanaka, & 

Bandettini, 2008). We found that the artificial VTC-SOM reproduced many 

topographic features of the human VTC and exhibited similar neural response patterns 

and functional hierarchy as those in monkey ITC. In short, our findings suggest that 

the wiring cost minimization principle in conjunction with the wiring span in the 

human temporal lobe is sufficient to determine the emergence of the map of object 

selectivity in the visual temporal lobe. 

 

Results 

Building an artificial VTC 

SOM model architecture 

We developed a hybrid computational model to simulate how the 2-dimensional 

cortical surface implements the high-dimensional object space. This hybrid 

computational model consisted of two modules (Figure 1A). The first module was a 

pretrained AlexNet (Figure 1A, left), which is used to obtain the high-dimensional 

object representation space (Figure 1B). Here, for computational simplification, the 

high-dimensional object space was reduced to a 4-dimensional object space using the 

Principal Component Analysis (PCA) and served as the input to the SOM (Figure 1A, 

middle). The second module was a SOM model equipped with the wiring cost 

minimization principle (Figure 1A, right). The SOM is not only a biologically 

plausible pattern-formation process (Obermayer, Blasdel, & Schulten, 1992), but also 

a simple algorithm enabling spatially adjacent units in a 2-dimensional lattice to 

project to nearby points in the object representation space according to the 

competitive-cooperative learning rule, which can minimize the overall wiring cost.  
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In brief, at each time step, a unit � at the location � in the lattice whose weight 

vector �! was closest to the pattern of a given input � randomly sampled from the 

object space, was thus defined as a winner unit (i.e., <winner-take-all= competition).  

� = 	min
!

' � 2 �! ' 

here, �! was a 1x4 vector of the connection weights between the unit in the 2-

dimensional lattice and the four-dimensional feature vector representing the object 

space. And the neighbors of the winner unit � in the lattice were updated with this 

formula: 

�!
(#$%) =	�!

(#) + �(#)�(�, �)(� 2 �!
(#)) 

where �(�, �) was the neighborhood function, given by a Gaussian form:   

�(�, �) = �'(!!'(!)
"$(!"'(")

"

)*" 	 
here, the parameter sigma (�) is the full width at half maximum (FWHM) of the 

Gaussian function. As evident from the formula, �(�, �) was also a weighting 

function, and the parameter sigma determined the number of neighbors of the winner 

unit, so that only a few neighbor units in the lattice responded to each input. The 

closer a neighbor unit was to the winner unit, the more its weights got updated. The 

farther away a neighbor unit was from the winner unit, the less it learned. In this way, 

spatially neighboring units cooperated in the learning procedure to form a continuous 

cluster in the lattice (see Methods for more details).  

Biological constraints 

Next and importantly, a critical step in our model implementation was determining 

the value of parameter sigma. Inspired by the biological findings of the lateral activity 

spreads of the cortical neuron in local cortical circuits, �(�, �) can be treated as a 

rough approximation of the cortical point spread (CPS) function (McILWAIN, 1975; 

Park, Cha, & Lee, 2013), which was determined by the lateral projection span of 

neurons (Gilbert & Wiesel, 1983; Grinvald, Lieke, Frostig, & Hildesheim, 1994). 

Therefore, in our SOM model, we set the parameter sigma as the lateral wiring span 

of neurons in the human temporal lobe and kept it constant throughout the model 

training. 
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Then, based on the axonal data (Mohan et al., 2015) and dendritic data 

(Benavides-Piccione, Ballesteros-Yáñez, DeFelipe, & Yuste, 2002) of the human 

temporal lobe, we calculated a local lateral projection span of neurons in the human 

temporal lobe, which approximated a maximum length about 2.7 mm. We next 

registered the 2-dimensional lattice to the human VTC region in the Multi-Modal 

Parcellation (MMP) template using a Symmetric Diffeomorphic Registration (SDR) 

algorithm (Figure 1C) (Avants, Epstein, Grossman, & Gee, 2008), and estimated a 

parameter sigma (i.e., 6.2) matching the maximum wiring length of neurons in the 

human temporal lobe (see Methods for more details). 

After the model training, the SOM learned a smooth 2-dimensional embedding 

to capture the structure of the object space, through which we obtained an artificial 

cortical surface of the human VTC (i.e., VTC-SOM). 

 

In silico Experiment 1: Spatial layout 

Similarity in the fine-scale object-selective regions 

After obtaining the VTC-SOM, we first examined the emergence of four classical 

object-selective regions (i.e., face-, scene-, object-, and body-selective regions) and 

their topological relations at the regional level. To do this, we fed the stimuli of four 

categories (face, place, body, and object) used for the fMRI study in the HCP dataset 

to our trained model, and obtained the activation map for each category in the VTC-

SOM. We found that units selective for a particular category were clustered into 

patches (i.e., functional regions) (Figure 2A). Importantly, these functional regions 

showed a certain fine-scale topological arrangement. We then used the same SDR 

algorithm to transform the VTC-SOM to the left and right human VTC of the HCP-

MMP template separately, and quantitively inspected the similarity in the topological 

organization of functional regions between the VTC-SOM and human VTC. Since the 

topology of the VTC regions did not differ greatly between the two hemispheres, 

Figure 2B only showed the comparison between VTC-SOM and human VTC in one 

hemisphere. Approximating to the functional organization of the human VTC 

identified with the HCP fMRI dataset, there were also two face-selective regions in 

the VTC-SOM (Figure 2B, upper left), and the two body-selective regions were 

located more lateral than the face-selective regions (Figure 2B, lower left). And the 

face- and place-selective regions were also adjacent to each other in the VTC-SOM 
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(Figure 2B, lower right). Similarly, there were two object-selective regions in the 

VTC-SOM (Figure 2B, upper right). One resided in two body-selective regions, and 

the other was located adjacent to the place-selective regions. Though the place-

selective regions seemed to be less laterally in the VTC-SOM than in the human 

VTC, the topological relations among functional regions were almost the same 

between VTC-SOM and human VTC. In sum, visual inspection suggests a similar 

spatial layout among functional regions between the VTC-SOM and human VTC 

(Figure 2B, central). 

Similarity in the large-scale abstract functional maps 

One may argue that the emergence of the category-selective regions in the VTC-SOM 

was predictable because objects had already been classified into categories by the 

AlexNet within our computation model. However, this argument cannot explain the 

similarity in topological organization between the VTC-SOM and human VTC. 

Further, besides the fine-scale functional organization, human research and 

neurophysiological studies have also revealed large-scale functional maps in the VTC 

(for reviews, see Grill-Spector & Weiner, 2014; Op de Beeck, Haushofer, & 

Kanwisher, 2008). For instance, the animacy map, real-world object-size map, and 

eccentricity bias map are all aligned to the mid-fusiform sulcus (MFS) (patches 

outlined by dark lines in Figure 3), reflecting more abstract functional representations 

implemented in larger spatial scales across the VTC, which can generate broader 

categorical distinctions (Hasson, Levy, Behrmann, Hendler, & Malach, 2002; Haxby, 

Guntupalli, Connolly, Halchenko, Conroy, Gobbini, Hanke, & Ramadge, 2011; 

Konkle & Oliva, 2012). The coexistence of the fine-scale and large-scale functional 

organizations could increase the efficiency and flexibility of category processing in 

the VTC. If our computational framework is foundational in determining the 

topographic organization of the VTC, we should expect the emergence of large-scale 

abstract functional maps.  

To verify this prediction, we used images of the animacy and real-word object-

size stimulus sets from the Konkle lab database (Konkle & Caramazza, 2013; Konkle 

& Oliva, 2012) as the input to our computational model and obtained the animacy 

map and real-world object-size map in the VTC-SOM. Similarly, we generated a set 

of ring stimuli with different eccentricities to obtain the eccentricity bias map. Again, 

we registered the three maps to the human VTC template using the same SDR 
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algorithm. We found that these three maps were well separated by the MFS, like those 

found in human VTC (Figure 3). In short, the artificial VTC built by our 

computational model was similar to human VTC at the level of both fine-scale object-

selective regions and large-scale abstract functional maps. 

 

In silico Experiment 2: Representation 

Because functionality is determined mainly by anatomy, we expected that the VTC-

SOM should represent objects in the same way as the VTC. To test this conjecture, 

we compared the functional representation of the VTC-SOM with that of monkey ITC 

at the neuronal level. 

Similarity in functional representation 

To examine the similarity in the representation of objects, the same images of real-

world objects were presented to the VTC-SOM and monkey ITC. The stimuli 

contained 51 objects from six different categories, each presented at 24 different 

views. The neural responses to each stimulus were recorded from 482 neurons 

distributed in multiple patch networks of the monkey ITC, including face-, body-, 

stubby-, and spiky-selective patch networks (see Methods for more details). With the 

representational similarity analysis (RSA) (Kriegeskorte, Mur, & Bandettini, 2008), 

we carried out a Pearson correlation analysis on the response patterns between objects 

to obtain a representational similarity matrix (RSM) for the monkey ITC (Figure 4, 

right). Accordingly, we fed the same stimuli into our computational model and 

obtained an RSM for the VTC-SOM (Figure 4, left). Visual inspection of these two 

RSMs suggested a similar categorical representation in VTC-SOM and monkey ITC. 

Quantitative correlation analysis on the two RSMs revealed a substantial correlation (r 

= 0.63, p < 0.001), indicating the striking match in representation structure between 

the VTC-SOM and monkey ITC. 

Similarity in the functional representation within object-selective regions  

Further, we examined the representation similarity within object-selective regions 

between the VTC-SOM and monkey ITC. To do this, we first identified ten most-

preferred and ten non-preferred stimuli for each of the four patch networks in monkey 

ITC by computing the average responses of neurons in that patch network based on 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.15.460220doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460220
http://creativecommons.org/licenses/by-nc-nd/4.0/


the single-unit data. Then, we fed these stimuli to our model and obtained their 

activation maps in the VTC-SOM. Units showing stronger activation for the preferred 

stimuli than non-preferred stimuli were defined as the face, body, spiky, and stubby 

network in the VTC-SOM separately, which corresponded to the patch networks in 

the monkey ITC accordingly. Finally, we conducted the RSA analysis to investigate 

whether the functional representation was similar within category-selective regions at 

the neuronal level between the VTC-SOM and monkey ITC. Indeed, we found strong 

correlations between VTC-SOM and monkey ITC RSMs in the face-, body-, spiky-, 

and stubby-selective regions (r = 0.76, p < 0.001; 0.77, p < 0.001; 0.53, p < 0.001; 

0.74, p < 0.001, respectively) (Figure 5). These correlations again indicated that the 

functional representation of monkey ITC was preserved in VTC-SOM within object-

category regions. 

A hierarchy of increasingly view-invariant representations 

Interestingly, multiple regions in the VTC-SOM were identified that showed selective 

responses to just one object category (Figure 2). Studies from neurophysiological 

studies suggest that in some patch networks of the monkey ITC, e.g., face patch 

network, neurons in posterior patches were view-specific and those in the most 

anterior patch view-invariant (Bao et al., 2020). We thus wondered whether such 

hierarchy in view invariance was also present in our VTC-SOM. To do this, we took 

two face stimuli, each of which contained 8 different views, as examples to explore 

the view-invariant representation within the three face-selective regions of the face 

network in the VTC-SOM. Specifically, for each of the three face-selective regions in 

the VTC-SOM, we fed the 8 views of each face stimulus into our model and 

computed an RSM from units9 activations to the views. As illustrated in Figure 6A, 

there were apparent differences in view invariance between three face-selective 

regions. One face-selective region, corresponding to the posterior face patch in 

monkey ITC, was in part view-specific to face stimuli. Another face-selective region, 

corresponding to the anterior face patch in the monkey ITC, was nearly view-

invariant to face stimuli. This hierarchy of increasingly view-invariant representations 

was apparently face-specific, because for the non-face stimuli (e.g., airplane and 

vase), no such trend was found in these regions (Figure 6B). In short, by having 

multiple regions for the same object category, our VTC-SOM also achieved both 
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view-dependent and view-independent representational abilities, similar to monkey 

ITC. 

 

The critical role of the wiring span 

According to the wiring optimization principle, maps develop to minimize wiring 

costs associated with long-range connections (Chklovskii & Koulakov, 2004); 

therefore, maps can arise in any cortices of the brain, regardless of the nature of its 

content or the complexity of its computations. However, the specific layout of the 

VTC is drastically different from those in early sensory cortices, for example, 

suggesting that the wiring span, the only parameter in the principle, may play a 

critical role in shaping the spatial layout of the VTC. To test this intuition, here we 

varied the parameter sigma in a broad range and examined whether the resulting 

VTC-SOMs showed different functional organizations. In our model, the object space 

constructed by the first four principal components was projected to a 2-dimensional 

lattice. For better visualization, here we only illustrated the projection of an object 

space constructed by the first two principal components (i.e., the PC1-PC2 space).  

For each unit at the position � in the lattice, the arctangent value of the ratio 

between the first two weights of its �! corresponded to the polar angle �! in the 

PC1-PC2 space, given by 

�! = 7		�����(�!) �!%d ), 							�!% > 0	
� + �����(�!) �!%d ), �!% < 0  

Besides the sigma of 6.2 used in the model, here we also trained the SOM with 

other values: 0.1, 0.7, 1.7, 3.1, 9.3, and 10.0, while keeping the input and the lattice 

architecture unchanged. In the SOM with different parameter sigma, we calculated 

every unit9s polar angle. As shown in Figure 7, a transition in the functional 

organization can be observed as a function of the sigma values. When the sigma value 

was small, the units in the SOM showed an unstructured salt-and-pepper 

organization. As the sigma value increased, a structured pinwheels-like pattern began 

to emerge and gradually changed to a pattern with many pinwheels, and finally 

changed to a pattern with only one big pinwheel. That is, only when the sigma value 

matched the wiring span of neurons in the human temporal lobe, the VTC-SOM could 
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exhibit similar functional organization to that of the human VTC. Therefore, it is the 

wiring span that determines the functional organization of the VTC as it is. 

 

Discussion 

According to Marr9s tri-level hypothesis (Marr, 1982), to achieve the computational 

goal of rapidly recognizing miscellaneous objects in the environment despite large 

variations in their appearance, our mind, at the algorithm level, develops an algorithm 

of representing objects in a high-dimensional object space to provide separable 

category information and enable the extraction of different kinds of information 

necessary for various levels of the visual processing. At the implementational level, 

mounting evidence from human fMRI and monkey neurophysiological studies has 

revealed that the VTC serves as the physical substrate to implement the abstract and 

complex object representation space (DiCarlo, Zoccolan, & Rust, 2012; Felleman & 

Van Essen, 1991; Hegdé & Van Essen, 2007; Kobatake & Tanaka, 1994; Livingstone 

& Hubel, 1988; Logothetis & Sheinberg, 1996; Mishkin, Ungerleider, & Macko, 

1983), and develops different functional regions selectively responsible to specific 

object categories, such as faces and places, with a certain kind of large-scale 

topographic organization (Grill-Spector & Weiner, 2014; Haxby, Gobbini, Furey, 

Ishai, Schouten, & Pietrini, 2001; Kanwisher, McDermott, & Chun, 1997; Nasr, Liu, 

Devaney, Yue, Rajimehr, Ungerleider, & Tootell, 2011; Weiner & Grill-Spector, 

2013). Here, we propose a computational framework to explain how the abstract and 

complex object representation space at the algorithmic level is faithfully implemented 

in a biological system both anatomically and functionally. Inspired by the principle of 

wiring cost minimization, we built a hybrid SOM model with biological constraints 

on the model parameter and simulated an artificial cortical surface of the human VTC 

(VTC-SOM). In two in silico experiments with the empirical brain imaging and 

single-unit data, our VTC-SOM can predict the emergence of several fine-scale 

functional regions (including the classical object-selective regions, as well as the 

newly-found spiky and stubby regions) and the boundary (i.e., MFS) that indicates 

transitions in large-scale abstract functional maps (animate vs. inanimate, real-word 

large-size vs. small-size, central vs. peripheral), with no significant loss in 

functionality (i.e., categorical selectivity, a hierarchy of increasingly view-invariant 
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representations). In sum, our study bridges the important gap between the algorithm 

and implementation levels for object recognition by providing a computationally 

simple and biologically realistic model for the emergence of the topographic 

organization of object selectivity in the VTC.  

In a biological brain, along the hierarchy of the visual stream, the wiring cost 

minimization is a general principle that explains a strong tendency of cortices to 

exhibit local clustering (Chklovskii & Koulakov, 2004; Koulakov & Chklovskii, 

2001), because the minimization of wire length will ensure that neurons representing 

similar features lie close together and thus form functional modules and maps in the 

cortex. These functional modules and maps can be understood as a result of 

dimension-reduction mapping from high-dimensional representation space to the 

cortical surface. Theoretically, there are many dimension-reduction methods to 

achieve this goal. Some dimension-reduction methods such as PCA, t-Distributed 

Stochastic Neighbor Embedding (tSNE), and Multiple Dimensional Scaling (MDS) 

map the multi-dimensional input space into 2-dimensional coordinates without 

considering their physical implementations, and thus for which they still simulate 

cognitive processes within the algorithm level. In other words, there is no transition 

from the algorithm level to the implementation level with these methods.  

In contrast, the SOM model operates in an opposite way by mapping a 2-

dimensional lattice into the input space (Durbin & Mitchison, 1990; Konkle, 2021), 

while preserving the most important topological and metric relationships of objects in 

the high-dimensional object space. The SOM model assumes a regularly, locally 

connected cortical surface and learns an embedding in the input space, which makes it 

well-suited to answer the question of how a 2-dimensional cortical surface enables the 

fundamental ability to represent a multi-dimensional object representation space in 

our study. When a 2-dimensional lattice is projected into a multi-dimensional object 

space, nearby units in the map are projected to nearby points in the object space; 

therefore, the SOM model is a biologically plausible model that can achieve local 

wiring cost minimization (Durbin & Willshaw, 1987; Kohonen, 1989). Though the 

SOM models have been successfully applied to predict the appearance of ocular 

dominance, orientation preference, and direction preference maps in the early visual 

cortex (Bednar & Miikkulainen, 2003; Durbin & Mitchison, 1990; Konkle, 2021; 

Linsker, 1988), our study is the first attempt to use the SOM to model the functional 

organization of higher visual cortex, the VTC, both anatomically and functionally.  
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Another merit of our SOM model is that we take the lateral wiring span as the 

critical biological constraint on the model parameter. This is inspired by another 

biological findings of cortical point spread function, in which neural activities 

triggered by external stimuli spread laterally from the initial firing neuron to 

surrounding neurons, through its axonal projections to the nearby neurons 

(McILWAIN, 1975; Park, Cha, & Lee, 2013). The spatial extent of this lateral 

projection thus serves as an important biological constraint for the cooperative 

process (i.e., parameter sigma of the Gaussian function in the model) of the SOM 

(Gilbert & Wiesel, 1983; Grinvald, Lieke, Frostig, & Hildesheim, 1994). In fact, 

adjusting the sigma value of the Gaussian function in our SOM model can lead to 

different spatial patterns, indicating that the lateral wiring span is a critical factor in 

determining the functional organization of the human brain. Further, only a moderate 

value of parameter sigma that matches the lateral wiring span in the human temporal 

lobe can result in a functional organization similar to the human VTC. Intuitively, it 

seems to be inconsistent with the wiring cost minimization principle because the 

sigma value in our SOM has a moderate size rather than being minimal. However, 

from the perspective of computational neuroscience, advanced information-

processing capabilities are usually associated with the greater-than-minimal wiring 

cost, which reflects a trade-off between network cost and efficiency in computation 

and could enable a system simultaneously accommodating generality and specificity. 

In line with this perspective, it has been found that representations of object 

categories in the VTC show both generality and specificity properties. Responses in 

the VTC generalize across exemplars within the same category and tolerate 

transformations of their low-level features such as position and size, while 

distinguishing between categories with similar physical attributes and configurations. 

Therefore, unlike the previous study (Lee, Margalit, Jozwik, Cohen, Kanwisher, 

Yamins, & DiCarlo, 2020), our model demonstrates that the functional organization 

in the VTC is determined by the proper wiring span in the human temporal lobe, 

which might be optimized by evolutionary and/or developmental needs to 

accommodate both the generality and specificity. 

 One beauty of our model is that it does not need to make any assumptions about 

the functional and architectural differences along the hierarchy of the human VTC. 

For instance, one puzzling feature of the VTC is that some object-selective regions 

(e.g., faces, places, and general objects) come in pairs, with one located on the ventral 
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temporal cortical area and the other on the lateral occipital cortical area (Beauchamp, 

Lee, Haxby, & Martin, 2002; Hasson, Avidan, Deouell, Bentin, & Malach, 2003; 

Levy, Hasson, Avidan, Hendler, & Malach, 2001). Based on the dual pathway model 

(Mishkin, Ungerleider, & Macko, 1983), an organizational principle is proposed that 

regions on the lateral area are more sensitive to location information and regions on 

the ventral area to shape information (Beauchamp, Lee, Haxby, & Martin, 2002; 

Hasson, Avidan, Deouell, Bentin, & Malach, 2003). Our VTC-SOM did not make 

such an assumption, yet the feature of paired object-selective regions was also 

present. Therefore, this feature likely derives from the nature of the object space, 

rather than predisposed architectural and functional differences in the VTC. Similarly, 

our model does not support organizational principles of the temporal association of 

objects based on everyday experiences (e.g., co-occurrence of the table and chair) 

(Erickson & Desimone, 1999; Messinger, Squire, Zola, & Albright, 2001; Sakai & 

Miyashita, 1991), the computation required to recognize particular object categories 

(e.g., fine-grained visual acuity for recognizing faces) (Levy, Hasson, Avidan, 

Hendler, & Malach, 2001; Malach, Levy, & Hasson, 2002), or the conceptual 

knowledge about objects (e.g., animacy) (Warrington & McCarthy, 1983), simply 

because these factors are absent when training the AlextNet to construct the object 

space and then mapping it to a 2-dimensional lattice. In short, our model suggests that 

the principle governing the topological organization of object selectivity in the VTC 

might be much simpler than originally hypothesized.  

Finally, unlike a biological brain, our model is computationally transparent and 

entirely accessible to visualization and manipulation, which enables conducting 

various in silico cognitive neuroscience experiments. For instance, we will be able to 

formulate hypotheses about the functional organization at multiple spatial scales in 

the brain across species and across cortices that can be validated by observing the 

effects on predicted maps resulting from changes to the model parameter. We could 

also address fundamental questions about brain computations in the developing brain 

by manipulating critical model parameters to simulate the entire process of 

development. In addition, lesioning the model components could unravel features 

critical for the formation of brain functions. Even more promisingly, our model offers 

a new tool for researchers to explore how other multi-dimensional abstract 

representation space, e.g., knowledge representation space, value space, or decision 
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space for action planning, is implemented in the two-dimensional cortical surface of 

the brain. 
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Figures 

 

Figure 1. Model architecture and parameter selection 

(A) Hybrid SOM model. The hybrid model combined a pre-trained AlexNet (left) 

with a SOM (right). The original FC3 layer of the AlexNet was reduced to a four-

dimensional vector using the PCA, which then served as the input to the SOM 

(middle). Shown are an example input face image and the corresponding activation 

map in the SOM (i.e., face-selective regions).  

(B and C) The metaphorical high-dimensional object space derived from the pre-

trained AlexNet (B) was physically implemented in the human VTC (C, bottom). The 

SOM learned a smooth 2-dimensional embedding (i.e., artificial VTCA) (A, right) to 

capture the structure of a 4-dimensional object space (A, middle), which simulated 

this physical implementation. To determine a biologically-constrained parameter 

sigma of the Gaussian function in the SOM, the 2-dimensional SOM (A, right) was 

co-registered to the flattened human VTC region in the HCP-MMP template (i.e., 

patch outlined by dark dashed lines) (C, bottom) using an SDR algorithm, and a 

deformation field (C, top left) was generated. The inverse of the deformation field (C, 

top right) also allowed for mapping a vertex in the human VTC onto the 

corresponding units in the SOM, through which an appropriate parameter sigma of the 

Gaussian function in the SOM can be biologically determined (see Methods for more 

details). Patch outlined by dark dashed lines represents the anatomically defined VTC 
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region. Red regions within the patch represents the transformed face-selective regions 

in the SOM (for demonstration purpose only). 
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Figure 2. Similarity in the fine-scale object-selective regions between the VTC-

SOM and human VTC 

(A) Four object-selective regions in the VTC-SOM identified with the stimuli from 

the HCP dataset. Dark dots represent units in the SOM. Face-, body-, place-, and 

object-selective regions are shown from left to right, respectively. 

(B) These object-selective regions obtained in the VTC-SOM were transformed and 

mapped onto the left hemisphere of the human brain. The same object-selective 

regions identified with the human fMRI data were also displayed side-by-side for 

visual inspection. The spatial arrangements of the category-selective regions between 

the VTC-SOM and human VTC were similar (central). Face- (upper left), object- 

(upper right), body- (lower left), and place- (lower right) selective regions are colored 

by red, purple, yellow, and green, respectively.  

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.15.460220doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460220
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 3. VTC-SOM reproduces large-scale abstract functional maps between 

the VTC-SOM and human VTC 

The animacy (left), real-world object-size (middle), and eccentricity (right) maps in 

the VTC-SOM obtained using the animacy, real-word object-size, and the home-made 

eccentricity stimulus-sets, are transformed and mapped onto the left hemisphere of the 

human brain. Visual inspection suggests, the animate, small-size, and central maps in 

the VTC-SOM were also well separated from the inanimate, big-size, and peripheral 

maps, respectively, by the MFS. Patches outlined by dark lines represent the MFS. 

Animate, small-size, central maps are colored by yellow, whereas inanimate, big-size, 

peripheral maps are colored by purple. 
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Figure 4. Similarity in the functional representation between VTC-SOM and 

monkey ITC 

Model RSM for the VTC-SOM (left) and neural RSM for the monkey ITC (right).  

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.15.460220doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460220
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 5. Similarity in the functional representation within object-selective 

regions between VTC-SOM and monkey ITC 

Shown from top to bottom are model and neural RSMs for the face-, body-, spiky-, 

and stubby-selective regions in the VTC-SOM (left column) and monkey ITC (right 

column), respectively. 
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Figure 6. A hierarchy of increasingly view-invariant representations in the face 

network of the VTC-SOM 

(A) RSMs for the face stimuli within the three face-selective regions of the face 

network in the VTC-SOM. There was an apparent increase in the view-invariance 

between three face-selective regions. For both face stimuli, there were significant 

differences in the view-invariance between the first (left-most panels) and third (right-

most panels) face-selective regions (KS-test, all ps < 0.05). 
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(B) RSMs for the non-face stimuli within the three face-selective regions of the face 

network in the VTC-SOM. No significant increase in the view-invariance was found 

between three face-selective regions (KS-test, all ps > 0.05). 
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Figure 7. Transition in the functional organization of the VTC-SOM as a 

function of the parameter sigma 

The functional organization of the VTC-SOM for different sigma values. As the 

sigma value increased, the functional organization in the VTC-SOM changed from an 

unstructured salt-and-pepper organization (left) to a structured pinwheels-like 

arrangement and gradually changed to a pattern with many pinwheels (middle), and 

finally changed to a pattern with only one big pinwheel (right). For better 

visualization, all units in the SOM were colored by their polar angles in the PC1-PC2 

space. The color scheme was shown in the upper right inset. Different colors indicate 

different polar angles in the PC1-PC2 space. LWS denotes the lateral wiring span. "--

" indicates that the LWS value cannot be computed when the estimated number of 

vertices, corresponding to the sigma value of 0.1, 0.7, or 1.7, is less than one vertex. 
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Methods 

Building an artificial VTC 

Overall model architecture 

The hybrid model consisted of two modules. The first module was a pretrained 

AlexNet, which was used to obtain a high-dimensional object representation space 

(Figure 1A, left). The second module was a SOM (Kohonen, 1989) with the wiring 

length of the human VTC as the critical biological constraint on the model parameter 

(Figure 1A, right).  

Constructing a high-dimensional object space using the AlexNet 

The AlexNet consisted of five convolutional and three fully connected layers (FC13

FC3). The FC3 was followed by a sublayer using a SoftMax function to output a 

1×1000 vector, representing the probability of the visual input containing the 

corresponding object category (Krizhevsky, 2014). 

First, by extracting a 1×1000 vector of the FC3 layer for each of the 50000 

images of the training stimulus-set mentioned in 1.1, we constituted a 50000×1000 

matrix. Then, for computational simplification, a principal component analysis (PCA) 

was conducted on the Z-scored matrix to reduce the dimensionality of the object 

space. An obvious inflection point of explanatory value was found at principal 

component 4. We thus retained only the first 4 PCs (Figure 1A, middle), which 

captured 47% of the response variance, to represent a four-dimensional object space,	
�. 

	� = {�|� = (�%, �), �+, �,)} 
SOM model 

In the SOM, each unit corresponded to a small piece of cortex containing many 

neurons and was labeled by its position in the lattice: � = (�%, �)). The weight vector 

�! characterized the property of the unit's receptive field at position r. The input 

features (1×4 vector) and all units in this lattice were fully connected. Therefore, the 

�! was also a four2dimensional vector whose components were �!-, where � was 

the position of the unit and � was the index of the input features: 

�! = (�!%, �!), �!+, �!,) 
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The pattern formation process determined by the SOM algorithm was discrete in 

both time and space. In each step of the training procedure, an element � was 

extracted randomly from the object space � without repetition, and normalized by 

� ' � 'd . Then, the unit � = (�%, �)) whose weight matrix �( of � was the closest 

to the input pattern �, was defined as the winner unit: 

� = 	min
!

' � 2 �! ' 

The weight vector �! was then updated by a dynamical equation, being 

constrained with a cortical point spread function determined by the lateral projection 

span:  

�!
(#$%) =	�!

(#) + �(#)�(�, �)(� 2 �!
(#)) 

where	 �(#) is the learning rate, given by 

�(#) = 1
1 + �/(����_���/2) 

�(�, �) was the neighborhood function, characterized in a Gaussian form:  

�(�, �) = �'(!!'(!)
"$(!"'(")

"

)*" 	 
Here, the parameter sigma (�) is the full width at half maximum (FWHM) of the 

Gaussian function. �(�, �) was also a weighting function, and the parameter sigma 

determined the number of neighbors of the winner unit �, so that only a few neighbor 

units in the lattice responded to each input. It thus resulted in that the learned weights 

of the unit at the positions �, which was adjacent to the winner unit �, were close to 

the weights of the winner unit. The similarity in weights between units decreased with 

the increasing distance between � and �. The parameter step_num was the total 

number of steps of the training iterations. At the end of each training step, the weight 

was normalized by 

�(#$%) = �(#$%)

' �(#$%) ' 

Defining the anatomical VTC template of the human brain 

According to Grill-Spector and Weiner (2014), the lateral, posterior, medial, and 

anterior boundaries of the VTC were defined by the occipitotemporal sulcus (OTS), 
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posterior transverse collateral sulcus (ptCoS), parahippocampal gyrus (PHG), and the 

anterior tip of the mid-fusiform sulcus (MFS), respectively. Following their 

delineation method, in the HCP-MMP template (Glasser et al., 2016), we combined 

eight anatomical areas (i.e., V8, FFC, PIT, PHA3, TE2p, PH, VMV3, and VVC) into 

a coherent region to serve as the human VTC template (Figure 1C, patch outlined by 

dark dashed lines). 

Registration between the SOM and human VTC template  

We used a Symmetric Diffeomorphic Registration (SDR) algorithm to establish the 

correspondence between units of the SOM and vertices of the human VTC template. 

The SDR method allowed for the accurate alignment of two maps when more 

significant deformations were needed, and the obtained deformation field was 

continuous. The SDR method also produced an inverse deformation field (Avants, 

Epstein, Grossman, & Gee, 2008). 

Specifically, we first obtained the coordinates of all vertices in the VTC template 

and generated a smooth map by interpolation between the coordinates with the same 

values. We used the binary images of the SOM and VTC template for the alignment 

and chose the sum of squared differences as the loss function for the SDR method, 

through which we got the forward (Figure 1C, upper left) and inverse (Figure 1C, 

upper right) deformation fields between the SOM and VTC template and established 

the correspondence between them. 

Determining a biologically-constrained parameter sigma for the SOM 

Inspired by the biological findings of the lateral activity spreads of the cortical neuron 

in local cortical circuits, �(�, �) can be treated as a rough approximation of the 

cortical point spread (CPS) function (McILWAIN, 1975; Park, Cha, & Lee, 2013), 

which was determined by the lateral projection span of neurons (Gilbert & Wiesel, 

1983; Grinvald, Lieke, Frostig, & Hildesheim, 1994). Therefore, in our SOM model, 

we set the parameter sigma as the lateral wiring span of neurons in the human 

temporal lobe and kept it constant throughout the model training.  

First, based on the axonal data (Mohan et al., 2015) and dendritic data 

(Benavides-Piccione, Ballesteros-Yáñez, DeFelipe, & Yuste, 2002) in the human 

temporal lobe, the local lateral projection span of neurons in the human VTC 

approximated a maximum length about 2.7 mm. Then, we calculated a geodesic 

distance map (GDM) with a geodesic distance of 2.7 mm around each vertex. 
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Separately for the left and right human VTC, we mapped the GDM of each vertex 

onto the SOM using the deformation field generated above, and computed the average 

number of units in the SOM that the GDM of one vertex occupied. Since the different 

alignment angles would lead to different results, we calculated the number of units in 

the SOM for each of the five alignment angles (60, 120, 180, 240, and 300 degrees). 

Next, we computed an average number of units occupied by one vertex. As a result, 

the average number of units in the SOM occupied by a vertex in the left and right 

human VTC were 532.6 and 570.3, respectively. When the parameter sigma was 6.2, 

most part of the distribution of the Gaussian function (i.e., height value greater than 

0.1) occupied 553 units, which was between 532.6 and 570.3. Therefore, the 

parameter sigma in our SOM implementation was fixed to 6.2, which approximated 

the lateral projection span (2.7 mm) of neurons in the human temporal lobe. 

Model training 

Before the model training, the weights of the model were randomly initialized. The 

size of the SOM was set to 200x200 units. The	parameter sigma of the Gaussian 

function was set to 6.2 and kept constant, reflecting the biological constraint of the 

lateral wiring span of neurons in the human temporal lobe. We used the natural 

images from the validation dataset of the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) 2012 competition (50 images for each of the 1000 categories) to 

train the SOM. In each training step, the SOM learned the representation of an image 

in the four-dimensional object space �. The training process was iterated for a total of 

200000 steps. At the end of the training, we obtained an artificial cortical surface of 

the human VTC (i.e., VTC-SOM). 

In silico Experiment 1: Spatial layout 

Stimulus-set for identifying object-selective regions in the VTC-SOM and human 

VTC  

To define the object-selective regions in VTC-SOM and human VTC, we used the 

stimuli of a working memory task from the HCP, which was combined with the 

category-specific representation task that can localize the object-selective regions. 

During the fMRI scanning, participants were presented with blocks of trials that 

consisted of pictures of places, tools (i.e., general objects), faces, and body parts (non-

mutilated parts of bodies with no <nudity=), 61, 110, 111 and 78 pictures for each 
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category, respectively (Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, & 

Consortium, 2013). 

Stimulus-sets for defining abstract functional maps in the VTC-SOM 

To obtain the animacy map for the VTC-SOM, we used 120 animate images and 120 

inanimate images from the animacy stimulus-set of the Konkle lab database 

(https://konklab.fas.harvard.edu/ImageSets/). Due to the lack of human images in the 

Konkle lab database, 40 images containing human information from the Algonauts 

Project Challenge 2019 dataset were added to the animate category.  

To obtain the real-world object-size map for the VTC-SOM, we used 400 images 

from the real-word object-size stimulus-set of the Konkle lab database, 200 for each 

of the big- and small-size categories. 

We also generated an eccentricity stimulus-set to obtain the eccentricity bias 

map. There were 40 eccentricity images (224 x 224 pixels), 20 for each of the central 

and peripheral categories. For the central-category stimuli, one solid disk was 

presented at the center of the image, whose radius ranged from 10 to 30 pixels. For 

the peripheral-category stimuli, one ring was presented at the center of the image. The 

outer radius ranged from 60 to 80 pixels, and the inner radius was fixed to 50 pixels.  

Human fMRI data for identifying object-selective regions in the human VTC 

The group-average fMRI data of the working memory task from the HCP were used 

to define the face-, place-, body-, and object-selective regions in the human VTC. 

There were two runs for the working memory task. Each run consisted of 8 task 

blocks (10 trials of 2.5 seconds each, for 25 seconds) and four fixed blocks (15 

seconds). The four different stimulus types (i.e., place, tool, face, and body part) were 

presented in separate task blocks. The stimulus was presented for 2 seconds in each 

trial, followed by an inter-stimulus interval of 500 ms.  

Identifying fine-scale object-selective regions in the human VTC 

The HCP provided a group-average activation map (Cohen9s d map) for each of the 

four categories of the working memory task. For each category, vertices in the VTC 

with the Cohen9s d greater than 0.5 were defined as the category-selective vertices. In 

this way, we identified four object-selective regions in the human VTC that responded 

to face, place, body, and object stimuli, respectively (Figure 2B). 

Obtaining fine-scale object-selective regions in the VTC-SOM 
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To define the object-selective regions in the VTC-SOM, we fed the same stimuli of 

the HCP working memory task into our trained model. Then for each stimulus, we 

obtained an activation matrix � of the VTC-SOM. Each element in � was 

represented as 

�! =	 1
' � 2 �! ' 

Then for each category, using a similar analysis as that used in the HCP fMRI 

dataset, we calculated a Cohen9s d map for this category, and the average Cohen9s d 

map for the other three categories. Subsequently, units that had the Cohen9s d greater 

than 0.5 and survived the independent T-Test (Bonferroni corrected p < 0.05) were 

defined as the units selective for this category. In this way, we obtained the face-, 

place-, body-, and object-selective regions in the VTC-SOM (Figure 2A).  

Next, we aligned the human VTC template and VTC-SOM at multiple angles 

using the same SDR method and generated the forward and inverse deformation fields 

for each angle. We applied these deformation fields to the four object-selective 

regions in the VTC-SOM to obtain the transformed object-selective regions in the 

human VTC template (Figure 2B). As mentioned before, different alignment angles 

would lead to different results. We thus chose the angle, with which the transformed 

face-selective regions were best aligned to the face-selective regions identified with 

the HCP fMRI dataset in the same VTC template, as the final alignment angle for the 

current study. Importantly, this alignment angle and its corresponding deformation 

fields were used to transform other functional regions and maps throughout the 

following analysis. 

Finally, we visually inspected whether the spatial locations and arrangement of 

the other three transformed object-selective regions in the human VTC template were 

similar to those identified with the HCP fMRI dataset.  

Identifying large-scale abstract functional maps in the VTC-SOM 

Using the same analysis described above, we obtained the animacy and real-world 

object-size maps in the VTC-SOM by feeding the images of the animacy and real-

word object-size stimulus-sets to our trained model. Then, the simulated animacy and 

real-world object-size maps in the VTC-SOM were transformed onto the human VTC 

template using the same deformation field generated above. The eccentricity bias map 

of the VTC-SOM was obtained in the same way except that the custom eccentricity 
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stimulus-set were used as the input to the pre-trained hybrid model. The similarity in 

the functional organization of these large-scale abstract functional maps between the 

VTC-SOM and human VTC was visually inspected (Figure 3). 

In silico Experiment 2: Representation 

Stimulus-set for single-unit recording and defining object-selective network in the 

VTC-SOM 

The stimulus-set used for single-unit recording in the monkey ITC contained 51 

stimuli from six different categories, including the animal, vehicle, face, vegetable, 

house, and object. Each stimulus was presented at 24 different views. The face stimuli 

were generated by the FaceGen software (https://www.facegen.com) using random 

parameters, and the stimuli for other categories were downloaded from 

https://www.3d66.com. The images at 24 views for each stimulus were generated 

using the 3DMAX software. 

Monkey single-unit data for testing the functionality of the VTC-SOM 

Single-unit data were obtained from Bao et al. (2020), which were recorded in the 

ITC of a male macaque monkey using the stimulus-set mentioned above. During the 

experiment, the monkey was head-fixed and passively viewed the screen. Picture 

stimuli were presented on a CRT monitor in a random order. The screen size was 

27.7° × 36.9°, the stimulus size was 5.7°, and the size of the fixation point was 0.2° in 

diameter. The position of the eye was monitored using an infrared eye-tracking 

system (ISCAN). Electrical signals were recorded from 483 neurons in the ITC, of 

which 10, 190, 67, and 216 neurons were from the face-, body-, stubby-, and spiky-

selective patches, respectively. For more details on this study and data, see Bao et al. 

(2020). 

Testing the similarity in functional representation between VTC-SOM and monkey 

ITC 

First, we calculated a neural RSM for the monkey ITC using the monkey single-unit 

data. The response value of each neuron for each image was defined as the baseline-

subtracted responses in a window of 60-220 ms after image onset. The responses of 

each neuron to each stimulus were averaged across 24 views. Each element in the 

neural RSM represented the Pearson correlation between response patterns across 

neurons elicited by two stimuli. 
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Then, we fed the same images of the stimulus-set for single-unit recording to our 

trained model, and recorded the activations of the model units of the VTC-SOM. We 

also calculated an RSM for the VTC-SOM. Each element in the VTC-SOM RSM 

represented the correlation coefficient between activation patterns of units elicited by 

two stimuli. 

Finally, we computed the Pearson correlation of the upper triangle between the 

VTC-SOM RSM and neural RSM of the monkey ITC to examine their similarity in 

functional representation (Figure 4).  

Testing the similarity in functional representation within object-selective regions 

We used the same stimulus-set for single-unit recording to obtain the face, body, 

stubby, and spiky networks in the VTC-SOM. First, based on the single-unit data, we 

calculated the average responses of neurons within the face, body, stubby, and spiky 

patches of the monkey ITC and identified ten most-preferred and ten non-preferred 

stimuli for each of the four categories. The selected stimuli were subsequently used to 

localize the face, body, spiky, and stubby network in the VTC-SOM. Specifically, for 

each category, we obtained the two average activation maps of the VTC-SOM for the 

most-preferred and non-preferred stimuli, and calculated a difference map between 

them. To match the number of functional regions revealed in the monkey ITC, we 

used a stricter criterion than that in Experiment 1 to define the category-selective 

regions. Here, for each category, units that showed the biggest difference (here, top 10 

percent of all units) were defined as the category-selective units. In this way, we 

obtained the face, body, stubby, and spiky networks in the VTC-SOM. 

Then, we calculated an RSM for each of the face, body, stubby, and spiky 

networks in the VTC-SOM. For each network, elements in its model RSM 

represented the measure of 1 - d (normalized Euclidean distance between the 

activation patterns of units elicited by two stimuli). The neural RSMs for the face, 

body, stubby, and spiky patches in the monkey ITC were obtained in the same way.  

Finally, for each network, we computed a Pearson correlation coefficient 

between the VTC-SOM RSM and neural RSM of the monkey ITC (Figure 5).  

Testing the hierarchy of increasingly view-invariant representations in the face 

network of the VTC-SOM 

To explore whether the hierarchy in view invariance found in Bao et al. (2020) was 

also present in our VTC-SOM, we took two face stimuli and two non-face stimuli 
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(airplane and vase) from the stimulus-set for single-unit recording, each of which 

contained 8 different views, as examples to explore the view-invariant representation 

in three face-selective regions of the face network in the VTC-SOM. First, for each 

stimulus view, we obtained the activation pattern of units in each region of the face 

network in the VTC-SOM. Then, we computed an RSM (8x8) for each region of the 

face network. Each element in the RSM represented the correlation coefficient 

between activation patterns elicited by two views of the same stimulus for each region 

(Figure 6). 

 Finally, for each stimulus, we conducted the Kolmogorov3Smirnov test to 

compare the RSMs of two regions to examine whether the face network of the VTC-

SOM contained a hierarchy of increasingly view-invariant representations. 
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