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Abstract 25 

Spatially remote brain regions show synchronized activity as typically revealed by correlated functional 26 

MRI (fMRI) signals.  An emerging line of research has focused on the temporal fluctuations of 27 

connectivity, however, its relationships with stationary connectivity have not been clearly illustrated.  We 28 

examined dynamic and stationary connectivity when the participants watched four different movie clips.  29 

We calculated point-by-point multiplication between two regional time series to estimate the time-30 

resolved dynamic connectivity, and estimated the inter-individual consistency of the dynamic 31 

connectivity time series.  Widespread consistent dynamic connectivity was observed for each movie clip, 32 

which also showed differences between the clips.  For example, a cartoon movie clip, The Present, 33 

showed more consistent of dynamic connectivity with the posterior cingulate cortex and supramarginal 34 

gyrus, while a court drama clip, A Few Good Men, showed more consistent of dynamic connectivity with 35 

the auditory cortex and temporoparietal junction, which might suggest the involvement of specific brain 36 

processing for different movie contents.  In contrast, the stationary connectivity as measured by the 37 

correlations between regional time series was highly similar among the movie clips, and showed fewer 38 

statistically significant differences.  The patterns of consistent dynamic connectivity could be used to 39 

classify different movie clips with higher accuracy than the stationary connectivity and regional activity.  40 

These results support the functional significance of dynamic connectivity in reflecting functional brain 41 

changes, which could provide more functionally related information than stationary connectivity.  42 

 43 

Keywords: dynamic connectivity; movie connectome; movie watching; naturalistic stimuli; stationary 44 

connectivity  45 
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1. Introduction 46 

The human brain exhibits a highly synchronized structure of activity as revealed by functional MRI 47 

(fMRI) in resting-state (Biswal et al., 1995, 2010), during task performance (Cole et al., 2014; Di et al., 48 

2020; Krienen et al., 2014), and during watching naturalistic stimuli such as movies (O’Connor et al., 49 

2017; Vanderwal et al., 2019).  Functional connectivity, as measured by the correlations of observed 50 

blood-oxygen-level-dependent signals (Biswal et al., 1995; Friston, 1994), have been widely used to 51 

examine the organization of large-scale brain networks (Margulies et al., 2016; Salvador et al., 2005; Yeo 52 

et al., 2011) and to parcellate small brain structures such as the thalamus and striatum (Di Martino et al., 53 

2008; Tian et al., 2020; Yuan et al., 2016).  However, the spatial distribution of functional connectivity is 54 

highly similar across different tasks and movie watching conditions (Cole et al., 2014; Di et al., 2020; 55 

Krienen et al., 2014; Vanderwal et al., 2019).  To localize functionally meaningful connections, it is 56 

therefore critical to examine the time-varying fluctuations of connectivity (Allen et al., 2014; Di and 57 

Biswal, 2020; Hutchison et al., 2013), as well as the changes of functional connectivity between different 58 

task conditions (Di and Biswal, 2019; Fornito et al., 2012; Friston et al., 1997).   59 

 Time-varying dynamic connectivity is mostly studied in the resting state by using the sliding-60 

window approach (Allen et al., 2014; Hutchison et al., 2013; Lurie et al., 2020).  It has been shown that 61 

the variability of dynamic connectivity fluctuations is lower between regions from the same functional 62 

networks and higher between regions from different networks (Fu et al., 2017), resulting in an overall 63 

negative correlation with the stationary functional connectivity (Thompson and Fransson, 2015; Zhang et 64 

al., 2018).  However, because of the unconstrained nature of the resting-state, it is difficult to ensure that 65 

the obtained dynamic connectivity estimates are functionally meaningful or simply resulting from noise 66 

(Lindquist et al., 2014).  Until recently, dynamic connectivity is also studied when the participants were 67 

given complex stimuli, such as watching movie clips (Di and Biswal, 2020).  The advantage of using a 68 

movie stimulus is that the time course of dynamic connectivity can be compared across participants.  If 69 

there are high inter-individual similarity (Hasson et al., 2004; Nastase et al., 2019), then it may imply that 70 
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the observed dynamic connectivity is functionally meaningful and is relevant to the processing of the 71 

video stimuli. 72 

 In our previous study, we have demonstrated the inter-individual consistency of dynamic 73 

connectivity when different participants watched the same animated movie Partly Cloudy (Di and Biswal, 74 

2020).  By using a seed-based analysis, we identified highly consistent dynamic connectivity between the 75 

supramarginal gyrus and posterior cingulate gyrus, two regions that are critical in the processes of 76 

empathy and theory of mind (Richardson et al., 2018).  Moreover, among a set of regions of interest, the 77 

dynamic connectivity pattern was largely dissociated with the stationary functional connectivity that was 78 

measured by the correlations of the time series from the entire run.  For example, the stationary functional 79 

connectivity between the supramarginal gyrus and posterior cingulate gyrus was close to zero, while the 80 

windowed dynamic connectivity showed highly consistent fluctuations.  To date, only handful of studies 81 

have examined dynamic connectivity during movie watching (Cooper et al., 2021; Di and Biswal, 2020; 82 

Freitas et al., 2020; Simony and Chang, 2020).  It is still largely unknown how the spatial pattern is 83 

modulated by different movie contents, and how dynamic connectivity is spatially distributed.   84 

 The central goal of this study is to compare dynamic connectivity and stationary connectivity in 85 

the context of movie watching.  In addition to the previously analyzed Partly Cloudy dataset (Richardson 86 

et al., 2018), we also analyzed the Healthy Brain Network Serial Scanning Initiative (HBN-SSI) dataset 87 

(O’Connor et al., 2017), where same participants watched three different movie clips.  The video clips 88 

were derived from different types of movies, ranging from a science fiction cartoon comedy, a science 89 

fiction action film, to a court drama.  It is reasonable to expect that different brain systems are involved in 90 

the process of the different movie clips.  However, Vanderwal and colleagues have examined the 91 

stationary connectivity of the three movies, and showed very similar spatial patterns among them 92 

(Vanderwal et al., 2019).  We speculate that dynamic connectivity might be more sensitive to reflect the 93 

changes in brain functions among the movie clips. 94 

 Further, we systematically examine the relationships between dynamic and stationary 95 

connectivity in terms of their spatial distributions and context modulations.  The economic theory of brain 96 
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network organization has suggested that the maintenance of long-range between-system communications 97 

is costly, and long-range and between-system connectivity may be more dynamic and depend on task 98 

demands (Bullmore and Sporns, 2012).  In line with this account, the dynamic connectivity between 99 

different functional systems are more variable than within functional systems (Fu et al., 2017; Thompson 100 

and Fransson, 2015), and task modulated connectivity are also likely to take place between regions from 101 

different functional networks (Di and Biswal, 2019).  Similarly, for the movie-watching data, we 102 

speculate that dynamic connectivity might take place between regions from different functional modules.  103 

In contrast, the stationary connectivity might tightly reflect the organizations of brain networks, i.e., 104 

higher stationary connectivity between regions from the same functional networks, and lower stationary 105 

connectivity between regions from different networks.  The dissociation might result in different spatial 106 

patterns between the dynamic and stationary connectivity.  107 

 108 

2. Materials and Methods 109 

2.1. FMRI dataset 110 

We analyzed two publicly available fMRI datasets when participants watched different movie clips, the 111 

Partly Cloudy dataset (Richardson et al., 2018) and the HBN-SSI dataset (O’Connor et al., 2017).  For the 112 

Partly Cloudy dataset, we analyzed the adults’ data where they watched the animated movie <Partly 113 

Cloudy=.  And for the HBN-SSI dataset, we analyzed the data when the same participants watched three 114 

different movie clips from different types of movies.  115 

2.1.1. Partly Cloudy dataset 116 

The Partly Cloudy data were obtained through openneuro (https://openneuro.org/; accession #: 117 

ds000228).  Consistent with our previous study, we only included the adult participants (n = 33) (Di and 118 

Biswal, 2020).  After dropping data due to large head motion (see below) and poor brain coverage, the 119 

effective sample included 17 females and 12 males.  The mean and standard deviation of age were 24.6 120 

years and 5.3, respectively (age range: 18 to 39 years).  The original study was approved by the 121 
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Committee on the Use of Humans as Experimental Subjects (COUHES) at the Massachusetts Institute of 122 

Technology. 123 

 During the fMRI scan, the participants watched a 5.6-minute long silent version of Partly Cloudy 124 

(Pixar, 2009).  MRI images were acquired on a 3-Tesla Siemens Tim Trio scanner with the standard 125 

Siemens 32-channel head coil.  Blood-oxygen-level dependent (BOLD) sensitive fMRI images were 126 

collected with a gradient-echo EPI sequence in 32 interleaved near-axial slices (EPI factor: 64; TR: 2 s, 127 

TE: 30 ms, and flip angle: 90°).  The participants were recruited for different studies with slightly 128 

different voxel sizes and slice gaps.  Three participants had 3.13 mm isotropic voxels with no gap, and 26 129 

participants had 3.13 mm isotropic voxels with a 10% gap.  All the functional images were resampled to 3 130 

mm isotropic voxel size during preprocessing.  168 functional images were acquired, with four dummy 131 

scans before the real scans to allow for steady-state magnetization.  T1-weighted structural images were 132 

collected in 176 interleaved sagittal slices with 1 mm isotropic voxels (GRAPPA parallel imaging, 133 

acceleration factor of 3; FOV: 256 mm).  More information can be found in Richardson et a. (2018). 134 

2.1.2. HBN-SSI dataset 135 

The HBN-SSI dataset was obtained through the project website 136 

(http://fcon_1000.projects.nitrc.org/indi/hbn_ssi/).  Thirteen participants were recruited in the study.  137 

After removing data of four participants due to excessive head motion in any of the movie-watching 138 

sessions, data from four females and five males were included in the current analysis.  All the participants 139 

are right-handed.  The age range was from 23 to 37 years old (Mean = 29.4; SD = 5.5). 140 

 We selected the movie watching scans of three movie clips, Wall-E (Walt Disney Productions, 141 

2008), The Matrix (Warner Bros., 1999), and A Few Good Men (Columbia Pictures, 1992), from the 12 142 

repeated scanning sessions.  Each movie clip was 10 minutes long and was watched by the same 143 

participant four times in separate sessions.  The order of the movie watching was counterbalanced across 144 

sessions.  The fMRI data were scanned using an EPI sequence with the following parameters, TR: 1,450 145 

ms, TE: 40 ms, flip angle: 55o, and voxel size: 2.46 x 2.46 s 2.5 mm3 without any gap.  Four hundred and 146 

twenty images were scanned for each run.  However, for one participant, there were only 410 images for 147 
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several sessions.  We, therefore, used the first 410 images for the current analysis for all the subjects and 148 

sessions.   149 

 Lastly, the MPRAGE image from the first sequential scanning session of each participant was 150 

also used to assist preprocessing of the fMRI and DWI data.  The scanning parameters include TR, 2,730 151 

ms; TE 1.64 ms; flip angle, 7o; voxel size 1 x 1 x 1 mm3 with no gap.  More information about the study 152 

design and MRI acquisitions can be found in O’Connor et al., (2017). 153 

2.2. FMRI data preprocessing 154 

The fMRI data preprocessing was performed by using SPM12 (SPM, RRID: SCR_007037) under 155 

MATLAB environment (https://www.mathworks.com/).  The two datasets were preprocessed using very 156 

similar pipelines.  Specifically, the anatomical image of each participant was first segmented into gray 157 

matter, white matter, cerebrospinal fluid, and other tissue types, and normalized into standard Montreal 158 

Neurological Institute (MNI) space.  The functional images of each session and subject were aligned to 159 

the first image of their specific session and were coregistered to the skull stripped anatomical image of the 160 

subject.  The deformation field maps obtained from the segmentation step were used to normalize all the 161 

functional images into MNI space.  The fMRI images from the Partly Cloudy dataset were resampled to 3 162 

x 3 x 3 mm3 voxel size; and the images from the HBN-SSI dataset were resampled to 2.5 x 2.5 x 2.5 mm3, 163 

which were chosen according to their respective original voxel sizes.  All the functional images were then 164 

spatially smoothed using an 8 mm Gaussian Kernel.  Lastly, we defined a generalized linear model 165 

(GLM) for each session and subject by using 24 head motion variables (Friston et al., 1996) and a 166 

constant term as regressors, with implicit high-pass filtering at 1/128 Hz.  After model estimation, the 167 

residual images were saved for further analysis.  168 

 We calculated framewise displacement for translation and rotation for each session and 169 

participant (Di and Biswal, 2015).  For the Partly dataset, we used strict criteria of maximum framewise 170 

displacement of 1.5 mm or 1.5° to discard data with large head movements.  Two participants’ data were 171 

discarded accordingly.  For the HBN-SSI dataset, a participant's data were discarded if any of the sessions 172 

exceeded the criteria.  We adopted a slightly liberal criterion of maximum framewise displacement 173 
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greater than 2.5 mm or 2.5o or mean framewise displacement greater than 0.2 mm or 0.2o.  Four 174 

participants’ data were removed accordingly. 175 

2.3. Independent component analysis 176 

Because the main goal of the current study is to study connectivity across brain regions, we adopted 177 

spatial independent component analysis (ICA) to define connectivity nodes.  We extracted 20 and 80 ICs 178 

to represent different spatial scales of brain networks.  We first analyzed the local activity and 179 

connectivity with 20-IC solutions to identify statistically significant local effects.  We then calculated 180 

connectivity using the 80-IC solutions to examine their spatial distributions.  For spatial ICA, the number 181 

of ICs that could be extracted depends on the number of time points for each participant/session.  182 

Theoretically, t - 1 components can be extracted where t represents the total number of time points.  We 183 

chose 80, which is roughly half of the time points for the Partly Cloudy dataset. 184 

 Group ICA of fMRI Toolbox v3.0b (Group ICA of fMRI Toolbox, RRID: SCR_001953) was 185 

used for ICA (Calhoun et al., 2001).  The ICA was performed for the Partly Cloudy and HBN-SSI 186 

datasets separately.  After extraction, we manually selected the ICs that were related to functional 187 

networks and discarded the noise-like ICs.  For the Partly Cloudy dataset, 16 and 65 ICs were considered 188 

functionally meaningful ICs for the 20-IC and 80-IC solutions, respectively.  And for the HBN-SSI 189 

dataset, 16 and 54 ICs were kept.  After ICA, the time series of each IC for each subject and session were 190 

back reconstructed by using the group ICA algorithm.  The time series were used for further activity and 191 

connectivity analyses.  192 

2.4. Inter-individual consistency of regional activity 193 

For both regional activity and dynamic connectivity, we estimated the inter-individual consistency across 194 

participants and sessions.  Conventionally, the intersubject correlation was used to study the inter-195 

individual consistency (Chen et al., 2016; Hasson et al., 2004; Nastase et al., 2019).  In our recent study, 196 

we have shown that the principal component analysis (PCA) can be used to estimate the inter-individual 197 

consistency, which is quantitively similar to intersubject correlation (Di and Biswal, 2021).  Specifically, 198 

for a given region we have a t (# of time points) by n (# of participants) matrix X.  X is a 168 x 29 matrix 199 
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for the Partly Cloudy dataset and a 410 x 36 matrix (36 = 9 participants x 4 sessions) for each of the three 200 

movie clips from the HBN-SSI dataset.  We performed PCA on the matrix X and obtained the percent 201 

variance explained by the first PC as a measure of intersubject consistency.   202 

 For the HBN-SSI dataset, there were four sessions for each participant and each movie.  Ideally, 203 

the multi-session and multi-participant design can be used to differentiate the consistent and idiosyncratic 204 

responses.  We have explored this issue and found that the within-participant consistency was mainly 205 

driven by the overall across-participant consistency, but not participant-specific idiosyncratic responses 206 

(see supplementary materials).  Moreover, the idiosyncratic responses are not the focus of the current 207 

study.  Therefore, in the current analysis, we treated session and participant as separate data and 208 

calculated inter-individual consistency across all the sessions and participants. 209 

2.5. Dynamic connectivity 210 

The sliding-window approach is the most commonly used method to estimate dynamic connectivity 211 

(Allen et al., 2014; Di and Biswal, 2020; Fu et al., 2014).  A recent development is to utilize point-by-212 

point multiplications of two time series to approximate their dynamic connectivity, a.k.a. edge-centric 213 

time series (Faskowitz et al., 2020).  The development comes from the intuition that the commonly used 214 

measure of functional connectivity, i.e., Pearson’s correlation coefficient, is the summation of the point-215 

by-point multiplications of two z transformed variables divided by the sample size minus 1.  Therefore, if 216 

we keep the original point-by-point multiplication time series, it can reflect estimates of dynamic 217 

connectivity at every time point.  In Figure 1, we show the averaged time series of two networks, i.e., the 218 

posterior cingulate network and supramarginal network from the Partly Cloudy dataset.  The averaged 219 

sliding-window and point-by-point multiplication time series were also shown.  Strong negative 220 

multiplication values can be seen when the two original time series have strong anti-phase co-221 

fluctuations.  Indeed, the peaks in the posterior cingulate network and supramarginal network represent 222 

the theory-of-mind and pain empathy events, respectively, as indicated by the original paper (Richardson 223 

et al., 2018).  The point-by-point multiplication indicates strong negative connectivity during these 224 

events.  In contrast, the sliding window correlation can only reflect a smoothed trend of such interactions.  225 
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The point-by-point multiplication approach can avoid overly smoothing the time series data as done by 226 

the sliding-window approach, therefore providing better interpretability of the results.  On the other hand, 227 

the multiplication term may be noisier and more prone to physiological noises and head motion artifacts.  228 

But this may be less problematic for movie watching data, where we can estimate the consistent effects 229 

cross individuals.  We have performed statistical analyses on the Partly Cloudy dataset, and confirmed 230 

that the point-by-point multiplication approach had better statistical sensitivity (see Supplementary 231 

Materials).  Therefore, we adopted the point-by-point multiplication approach to estimate dynamic 232 

connectivity. 233 

 234 

Figure 1 Averaged time series of regional activity in the posterior cingulate (PCC) network and 235 

supramarginal network (SMG), and their point-by-point multiplication and sliding-window dynamic 236 

connectivity when watching an animated short movie Partly Cloudy.  The two brain networks shown in 237 

the inserted slices correspond to independent components #15 and # 6 in Figure 2, respectively. 238 

 239 

 We calculated the point-by-point multiplication between each pair of networks (ICs).  The time 240 

series from each network (IC) were first z transformed, and then point-by-point multiplied.  PCA was 241 

then performed on the multiplication time series across participants.  To determine the statistical 242 

significance of the variance explained by the first PC, we performed circular time-shift randomization to 243 

determine the null distribution (Di and Biswal, 2021; Kauppi et al., 2010).  The time series from the two 244 

network ICs from all the participants were circular-shifted with random delays.  Point-by-point 245 
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multiplications were then calculated for each participant, and PCA was performed.  The randomization 246 

was performed 10,000 times for each pair of networks from the 16 networks.  The real values were 247 

compared with the null distribution to perform statistical inferences.  This resulted in a 16 x 16 matrix.  248 

False discovery rate (FDR) correction was used to correct for multiple comparisons (120: 16 x 15 / 2). 249 

 250 

Figure 2 Illustration of the calculation of the consistency of dynamic connectivity and stationary 251 

connectivity.  252 

 253 

 For the HBN-SSI dataset, we also compared the differences in variance explained by the first PC 254 

among the three movies.  For a pair of networks ICs, the multiplication between two IC time series were 255 

first calculated, forming a 410 (time point) x 36 (participant/session) matrix for each movie.  The matrices 256 

from the three movie clips were concatenated to a 410 x 108 matrix, and permutation was performed 257 

along the individual/session dimension to define three permutated matrices.  The differences in variance 258 

explained by the first PC between each movie clip and the other two clips were calculated and compared 259 

with the permutated distributions of 10,000 times.  FDR correction at p < 0.05 was used to correct 260 

multiple comparisons of all three movie clips.  261 

 The randomization-based statistics were performed for all the analyses in the 20-IC solutions.  262 

For the 80-IC solution, the goal of the analyses was not to identify specific statistically significant 263 

connections.  Rather, we examined the spatial distributions of the dynamic connectivity, and their 264 

relations to stationary connectivity.  265 
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2.6. Relations to stationary connectivity 266 

Next, we examined how the spatial distribution of consistent dynamic connectivity is associated with 267 

stationary connectivity.  Here we focused on a finer spatial scale of 80-IC solutions.  To assess the 268 

stationary connectivity, we calculated Fisher’s z transformed Pearson’s correlations across the included 269 

networks (ICs).  The matrices were averaged across individuals, and transformed back to r quantities.  270 

First, we examined whether the dynamic and stationary connectivity has similar spatial distributions.  For 271 

both matrices, the upper triangular part was converted to vectors, which were in turn correlated with each 272 

other between different movie clips.  We adopted Spearman’s correlation coefficients to avoid violations 273 

of Gaussian distributions of the matrix data. 274 

 Next, we calculated connectivity gradients (Margulies et al., 2016; Vos de Wael et al., 2020) 275 

based on the stationary connectivity patterns in the HBN-SSI dataset.  By calculating gradients, the brain 276 

networks (ICs) can be placed into a 2-D space based on their relative stationary connectivity strengths.  277 

The 2-D gradients reflect large-scale brain organizations between unimodal networks and higher-order 278 

transmodal areas (e.g. the default mode network) and between visual and sensorimotor regions (Margulies 279 

et al., 2016).  We can next display dynamic connectivity in the 2-D space to illustrate whether the 280 

dynamic connectivity takes place between proximal or distal regions in the 2-D space.  Specifically, we 281 

first calculated the gradients for each movie clip based on the group stationary connectivity matrices 282 

using the BrainSpace toolbox (Vos de Wael et al., 2020).  The gradients were then aligned across the 283 

movie clips with Procrustes alignment.  The default diffusion-embedding and row-wise threshold (top 284 

10% percentile) were used.  After model fitting, the first two gradients were obtained.  The network ICs 285 

were mapped into the 2D gradient space.  Lastly, the dynamic connectivity from the three movie clips 286 

was plotted on the 2-D layout.  287 

2.7. Movie clips classification 288 

In addition to univariate analysis, we also explored whether the dynamic connectivity, stationary 289 

connectivity, and regional activity can reliably reflect an individual’s movie-watching condition (Finn et 290 

al., 2015).  The analysis was performed based on the 54 network ICs from the 80-IC solution.  For each 291 
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participant of the HBN-SSI dataset, we calculated a connectivity or activity measure for each movie clip, 292 

and also the corresponding connectivity or activity measure for the remaining 8 participants.  We 293 

compared three types of measures.  First, we calculated the inter-individual consistency of point-by-point 294 

multiplications.  The individual’s consistency was calculated across the four sessions of the same movie 295 

clips.  The consistency of the remaining participants was calculated across 32 participants/sessions.  The 296 

lower diagonal of the matrices was converted into a 1,431 (54 x 53 / 2) by 1 vector to perform the 297 

classification analysis.  Second, we calculated mean stationary connectivity for the individual (averaged 298 

across 4 sessions) and the remaining participants (averaged across 32 sessions).  Third, we calculated the 299 

inter-individual consistency of the regional activity.  Similarly, individual measures were calculated 300 

across the four sessions, and the remaining participants’ measures were calculated for the 32 301 

participants/sessions.  Each measure was a 54 by 1 vector, which was used for the classification analysis. 302 

 We used a winner-take-all algorithm to perform the movie clip classifications.  To classify the 303 

individual measure’s state (movie clips), the individual’s measures were correlated with the remaining 304 

participants’ measures from the three movie clips.  The movie clips with the highest correlation were used 305 

as the predicted class.  The classification was performed for each of the 9 participants and 3 movie clips, 306 

from which we calculated confusion matrices among the three movie clips and the overall classification 307 

accuracy of all the three movie clips.  Because three movie clips were used for the classifications, the 308 

chance level accuracy is 33.33%.  To determine statistical significance, we adopted a permutation 309 

procedure to randomly shuffle the predicted movie label 10,000 times.  310 

 311 

 312 

3. Results 313 

3.1. Dynamic and stationary connectivity in 20-IC solution  314 

We first examined the dynamic connectivity by calculating point-by-point multiplications between each 315 

pair of 16 networks (IC) on the Partly Cloudy dataset (Figure 3a).  We found widespread inter-individual 316 

consistent effects at p < 0.05 of FDR correction.  We also applied the sliding window approach, which 317 
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only yielded statistically significant effects on six pairs of networks (supplementary materials).  This 318 

suggests that the point-by-point multiplication approach has better sensitivity to detect dynamic 319 

connectivity than the sliding-window approach.  Although widespread, higher inter-individual 320 

consistency was found mostly involving one network of the higher visual networks (IC# 2, 3, and 4 in 321 

Figure 3c).  And more interestingly, high inter-individual consistent dynamic connectivity was also found 322 

between the supramarginal and default mode network (IC # 6 and 15), which was similar to our previous 323 

analysis using a different analytic approach.  In contrast, the stationary connectivity showed different 324 

spatial patterns than the dynamic connectivity (Figure 3b).  The networks with known functional 325 

relations, e.g., all the visual related networks (IC # 1, 2, 3, and 4), had higher stationary connectivity, 326 

which showed square-like structures along the diagonal. 327 

 328 

Figure 3 a) Inter-individual consistent point-by-point multiplications (dynamic connectivity) across the 329 

16 networks (independent components, ICs) from the Partly Cloudy dataset.  The colors in the matrix 330 

represent the percent variance explained by the first principal component of the point-by-point 331 

multiplication.  The red dots indicate a false discovery rate (FDR) p < 0.05 using a circular time-shift 332 

randomization procedure.  b) Mean stationary connectivity across the 16 network ICs.  The networks are 333 

ordered roughly according to their functions.  The locations of the networks are shown in c).   334 

 335 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.09.14.460293doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460293
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

 Figures 4a through 4c show the consistent point-by-point multiplications among the 16 networks 336 

(ICs) for the three movie clips in the HBN-SSI dataset.  Consistent with the Partly Cloudy dataset, 337 

widespread consistent dynamic connectivity was observed.  The networks that had more consistent 338 

dynamic connectivity were higher visual networks and the auditory network (IC 7).  We further directly 339 

compared the consistency of dynamic connectivity among the three movies (Figure 4d through 4f).  340 

Compared with the other two movie clips, the Wall-E clip showed more consistent dynamic connectivity 341 

between the supramarginal network (IC 6) and many other networks, and between the posterior cingulate 342 

network (IC 13) and visual related networks.  Compared with the other movie clips, the clip of The 343 

Matrix showed greater consistency between only three pairs of networks, among the posterior visual 344 

cortex, posterior parietal network, supramarginal network, and a left frontoparietal network.  And lastly, 345 

compared with the other two movie clips, the A Few Good Men clip showed greater consistency in the 346 

multiplication of the auditory cortex (IC 7) with other networks, and between the temporoparietal junction 347 

network (IC 5) and other networks. 348 

 349 
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Figure 4 a) through c), consistency of dynamic connectivity across 16 networks (independent 350 

components, ICs) when watching the three movie clips in the Healthy Brain Network serial scanning 351 

initiative dataset.  The colors in the matrices represent the percent variance explained by the first principal 352 

component of the point-by-point multiplication.  d) through f), the differences in consistency of dynamic 353 

connectivity between each movie clip and the other two clips.  The red dots indicate statistical 354 

significance at a false discovery rate p < 0.05 with permutation testing.  The differences in consistency of 355 

dynamic connectivity are also shown in graph representations in g) through i), where the node color 356 

represents the consistency differences in regional activity.  j) shows the representative maps for the 16 357 

network ICs. 358 

 359 

 We also examined the relationships between regional activity consistency and dynamic 360 

connectivity consistency.  We first compared the variance explained by the first PC for regional activity 361 

between the three movie clips (supplementary Figure S2).  Four networks (ICs) showed higher 362 

intersubject correlations in Wall-E compared with the other two movie clips, including the posterior 363 

cingulate cortex, supramarginal gyrus, left fronto-parietal, and medial and lateral prefrontal networks.  364 

Only one network covering the posterior parietal lobe showed higher intersubject synchronization in The 365 

Matrix compared with the other two movie clips.  Eight networks showed higher intersubject correlations 366 

in A Few Good Men compared with the other movie clips, including the auditory cortex, medial visual, 367 

temporo-parietal junction, and a few fronto-parietal networks.  More interestingly, the regions with 368 

greater consistency in regional activity in different movie clips seem to correspond well with the regions 369 

with many consistent dynamic connectivities (Figure 4g through 4i).  370 

 We next examined the stationary connectivity among the 16 networks (ICs) (Figure 5).  Not 371 

surprisingly, the overall patterns in the three movies were very similar.  When directly comparing the 372 

differences among the three movies, no statistically significant differences were found even at the p < 373 

0.05 threshold.  374 
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 375 

Figure 5 Top row, stationary connectivity among 16 networks (independent components, ICs) when 376 

watching the three movie clips from Healthy Brain Network Serial Scanning Initiative dataset.  Bottom 377 

row, differences in stationary connectivity between a movie clip and the other two clips.  No statistically 378 

significant difference was found even with an uncorrected threshold of p < 0.05.  379 

 380 

 381 

3.2. Dynamic and stationary connectivity in 80-IC solution 382 

We further studied the relations between dynamic and stationary connectivity in a larger spatial scale of 383 

the 80-IC solution.  Figure 6 shows the dynamic connectivity consistency and stationary connectivity 384 

matrices for the four movie clips.  The patterns are very similar to what with the 20-IC solution.  That is, 385 

the stationary connectivity matrices showed modular structures, and were very similar across different 386 

movie clips.  In contrast, the dynamic connectivity distributions were highly skewed, with greater 387 

consistency between lower-level brain regions such as the visual and auditory cortex. 388 
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 389 

Figure 6 Dynamic connectivity consistency (top row) and mean stationary connectivity (bottom row) for 390 

the four movie clips using the 80-independent-component solutions.  Please note that the number of 391 

included independent components (ICs) are different between the Partly Cloudy dataset and the other 392 

three movie clips.  393 

 394 

 We next directly examine the correlations among the matrices.  For the Partly Cloudy data, the 395 

correlation between stationary and dynamic connectivity consistency was only 0.09 (Figure 7a), although 396 

it was statistically significant due to the large number of IC pairs.  The relations have been confirmed by 397 

the NBH-SSI dataset (Figure 7b).  The stationary connectivity of the three movie clips had almost perfect 398 

correlations.  On the other hand, the dynamic connectivity of the three movies had moderate correlations.  399 

There were very small correlations between the dynamic and stationary connectivity matrices.  400 

 401 
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Figure 7 Correlations between stationary and dynamic connectivity for the Partly Cloudy dataset (a) and 402 

Healthy Brain Network Serial Scanning Initiative (HBN-SSI) dataset (b).  The connectivity matrices were 403 

calculated based on 80-independent-component solutions.  Spearman’s rank correlation (ρ) was used.  404 

 405 

 In order to show the spatial distributions of dynamic connectivity in the context of global 406 

stationary connectivity, we calculated connectivity gradients based on the stationary connectivity of the 407 

three movie clips in the HBN-SSI dataset (Top row in Figure 8).  The first and second gradients 408 

represented unimodal to transmodal gradient and visual to motor gradient, respectively.  Next, we plotted 409 

the top 10% of dynamic connectivity in each movie clip compared with the other two movie clips 410 

(Bottom row in Figure 8).  It can be seen that the consistent dynamic connectivity for the three movies 411 

usually took place between networks from far connectivity space, connecting visual, sensorimotor, and 412 

higher-order association systems.  There are also notable differences among the three movie clips.  For 413 

example, for the movie clips A Few Good Men, the consistent dynamic connectivity connected the 414 

higher-order associate areas to visual and sensorimotor regions, separately.  But direct connections 415 

between visual and sensorimotor regions were rare.  416 

 417 
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Figure 8 Top row, gradient maps of stationary connectivity in the Healthy Brain Network Serial Scanning 418 

Initiative dataset.  Bottom row, top 10% consistent dynamic connectivity in each movie clip compared 419 

with the other two clips mapped to the connectivity gradient space.  420 

 421 

3.4. Movie clips classification 422 

Last we asked whether the dynamic or stationary connectivity pattern can enable individual-level 423 

prediction of the different movie clips.  For each participant from the HBN-SSI dataset, we classified one 424 

of the three movie clips based on different measures.  Overall, the consistency of dynamic connectivity 425 

achieved the highest prediction accuracy (Accuracy = 92.6%), followed by the stationary connectivity 426 

(Accuracy = 85.2%) and the consistency of regional activity (Accuracy = 74.1%).  Compared with 427 

chance level accuracy of 33.33%, all classification accuracies were statistically significant (p < 0.001) 428 

based on permutation tests.  The clip-to-clip classification results for the different features are shown in 429 

Supplementary Table S1.  430 

 431 

4. Discussion 432 

In the current analysis, we have shown widespread dynamic connectivity that is consistent across 433 

individuals when the participants watched the same movie clips.  Different movie clips showed different 434 

patterns of dynamic connectivity, suggesting that the moment-to-moment interactions between brain 435 

regions may support the processing of context-specific information.  For example, the two cartoon movie 436 

clips showed similarly consistent dynamic connectivity between the posterior cingulate network and 437 

supramarginal network.  The action movie clip, The Matrix, showed more consistent dynamic 438 

connectivity in networks related to attention.  And the drama movie, A Few Good Men, showed more 439 

consistent dynamic connectivity involving networks related to language processing, including bilateral 440 

fronto-parietal networks and prefrontal cortex.  In contrast, stationary connectivity showed very similar 441 

spatial patterns in different movie clips, with few statistical differences.  The dynamic connectivity 442 
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connected brain regions that are farther in the connectivity gradient space, and can better classify different 443 

movie clips than the stationary connectivity and regional activity.  444 

 We first empirically compared the statistical results of inter-individual correlations of dynamic 445 

connectivity measured by sliding window and point-by-point multiplication.  Not surprisingly, the 446 

multiplication approach showed higher statistical sensitivity than the sliding window approach, as 447 

indicated by a much larger number of significant effects.  It is not surprising because the point-by-point 448 

multiplication has kept the information of every time point, while the sliding-window approach can be 449 

seen as smoothed time series that could potentially filter out real signals.  More specifically, the point-by-450 

point multiplication approach detected consistent interactions between almost every pair of network ICs.  451 

This is in line with previous studies of regional activity, which also showed statistically significant effects 452 

in almost all cortical regions (Chen et al., 2016; Di and Biswal, 2020).  In contrast, the sliding window 453 

approach can only detect a small number of the dynamic connectivity among higher visual networks, and 454 

between supramarginal gyrus and posterior cingulate networks.  This is probably because there is slow 455 

time-varying dynamic connectivity between these regions (e.g., Figure 1), which can be detected by the 456 

sliding window approach.  This is in line with studies showing that higher-order brain regions process 457 

longer time scale information (Baldassano et al., 2017).  The results confirm the limitation of the sliding 458 

window approach in studying dynamic connectivity. 459 

 Consistent dynamic connectivity is ubiquitous, but different movies clips were associated with 460 

different patterns of dynamic connectivity.  The movie clips from Wall-E showed a similar dynamic 461 

connectivity pattern as another animated movie Partly Cloudy.  Specifically, consistent dynamic 462 

connectivity was mainly observed in connectivity with two networks, the supramarginal and posterior 463 

cingulate networks.  These regions involve higher-order social processes such as empathy and theory of 464 

mind (Richardson et al., 2018; Schurz et al., 2021).  This makes sense because understanding the cartoon 465 

movies requires understanding the social interactions and intentions of the virtual characters.  In contrast, 466 

the court drama clip, A Few Good Men, showed higher dynamic connectivity consistency that involved 467 

the auditory and temporoparietal junction networks.  Because the court drama includes numerous 468 
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conversations, it is not surprising that the auditory cortex dynamically interacts with other cortical areas to 469 

pass auditory information to those areas.  The temporoparietal junction is thought to be responsible for 470 

attributing other’s mental states (Koster-Hale and Saxe, 2013; Wang et al., 2021), which may also be a 471 

key component in understanding the conversations in the movie clip.  Of course, these brain areas also 472 

involve in many other higher-order brain functions, the correlational nature of the analysis doesn’t allow a 473 

specific function to the observed dynamic connectivity pattens (Poldrack, 2006).  474 

 In contrast to the dynamic connectivity, no differences were identified in stationary connectivity 475 

among the three movie clips.  In a larger spatial scale of 54/80 ICs, we further showed that the spatial 476 

distribution of stationary connectivity was highly correlated among the three movie clips, which is 477 

consistent in a previous study (Vanderwal et al., 2019).  The largely similar patterns of connectivity 478 

during watching different movies are also in line with the observations in conventional task fMRI.  When 479 

regressing out task activations (Cole et al., 2014; Di and Biswal, 2019) or using continuous task design 480 

(Krienen et al., 2014), the stationary connectivity or task-independent connectivity showed largely similar 481 

spatial patterns with each other and with what in resting-state.  Similarly, the absolute correlation patterns 482 

of trial-by-trial variability of the stop and go conditions in a stop signal task also showed similar patterns 483 

with each other and with a separate resting-state run (Di et al., 2020).  Taken together, all the results 484 

convergently suggest that there is an overall connectivity pattern that may be related to the baseline brain 485 

function, but may also be related to the underlying physiology (Chen et al., 2020) or anatomical network 486 

structures (Laumann and Snyder, 2021).  The lack of specificity of this global connectivity pattern makes 487 

it less desirable as a measure of brain connectivity in specific cognitive and mental conditions.  It should 488 

be noted that when using multivariate classification analysis, the spatial patterns of stationary connectivity 489 

can still be used to identify different movie clips, but with less accuracy than the dynamic connectivity 490 

patterns.  The high classification accuracy of the dynamic connectivity suggested that dynamic 491 

connectivity could potentially be useful in predictive-based analysis to reflect individual differences (Finn 492 

et al., 2015).  493 
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 The spatial distributions of dynamic connectivity and stationary connectivity are largely 494 

dissociated.  On one hand, the dynamic connectivity could take place between regions within the same 495 

functional systems, e.g., the visual system.  This is less apparent when using the sliding-window 496 

approach, probably due to that the sliding-window approach can only capture slow fluctuations of 497 

dynamic connectivity.  The point-by-point approach could capture the fast dynamics of the interactions.  498 

It is reasonable that the lower-level sensory regions showed consistent interactions, but this may be 499 

overlooked by using the conventional sliding window approach.  On the other hand, the current results 500 

also showed that dynamic connectivity could also take place between different functional systems, e.g., 501 

between visual areas and the default mode network.  This is in line with the economic account of brain 502 

network organizations, which suggests that transient communication between remote brain regions could 503 

enable efficient information transmissions.  When overlaying the dynamic connectivity on the 504 

connectivity gradients space, it demonstrated more clearly that the dynamic connectivity took place 505 

between higher association areas, such as the default mode network, and lower-level sensory or motor 506 

regions.  507 

 One limitation of the current study is the sample size.  The HBN serial scanning dataset has a 508 

relatively small sample size (n = 9).  However, each participant watched three different types of movie 509 

clips and repeated four sessions, which enable us to directly compare connectivity among these diverse 510 

movie types and ensure the robustness of the results within an individual.  Although promising, a larger 511 

sample size with an examination of behavioral scores is needed for future brain-behavioral association 512 

studies (Finn and Bandettini, 2021), where researchers can directly examine the differences in behavioral 513 

correlates between dynamic connectivity and stationary connectivity (Eichenbaum et al., 2021).  514 

Secondly, the current analysis only focused on the spatial distributions of dynamic connectivity.  Given 515 

the ubiquitous dynamic connectivity identified in the current analysis, future studies could also examine 516 

the time courses of the point-by-point multiplications, which could paint a more complete picture of the 517 

dynamic connectivity.   518 

 519 
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5. Conclusion  520 

By analyzing the inter-individual consistency of point-by-point multiplications between brain regions, we 521 

were able to identify functionally meaningful dynamic connectivity during movie watching.  We found 522 

that compared with the stationary connectivity, the dynamic connectivity can be more sensitive to detect 523 

functional changes due to different movie contexts.  The spatial distributions of dynamic connectivity and 524 

stationary connectivity were largely dissociated, with dynamic connectivity more reflect long-range 525 

communications.  Overall, dynamic connectivity may provide more functionally related information than 526 

stationary connectivity. 527 

 528 
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