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Abstract

The contribution of transcription factors (TFs) and gene regulatory programs in the
immune response to COVID-19 and their relationship to disease outcome is not fully
understood. Analysis of genome-wide changes in transcription at both promoter-proximal and
distal cis-regulatory DNA elements, collectively termed the 'active cistrome,' offers an unbiased
assessment of TF activity identifying key pathways regulated in homeostasis or disease. Here,
we profiled the active cistrome from peripheral leukocytes of critically ill COVID-19 patients to
identify major regulatory programs and their dynamics during SARS-CoV-2 associated acute
respiratory distress syndrome (ARDS). We identified TF motifs that track the severity of COVID-
19 lung injury, disease resolution, and outcome. We used unbiased clustering to reveal distinct
cistrome subsets delineating the regulation of pathways, cell types, and the combinatorial
activity of TFs. We found critical roles for regulatory networks driven by stimulus and lineage
determining TFs, showing that STAT and E2F/MYB regulatory programs targeting myeloid cells
are activated in patients with poor disease outcomes and associated with single nucleotide
genetic variants implicated in COVID-19 susceptibility. Integration with single-cell RNA-seq
found that STAT and E2F/MYB activation converged in specific neutrophils subset found in
patients with severe disease. Collectively we demonstrate that cistrome analysis facilitates
insight into disease mechanisms and provides an unbiased approach to evaluate global

changes in transcription factor activity and stratify patient disease severity.
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Introduction

Acute respiratory distress syndrome (ARDS) is the cardinal clinical feature and the
primary contributor to mortality in severe SARS-CoV-2 infection. Cytokine and single-cell
analyses support a model for a prolonged hyperinflammatory response driving diffuse alveolar
damage (1-8). Tremendous effort has been invested in repurposing available therapeutics for
the treatment of severe COVID-19. To this end, glucocorticoids and anti-interleukin-6 receptor
monoclonal antibodies reduce mortality for severe cases of COVID-19. Importantly, the mortality
benefits were only observed in subgroups of patients. Therapies provided to inappropriate
patient subpopulations may cause harm (9). These results signal the unmet need for additional
therapeutic targets and novel stratification strategies to identify the right patient for the right

therapy.

Understanding the dynamic relationship of transcription factor activity and disease
severity may offer insights for precision therapy. Transcriptional responses are an important
component of the host response to infectious disease. Not only do SARS-CoV-2 infected cells
up-regulate antiviral gene expression programs to halt the viral spread, but they also signal to
activate regulatory networks in other cells and tissues to mount a coordinated immune response
to the pathogen. Transcription factors (TFs) are vital in orchestrating these transcriptional
responses. TFs integrate upstream inflammatory and immunological signals to direct changes in
the transcriptional programs mediating cellular adaptation and function. TFs bind DNA in cis at
regulatory regions through specific recognition DNA sequences, also known as TF motifs.
Unbiased, genome-wide profiling of cis-regulatory elements, coupled with computational
analysis for motif enrichment, is a powerful tool to discover transcriptional regulatory
mechanisms. Understanding what these pathways and cell types are, how they vary across
individuals and time, and how they are dysregulated in severe disease is critical to

understanding COVID-19 and host response to sepsis and severe lung injury.
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This study used unbiased cistrome profiling of peripheral leukocytes from COVID-19
patients to decipher regulatory networks activated or repressed during severe SARS-CoV-2
infection. Given that transcription is a hallmark of regulatory activity from promoters and
enhancers (10), we used capped small (cs)RNA-seq to measure the transcriptional activity from
genome-wide cis-regulatory elements. csRNA-seq captures short, 5' capped RNAs (20-60nt)
associated with engaged RNA polymerase Il and defines the transcription start sites at a single-
nucleotide resolution of both stable and unstable transcripts such as enhancer RNA (eRNA)
(11). Moreover, csRNA-seq focuses motif analysis on the active cistrome compared to the
assessment of chromatin accessibility, where regulatory elements may be accessible but

transcriptionally inactive (e.g., open-poised, insulators, etc.) (12).

We performed csRNA-seq with matched samples for RNA-seq to capture the steady-
state transcriptome and cytokine analysis on peripheral leukocytes to construct a natural history
of TF programs in ARDS associated with severe COVID-19. We profiled the active cistrome
from 22 individuals, with a median of 7 time points encompassing early, mid, and late
hospitalization. Our analysis revealed regulatory programs associated with specific TFs and cell
types that exhibited activity patterns correlated with clinical phenotypes. We identified a role for
inflammatory transcription factor families in early-stage disease, including Nuclear Factor-kappa
B (NFkB), Signal Transducer and Activator of Transcription (STAT), and Interferon Regulatory
Factors (IRF). We also identified robust disease associations for other TFs and TF families,
including Glucocorticoid Receptor, Nuclear Factor E2 Related Factor 2 (NRF2), E2F, MYB, and
the family of microphthalmia (MiT/TFE). Because our dataset provides precise genomic
locations of regulatory activity during COVID-19 infection, we cross-referenced the active
cistrome with existing genomics data, including chromatin state maps and genetic variants
associated with COVID-19 clinical outcome. We identified significant enrichment of diseased-

associated single nucleotide polymorphisms (SNPs) in distinct TF regulatory networks. Using
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target gene expression as a measure of TF regulatory network activity, we independently
stratified COVID-19 patients with poor outcomes in a large published cohort with early
admission transcriptomics. Patients with high expression for E2F/MYB and STAT targets, or
target expression that is low for Type 1 interferon and high for STAT targets, had the most
severe outcome. Integrating these findings with published single-cell RNA-seq, we show that
dysregulated E2F/MYB, STAT, and Type 1 interferon signals are reflected in the differential
distribution of neutrophil subsets. These findings showcase the utility of profiling transcription
initiation to reveal regulatory programs from blood samples and provide insight into the key TFs
and pathways activated during the host response to COVID-19.

Results

Transcription initiation analysis with csRNA-seq reveals the active cistrome from peripheral

leukocytes during severe SARS-CoV2 infection.

Genomic regions that initiate transcription represent active cis-regulatory elements (10,
13, 14). To understand the dynamic changes in cistrome activity during the course of COVID-
19, we profiled transcription initiation events from peripheral leukocytes of COVID-19 patients
(Fig 1a). We isolated peripheral blood from 5 healthy controls and 17 patients, with a median of
7 time points per patient, spanning a median hospitalization of 8 days (range 1-22 days), for a
total of 92 time points. 16 of the 17 patients required care in the Intensive Care Unit (ICU). 13/17
required mechanical ventilation. 48% of the samples were collected from patients with severe
lung injury, defined as a Modified Murray Score > 2.5 (15). Five patients recovered and were
discharged within ten days (Fast Recovery). Nine survivors had prolonged hospitalization with

three in-hospital fatalities (Fig 1b, Supp Table 1).

Across a total of 97 csRNA-seq libraries, we cumulatively identified 93,465 genomic
regions with ample evidence of transcription initiation, termed Transcription Start site Regions

(TSRs). >95% of the identified TSRs overlapped with open chromatin regions defined by ATAC-
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seq in one or more leukocyte cell populations (Supp Fig 1) (16, 17). 42% of the TSRs mapped
to the vicinity (< 500 bp) of annotated gene promoters. Nucleotide frequency analysis relative to
transcription start sites showed defined features consistent with promoter elements. 58% of
TSRs mapped to promoter-distal regions co-localized with epigenetic marks in leukocytes
associated with active enhancers (18), with nucleotide frequency distinct from promoters (Supp
Fig 1a-c). For example, the intronic regions of the STAT5B and LITAF loci have open chromatin
regions with transcription initiation activity consistent with enhancer elements (Fig 1d left, middle
panel). The interferon-induced MX-1 gene has two TSRs representing the gene promoter and
enhancer (Fig 1d right panel). The MX-1 enhancer TSR resides 2kb upstream of the promoter in
an open chromatin region (ATAC-seq) surrounded by modified histones (acetylated-H3K27)
consistent with an active neutrophil-specific enhancer. Notably, the activity of the enhancer TSR
correlates with the transcriptional initiation signal and the stable RNA transcript level (total-RNA
seq) of MX-1. Overall, we generated a dataset of cistromic activity from peripheral leukocytes
that accurately identify promoters and enhancers in leukocytes from patients with severe SARS-

CoV-2 infection.

Agnostic TSR clustering contextualizes the activity of the immune cistrome with lung injury

severity

The activity of the cistrome is influenced by multiple biological factors, including
regulation by TFs, cell-type specificity, disease severity, and other physiological factors. To
appreciate these interactions, we performed unsupervised clustering based on TSR activity
across all 97 samples capturing TSRs co-regulated across patients at different time points and
disease severity states. TSRs regulated by a common biological mechanism(s) should display
similar activity and therefore cluster together. To this end, we applied hierarchical clustering,
revealing 26 distinct TSR clusters, and used Uniform Manifold Approximation and Projection

(UMAP) to group TSRs by their similarity and visualize them in 2D space (Fig 1e, Suppl Fig 2).
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We first interrogated the relationship of cistrome activity with disease severity. We
focused on lung injury and quantified how individual TSR activity correlated with patients'
Modified Murray Lung Injury Score. By coloring the TSR UMAP by their correlation to lung
injury, we observed that TSRs were primarily segregated by disease severity (Fig 2a). For
example, TSR A found in a STATSB intronic region has an activity that correlates with lung
injury (rho = 0.3559, p-value = 5x10). In contrast, TSR B located in an intron of LITAF has a
negative correlation to lung injury (rho = -0.4487, p-value < 1 x 10*) (Fig 2b). Because each
sample profiles the entire bulk population of peripheral leukocytes, we next estimated the cell
type specificity of each TSR to compare with the lung injury spectrum. We utilized a
hematopoietic cell-type-specific reference ATAC-seq dataset from healthy donors to identify
discrete cistrome clusters associated with neutrophils, monocytes, lymphocytes, and
plasmablasts specific peaks (Fig. 2c, Supp Fig 3) (16, 17). Lymphocyte-associated TSR-
clusters correlated with lower Modified Murray Lung Injury Scores, consistent with the
observation that the neutrophils to lymphocytes ratio is elevated in severe COVID-19 (19). Of
significance, not all TSRs within the neutrophil clusters are positively correlated with lung injury,
suggesting different transcriptional programs may be activated in neutrophils associated with
different disease states. Furthermore, TSRs with high activity on the first day of enroliment are
distinct between patient severity groups, collectively suggesting the active cistrome encodes

valuable information about disease states (Fig 2d).

We then investigated the association of transcription factor motifs in the active cistrome
in relationship to disease severity. We searched for known TF motifs within -150 to +50 bp of
the transcription start sites and performed a score-based logistic regression model (MEIRLOP)
to identify TF motifs associated with lung injury (Fig 3a) (20). We identified enrichment of STAT,
NFkB, and myeloid lineage determining (LD) CEBP/AP1 TF motifs in TSRs associated with

severe lung injury. Interestingly, the Antioxidant Responsive Element (ARE) is one of the top
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five motifs most associated with severe lung injury. This motif is recognized by transcription
factors involved in reduction-oxidation homeostasis, including the members of NRF, the small-
MAF, and the BTB and CNC Homology (BACH) families. Genetic variants in the NRF member
NFE2L2 are associated with higher susceptibility to ARDS (21), thus providing biological
plausibility that this pathway is active in COVID-19 ARDS. TSRs associated with low lung injury
indices exhibited enrichment in the YY1 promoter element, glucocorticoid response element
(GRE), X-box, and motifs recognized by lymphocytes lineage determining TFs (LDTFs)
including ETS/RUNX (Fig. 3a). The correlation of GRE motifs with lower lung injury index is

consistent with studies showing the benefit of glucocorticoid therapy in severe COVID-19.
Identification of a cooperative transcriptional factor regulatory network

To further define transcriptional regulatory mechanisms underlying cistromic activity, we
performed motif enrichment and pathway analysis on TSRs that segregated into distinct
clusters, representing co-regulated networks of TSRs (Fig 3b-c, Supp Fig 4). This analysis
successfully captured enrichment of key immune regulators in specific clusters, suggesting we
can segregate and track the activity of distinct pathways across our dataset. Furthermore, motif
analysis identified co-enrichment of signal-dependent TFs (SDTFs) with LDTFs, consistent with
the model that pioneering TFs establish accessible sites for cell-type-specific transcriptional
regulation (22). This point is exemplified by the two distinct clusters with enrichment for NFkB
motifs (Fig 3b-c, top panel, Supp Fig 4). One NFkB cluster is myeloid-centric with 904 TSRs, co-
enriched for CEBP, and strongly correlated with severe lung injury. 62% of the TSRs are in
enhancers. TSRs located in promoters of protein-coding genes within this cluster are associated
with the canonical pathway of NFkB and TNFa signaling in gene ontology analysis. The second
NFKkB cluster is lymphocyte-centric, negatively correlated with lung injury, with 1,136 TSRs and

motif co-enrichment for the E-protein HEB, critical for T cell development (23).
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To test the notion that our analysis distinguishes NFkB regulatory programs activated in
different cell types, we cross-examined NFkB p65/RELA chromatin localization in activated
myeloid (24) and lymphoid cells (25) from publicly available Chromatin Immunoprecipitation
(ChIP)-seq studies (Supp Fig 5). The TSRs from the myeloid NFkB cluster have a more
significant overlap with NFkB ChlP-seq signal from activated monocyte-derived macrophages
than from activated CD4+ T cells. In contrast, the lymphoid NFkB cluster has a greater overlap
with NFkB ChlP-seq signal from activated CD4+ T cells (Supp Fig 5b), demonstrating that motif
analysis of co-regulated TSRs can provide insights about activated pathways, their TFs, and cell

types of activity.

Interestingly, we often observed co-enrichment of multiple SDTFs within the same TSR
cluster, suggesting coactivation by multiple regulators or pathways. This is exemplified by a
cluster with a Type-1 interferon sensitive responsive element (T1ISRE) signature, which
exhibited co-enrichment for the STAT motif, consistent with the role of STAT in interferon

signaling during viral infection (Fig 2b-c top panel) (26).

The redox-responsive ARE motif participated in several distinct TSR clusters co-
enriched with multiple SDTF motifs representing unrecognized SDTF-SDTF regulatory networks
(Fig 3b-c, middle panel). First, an enhancer-centric 1,296-TSRs neutrophil cluster (Supp Fig 3-
4) exhibited co-enrichment for motifs recognized by the MiT/TFE family (MITF, TFE3, TFEB,
and TFEC) and NFkB. Genes located in the vicinity of these TSRs were functionally enriched for
autophagy, lysosomes, and membrane trafficking, consistent with the role of the MiT/TFE family
in reprogramming metabolism during stress (Fig 3c, middle panel) (27). In this cluster, TSRs
containing both ARE and MiT motifs are enriched 3.4-fold relative to other active TSRs (Chi-
square p-value < 1.0 x 105, two-tailed), suggesting a model where MiT/TFE and the NRF/small-

MAF/BACH family are acting on the same regulatory regions (Supp Fig 6).
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A second ARE cluster is enhancer-centric with 1,235 TSRs overlapping monocyte open
chromatin (Fig 3b-c, middle panel; Supp Fig 3-4). In addition to ARE, this cluster had motif
enrichment for Activator Protein 1 (AP1) and SMAD, the transducers for the Transforming
Growth Factor B (TGFB) signaling pathways. In addition, the target genes within this cluster
were associated with TGFp signaling in gene ontology analysis (Fig 3c, middle panel).
Consistent with this assertion, genome-wide TF localization studies in macrophages found that
Nfe2l2, Smad3, and AP1 member Fos co-localized in common regulatory regions upon

exposure to tissue damage signals (28).

We identified co-enrichment for the cell cycle and proliferation E2 Factor (E2F) and MYB
TF families in a cluster of 2,364 TSRs (Fig 3b-c, bottom panel). The activity of this cluster was
highly associated with lung injury severity (correlation = 0.36). When assessed individually using
rank-based logistic regression, E2F and MYB motifs had a weak association to lung injury
indices (Fig 3a, MEIRLOP coefficients = 0.102 and 0.077, respectively). Indeed, the E2F motif
was enriched in five other clusters associated with varied disease severity (Supp Fig 4). Thus,
the unique association of this cluster with severe lung injury suggests a synergistic role of the

E2F and MYB pathways during the severe phase of ARDS.

Lastly, the two distinct TSR clusters with the highest lung injury severity association
have motif enrichment for STAT and NFkB (Modified Murray Score correlation, 0.518 and 0.417
respectively) (Fig 2b-c, top panel). Both clusters are enhancer-centric (71% and 62%) and
enriched in neutrophil open chromatin (Supp Fig 3). Motif analysis demonstrated that the STAT
and NFkB clusters are co-enriched, respectively, with BCL6 and RBPJ, the transcriptional

effector for the NOTCH signaling pathway (Fig 3c, top panel).

We further validated the TF and TSR cluster association through orthogonal
approaches. Cross-referencing the active cistrome with available TF ChlP-seq datasets reveals

that TSR clusters are generally enriched for ChlP-seq signals associated with the predicted TF

10
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motif (Supp Fig 5c¢). Furthermore, we tested whether target genes of each TSR cluster overlap
with gene signatures from a systematic experimental perturbation with chemical and small
molecules intended for drug repurposing and discovery (Connectivity Map, CMap) (29). We
expected to find therapeutic candidates that target the TFs predicted for each TSR cluster.
Indeed, CMap analysis revealed multiple cell-cycling inhibitors for the target genes from the
E2F/MYB cluster, BCL inhibitor and JAK/STAT inhibitor for the STAT/BCL6 cluster, TGFf
receptor inhibitors for the ARE/SMAD/AP1 cluster, and cortisone for the GRE cluster (Supp
Table 2). Overall, the unbiased discovery of TSR clusters based on the dynamic transcriptional
activity, when coupled with motif analysis, revealed TF-regulated biological pathways during
severe SARS-CoV-2 infection.

Natural history of the transcriptional factor program in survivors of severe COVID

We next sought to delineate the temporal trajectory of the immune TF program during
severe COVID-19 infection. Utilizing a subset of survivors (N =9, Supp Table 1) with severe
COVID-19 and prolonged hospitalization for COVID-19 associated ARDS with longitudinal
sampling, we characterized the natural history of peripheral immune transcriptional programs.
Correlation coefficients for TSR activity relative to hospital admission overlaid onto the cistrome
UMAP displayed a non-random distribution of TSRs characterized by their temporal response
patterns to COVID-19 recovery (Fig 4a). Most TSRs in clusters corresponding to T1ISRE/STAT,
NFkB/RBPJ, STAT/BCL6, and X-Box/CRE/KLF/NFY displayed strong activation early in the
hospitalized clinical course (Fig 4b-d). In contrast, the temporal correlation coefficients for TSRs
in CEBP/PU.1, the promoter-centric YY1/CEBP/PU.1, and the monocytic ARE/AP1/SMAD are
associated with late activation in the clinical course (Fig 4e). We observed consistent temporal
patterns when the median TSR activity for each cluster was plotted across hospitalization time
(Fig 4b-e). As independent corroboration of T1ISRE activity, the T1IISRE/STAT csRNA
clustering paralleled the circulatory level of IP-10 (Fig 4f, Pearson's correlation = 0.846, p-value

<1 x 10%), an interferon-induced cytokine associates with severe COVID-19 (5). STAT/BCL6 TF
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activity was also correlated with IL-6 plasma cytokine levels (Fig 4g, Pearson's correlation =

0.641, p-value < 1 x 10%).

The inverse temporal profile of the neutrophil TSRs indicates a transition within
neutrophil cistrome activity during recovery from COVID-19 ARDS. We performed gene
ontology analysis on the target genes identified within temporal clusters. The target genes
associated with the early neutrophil TF programs were enriched in interferon signaling,
leukocyte activation, NFKB/TNFa signaling, autophagy, protein catabolic process, and
membrane trafficking (Fig 4h, Supp Table 3). The target genes for the late neutrophil TF
programs enriched in pathways associated with RNA splicing, translation, and protein and
organelle localization (Fig 4h, Supp Table 3). TGFB signaling was the top pathway in the
monocytic clusters with ARE/AP-1/SMAD motif enrichment (Fig 3c). Notably, NFkB motifs were
significantly depleted in both CEBP/PU.1 (Cluster 5) and YY1/CEBP/PU.1(Cluster 18) network,

suggesting that the NFkB pathway was inactive during recovery (Supp Fig 4).

In summary, cistrome analysis across the clinical course identified a transition in TF
network activity in the transcriptional program during the recovery of critically ill patients with
COVID-19 ARDS.

Distinct TF regulatory networks overlap genetic variants associated with COVID-19 clinical
outcomes

We hypothesized that the regulatory elements we identified as associated with severe
COVID-19 ARDS might overlap with genetic variants associated with COVID-19 outcome. To
this end, we cross-referenced the active cistrome with disease-associated SNPs from the
COVID-19 Host Genetic Initiative Consortium (30). The consortium performed a meta-analysis
with a combined 49,562 COVID-19 cases identifying thousands of SNPs (p-value < 5 x 10®)
associated with COVID-19 clinical outcomes. We first identified the disease-associated SNPs

within -300 to +100 bp of the TSS (Fig 5a-b). We tested for enrichment of disease-associated
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SNPs within active cistrome regulatory patterns using RELI (31), which assesses the
significance of overlap between genetic variants and regulatory elements while considering the
underlying genetic structure of the data. We focused on SNPs associated with hospitalization,
with non-hospitalized COVID-19 cases as controls, mirroring the focus of our COVID-19 ARDS
cistromic data. TSRs positively correlated with lung injury index (Modified Murray Score
coefficient > 0.15) have significant enrichment for disease-associated SNPs associated with
hospitalization (Padj 2.57 x 107"®) (Fig 5c). We next cross-referenced disease-associated SNPs
with our TSR clusters identifying significant disease-associated SNP enrichment in distinct TSR
clusters. The E2F/MYB, STAT/BCL6, and T1ISRE/STAT clusters are significantly enriched for
COVID-19 hospitalization-associated SNPs when compared to non-hospitalized cases (Padj-
7.62x107,1.67 x 10°, and 2.16 x 107> respectively). Additionally, the three clusters with ARE
motifs - MiT/NFKB/ARE, CEBP-AP1/ARE, and SMAD/AP-1/ARE (Padj- 6.2 x 10*, 1.7 x 107,

and 5.12 x 10 ", respectively) also have SNPs associated with COVID-19 hospitalization.

Cistrome-disease relationship reveals dysregulated E2F/MYB, STAT/BCL6, and T1ISRE/STAT

activity

Reflecting on the GWAS analysis, we hypothesized that the activity of TF-regulatory
networks enriched for disease-associated genetic variants is likely correlated with disease
outcome. Consistent with this notion, the two deceased patients in our cohort had persistently
elevated STAT/BCL6 and E2F/MYB activities compared to survivors with a prolonged hospital
course (Supp Fig 7). To extend these observations and test the predictive ability of our findings,
we expanded our cistrome-based TF network analysis to measurements of gene expression
(RNA-seq), under the assumption that target gene expression can quantify TF activity indirectly
(Fig 6a). We focused on the E2F/MYB, STAT/BCL6, and T1ISRE/STAT TF regulatory networks
because of their early activation in the hospital courses, consistent with most published COVID-

19 studies with transcriptomic data. Toward this goal, we used samples with matched cistrome
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and transcriptome data (n = 55) to identify E2F/MYB, STAT/BCL6, and T1ISRE/STAT target
genes (n = 106, 176, and 58 respectively, see method). The average target gene expression for
E2F/MYB, STAT/BCL6, and T1ISRE/STAT is highly correlated with the average TSR activity for
those clusters (r = 0.92, 0.89, and 0.93 respectively) (Fig 6b, Supp Fig 8), enabling us to
estimate the activity of these regulatory programs from blood leukocytes RNA-seq from

individual patients.

Using this approach, we evaluated the correlation of E2F/MYB, STAT/BCL6, and
T1ISRE/STAT network activity to disease severity in a large COVID-19 cohort (n = 100) with
available peripheral leukocyte transcriptomics (32). This cohort used the number of hospital-free
days at the 45th day of admission (HFD45) to delineate clinical severity — severe cases with
prolonged hospitalization have fewer hospital-free days. Both E2F/MYB and STAT/BCL6 activity
independently correlated with disease severity, with higher TF-network activity corresponding to
lower number of hospital-free days (Fig 6¢). T1ISRE/STAT activity did not show a linear
relationship with disease severity; rather, patients at each extreme of T1ISRE activity trended

toward poor disease prognosis (Fig 6c¢).

We then queried whether TF-network interactions track disease severity. The cohort was
divided into "high" and "low" groups based on TF-network activity. The STAT"E2F" group
included significantly more fatal cases (HFD45 = 0, Chi-square, p-value = .004, two-tailed) with
the lowest HFD45 (Fig 6d-e). When delineated by T1ISRE/STAT and E2F/MYB activity, the four
groups have no statistically significant differences in fatality numbers (Chi-square, p-value =
0.47, two-tailed) or HFD45 (ANOVA, adj p-value = 0.34) (Fig 6f). T1ISRE/STAT and
STAT/BCLS6 did exhibit significant interaction. The T1ISRE"/STAT" group (n=14) included the
highest proportion of fatalities and lowest average HDF45 score (Fig 6g). This finding is

consistent with the current literature on interferon dysregulation in COVID-19 (3, 8, 33), but it

14


https://doi.org/10.1101/2021.08.24.457187
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.24.457187; this version posted August 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

uniquely emphasizes that patients with combined high STAT/BCL6 and low T1ISRE/STAT

activity are the most vulnerable.

The imbalance of STAT/BCL6, E2F/MYB, and T1ISRE/STAT reflects the imbalance of

neutrophil subsets.

With emerging clinical correlates of immune subsets with COVID-19 severity, we
investigated the relationship of the cistrome-signature with immune subpopulations. We cross-
examined the enrichment of E2F/MYB, STAT/BCLG6, and T1ISRE/STAT in COVID19 single-cell
RNA-seq studies to see if these pathways converge on specific cell populations (8). Among all
the leukocytes in the single-cell RNA-seq analysis, we found high enrichment of E2F/MYB,
STAT/BCL6, and T1ISRE/STAT in neutrophils, comprising three subpopulations (Fig 6h, Supp
Fig 9). The STAT/BCLS6 signature is significantly enriched in all three neutrophil populations.
Notably, the subset consistent with immature neutrophils (LCN2*, CEBPE") has the highest
STAT/BCL6 enrichment, with nearly 50% of the transcripts per cell derived from target genes in
the STAT/BCL6 network (Fig 6i). The immature neutrophil subset also has a high E2F/MYB and
low T11SRE/STAT signature, resembling the expression signature associated with severe
disease identified in both bulk RNA-seq cohorts (Fig 6i). The two other major populations are
consistent with mature neutrophils, with each having approximately 20% of transcripts per cell
derived from the STAT/BCL6 network. Notably, mature neutrophil 1 has the highest enrichment
for target genes in the T1ISRE/STAT network, including numerous interferon-stimulated genes
(ISGs), consistent with a subspecialized neutrophil population with antiviral activity (Fig 6i) (34).
To track how these cell populations vary with the disease, we assessed cell counts in each
patient stratified by disease severity, finding patients with COVID-19 have disproportionately
higher neutrophil counts overall. However, patients with severe disease were more likely to

have neutrophils from mature neutrophil 2 (NEAT/S100A12) and immature neutrophil
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subpopulations, implicating that STAT/BCL6 and E2F/MYB pathways likely converge to regulate
the emergence of immature neutrophils in severe disease (Fig 6j).

Discussion

We report the first study to profile initiating transcription in primary patient samples. One
study has previously used nascent transcriptomics to identify active regulatory elements in
patient samples (35), but our current study is the first longitudinal, active cistromic study of
peripheral immune leukocytes in ARDS associated with COVID-19. Our analysis of the
regulatory landscape catalogs the dynamic regulation of eRNAs and provides a TF-centric
analysis and interpretation. Because the identity of the TF is revealed through the genomic DNA
sequence, csRNA-seq coupled with motif analysis is, in essence, an unbiased functional assay
for TF activity (36), and provides a novel dataset that is substantially different and
complementary to traditional transcriptomics or other types of epigenetics profiling (e.g., ATAC-
seq). Active cistromic analysis provides unique insights into the underlying TF networks and
mechanisms in complex diseases when integrating with GWAS, bulk, and single-cell

transcriptomics.

With this approach, we identified pathways and TFs implicated in severe COVID-19,
including known therapeutic targets such as the glucocorticoid receptor, the interferon pathway
(37), and targets currently in clinical trials including in the JAK/STAT pathway (38). Our analysis
identified novel TFs in the immune response to severe COVID-19 and implicated their activity in
neutrophils, including motifs for antioxidant response elements involved in oxidative
homeostasis with NRF, small-MAF, and BACH. The genetic association of ARDS to NRF family
NFE2L2 in patients (21), and higher mortality due to bacterial pneumonia (39, 40) or more
significant acute lung injury due to high tidal volume (41) in mice lacking Nfe2I2, supports the

biological plausibility of our findings.

16


https://doi.org/10.1101/2021.08.24.457187
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.24.457187; this version posted August 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Identifying distinct co-TF regulatory networks is the principal finding of this study. With
csRNA-seq and unsupervised clustering, we identified cis-regulatory elements and target genes
with similar transcriptional initiation activity profiles clustering into distinct groups. Co-enrichment
of TF motifs within a single cluster is therefore suggestive of cooperative regulation. This
concept is classically exemplified by the interaction between signal-dependent and lineage-
determining TFs, where cell-lineage pioneering TFs established chromatin accessibility for cell-
type specific, signal-dependent regulation (22). Importantly, our dataset revealed networks with
co-enrichment of multiple SDTFs, including 1) E2F and MYB, 2) MiT/TFE, ARE and NFkB, 3)
NFkB and Notch, 4) STAT and BCL6, and 5) ARE/SMAD/AP1. The patient's active immune
cistrome thus provides evidence of unrecognized interactions between otherwise well-described
pathways. MiT/TEF family of TF plays a crucial role in autophagy and lysosomal biogenesis for
nutrient and energy homeostasis, adaptation to metabolic stress, and immune response (27, 42,
43). The convergence of ARE, NFkB, and MiT/TEF motifs in a single TF network suggests a
biological significance in the interaction of redox, inflammation, and autophagy during COVID-19
ARDS. Similarly, the co-enrichment of ARE/SMAD/AP1 late in the hospital course for prolonged
survivors suggests co-regulation of TFs in the TGF3 and redox pathways. Such has been
shown in macrophages during wound healing, where the expansion of cistromic co-occupancy
was noted for Nfe2l2, Smad3, AP1 family Fos1, and NFKB upon simultaneous exposure to
tissue damage signals (28). This finding provides a collaborative model where TFs of different

families converge in response to combinatorial biological signals in the cellular milieu.

The significant overlap of disease-associated SNPs in distinct TSR clusters suggests
plausible functional importance of co-regulatory TF networks in COVID-19 outcome. Our
cistrome dataset is uniquely complementary to the ongoing COVID-19 GWAS effort. The
dataset directly identifies transcriptionally active genomic regions from immune cells from

COVID-19 patients, with detailed annotation of disease severity and TF regulatory pattern
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associations. While a disease-associated SNP localizes disease risk to a genomic locus,
enrichment of disease SNPs within multiple regulatory elements of a TF program implicates the
biological significance of the TF pathway (31). We identified over-representations of COVID-19
associated SNPs at TSRs regulated by the T1ISRE/STAT, STAT/BCL6, and E2F/MYB
networks. We further demonstrated that the activity of these TF regulatory networks parallels
disease outcomes. Specifically, a combination of high STAT/BCL6 and E2F/MYB signals, even
early in the hospital course, is associated with a poor prognosis. COVID-19 patients with low
Type 1 interferon and high STAT/BCL6 activity also exhibited worse outcomes. Furthermore,
these TF network signatures mapped to distinct neutrophil subsets. While our dataset cannot
provide evidence of causal genetic variants, integrating the cistrome, GWAS, and transcriptomic

analyses supports functional roles for co-regulatory TF networks.

Our work has several limitations. First, the study design maximizes temporal resolution,
which limits patient numbers. A dedicated study with a larger cohort for csRNA-seq would be
ideal for confirmation. Nonetheless, the validation analysis using a large external COVID-19
cohort confirmed the cistrome association with poor disease outcomes. It also demonstrates the
feasibility of identifying target genes as a proxy for TF network activity. Secondly, we profiled the
cistrome of all peripheral leukocytes, a heterogeneous cellular population with different
proportions. The imbalance in cellular proportion influences clustering resolution, which is more
sensitive to cells making up the majority of the heterogeneous population. Cell sorting prior to
cistrome analysis would address this issue but presents technical and feasibility challenges
requiring larger blood volumes from clinically unstable patients. To address cell-type identity, we
cross-examined publicly available cistrome databases and successfully identified major
inflammatory pathways in smaller subsets of circulatory immune cells, including the lymphocytic

NFkB and the monocytic ARE/SMAD/AP1 programs. We also identified the combined
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STAT/BCL6 and E2F/MYB signature from immature neutrophils, which usually represent < 10-

20% of total leukocytes even in critical illnesses.

In summary, we used a novel unbiased technique to examine active genomic regulatory
elements by profiling levels of initiating transcripts directly from peripheral leukocytes of critically
il COVID-19 patients. We identified and provided evidence of TF pathways and co-regulatory
mechanisms implicated in severe COVID-19 ARDS. Many of these transcription factors are
pharmacological targets for existing compounds. These pathways may also be critical players in
infectious, non-COVID-19 ARDS, a heterogeneous clinical syndrome with high mortality (35-
40%) that currently depends on supportive care without targeted pharmacological therapy (44).
We demonstrated the feasibility of using cistrome-derived TF networks to stratify patients by
clinical outcome. Fast-turn around, TF activity profiling could be clinically applicable to stratify
patients for TF-targeted therapy, such as anti-IL6 or JAK-STAT inhibitor for patients with high
STAT/BCL6 activity. Equally important, one may avoid non-specific JAK-STAT inhibitors in
severe patients with high STAT/BCL6 and low T1ISRE/STAT activity, where further impairment
in the type 1 interferon pathway could be detrimental. Overall, our study demonstrates that
unbiased active cistrome profiling offers an unprecedented TF-centric resolution in
understanding human disease.

Materials and Methods

Study and Participants. Hospitalized patients diagnosed with COVID-19 at UCSD hospitals
including Hillcrest and Jacobs Medical Centers as well as Rady Children’s Hospital were
recruited for these studies from April to June 2020. After informed consent, blood was drawn on
hospitalization days 1, 3, 5, 7, 9, 11 and discharge/death for analysis. Medical records were
reviewed and patient demographics, laboratory values, and clinical characteristics were
extracted using the Research Electronic Data Capture (REDCap) electronic data capture tool

hosted at the University of California, San Diego.
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Characterizing Lung Injury with Modified Murray Score. The Murray Score was developed
to characterize the level of lung injury in acute respiratory distress syndrome (15). This system
assigned a score of 0-4 to the following 4 categories. 1) the extent of lung involvement on chest
radiograph; 2) level of hypoxemia using PaO2 to FiO2 ratio; 3) the range of positive end
expiratory pressure (PEEP); and 4) range of lung compliances based on tidal volume, peak
inspiratory pressure, and PEEP. For this study, in order to stratify lung injury of patients prior to
mechanical ventilation, after liberation from mechanical ventilation as well as requirement for
advance therapy on mechanical ventilation, we added the mode of respiratory support. Patients
on room air will be given 0 point; 1 point for 1-6 liter (L) of supplemental oxygen through nasal
cannula; 2 points for non-rebreather mask at 10-15L of supplemental oxygen; 3 points for
mechanical ventilation; and 4 points for mechanical ventilation with proning and paralysis. The
modified Murray Score was tabulated by averaging the score from these five categories. A
score of 0.1 to 2.5 was considered mild-moderate disease. Severe ARDS is > 2.5. Non-invasive
positive pressure ventilations including bi-level and heated high flow nasal cannula were not
included in the modified Murray score because at the time of recruitment, the safety of these
modalities for exposing medical staff were not well understood, and their use was generally
discouraged.

Blood sample processing. Blood (3-10mL) was collected in a Sodium Heparin (BD
Vacutainer, REF: 366480) or Potassium EDTA (BD Vacutainer, REF 367861) tubes. To prevent
coagulation, the tubes were inverted 10 times prior to transport at room temperature. Blood was
processed within 4 hours of collection and kept at room temperature throughout the protocol.
Whole blood from EDTA tubes and Heparin tubes was processed for isolation of plasma and
whole white blood cells (WBC).

Peripheral Leukocytes Isolation. To isolate WBCs, whole blood in EDTA tubes was
centrifuged at 300xg for 20 minutes. Plasma was first removed, leaving a cell pellet containing

WBCs and red blood cells (RBCs). RBCs were lysed by resuspending the cellular pellet in 1X
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RBC Lysis Buffer (ammonium chloride (8.02 g/L), sodium bicarbonate (0.84 g/L), and EDTA
(0.37 g/L) in deionized water) and incubated for 10 minutes. The cell suspension was then
centrifuged at 600xg for 5 minutes and the pellet was again resuspended in RBC lysis buffer for
5 minutes. The reaction was quenched with 3 times the volume of 1X HBSS (Gibco, REF
14175-095). After a sample was collected for a cell count, the isolated WBCs were pelleted at
600xg for 5 minutes. The WBC pellet was lysed in Trizol Reagent (Life Technologies, REF
15596018) with a target concentration of 5-10 million cells/mL and stored at -80C prior to RNA
extraction.

Plasma Isolation. Plasma for cytokine analysis was collected from Sodium Heparin tube.
Plasma was removed from blood separated by Polymorphprep™ per manufacturer’s
instructions (Progen). Plasma was transferred to new microcentrifuge tubes and centrifuged at
3731xg for 5 minutes at room temperature to remove any cellular debris. Supernatant was
transferred to new tubes and flash frozen in dry ice and 95% ethanol. Plasma was stored at -
80C for further analysis.

RNA extraction and purification. Total RNA was extracted from WBCs using TRIzol(tm)
reagent (Cat. No. 15596018, ThermoFisher Scientific) as per manufacturer's instructions. Half of
the total RNA was submitted for capped-small RNA-seq library generation. The remaining RNA
was treated with TURBO(tm) DNase (AM1907, ThermoFisher Scientific) as per manufacturer's
instructions and used for bulk total RNA-sequencing.

Capped small RNA-sequencing. csRNA-seq was performed as described in previously (11).
Briefly, small RNAs of 20-65 nt were size selected from 0.3-1.0 microgram of total RNA by
denaturing gel electrophoresis. A 10% input sample was taken aside, and the remainder
enriched for 5’-capped RNAs with 3’-OH representing RNAPII initiated RNAs.
Monophosphorylated RNAs were selectively degraded by Terminator 5'-phosphate-dependent
exonuclease (Lucigen). Subsequent 5’ dephosphorylation by CIP (NEB) followed by decapping

with RppH (NEB) augments Cap-specific 5’ adapter ligation by T4 RNA ligase 1(NEB). The 3’
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adapter was ligated using truncated T4 RNA ligase 2 (NEB) without prior 3’ repair to select
against degraded RNA fragments. Following cDNA synthesis, libraries were amplified for 11-14
cycles and sequenced SE75 on the Illlumina NextSeq 500 sequencer.

Sequencing reads were trimmed for 3’ adapter sequences using HOMER (“homerTools
trim -3 AGATCGGAAGAGCACACGTCT -mis 2 -minMatchLength 4 -min 20”) and aligned to the
human GRCh38/hg38 genome using STAR (45) with default parameters. Only reads with a
single, unique alignment (MAPQ >=10) were considered in the downstream analysis.
Furthermore, reads with spliced or soft clipped alignments were discarded (the latter often
removes erroneous snRNA alignments). Transcription Start Regions (TSRs), representing loci
with significant transcription initiation activity (i.e. ‘peaks’ in csRNA-seq), were defined using
HOMER'’s findcsRNATSS.pl tool, which uses short input RNA-seq, traditional RNA-seq, and
annotated gene locations to eliminate loci with csRNA-seq signal arising from non-initiating, high
abundance RNAs that nonetheless are captured and sequenced by the method (full description
is available in Duttke et al.(11). To lessen the impact of outlier samples across the data
collected for this study, csRNA-seq samples were first pooled into a single META-experiment,
and TSRs where then identified using findcsRNATSS.pl with a minimal TSR detection threshold
of 1 read per 10 million mapped reads (“-ntagThreshold 1”), yielding 93,465 TSRs total. The
resulting TSRs were then quantified in all samples by counting the 5’ ends of reads aligned at
each TSR on the correct strand. The raw read count table was then normalized using DESeq2'’s
rlog variance stabilization method (46). The resulting normalized data was used for all
downstream analysis. Normalized genome browser visualization tracks were generated using
HOMER’s makeMultiWigHub.pl tool. TSR genomic DNA extraction, nucleotide frequency
analysis relative to the primary TSS, general annotation, other basic analysis tasks were
performed using HOMER'’s annotatePeaks.pl function. Overlaps between TSRs and other

genomic features (including peaks from published ATAC-seq studies, and annotation to the 5’
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promoter of annotate GENCODE(v34) transcripts), was performed using HOMER'’s
mergePeaks tool.

Total RNA sequencing. Libraries were prepared using Illlumina's TruSeq Stranded Total RNA
Library Prep Gold according to manufacturer's instructions. In brief, rRNA was depleted from
total RNA (0.35 mg) by using subtractive hybridization. The RNA was then fragmented by metal-
ion hydrolysis and subsequently converted to cDNA using SuperScript Il. The cDNA was then
end-repaired, adenylated, and ligated with lllumina sequencing adapters. Finally, the libraries
were enriched by PCR amplification. All sequencing libraries were then quantified, pooled, and
sequenced paired-end 150 base-pair (bp) on lllumina Novaseq at the Salk Next Generation
Sequencing Core. Each library was sequenced on average 30 million reads. Sequencing reads
were aligned to the human GRCh38/hg38 genome using STAR. STAR was also used to
quantify read counts per gene using transcripts defined by GENCODE (version 34). RNA-seq
read counts were then normalized using DESeq2’s rlog variance stabilization method (46) for all
downstream analyses.

For total RNA-seq from Overmyer et al (47), sequencing reads were downloaded from
GSE157103 and were processed in the same fashion (i.e. mapped with STAR, rlog normalized
with DESeq?2).

Unsupervised machine learning for TSR cluster identification. We used hierarchical
clustering and Uniform Manifold Approximation and Projection (UMARP) for unbiased clustering
of TSRs based on csRNA-seq activity at the level of each TSR. First, patterns of csRNA-seq
regulation were identified with unbiased hierarchical clustering using HOMER (“homerTools
cluster”). The rlog normalized read counts across all TSRs were first row centered by the
average read count for each TSR, and the data was subsequently hierarchically clustered using
average linkage and the Pearson correlation coefficient between TSR profiles as the distance
metric. Due to the size of the dataset, 10,000 random TSRs were first selected for hierarchical

clustering. After completion, the remaining TSRs were assigned to their location in the
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hierarchical tree based on their nearest neighbor. The final clusters were defined as the
maximum sized subclusters with an average correlation coefficient no greater than 0.30 and a
minimum of 500 TSRs (to exclude small, highly variable clusters), yielding a total of 26. To
visualize the data, we performed UMAP independently using R packages uwot, leiden, igraph,
and FNN, with the following setting: n_component = 2, n_neighbors = 16, a = 2.5, b = 0.575,
and metric = ‘correlation’. We used ggplot to visualize the UMAP projection and to overlay
information including cluster IDs, relative csRNA-seq activity, chromatin accessibility, Modified
Murray Score correlation coefficient, and Hospital Time correlation coefficient.

Motif enrichment analysis. To identify TF motifs in TSRs that are associated with clinical
scores and other quantitative phenotypes, we applied MEIRLOP, a tool that uses logistic
regression to model the presence of motifs in a set of scored DNA sequences while accounting
for simple nucleotide composition bias, such as that introduced by CpG Islands (20). TSRs were
first scored by how well their activity profile across samples correlated (Pearson) with the
Modified Murray Score, such that TSRs with relatively high activity in samples from very sick
patients (i.e. high Modified Murray Score) yield high correlation coefficient values, while TSRs
with relatively high activity in healthy patients yield low values. Sequences from -150 to +50 bp
relative to the primary (mode) TSS within each TSR were then extracted, and these sequences
and their associated correlation scores were then analyzed using MEIRLOP. 438 TF motifs in
HOMER’s known motif database were evaluated and the motifs yielding the most extreme
enrichment coefficients with significant p-values were reported.

To identify motifs associated with discrete TSR clusters, we used HOMER (22) to scan
for DNA motifs in each TSR (-150,+50) using HOMER’s known motif database, assigning the
presence of a motif to each TSR if the motif was detected at least once. Motif enrichment for
each cluster was calculated by comparing motif occupancy rates in each cluster versus all other

clusters to calculate the log2 enrichment and significance using the Fisher Exact test. The top
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enriched motif(s) were then used to label the clusters, accounting for highly similar motifs from
large families.

Integration of csRNA-seq data with hematopoietic NGS epigenome profiling. Previously
published bulk epigenomics data (ATAC-seq/ChlP-seq) from isolated hematopoietic cell types
was used to assess the potential cell-type specificity of TSRs identified in our whole leukocyte
csRNA-seq profiling experiments. ATAC-seq data from GSE118189 (16) 26 different peripheral
blood cell types was further supplemented with ATAC-seq from primary neutrophils from
GSE150018 (17) to analyze open chromatin. H3K27ac ChlP-seq data for 21 different peripheral

blood cell types were downloaded from the Blueprint Epigenome project (https://www.blueprint-

epigenome.eu/) (18) to assess regions with active chromatin modifications. TF ChlP-seq data

for RELA(NFkB) in monocyte derived macrophages (MDM) (GSE100381 (24)), NFKB1 in CD4+
T cells (GSE116695 (25)), STAT3 in MDM (GSE120943 (48)), GR in MDM (GSE109438 (49)),
and IRF1 in MDM (GSE43036 (50)) were used to confirm the binding of TFs to predicted sites
based on DNA motif analysis of TSR sequence. For ATAC-seq and TF ChIP-seq experiments,
sequencing reads were downloaded from NCBI SRA, trimmed for adapter sequences, and
aligned to the hg38 genome using STAR with default parameters. Replicate experiments were
pooled by concatenating alignment files. Uniquely aligned reads (MAPQ>10) were then
analyzed using HOMER to find peaks using “-style atac” and “-style factor” for ATAC-seq and
TF ChIP-seq experiments, respectively. TF ChlP-seq peaks were found using their respective
negative control input sequencing experiments, while ATAC-seq peaks were found using the
pooled input from all ChIP-seq experiments as a control. HOMER was used to create genome
browser tracks, quantify reads in the vicinity of TSRs to quantify enrichment, and create
histograms of read distributions relative to the primary TSS (e.g. Supp. Fig. 1c). H3K27ac ChIP-
seq data from the Blueprint Epigenome project was downloaded as bigWig files, converted to
bedGraph files using UCSC’s bigWigToBedGraph utility, and quantified at TSRs using

HOMER’s annotatePeaks.pl program using the ‘-bedGraph’ option.
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To score TSRs by their cell type-specific ATAC-seq enrichment (i.e. Fig. 2c), ATAC-seq
reads (normalized to 107 total mapped reads) for each cell type were quantified in the vicinity of
all TSR (+/-200bp from the primary TSS or each TSR). For each TSR, the enrichment for each
cell type was defined as the log2 ratio of reads from that cell type divided by the average
normalized read count for all cell types. The same approach was used to score ChlP-seq
specific enrichment (i.e. Supp. Fig. 3, 5¢) by quantifying each ChIP-seq experiment across
TSRs (+/-200 bp for TF ChlP-seq, +/- 500 bp for H3K27ac ChlIP-seq). Aggregate cluster cell-
type enrichments were reported by calculating the average TSR cell-type specific enrichment for
each of the TSRs in the cluster/TF-network (i.e. Supp. Fig. 3, 5¢). Cell type enrichment patterns
were further hierarchically clustered using Cluster 3.0 (51) (Pearson Correlation, average
linkage) and visualized using Java TreeView (52).

Overlap of disease-associated SNPs from COVID-19 GWAS with TSRs. GWAS meta-
analysis results from the COVID-19 Human Genetics Initiative (30) corresponding the A2, B1,
B2, and C2 comparisons (Version 6, hg38 version) were downloaded from the consortium

website (https://www.covid19hg.org/results/r6/). Significant disease-associated SNPs were

defined using a p-value threshold of 5x10® as recommended in the original study (30). To
visualize disease-associated SNPs overlapping TSRs in the TSR UMAP, we identified the SNP
with the most significant p-value that overlapped each TSR within -300 to +100 relative to the
primary TSS.

Regulatory Element Locus Intersection (RELI) (31) was used to assess the significance
of overlap between lists of TSRs (e.g. TF clusters, TSRs with modified Murray Scores > 0.15,
etc.) and significant GWAS SNPs. First, lists TSRs were first mapped from the hg38 to the hg19
version of the human genome using UCSC’s liftOver tool. Next, lists of significant disease-
associated SNPs were expanded to include additional SNPs in LD (r* > 0.8) using SNIPA (EU

ancestry) (53). These data were then used to run RELI using default parameters, looking for
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SNPs that overlapped TSRs from -300 to +100 relative to the primary TSS, reporting the
corrected p-value and overlapping SNPs (Supp. Table 7).

Target genes selection and pathway analysis. Traditionally target genes are identified as the
nearby genes to regulatory elements (54). Because csRNA-seq simultaneously profiles
transcriptional initiation of protein-coding genes and cis-regulatory elements, the initiation
activities of the target genes should correlate with the cis-regulatory elements. We defined
target genes if they have promoter TSR that are in the same TF-network cluster. These target
genes were submitted for Gene Ontology and Pathway Analysis using Metascape (55).
Calculating TF-network activity from csRNA-seq. The aggregate TSR csRNA-seq signal
represents the activity of the TF-network program. For each TSR cluster, the median csRNA-
seq normalized count (log2) for all TSRs in a given cluster was calculated to represent TF-
network activity.

Target gene selection to calculate TF-network activity from transcriptomes. To compute
TF-network activity from transcriptomic data, we first need to identify target genes whose steady
state RNA levels reflect regulation at the transcription level. The target genes RNA level from
total RNA-seq should match the transcriptional initiation activity from csRNA-seq. We used
matching samples to process both total RNA-seq and csRNA-seq (n = 55) to identify target
genes within the E2F/MYB, STAT/BCL6, and T1ISRE/STAT network. We computed a Pearson
correlation coefficient for each target gene’s RNA level to the activity pattern of the cistromic
TSR cluster across the 55 samples. Target gene was then selected by the following criteria: 1)
the gene has a TSR resides in the annotated promoter and clusters into the E2F/MYB,
STAT/BCLG6, or T1ISRE/STAT network; 2) the gene is unique to one TF-network; 3) the gene is
expressed in the transcriptomic analysis, defined by having a median normalized read count
greater than 4 FKPM across all samples; 4) the target genes RNA level is positively correlated
with the activity of the TSR cluster (correlation coefficient > 0.2). The last criteria remove genes

whose steady-state RNA level can be influenced by post-transcriptional mechanisms. We
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identified 106, 176, and 58 target genes for E2F/MYB, STAT/BCL6, and T1ISRE/STAT
respectively. For validation, the TF-network activity determined by TSRs (csRNA-seq) and
target genes (total RNA-seq) for the three TF-networks were analyzed in a 3x3 correlation
matrix with Pearson’s correlation and two-tail test for statistical significance (Prism 9).
Integrated analysis with single cell RNA-seq data. Single-cell RNA-seq data from Combes et
al (8) was analyzed using the SCANPY toolkit (56). Cells with greater than 20% mitochondrial or
50% ribosomal RNA reads were excluded, as were cells with fewer than 100 genes detected. In
some cases, previous annotation labeling cells as possible multiplets was available and used to
filter out non-singlets. Gene set signatures were tabulated per cell from raw read counts. For
cell type identification, read counts per cell were normalized and log-transformed before
applying the regress_out function to the total counts. The counts were then scaled to unit
variance and zero mean. The cells were run through PCA, neighbor graph generation, and
UMAP with default parameters. Cell clusters were identified using Leiden clustering with a
resolution parameter of 0.25. Marker genes from these clusters were used to identify five
neutrophil clusters.

Cytokine measurements. The Human Anti-Virus Response Panel (13-plex; BioLegend, San
Diego, CA) was used to quantitate human plasma cytokines (IL-18, IL-6, IL-8, IL-10, TNFa, and
IP-10). Plasma samples were stored at "80°C until use. For the cytokine assay, plasma was
freshly thawed at room temperature, centrifuged at 1,000 x g for 5 min, and run at a 2-fold
dilution in Assay Buffer per the manufacturer’s instructions. Samples were acquired on a Canto
Il flow cytometer (BD) using a high throughput sampler. Samples were run in duplicate unless
plasma volume was inadequate, and standards were run on all plates. Cell signaling technology
(CST) was run prior to all flow cytometry runs to ensure low detector CVs and set laser delay.
LEGENDplex Data Analysis Software (BioLegend) was used for analysis.

Drug repurposing & connectivity mapping. CMap (https://clue.io/cmap) provides expression

similarity scores for a specific expression profile with other drug-induced transcriptional profiles,
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including consensus transcriptional signatures of 2,837 drugs grouped into 83 drug classes (29).
The connectivity score from CMap is calculated based on the observed enrichment scores in
the queried gene lists relative to transcriptional signatures in the L1000 reference database. The
score incorporates a nominal p-value calculated based on the comparison between the query
and reference signatures relative to a null distribution of random queries, using the Kolmogorov-
Smirnov enrichment statistic, which is then corrected for multiple testing using the false
discovery rate method (29, 57-59).

For drug repurposing, the connectivity map scores were computed based on the target genes
for each TF-network cluster. We hypothesized that the gene expression pattern resulting from
the perturbation by a therapeutic compound should negatively correlate with the COVID-19
transcriptional signature as previously shown (58, 59). Therefore, we selected those compounds
that had significant negative connectivity map scores (i.e. compounds with the connectivity
scores < -90, predicted to reverse our input signature (29)). For each cluster, we grouped
predicted drugs into: (1) individual drug lists with connectivity scores (cs) <-90; (2) Drugs for
each cluster based on the predicted cluster targets with cs <-90; and (3) Pharmacological drug
classes (i.e. JAK inhibitors) to determine which broader classes of drugs may be predicted by

each cluster to reverse the COVID-19 transcriptional signature (cs <- 90).

Statistical Analysis. The appropriate statistical analysis is performed and detailed in the

corresponding sections above.

Study Approval. The study was approved by the Institutional Review Board at the University of
California, San Diego (UCSD IRB#190699). Written informed consent was received prior to

patient’s participation in the study.

29


https://doi.org/10.1101/2021.08.24.457187
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.24.457187; this version posted August 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

References

1. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. Single-cell landscape of
bronchoalveolar immune cells in patients with COVID-19. Nature medicine.
2020;26(6):842-4.

2. Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martinez-Colon GJ, McKechnie JL, et al. A
single-cell atlas of the peripheral immune response in patients with severe COVID-19.
Nature medicine. 2020;26(7):1070-6.

3. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type |
interferon activity and inflammatory responses in severe COVID-19 patients. Science
(New York, NY). 2020;31:eabc6027-15.

4. Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR, Wu JE, et al. Deep
immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic
implications. Science (New York, NY). 2020;369(6508).

5. Moderbacher CR, Ramirez SlI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, et al. Antigen-
Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with
Age and Disease Severity. Cell. 2020;183(4):996-1012.e19.

6. Schulte-Schrepping J, Reusch N, Paclik D, BaRler K, Schlickeiser S, Zhang B, et al.
Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell. 2020:1-
64.

7. Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, et al. Longitudinal
analyses reveal immunological misfiring in severe COVID-19. Nature.
2020;584(7821):463-9.

8. Combes AJ, Courau T, Kuhn NF, Hu KH, Ray A, Chen WS, et al. Global absence and
targeting of protective immune states in severe COVID-19. Nature. 2021:1-10.

9. Group RC, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone
in Hospitalized Patients with Covid-19. New England Journal of Medicine.
2021;384(8):693-704.

10. Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread
transcription at neuronal activity-regulated enhancers. Nature. 2010;465(7295):182-7.

11. Duttke SH, Chang MW, Heinz S, and Benner C. Identification and dynamic quantification
of regulatory elements using total RNA. Genome Research. 2019;29(11):1836-46.

12. Klemm SL, Shipony Z, and Greenleaf WJ. Chromatin accessibility and the regulatory
epigenome. Nature Reviews Genetics. 2019:1-14.

13. Kaikkonen MU, Spann NJ, Heinz S, Romanoski CE, Allison KA, Stender JD, et al.
Remodeling of the Enhancer Landscape during Macrophage Activation Is Coupled to
Enhancer Transcription. Molecular cell. 2013;51(3):310-25.

14. Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, and Lis JT. Analysis of nascent
RNA identifies a unified architecture of initiation regions at mammalian promoters and
enhancers. Nature Publishing Group. 2014:1-12.

15. Weiskopf RB, Viele MK, Feiner J, Kelley S, Lieberman J, Noorani M, et al. Human
cardiovascular and metabolic response to acute, severe isovolemic anemia. JAMA: The
Journal of the American Medical Association. 1998;279(3):217-21.

16. Calderon D, Nguyen MLT, Mezger A, Kathiria A, Muller F, Nguyen V, et al. Landscape of
stimulation-responsive chromatin across diverse human immune cells. Nature Genetics.
2019;51(10):1-17.

17. Perez C, Botta C, Zabaleta A, Puig N, Cedena M-T, Goicoechea I, et al.
Immunogenomic identification and characterization of granulocytic myeloid-derived
suppressor cells in multiple myeloma. Blood. 2020;136(2):199-209.

30


https://doi.org/10.1101/2021.08.24.457187
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.24.457187; this version posted August 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

18. Javierre BM, Burren OS, Wilder SP, Kreuzhuber R, Hill SM, Sewitz S, et al. Lineage-
Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to
Target Gene Promoters. Cell. 2016;167(5):1369-84.e19.

19. Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, et al. Neutrophil-to-lymphocyte ratio predicts
critical illness patients with 2019 coronavirus disease in the early stage. Journal of
Translational Medicine. 2020;18(1):206-12.

20. Santos NPD, Texari L, and Benner C. MEIRLOP: improving score-based motif
enrichment by incorporating sequence bias covariates. BMC Bioinformatics.
2020;21(1):1-22.

21.  Acosta-Herrera M, Pino-Yanes M, Blanco J, Ballesteros JC, Ambrés A, Corrales A, et al.
Common variants of NFE2L2 gene predisposes to acute respiratory distress syndrome
in patients with severe sepsis. Critical care (London, England). 2015;19:256.

22. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of
lineage-determining transcription factors prime cis-regulatory elements required for
macrophage and B cell identities. Molecular cell. 2010;38(4):576-89.

23. D’Cruz LM, Knell J, Fujimoto JK, and Goldrath AW. An essential role for the transcription
factor HEB in thymocyte survival, Tcra rearrangement and the development of natural
killer T cells. Nature immunology. 2010;11(3):240-9.

24, Park SH, Kang K, Giannopoulou E, Qiao Y, Kang K, Kim G, et al. Type | interferons and
the cytokine TNF cooperatively reprogram the macrophage epigenome to promote
inflammatory activation. Nature immunology. 2017;18(10):1104-16.

25. Yukawa M, Jagannathan S, Vallabh S, Kartashov AV, Chen X, Weirauch MT, et al. AP-1
activity induced by co-stimulation is required for chromatin opening during T cell
activation. The Journal of Experimental Medicine. 2020;217(1).

26. Park A, and lwasaki A. Type | and Type lll Interferons - Induction, Signaling, Evasion,
and Application to Combat COVID-19. Cell Host and Microbe. 2020;27(6):870-8.

27. Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, et al.
Transcriptional control of autophagy-lysosome function drives pancreatic cancer
metabolism. Nature. 2015;524(7565):361-5.

28. Eichenfield DZ, Troutman TD, Link VM, Lam MT, Cho H, Gosselin D, et al. Tissue
damage drives co-localization of NF-kB, Smad3, and Nrf2 to direct Rev-erb sensitive
wound repair in mouse macrophages. eLife. 2016;5:554.

29. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. A Next
Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell.
2017;171(6):1437-52.e17.

30. Initiative C-HG. Mapping the human genetic architecture of COVID-19. Nature. 2021.
31. Harley JB, Chen X, Pujato M, Miller D, Maddox A, Forney C, et al. Transcription factors
operate across disease loci, with EBNA2 implicated in autoimmunity. Nat Genet.

2018;50(5):699-707.

32. Overmyer KA, Shishkova E, Miller IJ, Balnis J, Bernstein MN, Peters-Clarke TM, et al.
Large-Scale Multi-omic Analysis of COVID-19 Severity. Cell Syst. 2021;12(1):23-40 e7.

33. Wang EY, Mao T, Klein J, Dai Y, Huck JD, Jaycox JR, et al. Diverse Functional
Autoantibodies in Patients with COVID-19. Nature. 2021:1-30.

34. Xie X, Shi Q, Wu P, Zhang X, Kambara H, Su J, et al. Single-cell transcriptome profiling
reveals neutrophil heterogeneity in homeostasis and infection. Nature immunology.
2020:1-37.

35. Chu T, Rice EJ, Booth GT, Salamanca HH, Wang Z, Core LJ, et al. Chromatin run-on
and sequencing maps the transcriptional regulatory landscape of glioblastoma
multiforme. Nature Genetics. 2018:1-17.

31


https://doi.org/10.1101/2021.08.24.457187
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.24.457187; this version posted August 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

36. Rubin JD, Stanley JT, Sigauke RF, Levandowski CB, Maas ZL, Westfall J, et al.
Transcription factor enrichment analysis (TFEA) quantifies the activity of multiple
transcription factors from a single experiment. Commun Biol. 2021;4(1):661.

37. Hung IF-N, Lung K-C, Tso EY-K, Liu R, Chung TW-H, Chu M-Y, et al. Triple combination
of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients
admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet
(London, England). 2020;395(10238):1695-704.

38. Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K, and Mak TW. An aberrant STAT
pathway is central to COVID-19. Cell Death &amp; Differentiation. 2020;27(12):3209-25.

39. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, et al.
Nrf2 is a critical regulator of the innate immune response and survival during
experimental sepsis. Journal of Clinical Investigation. 2006;116(4):984-95.

40. Gomez JC, Dang H, Martin JR, and Doerschuk CM. Nrf2 Modulates Host Defense
during Streptococcus pneumoniae Pneumonia in Mice. Journal of immunology
(Baltimore, Md : 1950). 2016;197(7):2864-79.

41. Papaiahgari S, Yerrapureddy A, Reddy SR, Reddy NM, Dodd-O JM, Crow MT, et al.
Genetic and pharmacologic evidence links oxidative stress to ventilator-induced lung
injury in mice. American Journal of Respiratory and Critical Care Medicine.
2007;176(12):1222-35.

42. El-Houjeiri L, Possik E, Vijayaraghavan T, Paquette M, Martina JA, Kazan JM, et al. The
Transcription Factors TFEB and TFE3 Link the FLCN-AMPK Signaling Axis to Innate
Immune Response and Pathogen Resistance. Cell reports. 2019;26(13):3613-28.€6.

43. Pastore N, Brady OA, Diab HI, Martina JA, Sun L, Huynh T, et al. TFEB and TFE3
cooperate in the regulation of the innate immune response in activated macrophages.
Autophagy. 2016;12(8):1240-58.

44. Thompson BT, Chambers RC, and Liu KD. Acute Respiratory Distress Syndrome. New
England Journal of Medicine. 2017;377(6):562-72.

45. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.

46. Love MI, Huber W, and Anders S. Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome biology. 2014;15(12):31-21.

47. Overmyer KA, Shishkova E, Miller IJ, Balnis J, Bernstein MN, Peters-Clarke TM, et al.
Large-scale Multi-omic Analysis of COVID-19 Severity. medRxiv. 2020.

48. Kang K, Bachu M, Park SH, Kang K, Bae S, Park-Min K-H, et al. IFN-y selectively
suppresses a subset of TLR4-activated genes and enhancers to potentiate macrophage
activation. Nature Communications. 2019;10(1):3320-14.

49. Wang C, Nanni L, Novakovic B, Megchelenbrink W, Kuznetsova T, Stunnenberg HG, et
al. Extensive epigenomic integration of the glucocorticoid response in primary human
monocytes and in vitro derived macrophages. Scientific Reports. 2019;9(1):2772-17.

50. Qiao Y, Giannopoulou EG, Chan CH, Park SH, Gong S, Chen J, et al. Synergistic
activation of inflammatory cytokine genes by interferon-y-induced chromatin remodeling
and toll-like receptor signaling. Immunity. 2013;39(3):454-69.

51. de Hoon MJL, Imoto S, Nolan J, and Miyano S. Open source clustering software.
Bioinformatics. 2004;20(9):1453-4.

52. Saldanha AJ. Java Treeview--extensible visualization of microarray data. Bioinformatics.
2004;20(17):3246-8.

53. Arnold M, Raffler J, Pfeufer A, Suhre K, and Kastenmuller G. SNiPA: an interactive,
genetic variant-centered annotation browser. Bioinformatics. 2015;31(8):1334-6.

54. Yoshida H, Lareau CA, Ramirez RN, Rose SA, Maier B, Wroblewska A, et al. The cis-
Regulatory Atlas of the Mouse Immune System. Cell. 2019;176(4):897-912.e20.

32


https://doi.org/10.1101/2021.08.24.457187
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.24.457187; this version posted August 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

55. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al.
Metascape provides a biologist-oriented resource for the analysis of systems-level
datasets. Nature Communications. 2019:1-10.

56. Wolf FA, Angerer P, and Theis FJ. SCANPY:: large-scale single-cell gene expression
data analysis. Genome biology. 2018;19(1):15-5.

57. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene
set enrichment analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proceedings of the National Academy of Sciences.
2005;102(43):15545-50.

58. Duarte RR, Copertino Jr DC, and 2020. Repurposing fda-approved drugs for covid-19
using a data-driven approach. 3.

59. Le B, Andreoletti G, Oskotsky T, Vallejo-Gracia A, Ramirez RR, Yu K, et al.
Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for
COVID-19. Research square. 2021.

33


https://doi.org/10.1101/2021.08.24.457187
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.24.457187; this version posted August 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a o & 0 o b Fast Recovery (n=5) Prolonged Recovery (n = 9) Fatal Case (n =3
ar 6B 60 4 4n 4 ( )
Qo =
c = < [
g *H°H°H°® 3 38 28 Comfort §
g slos|o 3| o »n 3 53 3 gUe\pee 3 = o
= = = - = 3 ‘ o
> P g o S8 LY
° glo 8J0 g o = 8 ® =%
2 T T T S 24 2 f -\ 2- z %
® o o = 5 &
e B = ©
5 A\ o o e 1 14 Qo—e 2k
2 ° DNR/DNI Comfort &
(<) o o] O =
S Discharge =S @
= o © 10 10 20 10 20 30
o o Hospital Days
ci i ‘ /\ Death
e Sansaon chr17: 20 kb —————  chri6: 10kb
i 10 Kb ch2ra1.413386.41.482.101
o e sits) d 42,240,001 422700001 11,550,0001 11,560,0001 11,570,000 P— S
Discharge _—Exons —— LITAF Exons 7 [ 7N 1
L Lung injury Assessment STATSB § N MX N
eg._,_; (Modified Murray Score) Introns 3UTR Introns s Exons Seq Tag
.‘ ". Oayt | AA_AAJ Counts
= 3 |
_— __— Cytokine (n = 64) csRNA-seq 2| osya |
= Transcriptomic x -
l wee o~ (Total RNAseq n = 55) = ——t 2 A T
(RBC-depleted) \.  Active Cistrome Total ] gl 2%
(csRNA-seq n = 97) RNA-seq 1 S | oaye i e D
@ Asymptomatic @ ' ! i | %
Controls #m Prolonged Recovery Neutrophil L Neutrophil g Doyt
= FastRecovery g Fatal Outcomes Ac-H3K27 LJ Dscharge
_/ ChIF’seq CD4 T cell CD4 T cell Healthy Ctl |
SmeG ——— etemntnch ) leutropfills 27ac
S > RNA-seq Neutrophil Neutrophil Mewopfe \a . H3K27ag
¢ i 14 S | )
Ivan(s)cggl::;\’ ATAC-seq coaToel | CD4 T cell L ATAC
z/v; LRI 1 . R CH A
Initated short 5Cap RNA: = N N st
tate f;a:: G R —> csRNA-seq eRNA eRNA eRNA Promoter
Transcription Start site Region (TSR) (TSR A) (TSR B) (TSRC)
e Promoter-Distal . f
. R . TSRAVvs. TSRB TSRAvs.TSRC p TSRAvs. TSRD
. . 10- - =
o ®

romoter

IS
1

o #
g
TSR B Activity
csRNA-seq (log2)
il e
{1, <
?°
TSR C Activity
E o
1 I
@) ‘} °
°
...
g°
°
TSR D Activity
2

N
1
L]

°
P 21 r=-0.05786 r=-0.173 6=0.415
» p-val = 0.58 p-val = 0.1 2 p-val < 1x10+
TSR A: Enhancer in STATSB intron 8 9 10 1 12 8 9 10 11 12 8 9 10 11
© TSR B: Enhancer in LITAF intron TSR A activity

@ TSR C: Enhancer -2kb MX1
* @ TSR D: Enhancer in K1F1B intron csRNA-seq log, tag count

Promoter-Distal

Figure 1. Activated immune cistrome from peripheral leukocytes of hospitalized COVID-19
patients. a-b. Longitudinal study design sampled plasma and peripheral leukocytes of
hospitalized COVID-19 patients across different stages of lung injury quantified by the Modified
Murray Lung Injury Score. Ninety-seven samples were included for active cistrome analysis
using capped-short RNA-seq (csRNA-seq). For fatal cases, the collection ended after patients
transitioned to comfort care. One patient declined resuscitation or intubation (DNR/DNI). c)
csRNA-seq captures short 5' capped RNA species, including active cis-regulatory elements and
gene promoters, collectively termed Transcription Start site Regions (TSRs). d) csRNA-seq
identifies transcriptional activity (red) in putative enhancers (eRNAs) in the STATSB (left), LITAF
(middle) and MX1 (right) loci. The STAT5B enhancer resides in a neutrophil-specific active
chromatin region (+ acetylated H3K27 and + ATAC-seq), whereas the LITAF enhancer resides
in CD4 T cell active chromatin region. MX7 eRNA correlates with MX7 gene expression over
time. e) Unbiased clustering of 93,465 TSRs grouped by similarity of their activity across 97
samples using Uniform Manifold Approximation Projection (UMAP). Inset shows TSRs residing
in the promoter (red) or promoter-distal regions (blue). f) Pearson correlation of csRNA-seq
levels from TSR A compared to TSR B (left), TSR C (middle), and TSR D (right).
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Figure 2. Differential activation of the immune cistrome at different disease states. A) UMAP of
TSRs, shaded based on the correlation of their activity profile with lung injury score B)
Spearmen correlation analysis of the activities of TSR A (left) and TSR B (right) with modified
Murray Lung Injury Score. C) Open-chromatin ATAC-seq enrichment in neutrophils,
plasmablasts, monocytes, and Th1 precursor lymphocytes from each TSR visualized on the
immune cistrome UMAP (16, 17). Red delineates high ATAC-seq enrichment relative to other
hematopoietic cell types. D) Genome-wide relative average TSR activity in asymptomatic
controls (n=5) and patients with fast (n=5) or prolonged recovery (n=9) on the first day of
enrollment.
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Figure 3. Distinct cistrome clusters identify co-enrichment of transcription factor (TF) motifs
suggestive of co-regulatory mechanisms. a) A logistic regression analysis (MEIRLOP) identified
transcription factor (TF) motifs enriched in regulatory elements associated with high (violet) or
low (orange) lung injury indices. Each dot represents the enrichment coefficient of TF motifs in
TSRs with activity profiles highly correlated with the lung injury index. Error bars represent the
lower and upper 95% confidence intervals. The enrichments of all motifs, except for T1ISRE,
are all statistically significant (adj. p < 0.0001). b) UMAP representation showing discrete TSR
clusters labeled by representative TFs exhibiting the highest enrichment in each cluster. c) Motif
analysis depicts co-enrichment of signal-dependent, lineage-determining, and promoter TF
motifs. Red depicts the Log2 ratio enrichment of the motif frequency in the TSR cluster relative
to all TSRs; blue, depletion. The dot size represents the Fisher Exact Test p-value. Functional
enrichment/GO analysis identifies top pathways from genes associated with each TSR cluster.
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Figure 4. The natural progression of transcriptional programs during the clinical course of
COVID19 ARDS. a) Genome-wide kinetic correlation analysis for cistrome activity to hospital
days in critically ill COVID19 ARDS survivors (n = 9) with prolonged recovery (the median
number of time points is 7 per patient; total = 63 samples). Correlation coefficients for each TSR
activity to hospital time are overlaid on the UMAP. Purple indicates higher activity early in the
hospital course; yellow, later hospital course. b-e) Time course of TF-activity in clusters
enriched for (b) STAT/BCLS6, (c) T1ISRE/STAT, (d) NFkB/RBPJ, X-Box/NFY/CRE, and YYI, e)
ETS/YY1, CEBP/PU1, and ARE/AP1/SMAD. TF activity represents the median log2 csRNA-seq
signals of all TSRs in a given cluster. f-g) Serum cytokines for (f) IL6 and (g) IP-10 implicated in
the STAT and Interferon pathway, respectively. Each point represents the median log2 of TSR
cluster activity with the color indicating the lung injury score at those time points (violet = high;
gold = low). The line and shaded region correspond to the smooth conditional mean and 95%
confidence intervals, respectively. h) Gene pathways enriched in the early (purple) and late
(yellow) TF programs. Ridge plot shows the time-TSR activity correlation coefficient of genes in
the respective pathways.
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Figure 5. Distinct TSR clusters exhibit significant enrichment of single nucleotide polymorphisms
associated with COVID-19 clinical outcome. a) The LZTFL1 locus in chromosome 3p21.31
harbors numerous SNPs associated with COVID-19 clinical outcome (p-value < 5 x 10®). SNP
A (rs34460587, -log p-value > 15, hospitalization vs. non-hospitalized COVID-19 cases) lies
within -300 to + 100 bp of a transcription start sites (TSS) located in the intergenic region
between the CCR1 and XCR1 genes. c) UMAP showing the distribution of TSRs with COVID-19
associated SNPs overlap. d) Statistical analysis for enrichment of COVID-19 associated SNPs
in TSRs based on lung injury index (left) or TSR clustering (right) using Regulatory Element
Locus Intersection (RELI) (31). The color represents the RELI corrected p-values that account
for the underlying genetic structure.
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Figure 6. Dysregulated E2F/MYB, STAT/BCL6, and T1ISRE/STAT programs are associated
with severe COVID-19. a) Framework for applying aggregate TF-network target gene
expression as a representation of TF activity to validate cistrome-disease relationships in patient
clinical outcome and cellular subtypes. b. Pair-wise Pearson's correlation analysis of TF activity
as determined by cistrome (csRNA-seq) and target gene expression (total RNA-seq) for
E2F/MYB, STAT/BCL6, and T1ISRE/STAT using 55 matched samples. Correlation coefficients
and the p-values for each pair-wise comparison are indicated. c. Spearman correlation of
clinical severity (HFD45) with E2F/MYB, STAT/BCL6, and T1ISRE/STAT activity in an external
COVID19 cohort (n = 100) (32). Smooth conditional means and 95% confidence intervals are
depicted. d) Scatterplot of individual patient samples from the external COVID19 cohort based
on STAT/BCL6 (x-axis) and E2F/MYB (y-axis) activity. The color of each point represents
clinical disease severity (Red = severe; green = mild). The dash lines demarcate the medians
for STAT/BCLS6 (vertical) and E2F/MYB (horizontal) activity. The fatal cases for each quadrant
are significantly different (Chi-square, p-value = 0.004, two-tailed). e-g) The average HFDA45 for
patient subgroups based on the activity of (e) E2F/MYB and STAT/BCL6, (f) E2F/MYB and
T1ISRE/STAT, and (g) T1ISRE/STAT and STAT/BCL6. Error bars represent 95% confidence
intervals from the mean (horizontal lines). One-way ANOVA with multiple comparisons shows
statistical differences between subgroups. Adjusted p-values * < 0.05, ** < 0.005, *** < 0.0005.
h) Three neutrophil subsets identified from COVID19 peripheral leukocyte single-cell RNA-seq
analysis (8). i) Distribution of activities in E2F/MYB, STAT/BCL6, and T1ISRE/STAT programs
per cell in each neutrophil subset. j) The cellular distribution of neutrophil subsets in control and
COVID19 patients with mild and severe disease.
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