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Abstract

Spatially remote brain regions show synchronized activity as typically revealed by correlated functional
MRI (fMRI) signals. An emerging line of research has focused on the temporal fluctuations of
connectivity, however, its relationships with stationary connectivity have not been clearly illustrated. We
examined dynamic and stationary connectivity when the participants watched four different movie clips.
We calculated point-by-point multiplication between two regional time series to estimate the time-
resolved dynamic connectivity, and estimated the inter-individual consistency of the dynamic
connectivity time series. Widespread consistent dynamic connectivity was observed for each movie clip,
which also showed differences between the clips. For example, a cartoon movie clip, The Present,
showed more consistent of dynamic connectivity with the posterior cingulate cortex and supramarginal
gyrus, while a court drama clip, A Few Good Men, showed more consistent of dynamic connectivity with
the auditory cortex and temporoparietal junction, which might suggest the involvement of specific brain
processing for different movie contents. In contrast, the stationary connectivity as measured by the
correlations between regional time series was highly similar among the movie clips, and showed fewer
statistically significant differences. The patterns of consistent dynamic connectivity could be used to
classify different movie clips with higher accuracy than the stationary connectivity and regional activity.
These results support the functional significance of dynamic connectivity in reflecting functional brain

changes, which could provide more functionally related information than stationary connectivity.

Keywords: dynamic connectivity; movie connectome; movie watching; naturalistic stimuli; stationary

connectivity
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1. Introduction

The human brain exhibits a highly synchronized structure of activity as revealed by functional MRI
(fMRI) in resting-state (Biswal et al., 1995, 2010), during task performance (Cole et al., 2014; Di et al.,
2020; Krienen et al., 2014), and during watching naturalistic stimuli such as movies (O’Connor et al.,
2017; Vanderwal et al., 2019). Functional connectivity, as measured by the correlations of observed
blood-oxygen-level-dependent signals (Biswal et al., 1995; Friston, 1994), have been widely used to
examine the organization of large-scale brain networks (Margulies et al., 2016; Salvador et al., 2005; Yeo
et al., 2011) and to parcellate small brain structures such as the thalamus and striatum (Di Martino et al.,
2008; Tian et al., 2020; Yuan et al., 2016). However, the spatial distribution of functional connectivity is
highly similar across different tasks and movie watching conditions (Cole et al., 2014; Di et al., 2020;
Krienen et al., 2014; Vanderwal et al., 2019). To localize functionally meaningful connections, it is
therefore critical to examine the time-varying fluctuations of connectivity (Allen et al., 2014; Di and
Biswal, 2020; Hutchison et al., 2013), as well as the changes of functional connectivity between different
task conditions (Di and Biswal, 2019; Fornito et al., 2012; Friston et al., 1997).

Time-varying dynamic connectivity is mostly studied in the resting state by using the sliding-
window approach (Allen et al., 2014; Hutchison et al., 2013; Lurie et al., 2020). It has been shown that
the variability of dynamic connectivity fluctuations is lower between regions from the same functional
networks and higher between regions from different networks (Fu et al., 2017), resulting in an overall
negative correlation with the stationary functional connectivity (Thompson and Fransson, 2015; Zhang et
al., 2018). However, because of the unconstrained nature of the resting-state, it is difficult to ensure that
the obtained dynamic connectivity estimates are functionally meaningful or simply resulting from noise
(Lindquist et al., 2014). Until recently, dynamic connectivity is also studied when the participants were
given complex stimuli, such as watching movie clips (Di and Biswal, 2020). The advantage of using a
movie stimulus is that the time course of dynamic connectivity can be compared across participants. If

there are high inter-individual similarity (Hasson et al., 2004; Nastase et al., 2019), then it may imply that
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the observed dynamic connectivity is functionally meaningful and is relevant to the processing of the
video stimuli.

In our previous study, we have demonstrated the inter-individual consistency of dynamic
connectivity when different participants watched the same animated movie Partly Cloudy (Di and Biswal,
2020). By using a seed-based analysis, we identified highly consistent dynamic connectivity between the
supramarginal gyrus and posterior cingulate gyrus, two regions that are critical in the processes of
empathy and theory of mind (Richardson et al., 2018). Moreover, among a set of regions of interest, the
dynamic connectivity pattern was largely dissociated with the stationary functional connectivity that was
measured by the correlations of the time series from the entire run. For example, the stationary functional
connectivity between the supramarginal gyrus and posterior cingulate gyrus was close to zero, while the
windowed dynamic connectivity showed highly consistent fluctuations. To date, only handful of studies
have examined dynamic connectivity during movie watching (Cooper et al., 2021; Di and Biswal, 2020;
Freitas et al., 2020; Simony and Chang, 2020). It is still largely unknown how the spatial pattern is
modulated by different movie contents, and how dynamic connectivity is spatially distributed.

The central goal of this study is to compare dynamic connectivity and stationary connectivity in
the context of movie watching. In addition to the previously analyzed Partly Cloudy dataset (Richardson
et al., 2018), we also analyzed the Healthy Brain Network Serial Scanning Initiative (HBN-SSI) dataset
(O’Connor et al., 2017), where same participants watched three different movie clips. The video clips
were derived from different types of movies, ranging from a science fiction cartoon comedy, a science
fiction action film, to a court drama. It is reasonable to expect that different brain systems are involved in
the process of the different movie clips. However, Vanderwal and colleagues have examined the
stationary connectivity of the three movies, and showed very similar spatial patterns among them
(Vanderwal et al., 2019). We speculate that dynamic connectivity might be more sensitive to reflect the
changes in brain functions among the movie clips.

Further, we systematically examine the relationships between dynamic and stationary
connectivity in terms of their spatial distributions and context modulations. The economic theory of brain

4
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97  network organization has suggested that the maintenance of long-range between-system communications
98 is costly, and long-range and between-system connectivity may be more dynamic and depend on task
99  demands (Bullmore and Sporns, 2012). In line with this account, the dynamic connectivity between
100  different functional systems are more variable than within functional systems (Fu et al., 2017; Thompson
101  and Fransson, 2015), and task modulated connectivity are also likely to take place between regions from
102  different functional networks (Di and Biswal, 2019). Similarly, for the movie-watching data, we
103  speculate that dynamic connectivity might take place between regions from different functional modules.
104  In contrast, the stationary connectivity might tightly reflect the organizations of brain networks, i.e.,
105  higher stationary connectivity between regions from the same functional networks, and lower stationary
106  connectivity between regions from different networks. The dissociation might result in different spatial
107  patterns between the dynamic and stationary connectivity.
108
109 2. Materials and Methods
110  2.1. FMRI dataset
111  We analyzed two publicly available fMRI datasets when participants watched different movie clips, the
112 Partly Cloudy dataset (Richardson et al., 2018) and the HBN-SSI dataset (O’Connor et al., 2017). For the
113 Partly Cloudy dataset, we analyzed the adults’ data where they watched the animated movie “Partly
114  Cloudy”. And for the HBN-SSI dataset, we analyzed the data when the same participants watched three
115  different movie clips from different types of movies.
116  2.1.1. Partly Cloudy dataset

117  The Partly Cloudy data were obtained through openneuro (https://openneuro.org/; accession #:

118  ds000228). Consistent with our previous study, we only included the adult participants (n = 33) (Di and
119  Biswal, 2020). After dropping data due to large head motion (see below) and poor brain coverage, the
120  effective sample included 17 females and 12 males. The mean and standard deviation of age were 24.6

121 years and 5.3, respectively (age range: 18 to 39 years). The original study was approved by the
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122 Committee on the Use of Humans as Experimental Subjects (COUHES) at the Massachusetts Institute of
123 Technology.

124 During the fMRI scan, the participants watched a 5.6-minute long silent version of Partly Cloudy
125  (Pixar, 2009). MRI images were acquired on a 3-Tesla Siemens Tim Trio scanner with the standard

126  Siemens 32-channel head coil. Blood-oxygen-level dependent (BOLD) sensitive fMRI images were

127  collected with a gradient-echo EPI sequence in 32 interleaved near-axial slices (EPI factor: 64; TR: 2 s,
128  TE: 30 ms, and flip angle: 90°). The participants were recruited for different studies with slightly

129  different voxel sizes and slice gaps. Three participants had 3.13 mm isotropic voxels with no gap, and 26
130  participants had 3.13 mm isotropic voxels with a 10% gap. All the functional images were resampled to 3
131  mm isotropic voxel size during preprocessing. 168 functional images were acquired, with four dummy
132 scans before the real scans to allow for steady-state magnetization. T1-weighted structural images were
133 collected in 176 interleaved sagittal slices with 1 mm isotropic voxels (GRAPPA parallel imaging,

134 acceleration factor of 3; FOV: 256 mm). More information can be found in Richardson et a. (2018).

135  2.1.2. HBN-SSI dataset

136  The HBN-SSI dataset was obtained through the project website

137  (http://fcon 1000.projects.nitrc.org/indi/hbn_ssi/). Thirteen participants were recruited in the study.

138  After removing data of four participants due to excessive head motion in any of the movie-watching

139  sessions, data from four females and five males were included in the current analysis. All the participants
140  areright-handed. The age range was from 23 to 37 years old (Mean = 29.4; SD = 5.5).

141 We selected the movie watching scans of three movie clips, Wall-E (Walt Disney Productions,
142 2008), The Matrix (Warner Bros., 1999), and A Few Good Men (Columbia Pictures, 1992), from the 12
143 repeated scanning sessions. Each movie clip was 10 minutes long and was watched by the same

144  participant four times in separate sessions. The order of the movie watching was counterbalanced across
145  sessions. The fMRI data were scanned using an EPI sequence with the following parameters, TR: 1,450
146  ms, TE: 40 ms, flip angle: 55°, and voxel size: 2.46 x 2.46 s 2.5 mm? without any gap. Four hundred and
147  twenty images were scanned for each run. However, for one participant, there were only 410 images for
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several sessions. We, therefore, used the first 410 images for the current analysis for all the subjects and
sessions.

Lastly, the MPRAGE image from the first sequential scanning session of each participant was
also used to assist preprocessing of the fMRI and DWI data. The scanning parameters include TR, 2,730
ms; TE 1.64 ms; flip angle, 7°; voxel size 1 x 1 x 1 mm? with no gap. More information about the study
design and MRI acquisitions can be found in O’Connor et al., (2017).
2.2. FMRI data preprocessing
The fMRI data preprocessing was performed by using SPM12 (SPM, RRID: SCR_007037) under

MATLAB environment (https://www.mathworks.com/). The two datasets were preprocessed using very

similar pipelines. Specifically, the anatomical image of each participant was first segmented into gray
matter, white matter, cerebrospinal fluid, and other tissue types, and normalized into standard Montreal
Neurological Institute (MNI) space. The functional images of each session and subject were aligned to
the first image of their specific session and were coregistered to the skull stripped anatomical image of the
subject. The deformation field maps obtained from the segmentation step were used to normalize all the
functional images into MNI space. The fMRI images from the Partly Cloudy dataset were resampled to 3
x 3 x 3 mm? voxel size; and the images from the HBN-SSI dataset were resampled to 2.5 x 2.5 x 2.5 mm?,
which were chosen according to their respective original voxel sizes. All the functional images were then
spatially smoothed using an 8 mm Gaussian Kernel. Lastly, we defined a generalized linear model
(GLM) for each session and subject by using 24 head motion variables (Friston et al., 1996) and a
constant term as regressors, with implicit high-pass filtering at 1/128 Hz. After model estimation, the
residual images were saved for further analysis.

We calculated framewise displacement for translation and rotation for each session and
participant (Di and Biswal, 2015). For the Partly dataset, we used strict criteria of maximum framewise
displacement of 1.5 mm or 1.5° to discard data with large head movements. Two participants’ data were
discarded accordingly. For the HBN-SSI dataset, a participant's data were discarded if any of the sessions
exceeded the criteria. We adopted a slightly liberal criterion of maximum framewise displacement

7
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174  greater than 2.5 mm or 2.5° or mean framewise displacement greater than 0.2 mm or 0.2°. Four

175  participants’ data were removed accordingly.

176  2.3. Independent component analysis

177  Because the main goal of the current study is to study connectivity across brain regions, we adopted

178  spatial independent component analysis (ICA) to define connectivity nodes. We extracted 20 and 80 ICs
179  to represent different spatial scales of brain networks. We first analyzed the local activity and

180  connectivity with 20-IC solutions to identify statistically significant local effects. We then calculated
181  connectivity using the 80-IC solutions to examine their spatial distributions. For spatial ICA, the number
182  of ICs that could be extracted depends on the number of time points for each participant/session.

183  Theoretically, 7 - 1 components can be extracted where ¢ represents the total number of time points. We
184  chose 80, which is roughly half of the time points for the Partly Cloudy dataset.

185 Group ICA of fMRI Toolbox v3.0b (Group ICA of fMRI Toolbox, RRID: SCR_001953) was
186  used for ICA (Calhoun et al., 2001). The ICA was performed for the Partly Cloudy and HBN-SSI

187  datasets separately. After extraction, we manually selected the ICs that were related to functional

188  networks and discarded the noise-like ICs. For the Partly Cloudy dataset, 16 and 65 ICs were considered
189  functionally meaningful ICs for the 20-IC and 80-IC solutions, respectively. And for the HBN-SSI

190  dataset, 16 and 54 ICs were kept. After ICA, the time series of each IC for each subject and session were
191  back reconstructed by using the group ICA algorithm. The time series were used for further activity and
192  connectivity analyses.

193  2.4. Inter-individual consistency of regional activity

194  For both regional activity and dynamic connectivity, we estimated the inter-individual consistency across
195  participants and sessions. Conventionally, the intersubject correlation was used to study the inter-

196 individual consistency (Chen et al., 2016; Hasson et al., 2004; Nastase et al., 2019). In our recent study,
197  we have shown that the principal component analysis (PCA) can be used to estimate the inter-individual
198  consistency, which is quantitively similar to intersubject correlation (Di and Biswal, 2021). Specifically,
199  for a given region we have a ¢ (# of time points) by n (# of participants) matrix X. X is a 168 x 29 matrix

8
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200  for the Partly Cloudy dataset and a 410 x 36 matrix (36 = 9 participants x 4 sessions) for each of the three
201  movie clips from the HBN-SSI dataset. We performed PCA on the matrix X and obtained the percent
202  variance explained by the first PC as a measure of intersubject consistency.

203 For the HBN-SSI dataset, there were four sessions for each participant and each movie. Ideally,
204  the multi-session and multi-participant design can be used to differentiate the consistent and idiosyncratic
205  responses. We have explored this issue and found that the within-participant consistency was mainly
206  driven by the overall across-participant consistency, but not participant-specific idiosyncratic responses
207  (see supplementary materials). Moreover, the idiosyncratic responses are not the focus of the current
208  study. Therefore, in the current analysis, we treated session and participant as separate data and

209  calculated inter-individual consistency across all the sessions and participants.

210  2.5. Dynamic connectivity

211 The sliding-window approach is the most commonly used method to estimate dynamic connectivity

212 (Allen et al., 2014; Di and Biswal, 2020; Fu et al., 2014). A recent development is to utilize point-by-
213  point multiplications of two time series to approximate their dynamic connectivity, a.k.a. edge-centric
214 time series (Faskowitz et al., 2020). The development comes from the intuition that the commonly used
215  measure of functional connectivity, i.e., Pearson’s correlation coefficient, is the summation of the point-
216  by-point multiplications of two z transformed variables divided by the sample size minus 1. Therefore, if
217  we keep the original point-by-point multiplication time series, it can reflect estimates of dynamic

218  connectivity at every time point. In Figure 1, we show the averaged time series of two networks, i.e., the
219  posterior cingulate network and supramarginal network from the Partly Cloudy dataset. The averaged
220  sliding-window and point-by-point multiplication time series were also shown. Strong negative

221  multiplication values can be seen when the two original time series have strong anti-phase co-

222 fluctuations. Indeed, the peaks in the posterior cingulate network and supramarginal network represent
223 the theory-of-mind and pain empathy events, respectively, as indicated by the original paper (Richardson
224  etal., 2018). The point-by-point multiplication indicates strong negative connectivity during these

225  events. In contrast, the sliding window correlation can only reflect a smoothed trend of such interactions.
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The point-by-point multiplication approach can avoid overly smoothing the time series data as done by
the sliding-window approach, therefore providing better interpretability of the results. On the other hand,
the multiplication term may be noisier and more prone to physiological noises and head motion artifacts.
But this may be less problematic for movie watching data, where we can estimate the consistent effects
cross individuals. We have performed statistical analyses on the Partly Cloudy dataset, and confirmed
that the point-by-point multiplication approach had better statistical sensitivity (see Supplementary
Materials). Therefore, we adopted the point-by-point multiplication approach to estimate dynamic

connectivity.

—PCC —SMG Multiplication —Sliding window

0 20 40 60 80 100 120 140 160 180
Time (TR)

Figure 1 Averaged time series of regional activity in the posterior cingulate (PCC) network and
supramarginal network (SMG), and their point-by-point multiplication and sliding-window dynamic
connectivity when watching an animated short movie Partly Cloudy. The two brain networks shown in

the inserted slices correspond to independent components #15 and # 6 in Figure 2, respectively.

We calculated the point-by-point multiplication between each pair of networks (ICs). The time
series from each network (IC) were first z transformed, and then point-by-point multiplied. PCA was
then performed on the multiplication time series across participants. To determine the statistical
significance of the variance explained by the first PC, we performed circular time-shift randomization to
determine the null distribution (Di and Biswal, 2021; Kauppi et al., 2010). The time series from the two

network ICs from all the participants were circular-shifted with random delays. Point-by-point

10
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multiplications were then calculated for each participant, and PCA was performed. The randomization
was performed 10,000 times for each pair of networks from the 16 networks. The real values were
compared with the null distribution to perform statistical inferences. This resulted in a 16 x 16 matrix.

False discovery rate (FDR) correction was used to correct for multiple comparisons (120: 16 x 15/ 2).

X, A WA XY, PV VPPN VS P
Participant 1 g .
Yo A A g, rn

Xy A AN AP = Xy, At Aot Dynamic connectivit
Participant 2 g —— Y
Vo AN A g e, ry

consistency
~ Stationary connectivity

AN v » Mo B

>

Figure 2 Illustration of the calculation of the consistency of dynamic connectivity and stationary

connectivity.

For the HBN-SSI dataset, we also compared the differences in variance explained by the first PC
among the three movies. For a pair of networks ICs, the multiplication between two IC time series were
first calculated, forming a 410 (time point) x 36 (participant/session) matrix for each movie. The matrices
from the three movie clips were concatenated to a 410 x 108 matrix, and permutation was performed
along the individual/session dimension to define three permutated matrices. The differences in variance
explained by the first PC between each movie clip and the other two clips were calculated and compared
with the permutated distributions of 10,000 times. FDR correction at p < 0.05 was used to correct
multiple comparisons of all three movie clips.

The randomization-based statistics were performed for all the analyses in the 20-IC solutions.
For the 80-IC solution, the goal of the analyses was not to identify specific statistically significant
connections. Rather, we examined the spatial distributions of the dynamic connectivity, and their

relations to stationary connectivity.
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266  2.6. Relations to stationary connectivity

267  Next, we examined how the spatial distribution of consistent dynamic connectivity is associated with
268  stationary connectivity. Here we focused on a finer spatial scale of 80-IC solutions. To assess the

269  stationary connectivity, we calculated Fisher’s z transformed Pearson’s correlations across the included
270  networks (ICs). The matrices were averaged across individuals, and transformed back to r quantities.
271  First, we examined whether the dynamic and stationary connectivity has similar spatial distributions. For
272 both matrices, the upper triangular part was converted to vectors, which were in turn correlated with each
273  other between different movie clips. We adopted Spearman’s correlation coefficients to avoid violations
274  of Gaussian distributions of the matrix data.

275 Next, we calculated connectivity gradients (Margulies et al., 2016; Vos de Wael et al., 2020)

276  based on the stationary connectivity patterns in the HBN-SSI dataset. By calculating gradients, the brain
277  networks (ICs) can be placed into a 2-D space based on their relative stationary connectivity strengths.
278  The 2-D gradients reflect large-scale brain organizations between unimodal networks and higher-order
279  transmodal areas (e.g. the default mode network) and between visual and sensorimotor regions (Margulies
280  etal., 2016). We can next display dynamic connectivity in the 2-D space to illustrate whether the

281  dynamic connectivity takes place between proximal or distal regions in the 2-D space. Specifically, we
282  first calculated the gradients for each movie clip based on the group stationary connectivity matrices

283  using the BrainSpace toolbox (Vos de Wael et al., 2020). The gradients were then aligned across the
284  movie clips with Procrustes alignment. The default diffusion-embedding and row-wise threshold (top
285  10% percentile) were used. After model fitting, the first two gradients were obtained. The network ICs
286  were mapped into the 2D gradient space. Lastly, the dynamic connectivity from the three movie clips
287  was plotted on the 2-D layout.

288  2.7. Movie clips classification

289  In addition to univariate analysis, we also explored whether the dynamic connectivity, stationary

290  connectivity, and regional activity can reliably reflect an individual’s movie-watching condition (Finn et
291  al., 2015). The analysis was performed based on the 54 network ICs from the 80-IC solution. For each
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292 participant of the HBN-SSI dataset, we calculated a connectivity or activity measure for each movie clip,
293  and also the corresponding connectivity or activity measure for the remaining 8 participants. We

294  compared three types of measures. First, we calculated the inter-individual consistency of point-by-point
295  multiplications. The individual’s consistency was calculated across the four sessions of the same movie
296  clips. The consistency of the remaining participants was calculated across 32 participants/sessions. The
297  lower diagonal of the matrices was converted into a 1,431 (54 x 53 /2) by 1 vector to perform the

298  classification analysis. Second, we calculated mean stationary connectivity for the individual (averaged
299  across 4 sessions) and the remaining participants (averaged across 32 sessions). Third, we calculated the
300 inter-individual consistency of the regional activity. Similarly, individual measures were calculated

301  across the four sessions, and the remaining participants’ measures were calculated for the 32

302  participants/sessions. Each measure was a 54 by 1 vector, which was used for the classification analysis.
303 We used a winner-take-all algorithm to perform the movie clip classifications. To classify the
304  individual measure’s state (movie clips), the individual’s measures were correlated with the remaining
305  participants’ measures from the three movie clips. The movie clips with the highest correlation were used
306  as the predicted class. The classification was performed for each of the 9 participants and 3 movie clips,
307 from which we calculated confusion matrices among the three movie clips and the overall classification
308  accuracy of all the three movie clips. Because three movie clips were used for the classifications, the
309  chance level accuracy is 33.33%. To determine statistical significance, we adopted a permutation

310  procedure to randomly shuffle the predicted movie label 10,000 times.

311

312

313 3. Results

314  3.1. Dynamic and stationary connectivity in 20-IC solution

315  We first examined the dynamic connectivity by calculating point-by-point multiplications between each
316  pair of 16 networks (IC) on the Partly Cloudy dataset (Figure 3a). We found widespread inter-individual
317  consistent effects at p < 0.05 of FDR correction. We also applied the sliding window approach, which
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318  only yielded statistically significant effects on six pairs of networks (supplementary materials). This

319  suggests that the point-by-point multiplication approach has better sensitivity to detect dynamic

320  connectivity than the sliding-window approach. Although widespread, higher inter-individual

321  consistency was found mostly involving one network of the higher visual networks (IC# 2, 3, and 4 in
322  Figure 3c). And more interestingly, high inter-individual consistent dynamic connectivity was also found
323  between the supramarginal and default mode network (IC # 6 and 15), which was similar to our previous
324  analysis using a different analytic approach. In contrast, the stationary connectivity showed different

325  spatial patterns than the dynamic connectivity (Figure 3b). The networks with known functional

326 relations, e.g., all the visual related networks (IC # 1, 2, 3, and 4), had higher stationary connectivity,

327  which showed square-like structures along the diagonal.

a) b)

Dynamic connectivity consistency Stationary connectivity

20
15 5 05
8 0 8 0
10
5 -0.5
15
0 -1
5 10 15
ICs ICs
'HEHCEIECEEICE A A
328 1 4 5 6 7 8 10 11
329 Figure 3 a) Inter-individual consistent point-by-point multiplications (dynamic connectivity) across the
330 16 networks (independent components, ICs) from the Partly Cloudy dataset. The colors in the matrix
331 represent the percent variance explained by the first principal component of the point-by-point
332 multiplication. The red dots indicate a false discovery rate (FDR) p < 0.05 using a circular time-shift
333 randomization procedure. b) Mean stationary connectivity across the 16 network ICs. The networks are
334 ordered roughly according to their functions. The locations of the networks are shown in c).
335
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Figures 4a through 4c show the consistent point-by-point multiplications among the 16 networks
(ICs) for the three movie clips in the HBN-SSI dataset. Consistent with the Partly Cloudy dataset,
widespread consistent dynamic connectivity was observed. The networks that had more consistent
dynamic connectivity were higher visual networks and the auditory network (IC 7). We further directly
compared the consistency of dynamic connectivity among the three movies (Figure 4d through 4f).
Compared with the other two movie clips, the Wall-E clip showed more consistent dynamic connectivity
between the supramarginal network (IC 6) and many other networks, and between the posterior cingulate
network (IC 13) and visual related networks. Compared with the other movie clips, the clip of The
Matrix showed greater consistency between only three pairs of networks, among the posterior visual
cortex, posterior parietal network, supramarginal network, and a left frontoparietal network. And lastly,
compared with the other two movie clips, the A Few Good Men clip showed greater consistency in the
multiplication of the auditory cortex (IC 7) with other networks, and between the temporoparietal junction

network (IC 5) and other networks.
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Figure 4 a) through c), consistency of dynamic connectivity across 16 networks (independent
components, ICs) when watching the three movie clips in the Healthy Brain Network serial scanning
initiative dataset. The colors in the matrices represent the percent variance explained by the first principal
component of the point-by-point multiplication. d) through f), the differences in consistency of dynamic
connectivity between each movie clip and the other two clips. The red dots indicate statistical
significance at a false discovery rate p < 0.05 with permutation testing. The differences in consistency of
dynamic connectivity are also shown in graph representations in g) through i), where the node color
represents the consistency differences in regional activity. j) shows the representative maps for the 16

network ICs.

We also examined the relationships between regional activity consistency and dynamic
connectivity consistency. We first compared the variance explained by the first PC for regional activity
between the three movie clips (supplementary Figure S2). Four networks (ICs) showed higher
intersubject correlations in Wall-E compared with the other two movie clips, including the posterior
cingulate cortex, supramarginal gyrus, left fronto-parietal, and medial and lateral prefrontal networks.
Only one network covering the posterior parietal lobe showed higher intersubject synchronization in The
Matrix compared with the other two movie clips. Eight networks showed higher intersubject correlations
in A Few Good Men compared with the other movie clips, including the auditory cortex, medial visual,
temporo-parietal junction, and a few fronto-parietal networks. More interestingly, the regions with
greater consistency in regional activity in different movie clips seem to correspond well with the regions
with many consistent dynamic connectivities (Figure 4g through 41i).

We next examined the stationary connectivity among the 16 networks (ICs) (Figure 5). Not
surprisingly, the overall patterns in the three movies were very similar. When directly comparing the
differences among the three movies, no statistically significant differences were found even at the p <

0.05 threshold.
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Figure 5 Top row, stationary connectivity among 16 networks (independent components, ICs) when
watching the three movie clips from Healthy Brain Network Serial Scanning Initiative dataset. Bottom
row, differences in stationary connectivity between a movie clip and the other two clips. No statistically

significant difference was found even with an uncorrected threshold of p < 0.05.

3.2. Dynamic and stationary connectivity in 80-IC solution

We further studied the relations between dynamic and stationary connectivity in a larger spatial scale of
the 80-IC solution. Figure 6 shows the dynamic connectivity consistency and stationary connectivity
matrices for the four movie clips. The patterns are very similar to what with the 20-IC solution. That is,
the stationary connectivity matrices showed modular structures, and were very similar across different
movie clips. In contrast, the dynamic connectivity distributions were highly skewed, with greater

consistency between lower-level brain regions such as the visual and auditory cortex.
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390 Figure 6 Dynamic connectivity consistency (top row) and mean stationary connectivity (bottom row) for

391 the four movie clips using the 80-independent-component solutions. Please note that the number of
392 included independent components (ICs) are different between the Partly Cloudy dataset and the other
393 three movie clips.

394

395 We next directly examine the correlations among the matrices. For the Partly Cloudy data, the

396  correlation between stationary and dynamic connectivity consistency was only 0.09 (Figure 7a), although
397 it was statistically significant due to the large number of IC pairs. The relations have been confirmed by
398  the NBH-SSI dataset (Figure 7b). The stationary connectivity of the three movie clips had almost perfect
399  correlations. On the other hand, the dynamic connectivity of the three movies had moderate correlations.
400  There were very small correlations between the dynamic and stationary connectivity matrices.
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Figure 7 Correlations between stationary and dynamic connectivity for the Partly Cloudy dataset (a) and
Healthy Brain Network Serial Scanning Initiative (HBN-SSI) dataset (b). The connectivity matrices were

calculated based on 80-independent-component solutions. Spearman’s rank correlation (p) was used.

In order to show the spatial distributions of dynamic connectivity in the context of global
stationary connectivity, we calculated connectivity gradients based on the stationary connectivity of the
three movie clips in the HBN-SSI dataset (Top row in Figure 8). The first and second gradients
represented unimodal to transmodal gradient and visual to motor gradient, respectively. Next, we plotted
the top 10% of dynamic connectivity in each movie clip compared with the other two movie clips
(Bottom row in Figure 8). It can be seen that the consistent dynamic connectivity for the three movies
usually took place between networks from far connectivity space, connecting visual, sensorimotor, and
higher-order association systems. There are also notable differences among the three movie clips. For
example, for the movie clips A Few Good Men, the consistent dynamic connectivity connected the
higher-order associate areas to visual and sensorimotor regions, separately. But direct connections
between visual and sensorimotor regions were rare.
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418  Figure 8 Top row, gradient maps of stationary connectivity in the Healthy Brain Network Serial Scanning

419 Initiative dataset. Bottom row, top 10% consistent dynamic connectivity in each movie clip compared
420 with the other two clips mapped to the connectivity gradient space.
421

422  3.4. Movie clips classification

423  Last we asked whether the dynamic or stationary connectivity pattern can enable individual-level

424  prediction of the different movie clips. For each participant from the HBN-SSI dataset, we classified one
425  of the three movie clips based on different measures. Overall, the consistency of dynamic connectivity
426  achieved the highest prediction accuracy (Accuracy = 92.6%), followed by the stationary connectivity
427  (Accuracy = 85.2%) and the consistency of regional activity (Accuracy = 74.1%). Compared with

428  chance level accuracy of 33.33%), all classification accuracies were statistically significant (p < 0.001)
429  based on permutation tests. The clip-to-clip classification results for the different features are shown in
430  Supplementary Table S1.

431

432 4. Discussion

433  In the current analysis, we have shown widespread dynamic connectivity that is consistent across

434  individuals when the participants watched the same movie clips. Different movie clips showed different
435  patterns of dynamic connectivity, suggesting that the moment-to-moment interactions between brain

436  regions may support the processing of context-specific information. For example, the two cartoon movie
437  clips showed similarly consistent dynamic connectivity between the posterior cingulate network and

438  supramarginal network. The action movie clip, The Matrix, showed more consistent dynamic

439 connectivity in networks related to attention. And the drama movie, A Few Good Men, showed more
440  consistent dynamic connectivity involving networks related to language processing, including bilateral
441  fronto-parietal networks and prefrontal cortex. In contrast, stationary connectivity showed very similar

442  spatial patterns in different movie clips, with few statistical differences. The dynamic connectivity
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443  connected brain regions that are farther in the connectivity gradient space, and can better classify different
444  movie clips than the stationary connectivity and regional activity.

445 We first empirically compared the statistical results of inter-individual correlations of dynamic
446  connectivity measured by sliding window and point-by-point multiplication. Not surprisingly, the

447  multiplication approach showed higher statistical sensitivity than the sliding window approach, as

448  indicated by a much larger number of significant effects. It is not surprising because the point-by-point
449  multiplication has kept the information of every time point, while the sliding-window approach can be
450  seen as smoothed time series that could potentially filter out real signals. More specifically, the point-by-
451  point multiplication approach detected consistent interactions between almost every pair of network ICs.
452  This is in line with previous studies of regional activity, which also showed statistically significant effects
453  in almost all cortical regions (Chen et al., 2016; Di and Biswal, 2020). In contrast, the sliding window
454  approach can only detect a small number of the dynamic connectivity among higher visual networks, and
455  between supramarginal gyrus and posterior cingulate networks. This is probably because there is slow
456  time-varying dynamic connectivity between these regions (e.g., Figure 1), which can be detected by the
457  sliding window approach. This is in line with studies showing that higher-order brain regions process
458  longer time scale information (Baldassano et al., 2017). The results confirm the limitation of the sliding
459  window approach in studying dynamic connectivity.

460 Consistent dynamic connectivity is ubiquitous, but different movies clips were associated with
461  different patterns of dynamic connectivity. The movie clips from Wall-E showed a similar dynamic

462  connectivity pattern as another animated movie Partly Cloudy. Specifically, consistent dynamic

463  connectivity was mainly observed in connectivity with two networks, the supramarginal and posterior
464  cingulate networks. These regions involve higher-order social processes such as empathy and theory of
465 mind (Richardson et al., 2018; Schurz et al., 2021). This makes sense because understanding the cartoon
466  movies requires understanding the social interactions and intentions of the virtual characters. In contrast,
467  the court drama clip, A Few Good Men, showed higher dynamic connectivity consistency that involved
468  the auditory and temporoparietal junction networks. Because the court drama includes numerous
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469  conversations, it is not surprising that the auditory cortex dynamically interacts with other cortical areas to
470  pass auditory information to those areas. The temporoparietal junction is thought to be responsible for
471  attributing other’s mental states (Koster-Hale and Saxe, 2013; Wang et al., 2021), which may also be a
472  key component in understanding the conversations in the movie clip. Of course, these brain areas also
473  involve in many other higher-order brain functions, the correlational nature of the analysis doesn’t allow a
474  specific function to the observed dynamic connectivity pattens (Poldrack, 2006).

475 In contrast to the dynamic connectivity, no differences were identified in stationary connectivity
476  among the three movie clips. In a larger spatial scale of 54/80 ICs, we further showed that the spatial

477  distribution of stationary connectivity was highly correlated among the three movie clips, which is

478  consistent in a previous study (Vanderwal et al., 2019). The largely similar patterns of connectivity

479  during watching different movies are also in line with the observations in conventional task fMRI. When
480  regressing out task activations (Cole et al., 2014; Di and Biswal, 2019) or using continuous task design
481  (Krienen et al., 2014), the stationary connectivity or task-independent connectivity showed largely similar
482  spatial patterns with each other and with what in resting-state. Similarly, the absolute correlation patterns
483  of trial-by-trial variability of the stop and go conditions in a stop signal task also showed similar patterns
484 with each other and with a separate resting-state run (Di et al., 2020). Taken together, all the results

485  convergently suggest that there is an overall connectivity pattern that may be related to the baseline brain
486  function, but may also be related to the underlying physiology (Chen et al., 2020) or anatomical network
487  structures (Laumann and Snyder, 2021). The lack of specificity of this global connectivity pattern makes
488 it less desirable as a measure of brain connectivity in specific cognitive and mental conditions. It should
489  be noted that when using multivariate classification analysis, the spatial patterns of stationary connectivity
490  can still be used to identify different movie clips, but with less accuracy than the dynamic connectivity
491  patterns. The high classification accuracy of the dynamic connectivity suggested that dynamic

492  connectivity could potentially be useful in predictive-based analysis to reflect individual differences (Finn

493 et al., 2015).
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494 The spatial distributions of dynamic connectivity and stationary connectivity are largely

495  dissociated. On one hand, the dynamic connectivity could take place between regions within the same
496  functional systems, e.g., the visual system. This is less apparent when using the sliding-window

497  approach, probably due to that the sliding-window approach can only capture slow fluctuations of

498  dynamic connectivity. The point-by-point approach could capture the fast dynamics of the interactions.
499  Itis reasonable that the lower-level sensory regions showed consistent interactions, but this may be

500 overlooked by using the conventional sliding window approach. On the other hand, the current results
501  also showed that dynamic connectivity could also take place between different functional systems, e.g.,
502  between visual areas and the default mode network. This is in line with the economic account of brain
503  network organizations, which suggests that transient communication between remote brain regions could
504  enable efficient information transmissions. When overlaying the dynamic connectivity on the

505  connectivity gradients space, it demonstrated more clearly that the dynamic connectivity took place

506  between higher association areas, such as the default mode network, and lower-level sensory or motor
507  regions.

508 One limitation of the current study is the sample size. The HBN serial scanning dataset has a
509 relatively small sample size (n = 9). However, each participant watched three different types of movie
510 clips and repeated four sessions, which enable us to directly compare connectivity among these diverse
511  movie types and ensure the robustness of the results within an individual. Although promising, a larger
512 sample size with an examination of behavioral scores is needed for future brain-behavioral association
513  studies (Finn and Bandettini, 2021), where researchers can directly examine the differences in behavioral
514  correlates between dynamic connectivity and stationary connectivity (Eichenbaum et al., 2021).

515  Secondly, the current analysis only focused on the spatial distributions of dynamic connectivity. Given
516  the ubiquitous dynamic connectivity identified in the current analysis, future studies could also examine
517  the time courses of the point-by-point multiplications, which could paint a more complete picture of the
518  dynamic connectivity.

519
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520 5. Conclusion

521 By analyzing the inter-individual consistency of point-by-point multiplications between brain regions, we
522  were able to identify functionally meaningful dynamic connectivity during movie watching. We found
523  that compared with the stationary connectivity, the dynamic connectivity can be more sensitive to detect
524  functional changes due to different movie contexts. The spatial distributions of dynamic connectivity and
525  stationary connectivity were largely dissociated, with dynamic connectivity more reflect long-range

526  communications. Overall, dynamic connectivity may provide more functionally related information than
527  stationary connectivity.
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