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Abstract 
Background: Transcranial magnetic stimulation (TMS) is widely used in brain research and treatment of 
various brain dysfunctions. However, the optimal way to target stimulation and administer TMS therapies, 

for example, where and in which electric field direction the stimuli should be given, is yet to be determined. 

Objective: To develop an automated closed-loop system for adjusting TMS parameters (in this work, the 

stimulus orientation) online based on TMS-evoked brain activity measured with electroencephalography 

(EEG). 

Methods: We developed an automated closed-loop TMS3EEG set-up. In this set-up, the stimulus 

parameters are electronically adjusted with multi-locus TMS. As a proof of concept, we developed an 

algorithm that automatically optimizes the stimulation orientation based on single-trial EEG responses. We 

applied the algorithm to determine the electric field orientation that maximizes the amplitude of the TMS3
EEG responses. The validation of the algorithm was performed with six healthy volunteers, repeating the 

search twenty times for each subject. 

Results: The validation demonstrated that the closed-loop control worked as desired despite the large 

variation in the single-trial EEG responses. We were often able to get close to the orientation that maximizes 

the EEG amplitude with only a few tens of pulses. 

Conclusion: Optimizing stimulation with EEG feedback in a closed-loop manner is feasible and enables 

effective coupling to brain activity.  
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Introduction 
Transcranial magnetic stimulation (TMS) [1] has shown 
therapeutic promise in various brain disorders [2] with 

almost no side effects [3]. Rapidly repeated magnetic 

pulses can modulate neuronal activity and yield, for 

instance, anti-depressant effects and improved recovery 
from stroke [2]. Although TMS has been investigated for 

decades and applied in therapeutic use for several years, 

the optimal way to deliver TMS therapy in different 

clinical conditions and individuals is still unclear. 

TMS-induced brain activation is produced by inducing a 

focused electric field (E-field) in the brain with a coil 

placed on the head. Targeting the stimulating E-field, i.e., 

selecting the location and orientation of its estimated focus 
on the cortex, is a key step in TMS. Other stimulus 

parameters include, for example, the stimulation intensity 

and the time between consecutive pulses, making the space 
of available TMS parameters huge. In TMS treatments and 

TMS studies investigating brain mechanisms, these 

parameters have been chosen in different ways. A common 
approach has been to observe and map functional 

responses to TMS, including motor-evoked potentials 

measured with electromyography when stimulating the 

motor cortex [1], subject-reported phosphenes or visual 
suppression upon stimulating the occipital cortex [4], and 

speech disruptions when perturbing language areas [5]. 

Stimulation locations have also been selected based on 
bony landmarks [6] or standard electroencephalography 

(EEG) electrode positions [7,8]. TMS targeting and 

mapping of functional responses got more precise with the 

introduction of neuronavigation systems [9,10], which 
guide and record the selection of the locations and 

orientations of the E-field focus based on individual 

structural brain scans. 

Accurate TMS target selection is crucial: TMS3
electromyography studies have shown that even subtle 

changes in the stimulation parameters may lead to large 

changes in the motor responses [11314]. There are changes 
also in TMS-evoked potentials (TEPs) measured with EEG 

when the stimulation parameters change significantly [153
19], although detailed mappings of TEPs are lacking. 

Detailed TEP maps as a function of different stimulus 
parameters would increase understanding of the brain 

dynamics underlying TMS3EEG, which provides a direct 

measure of evoked brain activity. TMS3EEG is effective 
in investigating brain mechanisms and neuronal 

connections [20,21]; it has shown promise as a biomarker 

in predicting the outcome and monitoring the clinical 

efficacy of TMS or other neuromodulatory treatments [213
23]. 

Given the varying practices in TMS targeting and the 

sensitivity of the TMS responses to the stimulus 

parameters, it is unsurprising that the observed TMS 
effects are often different and difficult to interpret; 

sometimes they even appear contradictory [2,24,25]. To 

make TMS more effective and more comparable, the 

stimulation parameters should be adjusted with 
neurophysiological feedback, regardless of the cortical 

target region. This concerns not only the initial stimulation 

parameters selected at the beginning of a TMS session but 
also the real-time adjustment of the TMS parameters 

during treatment sessions to maximize the desired plastic 

effects. It has been suggested that TMS parameters could 
be adjusted with feedback from EEG [21,22,26], which 

provides a readout signal from superficial brain areas. 

Procedures for selecting initial stimulation parameters in 

TMS3EEG measurements by visually inspecting averaged 
EEG responses and manually adjusting the TMS settings 

have been applied, e.g., in Refs. [27329] to acquire high-

quality, artifact-free TEPs. There are, however, also other 
situations, such as selecting stimulus parameters for TMS 

treatments, that could benefit from EEG-based targeting. 

To make EEG-guided TMS practical and generally 
applicable, the analysis of EEG data and the adjustment of 

TMS parameters must be easy and fast4leaving 

automated closed-loop control [30] as the only feasible 

approach. Previously, the timing of TMS pulses has been 
automatically adjusted based on the phase of the pre-

stimulus EEG [31,32]. Such methods are, however, 

considered only as state-dependent stimulation, not 
closed-loop stimulation that would utilize TMS responses 

in the process [33]. We hypothesized that TMS parameters 

could be automatically and adaptively adjusted based on 

the cortical effects of TMS as measured by EEG, even 

though TEPs exhibit high variation. 

In this paper, we show that guiding TMS with online EEG 

responses is possible and present an automated algorithm 

for determining an optimal stimulation orientation based 
on TEPs. In our closed-loop set-up, the stimulation 

parameters are adjusted electronically with multi-locus 

TMS [14], which avoids conventionally required manual 

coil positioning by simultaneously operated overlapping 

coils (see Fig. 1a). We show how TEPs depend on the 

stimulation orientation on the left pre-supplementary 

motor area (pre-SMA). Moreover, we demonstrate the 
functioning of the automated TMS3EEG targeting 

(Fig. 1b) in the search of an optimal stimulation orientation 

to maximize the peak-to-peak amplitude of the early TEP 
deflections. The presented algorithm enables user-

independent and individually optimized TMS targeting, 

especially outside the primary motor cortex. Furthermore, 

the possibility for automatic tuning of stimulus parameters 
with EEG feedback during TMS sessions has great 

potential for increasing the efficacy of TMS treatments. 
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Figure 1. Benefit of multi-locus TMS in closed-loop TMS–EEG. a Instead of manual coil operation (left), multi-locus TMS (right) allows 

electronic adjustment of stimulus parameters (in this example, the stimulation orientation (middle)) with no delay. The transducer 

consists of two tailored overlapping coils (top right). b In automated TMS–EEG targeting, the evoked EEG responses are analysed in 

real-time and used to decide on the stimulation parameters for the next pulse in such a way that the optimal stimulation parameters are 

found with the least number of iterations. The stimulation parameters are effortlessly adjusted with multi-locus TMS. The loop is 

repeated until the optimal stimulation parameters are found. 

 

Methods 
We performed two experiments. In Experiment 1, we 

systematically recorded TEPs as a function of stimulation 

orientation. Experiment 2 comprised repeated testing of 

the automated optimization of the stimulus orientation 
with EEG feedback. At the beginning of the TMS3EEG 

measurements, we performed a preparatory experiment 

comprising testing of the auditory noise masking and 

selection of the stimulation location and intensity. 

Six healthy participants (2 males, 1 left-handed [34], aged 

22342) volunteered for the study. The participants were 

divided into two groups of three subjects. Group A had the 

preparatory experiment and Experiment 1 in a single 
session, and the corresponding data were used to tune the 

algorithm validated in Experiment 2 about 132 months 

later. For the Group B subjects, Experiment 2 was 
performed first to provide an independent validation of the 

algorithm, and Experiment 1 was carried out about one 

week later. Prior to the TMS3EEG experiments, the 
subjects underwent structural magnetic resonance imaging 

(MRI) with T1-, fat-suppressed T1-, and T2-weighted 

sequences (cubic voxel size 1 mm3). The study was 

accepted by the ethical committee of the Hospital District 
of Helsinki and Uusimaa and carried out in accordance 

with the Declaration of Helsinki. The subjects signed a 

consent form before the experiments. 

Measurement set-up for TMS–EEG 
With our multi-locus TMS system [14] and a 2-coil 

transducer [35], we applied a monophasic magnetic pulse 
(60-μs rise time, 30-μs hold period, and 44-μs fall time 

[36]), producing a biphasic E-field in the cortex. The 

multi-channel TMS system allowed electronic adjustment 
of the stimulus orientation, here defined as the direction of 

the peak E-field computed on the cortex at 15-mm depth 

in a spherical head model of 85-mm radius. We attached a 

thin foam pad under the transducer to reduce the vibration 
of the electrodes and bone-conducted transmission of the 

stimulus sound. The transducer placement relative to the 

subject’s head was tracked with an eXimia NBS 3 
neuronavigation system (Nexstim Plc, Finland), which 

during repeated stimulation helped to keep the transducer 

within 2 mm and 2° from the intended coil placement. 

EEG signals were recorded with BrainAmp DC amplifiers 

(Brain Products GmbH, Germany). The signals were low-
pass filtered with a 1000-Hz cut-off frequency and 

sampled at 5000 Hz. During TMS3EEG data acquisition, 

subjects were instructed to be relaxed, avoid swallowing, 
keep their sight fixated to a point, and when needed, blink 

preferably about 1 s after the pulses. To minimize the 

auditory responses evoked by the click sound of the TMS 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.08.31.458148doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458148
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

pulse, subjects were presented via earbuds auditory 
masking that contained white noise and randomly jittering 

click noise from a recorded coil click [37] 

(https://github.com/iTCf/TAAC). Subjects wore earmuffs 

to additionally attenuate the TMS click. 

Preparatory step: selecting fixed experimental 

parameters 
Suitable auditory noise masking was determined by 
delivering TMS with the maximum intensity with the 

transducer a few centimetres above the head while the 

noise volume was increased until the subject did not hear 
the coil click. The effectiveness of the noise masking was 

tested by recording sets of 20 TEPs, which were evaluated 

with the help of a TMS3EEG data visualization tool 
presented and shared in Ref. [29] 

(https://github.com/iTCf/rt-TEP). This tool allowed 

cutting out the high-amplitude TMS pulse artifact within 

the first few milliseconds after the pulse and showing 
average-referenced signals to ease the visual inspection of 

the data. If auditory components were present, the noise 

masking volume was increased until the auditory 
components were negligible or the subject’s comfort limit 
or a 90-dB safety limit (measured with an SM20-A sound 

meter, Amprobe, USA, in a plastic ear canal) was reached. 

The stimulation location (site of the estimated E-field 

maximum) on the left pre-SMA was placed over the 
superior frontal gyrus approximately 131.5 cm anterior to 

the vertical anterior commissure line [38]. The stimulation 

intensity was adjusted until in 20 trials, the average peak-
to-peak amplitude of the deflections 15350 ms after the 

pulse was 5310 µV (similar approach as in Refs. [28,29]). 

We assessed the signal quality with the data visualization 
tool [29] with the induced peak E-field in the posterior3
anterior and medial3lateral directions. If large stimulation 

artifacts were present in the electrodes close to the 

stimulation site, the location was changed a few 

millimetres to reduce the artifacts. 

Experiment 1: systematic mapping of orientation 

dependency of TEPs 
In Experiment 1, 48 TMS pulses were delivered in each of 

the 36 orientations (with 10° steps) on the left pre-SMA, 

with the stimulus placement and intensity being as 
determined in the preparatory experiment. The 1728 pulses 

were divided into 12 blocks (a few minutes break 

between), each of them including four pulses in all 36 

orientations in a pseudorandom order. At the beginning of 
each block, we gave one additional pulse in a random 

orientation; the corresponding data were excluded from the 

analysis. The interstimulus interval (ISI) was 2.432.7 s. 

The EEG data were processed and analysed with Matlab 

scripts (version R2020b or newer; The MathWorks, Inc., 

USA). In each trial (−600…600 ms around the TMS 
pulses), the stimulation artifact in the time interval of 

−2…8 ms was removed and replaced by signals obtained 
by piecewise cubic interpolation. The signals were high-

pass filtered with a third-order Butterworth filter (cut-off 

frequency 1 Hz) in the forward and backward directions. 

Bad trials containing eye blinks or an excessive amount of 
muscle activity were manually removed. The signals were 

baseline-corrected by subtracting the mean of the signal at 

−200…−10 ms from the whole trial. Then, we applied the 
source-estimate-utilizing noise-discarding (SOUND) 

algorithm [39,40] to diminish artifactual signal 

components, such as muscle activity. SOUND was applied 
separately for each pool of trials with the same stimulation 

orientation and with the tuning factor for the regularization 

parameter set to 0.1, channel C6 serving as a high-quality 

reference electrode, and the number of iterations being 10. 
In the minimum-norm estimation included in SOUND, the 

lead fields were based on the individual realistic head 

geometry. Structures of the head were segmented from fat-
suppressed T1 and T2 MRIs with the SimNIBS headreco 

pipeline [41], followed by mesh downsampling and 

smoothing. The conductivity model consisted of scalp, 
skull, and intracranial volume, with conductivities of 0.33, 

0.0066, and 0.33 S/m, respectively. The lead fields were 

computed with the boundary element method using a 

linear-collocation isolated-source approach [42,43] 
(https://github.com/MattiStenroos/hbf_lc_p) for source 

space on the grey3white matter boundary discretized to 

25,000 dipoles normal to the surface of the cortex. The 
SOUND step was followed by low-pass filtering (cut-off 

frequency 45 Hz) and downsampling of the signals to 

1000 Hz. Finally, the data were average referenced by 

subtracting the mean of all channels from each channel.  

The peak-to-peak amplitude of the P203N40 complex 
(subtraction of the signal minimum within the 35…45 ms 
interval from the signal maximum within the 15…25 ms 
interval) in channel FC1 was extracted separately for each 
trial (see an example TEP trial in Fig. 1b with the 

corresponding peaks and time intervals highlighted). The 

dependence of the average P203N40 amplitude as a 

function of the stimulus orientation was computed for the 

36 stimulation orientations as an average of the responses 

within 30° (inclusive) from the computation point. 

Between the sampled orientations, the mean curve was 
generated by cubic interpolation. The standard deviation 

of the P203N40 amplitudes was determined by first 

computing the variance over the single-trial P203N40 
amplitudes separately for each stimulus orientation, 

followed by averaging the variances and taking the square 

root. The SNR of the P203N40 amplitude was determined 

as the ratio of the amplitude range of the mean curve over 
different stimulation orientations and the standard 

deviation of the single-trial P203N40 amplitudes. 
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Experiment 2: automated orientation search 
In Experiment 2, we performed 20 times the automated 

search of the optimal stimulation orientation on the left 

pre-SMA with EEG feedback. In this experiment, we had 
360 possible stimulation orientations separated with 1° 

steps; the ISI was in the range of 236 s. The stimulus 

placement and intensity were as determined in the 
preparatory experiment. The automated orientation search 

algorithm was based on our previously developed 

algorithm for optimizing TMS parameters with the motor 

response as the feedback signal to be maximized [44]. 
Here, we made that algorithm work for maximizing TEP 

amplitudes (see Fig. 1b). Our adaptive search algorithm is 

founded on Bayesian optimization [45], which is an 
efficient approach to find a global optimum (e.g., 

maximum or minimum) of an unknown function. The EEG 

feature to be optimized was selected as the peak-to-peak 
amplitude of the P203N40 complex in the FC1 electrode, 

as it showed orientation dependency consistently across 

the Group A data (Subjects 133) in Experiment 1.  

The search process started by delivering a TMS pulse at a 

random E-field orientation followed by a pulse in the 
opposite orientation. Subsequently, we gave stimuli at 

orientations indicated by a guiding function called 

knowledge gradient, which was computed on a logarithmic 
scale for numerical accuracy [46]. The knowledge gradient 

suggests sampling points balancing high expected 

amplitude and large uncertainty so that the optimum is 

found with a minimal number of pulses. We modelled the 
dependence of the P203N40 amplitude as a function of the 

stimulation orientation with Gaussian process regression, 

which estimates the underlying function by smoothly 
linking the neighbouring data points with the help of a 

covariance function [47]. We applied the following 

periodic (periodicity of 360°) covariance kernel function 

[47]: �(�Ā, �ÿ) = �0exp (−4�1 sin2 (|�Ā−�ÿ|2 )), where �Ā and �ÿ are the orientations for which the covariance is 

computed for, �0 determines the amplitude variance, and �1 the smoothness of the function to be fitted. The 

covariance parameters �0 and �1 along with the other 
parameters for the prior and the likelihood models were 

defined as by Tervo et al. [44]. The posterior mean curve 

(see examples in Fig. 3a,d), whose maximum indicated the 
estimated optimal stimulation orientation, was computed 

with a grid spacing of 0.25°. The minimum and the 

maximum number of samples in the search were set to 30 

and 60, respectively. We considered the search converged 
when the estimated optimal stimulation orientation had not 

changed more than 5° during 10 consecutive iterations. 

The EEG signals were transferred in real-time to another 

computer running our Matlab-based algorithm with the 

help of the code examples provided by Brain Products 

(https://www.brainproducts.com/downloads.php?kid=2&t

ab=5). The real-time processing of the EEG signals was 
similar to that in Experiment 1. However, we did not apply 

the SOUND algorithm, and the filtering was combined into 

a sixth-order band-pass Butterworth filter (1345 Hz). The 

baseline correction (mean-computation interval 
−500…−10 ms) was applied as the second-to-last step 

before average referencing. If the signal range of a 

processed TEP in any channel exceeded 75 µV within the 
time interval of −500…500 ms, the trial was rejected and 

a new trial acquired (on average 1.8 rejected trials per 

search; subject-wise averages ranging from 0.1 to 5.6). 
However, for Subject 3, the rejection threshold was 

increased to 150 µV, as the data were excessively noisy 

(9.7 rejections per search on average). 

The performance of the EEG-based orientation search 

algorithm was evaluated by comparing the search 
outcomes with the mean curve computed from the data 

measured in Experiment 1 (see Fig. 4a3f); the error of each 

search run was defined as the absolute difference of the 

optimized stimulation orientation and the closest 

maximum of the individual mean curve. 

Results 

Experiment 1: orientation dependency of the TMS–
EEG responses 
Figure 2a,d,e shows how the averaged TEPs of Subject 1 

varied as a function of the E-field orientation (Fig. 2c). As 

expected, the largest early responses were evoked in the 
channels close to the stimulation site, and their amplitude 

varied with the stimulation direction. 

Figure 2d visualizes the time course of the TEPs in channel 

FC1 sited near the stimulation location. The first 
deflections after the stimulus onset peaked at around 10 ms 

(negative), 20 ms (positive deflection, named P20), and 

40 ms (negative, N40). The amplitudes of these early 

components depended on the stimulation orientation as 
clearly seen in Fig. 2e. In addition, the peak-to-peak 

amplitude of the P20−N40 complex varied as a function of 

the stimulation orientation in a sinusoidal way, having 
maxima at around −90° and 90° (see Fig. 2f), when the 

reference orientation 0° was in the posterior-to-anterior 

direction. The orientation dependency of the P20−N40 

amplitude with all six subjects is presented in Fig. 4a3f. 

Experiment 2: automated EEG-based orientation 

search 
Figure 3 presents two examples of the automated EEG-
based orientation search with Subject 1. The first example 

(Fig. 3a3c) displays how the search rapidly converged to 

one of the maxima of the P203N40 response curve while 
the second example (Fig. 3d3f) demonstrates an additional 

switch from one maximum to another one during the 

search process. Figure 3c,f reveals that the sampling was 
guided in such a way that about the first ten samples were 
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almost evenly distributed across the orientations, whereas 

the rest of the samples were mainly centred around the 

current estimate of the optimal orientation. The example 
search outcomes are visualized in Fig. 3a,d, which also 

illustrates the large variation of the single-trial responses. 

The ability of the closed-loop search to find the optimal 

stimulus orientation is visualized in Fig. 4, which 

illustrates how the single search outcomes (optimized 
stimulus orientation) grouped around the ground-truth 

orientations (maxima of the mean curves determined in 

Experiment 1). The convergence of the single search runs 
is presented in Fig. 4g. The average accuracy of the EEG-

based orientation search over the 120 repetitions was 18° 

(individual average accuracies 5343°; median 10°). When 
excluding Subject 3, whose EEG data were excessively 

noisy, the average accuracy was 13° (median 9°). This 13° 

deviation from the ground truths corresponds on average 

to a 0.25-µV or 3% decrease in the amplitudes of the P203
N40 mean curve maxima. Eighty-eight per cent of the 

optimization results were closer than 25° to the ground 

truth (77% when including Subject 3). The average 

number of TMS pulses needed in the search was 42 (range 

33348 among the subjects; median 37). The accuracy of 

the estimated optimal orientation and the number of pulses 
needed in the search tended to depend on the signal-to-

noise ratio (SNR) of the optimized TEP feature as can be 

seen in Fig. 4h3i: the better the SNR, the less error there 

was in the search outcomes and the smaller number of 

stimuli needed for convergence. 

Discussion 
The ability to adjust TMS parameters automatically based 

on online EEG feedback opens new prospects for scientific 
and clinical applications of TMS. The results of our 

algorithm performance evaluations (Experiment 2) 

demonstrate that our automated closed-loop search 

provides an easy, fast, and user-independent way to 
determine TMS targets based on evoked EEG signals. This 

is, to our knowledge, the first time that post-stimulus EEG 

responses helped to optimize TMS efficacy in a closed-

loop manner. 

Figure 2. Orientation dependency of the TMS-evoked EEG responses on the left pre-SMA (Subject 1).

a Time courses of the TEPs in all channels with selected stimulation orientations (−90°, 0°, 90°). The black cross marks the position of

the transducer center relative to the electrode locations (a) and the stimulation site relative to the brain anatomy (b). In b, the left

superior frontal gyrus is highlighted in red. c The 36 stimulation orientations. The colours and line styles of the arrows indicate the 

corresponding stimulation orientations in a and d. d Enlarged TEP time courses of the channel FC1 with all stimulation orientations. 

e Isocolour plot of the TEP time courses with different stimulus orientations in FC1. f Peak-to-peak amplitudes of the P20−N40 complex

in FC1 with different stimulation orientations. The dots depict the single-trial responses, the solid trace is a mean curve, and the shaded

area illustrates the standard deviation. 
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The automated orientation search (Experiment 2) 

performed well in all subjects except one whose EEG was 

contaminated by excessive scalp muscle activity present 
throughout the measurements. The differences in the 

algorithm performance are explained by the alterations in 

the SNR of the data: better SNR increases the accuracy 
(Fig. 4h) and reduces the number of required iterations in 

the search process (Fig. 4i). The accuracy of the optimized 

orientations would likely get better by increasing the 

number of iterations in the search, at the cost of increasing 
the search time. Depending on the application, different 

criteria can be chosen to terminate the search.  

Even though the EEG-based orientation search worked 

well in most cases, there are a few erroneous search results 
visible in Fig. 4a3g. These outliers resulted from the fact 

that single-trial TEPs, and thus the extracted P20−N40 

amplitudes, are very variable (see example distributions in 

Figs. 2f and 3a,b). This variation makes the optimization 
challenging, as sometimes stimulation with the optimal 

orientation may evoke small P20−N40 amplitudes, and, 

with non-optimal orientation, the amplitudes can be large 
by chance. The changes in the single-trial EEG responses 

with different stimulation orientations are difficult or even 

impossible to register and interpret visually by the 

operator. However, our user-independent algorithm 

uncovers the optimal orientation often even with a few tens 
of pulses in different directions. This is remarkably few in 

contrast to traditional TMS3EEG in which several tens or 

even a few hundred trials with the same stimulation 
parameters are averaged together for the offline analysis 

and interpretations. The performance of our closed-loop 

algorithm shows that even a single-trial TEP contains 

useful information when combined across different TMS 

parameters in a meaningful way. 

The EEG feature we selected for the optimization was the 

amplitude of the P203N40 complex, as it showed apparent 

orientation dependency in Experiment 1 across the 
Group A subjects (algorithm test data). The amplitudes of 

the early components (within the first 50 ms after the 

pulse) have been used also in other studies to adjust TMS 

parameters [28,29], as the early TEP deflections are 
thought to reflect cortical excitability [29,48350]. 

Furthermore, peak-to-peak amplitudes are less susceptible 

to baseline drifting than the amplitudes of single peaks. In 
this study, we applied the automated search for the peak-

to-peak amplitudes in one channel, namely FC1. However, 

Figure 3. Two examples (a–c and d–f) of the EEG-based orientation search (Subject 1). a,d The search outcome, i.e., the found optimal

orientation is marked with a black cross. The acquired single-trial P20–N40 amplitudes are presented with black dots. The blue trace 

illustrates the final posterior mean curve (modelled behaviour of the response curve). b,e The progress of the estimated optimal

orientation during the search run. The posterior mean curves computed based on the gathered P20–N40 responses are encoded with

coloured rows (grey to blue), and the black crosses indicate the estimated optimal orientation (maximum of the posterior mean curve) 

on each iteration. The uppermost row (indicated with a black rectangle) correspond to the blue posterior mean curve in a and d. c,f The

sampling order. After two randomly sampled orientations (with a 180° difference), we sampled the orientation where the knowledge-

gradient function (grey-to-red-coloured rows) reached its maximum (black dots). 
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there are many other aspects in the EEG signal that could 
be optimizable features in closed-loop TMS3EEG. For 

example, one could employ the signal from several 

channels in form of a spatial filter [32] to capture the signal 

from a desired cortical area or utilize the multi-channel 

EEG to follow and optimize the signal propagation 

between different cortical areas.The EEG feature we 

selected for the optimization was the amplitude of the P203
N40 complex, as the TEP deflections within the first tens 

of milliseconds after the pulse are thought to reflect 

cortical excitability at least in the primary motor cortex 
[48]. Furthermore, peak-to-peak amplitudes are less 

susceptible to baseline drifting than the amplitudes of 

single peaks. In this study, we applied the automated 

search for the peak-to-peak amplitudes in one channel, 
namely FC1. However, there are many other aspects in the 

EEG signal that could be optimizable features in closed-

loop TMS3EEG. For example, one could employ the 
signal from several channels in form of a spatial filter [32] 

to capture the signal from a desired cortical area or utilize 

the multi-channel EEG to follow and optimize the signal 

propagation between different cortical areas. 

We tested the automated orientation search on pre-SMA 

since it is often easy to acquire high-quality artifact-free 

TMS3EEG data from that area [51]. In addition, pre-SMA 

is relevant when studying, for example, cognitive control 
[52] or motor learning [53] with TMS; it has been studied 

as a potential target for treating patients with obsessive-

compulsive disorder and essential tremor [2]. We presume 
that this kind of orientation search would work also on 

other brain areas, but it would require further systematic 

mapping to find out what are the suitable time intervals for 
detecting the peak amplitudes, as the number of TEP 

deflections and their latencies vary across the brain [18]. 

Other stimulation sites, especially lateral ones, may be 

more prone to muscle artifacts and require sophisticated 
artifact removal methods to ensure reliable functioning of 

closed-loop TMS3EEG algorithms. As in this work we 

stimulated in all directions, we unsurprisingly observed 
some muscle artifacts with certain stimulation directions 

with two subjects (1 and 6) when visually inspecting the 

Figure 4. Results of the validation of the EEG-based orientation search. a–f Subject-wise search results. Optimized orientations from 

single searches are depicted with red and blue markers. Mean curves of the optimized P20–N40 amplitudes constructed from the data 

measured in Experiment 1 are visualized with solid black lines, and the vertical dashed lines illustrate the maxima of the mean curves 

(ground-truth optimal orientations). Shaded grey areas indicate the standard deviation of the single-trial P20–N40 amplitudes. Subjects

of Group A are presented in a–c and subjects of Group B in d–f. g Convergence of the automated orientation searches. Red (Group A) 

and blue (Group B) lines depict the convergences of the single search runs, and the black curve represents the average error until the

minimal number of samples (30) is reached. The end results are presented with red and blue markers. The horizontal dotted line marks 

an error of 25°. h Average error in the search results as a function of the signal-to-noise ratio.

i Average number of samples needed as a function of the signal-to-noise ratio. The marker shapes and colours in g–i corresponds the

subject-wise marker styles in a–f. 
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averaged raw signals from Experiment 1. The muscle 
artifacts were relatively small (maximum amplitude 20330 

µV) and appeared only in a few channels (up to four) 

lateral or anterior to the channel of interest (FC1). The 

SOUND algorithm applied offline for the data of 
Experiment 1 diminished these muscle artifacts; the 

artifacts were, however, not necessarily completely 

removed. Despite possible residual artifacts with some of 
the subjects, the observed sinusoidal orientation 

dependency in the amplitude of the P203N40 complex was 

consistent across all subjects (Fig. 4a3f). Therefore, we 
believe that the observed effect originates from the brain 

and not from artifacts. The online preprocessing in 

Experiment 2 included no artifact cleaning. Therefore, 

some of the single-trial responses of Subjects 1 and 6 
contained minor TMS-related muscle artifacts in channels 

other than the channel of interest (FC1). All search 

outcomes of these subjects were close to the ground truth 
optima determined from SOUND-cleaned data (see 

Fig. 4a,f); thus, muscle artifacts seem not to have affected 

the performance of the closed-loop optimization. 

In addition to the stimulation orientation, our algorithm 

could optimize EEG responses as a function of other 
stimulation parameters, such as the stimulation location, 

intensity, or timing (with respect to ongoing brain 

activity), or all of them simultaneously. In this work, we 
determined the stimulation location and intensity manually 

based on visual inspection of averaged TEPs [29]. We 

believe that the whole procedure can, however, be 
automated by combining the presented closed-loop 

algorithm, for example, with a 5-coil mTMS system that 

allows adjusting the stimulation location and orientation 

without coil movement [54]. An advanced algorithmic 
implementation may thus make visual evaluation and 

manual assessment redundant in the future. Such an 

implementation needs, however, to be highly reliable to 
avoid erroneous results. Basically, the presented 

automated approach is suitable for optimizing any feature 

derived from EEG with respect to one or more parameters. 

We controlled the stimulation orientation with a two-coil 

transducer comprising two simultaneously operated 
overlapping figure-of-eight coils. This provides an easy 

and effortless adjustment of the stimulation orientation, as 

it requires no manual movement of the transducer. The 
EEG-based target automation presented here could be 

implemented with a robot-controlled TMS system or with 

manual coil placement. However, the physical coil shift 
takes time, and the movement of the coil between the 

consecutive pulses causes motion artifacts in EEG data 

that require a few additional seconds to get stabilized, 

increasing the search time. 

The systematic mappings of TMS3EEG responses as a 
function of the stimulation orientation in Experiment 1 

revealed that the amplitudes of the TEP peaks depend on 

the stimulation direction on the pre-SMA in a sinusoidal 
way. There are a few examples in the literature showing 

that the stimulation orientations 45° or 90° apart result in 

dissimilar TEPs on the primary motor cortex [15] and 

occipital areas [16]. Thus, it was foreseeable to observe an 
orientation dependency, but this is the first study showing 

examples of the behaviour of the TEP responses when 

varying the stimulation orientation systematically in all 
directions. The optimal stimulus orientations that produce 

maxima of the P203N40 curves were reached with E-fields 

directed approximately along the medial3lateral direction. 
These directions are perpendicular to the global orientation 

(posterior3anterior) of the targeted superior frontal gyrus 

(Fig. 2b). This is in line with the behaviour of motor 

responses when stimulating the motor cortex [6] and the 
E-field modelling on other areas [55], which have shown 

that TMS is most effective when the stimulating E-field is 

directed normal to the sulcal walls. Additionally, we found 
that the sinusoidal form of the TEP amplitude curve 

supports the cosine model for TMS [56], which suggests 

that the TMS effect in any part of the cortex depends on 
the cosine of the angle between the cortical column 

orientation (normal to the cortical surface) and the 

direction of the E-field. E-field can be precisely oriented 

based on anatomy with the help of existing 
neuronavigation systems. There are, however, tight 

curvatures in the folded structures of individual cortices, 

necessitating stimulus guiding with neurophysiological 

feedback such as EEG. 

We anticipate that the presented closed-loop optimization 

maximizing the TMS effect based on EEG signal would 

increase the comparability of TMS research by decreasing 

the variation in experimental designs. Targeting based on 
the amplitudes of the early TEP deflections resembles the 

motor-response-based selection of stimulus location and 

orientation (often called hotspot search) in the primary 
motor cortex. In contrast, EEG-based guiding enables 

setting the stimulation parameters with neurophysiological 

feedback in any part of the superficial cortex. Being able 

to analyse EEG signals online and utilize them to adjust 

TMS delivery enables guiding TMS therapies so that the 

desired plastic effects are maximized. This is an 

indispensable step towards making TMS a more effective 

clinical tool. 

Conclusions 
We demonstrated that it is possible to adjust the 

stimulation orientation based on EEG signals effortlessly 
with multi-locus TMS and showed that even single-trial 

TEPs contain features that can be optimized. The presented 

method provides a way for automated and individualized 

TMS targeting with neurophysiological feedback over a 

large part of the cortex. Moreover, closed-loop TMS3EEG 

holds great promise for making TMS treatments more 

effective. 
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