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Significance Statement  
Children’s cognitive functioning differs by dimensions of social inequality, such as class and 
race. Epigenetic mechanisms that regulate gene expression might be critically involved in the 
biological embedding of environmental privilege and adversity. We find that children growing 
up in more disadvantaged families and neighborhoods and from marginalized racial/ethnic 
groups exhibit higher chronic inflammation, lower cognitive functioning, and a faster pace of 
biological aging, as indicated by novel salivary DNA-methylation measures. These DNA-
methylation measures of higher inflammation, lower cognitive functioning, and a faster pace of 
biological aging were, in turn, associated with performance on multiple cognitive tests. DNA-
methylation measures might be useful as a surrogate endpoint in evaluation of programs to 
address the childhood social determinants of lifelong cognitive disparities. 
 
Abstract 
Children’s cognitive functioning and educational performance are socially stratified. Social 
inequality, including classism and racism, may operate partly via epigenetic mechanisms that 
modulate neurocognitive development. Following preregistered analyses of data from 1,183 8- to 
19-year-olds from the Texas Twin Project, we examined whether salivary DNA-methylation 
measures of inflammation (DNAm-CRP), cognitive functioning (Epigenetic-g), and pace of 
biological aging (DunedinPoAm) are socially stratified and associated with performance on tests 
of cognitive functions. We find that children growing up in more disadvantaged families and 
neighborhoods and children from marginalized racial/ethnic groups exhibit DNA-methylation 
profiles associated with higher chronic inflammation, lower cognitive functioning, and faster 
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pace of biological aging. These salivary DNA-methylation profiles were associated with 
processing speed, general executive function, perceptual reasoning, verbal comprehension, 
reading, and math. Given that the DNA-methylation measures we examined were originally 
developed in adults, our results suggest that social inequalities may produce in children 
molecular signatures that, when observed in adults, are associated with chronic inflammation, 
advanced aging, and reduced cognitive function. Salivary DNA-methylation profiles might be 
useful as a surrogate endpoint in assessing the effectiveness of psychological and economic 
interventions that aim to reduce negative effects of childhood social inequality on lifespan 
development. 
 
Keywords: DNA-methylation; epigenetics; cognition; children; socioeconomic status; racism  
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Introduction 
Children’s cognitive function and educational performance are sensitive to environmental input, 
robustly predict their future social attainments and health (1), and consistently differ by major 
dimensions of social inequality, such as parental education, income, and race (2, 3). 
Socioeconomic and racial disparities in child cognitive development arise through various 
factors tied to classism and racism, including inequitable access to high-quality childcare, 
educational resources, healthcare, nutrition, and differences in exposure to toxicants, family 
stress, and neighborhood threat, among other factors (4, 5). For example, the social advantage of 
White identity, or White privilege, describes the generational legacy of social power experienced 
by White people through state-sanctioned social marginalization, which persistently shapes the 
disadvantaged context that young Black and Latinx youth face in the US. Due to the chronic 
nature of interpersonal and vicarious discrimination in their day-to day lives, indicators of 
socioeconomic disadvantage capture relevant but limited aspects of the effects of racism on child 
development (6). 

Epigenetic mechanisms that regulate the expression of genes are hypothesized to be 
involved in the biological embedding of environmental privilege and disadvantage (7). For 
instance, a consistent finding from experimental manipulations of the social environment in 
nonhuman animals is that social adversity increases expression of genes linked to inflammation 
(8), which can modulate the continued development and function of the brain (7). Thus, 
epigenetic mechanisms actuated by classism and racism may, in part, contribute to social 
disparities in children’s cognitive function. 

New advances of genome-wide technology and “omic” approaches have now quantified 
molecular signatures of a host of exposures, biological processes, and phenotypes that can be 
used to investigate the etiology of social disparities in life course development. For example, 
studies have identified patterns of DNA methylation across the epigenome in association with a 
peripheral proxy for systemic inflammation (9), multisystem biological aging processes (10), and 
psychological phenotypes (11). Results from such discovery studies can be used in prediction 
studies to construct epigenetic profiles in new samples that can then be examined in relation to a 
wide range of measured variables. 

DNA-methylation discovery studies most commonly analyze methylation from blood or 
other tissues, but not methylation in salivary DNA, which comes from a mixture of buccal cells 
and leukocytes (https://ngdc.cncb.ac.cn/ewas/statistics). DNA methylation is a dynamic process 
and can be tissue-specific with, for example, different epigenetic signatures in brain, blood, and 
saliva (12). Yet, because DNA-methylation profiling using saliva is amenable at large scale in 
pediatric samples, this method offers distinct opportunities for large-scale epidemiological and 
longitudinal studies. Specifically, salivary DNA-methylation profiles may be useful for 
examining the etiology of social disparities in lifespan development. However, little work has 
been conducted to-date to examine whether salivary DNA-methylation measures are sensitive to 
social inequality (though see (13)) and associated with psychological development in children 
and adolescents.  
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Following preregistered analyses (https://osf.io/x978n/), we examined whether salivary 
DNA-methylation measures derived from discovery studies trained on inflammation, cognitive 
function, and the pace of biological aging are (a) stratified by major dimensions of social 
inequality and (b) associated with cognitive functions in children and adolescents. Three salivary 
DNA-methylation composite scores were of particular interest in the present study, because their 
blood-derived composites have been associated with cognitive function or they have been found 
to be sensitive to socioeconomic inequality. First, we examined DNA-methylation profiles of C-
reactive protein (CRP; “DNAm-CRP”), which in blood samples have previously been found to 
be associated with cognitive functions in adults (14) and children (15). Second, we examined 
“Epigenetic-g” from a blood-based epigenome wide association study of general cognitive 
functions (g) in adults, which accounted for 3.4% and 4.5% of the variance in general cognitive 
functioning in two external adult cohorts using methylation from blood samples (11). Third, we 
examined “DunedinPoAm”, which was developed from analysis of rate of longitudinal change in 
organ system integrity occurring in middle-adulthood in a cohort of individuals who were all the 
same chronological age (16). We previously reported that socioeconomic disadvantage and 
Latinx compared to White identity is associated with faster pace of biological aging, as indicated 
by the DunedinPoAm, in a previous data freeze of Texas Twins salivary DNA-methylation data 
(N=600; (13)). In contrast, epigenetic clocks and the mortality predictor “GrimAge” were not 
sensitive to socioeconomic inequality and therefore not considered in analyses reported here 
(DNAm-CRP and Epigenetic-g were not previously examined). In the present study, we also 
examined whether genetic profiles of inflammation (i.e. polygenic scores of CRP, (17)) are 
associated with cognitive functions. Participants were 1183 (609 female) children and 
adolescents with at least one DNA-methylation sample from the population-representative Texas 
Twin Project, including 426 monozygotic and 757 dizygotic twins from 611 unique families, 
aged 8 to 19 years (mean age = 13.38 y, SD = 2.99 y). 

 
Results 

The preregistration of our analysis plan can be found at https://osf.io/krgfs/. 
 
Salivary DNA-methylation profiles in children are reliably measured and show expected 
patterns of association with covariates 

DNA-methylation profiles (i.e., DNAm-CRP, Epigenetic-g, DunedinPoAm) measured from 
salivary DNA were approximately normally distributed (see Table 1 for descriptive statistics 
before correction for the cell composition of saliva samples). Analyses of 15 technical replicates 
suggested moderate-to-good reliability of DNA-methylation profiles residualized for technical 
artifacts and cell composition (ICC for DNAm-CRP = 0.73, epigenetic-g = 0.80, DunedinPoAm 
= 0.84). Biometric models using the twin family structure, where the similarity between twins 
due to both additive genetic factors (A) and environmental factors shared by twins living in the 
same home (C) represents a lower bound estimate of reliability, also suggested good reliability of 
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DNA-methylation profiles (A+C variation for DNAm-CRP= 60.7%, Epigenetic-g = 55.3%, 
DunedinPoAm = 54.2%, accounting for age and gender).  

Higher DNAm-CRP was strongly correlated with higher DunedinPoAm (r=0.89 [95% CI= 
0.81, 0.96], p<0.001, accounting for age and gender) and moderately correlated with lower 
Epigenetic-g (r=-0.31 [-0.42, -0.19], p<0.001). This result is unsurprising as CRP levels were 
one of the 18 biomarkers that the DunedinPoAm measure was trained on (16). Lower 
Epigenetic-g was weakly correlated with higher DunedinPoAm (r=-0.17 [-0.29, -0.04], p=0.011).  

Older children had higher DNAm-CRP (r =0.35 [0.26, 0.44], p<0.001), Epigenetic-g 
(r=0.64 [0.56, 0.72], p<0.001), and DunedinPoAm profiles (r=0.13 [0.02, 0.23], p=0.018). Boys 
had lower DNAm-CRP (d =-0.26 [-0.34, -0.18], p<0.001) and DunedinPoAm (d =-0.18 [-0.27 -
0.10], p<0.001), but not Epigenetic-g profiles (d =0.06 [-0.02, 0.14], p=0.143). All models 
included age, gender, and an age by gender interaction as covariates. 
 
Salivary DNA-methylation profiles are socially stratified in children 

Salivary DNA-methylation profiles in children were socially stratified. Children from 
socioeconomically disadvantaged families, socioeconomically disadvantaged neighborhoods, 
neighborhoods with less intergenerational economic mobility (i.e., neighborhood opportunity), 
and children reporting Latinx-only or Black+ identity relative to White-only identity exhibited 
DNA-methylation profiles associated with higher chronic inflammation, a faster pace of 
biological aging, and lower cognitive functioning (see Figure 1 and Supplemental Table S1). 
Children reporting Black+ and Latinx-only identities lived in the most socioeconomically 
disadvantaged families and neighborhoods compared to children reporting White-only identity 
(see Figure 2 and Supplemental Table S2). Family-level socioeconomic disadvantage 
accounted for racial/ethnic disparities in DNAm-CRP, but not Epigenetic-g. Family-level 
socioeconomic disadvantage accounted for the difference in DunedinPoAm between Black+, but 
not Latinx-only, relative to White-only identity (see Supplemental Table S1). See 
Supplemental Table S3 for effect size estimates between socioeconomic inequality and DNA-
methylation profiles reported separately for each racial/ethnic group (this analysis was not 
preregistered). 

Comparing White-only identifying children to all other groups (this comparison was not 
preregistered) indicated that the advantage, or privilege, of White identity compared to other 
racial/ethnic categories was evident in all three DNA-methylation profiles (DNAm-CRP r = -
0.14 [-0.22, -0.06], p<0.001; Epigenetic-g r= 0.23 [0.16, 0.31], p< 0.001; DunedinPoAm r=-0.25 
[-0.34, -0.16], p<0.001). White identity remained evident in Epigenetic-g (r=0.21 [0.13, 0.29], 
p<0.001) and DunedinPoAm (r=-0.19 [-0.29, -0.09], p<0.001), but not DNAm-CRP (r=-0.08 [-
0.17, 0.01], p=0.067), after accounting for the lower rates of family-level disadvantage 
experienced by White children (r=-0.29 [-0.38, -0.19], p<0.001). Effects of White identity were 
reduced but also still remained evident in Epigenetic-g (r=0.17 [0.09– 0.25], p<0.001) and 
DunedinPoAm (r =-0.16, [-0.26, -0.05], p=0.003), but not DNAm-CRP (r=-0.04 [-0.13, 0.05], 
p=0.373), after accounting for both the lower rates of family-level (r=-0.30 [-0.39, -0.21], 
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p<0.001) and neighborhood-level socioeconomic disadvantage (r=-0.34 [-0.42, -0.26], p<0.001) 
experienced by White children.  

We next examined the role of body mass index (BMI), pubertal stage, and DNA-
methylation profiles related to smoking (DNAm-smoke) in associations of social inequality and 
DNA-methylation profiles of interest. Socioeconomic and racial/ethnic inequalities in DNA-
methylation largely remained after including these covariates, with the exception that 
correlations with DNAm-CRP were largely accounted for by including BMI (see Supplemental 
Table S1).  
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Figure 1. Associations between A) family-level socioeconomic disadvantage, B)
neighborhood-level socioeconomic disadvantage, C) neighborhood opportunity (i.e.,
intergenerational economic mobility), and D) self-identified racial/ethnic identity with three
DNA-methylation profiles (DNAm-CRP, DunedinPoAm, and Epigenetic-g) in children and
adolescents. DNA-methylation profiles and socioeconomic disadvantage values are in standard
deviation units. Higher DNAm-CRP values indicate a methylation profile associated with higher
chronic inflammation. Higher DunedinPoAm values indicate a methylation profile associated
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with faster biological aging. Higher Epigenetic-g values indicate a methylation profile associated
with higher cognitive functioning. The racial/ethnic identity boxplots display group DNA-
methylation differences in the mean (black circle), standard errors of the mean (error bars), the
first and third quartiles (lower and upper hinges), and the mean across groups (red dashed line).
Participants self-identified as White only (62%), Latinx only (12.2%), Latinx and White (8.1%),
Black and potentially another race/ethnicity (10%), Asian and potentially another race/ethnicity
but not Latinx or Black (7.5%), and Indigenous American, Pacific Islander or other, but not
Latinx, Black, or Asian (0.6%, not shown due to small sample size). See Supplemental Table
S1 for standardized regression coefficients with and without covariate controls for body mass
index, puberty, and socioeconomic inequality. 
 
 

Figure 2. Associations between racial/ethnic identity and dimensions of socioeconomic
inequality. Socioeconomic disadvantage and opportunity values are Z-scores. The racial/ethnic
identity boxplots display group DNA-methylation differences in the mean (black circle),
standard errors of the mean (error bars), the first and third quartiles (lower and upper hinges),
and the mean across groups (red dashed line). Participants self-identified as White only (62%),
Latinx only (12.2%), Latinx and White (8.1%), Black and potentially another race/ethnicity
(10%), Asian and potentially another race/ethnicity but not Latinx or Black (7.5%), and
Indigenous American, Pacific Islander or other, but not Latinx, Black, or Asian (0.6%, not shown
due to small sample size). See Supplemental Table S2 for standardized regression coefficients. 
 
Salivary DNA-methylation profiles are associated with cognitive functions 

Salivary DNA-methylation profiles were associated with performance on multiple in-
laboratory tests of cognitive functioning: Higher DNAm-CRP was associated with worse
performance on tests of processing speed, general executive function, perceptual reasoning, and
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verbal comprehension. Lower Epigenetic-g was associated with lower scores on tests of 
perceptual reasoning, verbal comprehension, reading, and math. Finally, faster pace of biological 
aging was associated with lower scores on tests of verbal comprehension and perceptual 
reasoning (see Figure 3 and Supplemental Table S4). Notably, the largest effect size was 
observed for Epigenetic-g and math, where Epigenetic-g explained R2=11.1% of the variation in 
math performance. See Supplemental Table S5 for effect size estimates between DNA-
methylation profiles and cognition reported separately for each racial/ethnic group (this analysis 
was not preregistered). 

As all three DNA-methylation profiles were associated with perceptual reasoning and 
verbal comprehension, we performed commonality analyses to examine the proportion of 
overlapping and unique variation explained. DNAm-CRP and DunedinPoAm explained largely 
overlapping variation in perceptual reasoning (DNAm-CRP alone: 2.6%, DunedinPoAm alone: 
4%, combined: 3.8%) and verbal comprehension (DNAm-CRP alone: 2%, DunedinPoAm alone: 
3.4%, combined: 3.8%). Whereas Epigenetic-g explained unique variation in perceptual 
reasoning (Epigenetic-g alone: 2.4%) and verbal comprehension (Epigenetic-g alone: 2.9%) 
relative to both DNAm-CRP (perceptual reasoning combined: 5.9%, verbal comprehension 
combined: 5.5%) and DunedinPoAm (perceptual reasoning combined: 6.5%, verbal 
comprehension combined: 6.3%).  

We next examined the role of BMI, puberty, DNAm-smoke, and family-level 
disadvantage in associations of DNA-methylation measures with cognitive test performance. 
Associations were largely unaffected by controlling for BMI, puberty, and DNAm-smoke, with 
the exception that associations of DNAm-CRP with cognition were mostly accounted for by 
controlling for BMI. Associations of DNAm-CRP and DunedinPoAm with cognition were 
largely accounted for by controlling for family-level disadvantage, with the exception of 
perceptual reasoning. In contrast, associations of Epigenetic-g with cognitive test performance 
were unaffected by controlling for family-level disadvantage (Supplemental Table S4). 

We assessed potential effects of differing sample sizes of cognitive measures (Table 1) 
on effect size estimates (this analysis was not preregistered). Effect size estimates based on 
models using listwise deletion were largely similar to reported results, suggesting that differing 
sample sizes across measures did not substantially affect effect sizes (see Supplemental Figure 
1).   

We further examined the extent to which DNA-methylation associations with cognition 
are robust to complete genetic and family-level environmental control in a bivariate biometric 
model that used the twin family structure of the Texas Twin Project. Consistent with the 
hypothesis that DNA-methylation associations with cognitive function represents (partially 
unmeasured) effects of family-level stratification, we found no evidence to suggest that identical 
twins who differ from their co-twins in DNA-methylation show corresponding differences in 
their cognitive functioning (see Supplemental Table S6). 
 
Genetic profiles of CRP are not associated with cognitive functions 
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PGS-CRP analyses were restricted to participants who had European genetic ancestries as
indicated by principal components of genetic ancestry that were comparable to the GWAS
discovery sample. PGS-CRP were not associated with measures of cognitive functioning (see
Figure 1 and Supplemental Table S4). PGS-CRP did not account for differences in cognitive
function between dizygotic twins (see Supplemental Figure S1). Because of the sample size of
dizygotic twin pairs (N=364) we preregistered the previous analysis as primarily exploratory. 
 

Figure 3. Associations between three DNA-methylation profiles (DNAm-CRP, Epigenetic-g,
and DunedinPoAm) and a polygenic score of inflammation (PGS-CRP) with six measures
of cognitive functioning in children and adolescents. The plot depicts the standardized
regression coefficients (r) and 95% confidence intervals (CIs) calculated by regressing cognitive
functions on DNA-methylation measures and PGS-CRP, separately. PGS analyses were
restricted to participants solely of recent European ancestries as indicated by genetic ancestry
PCs that are comparable to the GWAS discovery sample. All models included covariate
adjustment for child’s age and gender, and technical covariates. Higher cognitive values indicate
higher task performance. Higher DNAm-CRP and PGS-CRP values indicate a methylation
profile and genetic profile of higher chronic inflammation, respectively. Higher Epigenetic-g
values indicate a methylation profile associated with higher cognitive functioning. Higher
DunedinPoAm values indicate a methylation profile of faster biological aging. See
Supplemental Table S4 for standardized regression coefficients with and without covariate
controls for body mass index, puberty, and socioeconomic inequality. 
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Discussion  
We analyzed salivary DNA-methylation data from 1183 children and adolescents participating in 
the Texas Twin Project to examine whether salivary DNA-methylation measures of 
inflammation, cognitive function, and the pace of aging are (a) stratified by major dimensions of 
social inequality and (b) associated with performance on test of cognitive functions in childhood. 
We found that children and adolescents growing up in more socioeconomically disadvantaged 
families and neighborhoods and children from marginalized racial/ethnic groups compared to 
their more privileged peers exhibit DNA-methylation profiles associated with higher chronic 
inflammation, lower cognitive functioning, and a faster pace of biological aging. Moreover, these 
socially stratified DNA-methylation profiles were related to scores on multiple in-laboratory 
cognitive tests, including tests of processing speed, general executive function, perceptual 
reasoning, verbal comprehension, reading, and math. Associations of DNA-methylation 
measures of inflammation and the pace of aging with cognition were largely accounted for by 
controlling for family-level socioeconomic disadvantage. 

Given that the DNA-methylation measures we examined were originally developed in 
adults, our results suggest that social inequalities may produce in children molecular signatures 
that, when observed in adults, are associated with chronic inflammation, advanced aging, and 
reduced cognitive function. Our findings indicate that salivary DNA-methylation measures, 
originally validated in adult blood samples, may be useful for indexing social inequality and risk 
for disparities in cognitive function in childhood and adolescence, sensitive developmental 
periods in which cognitive functions are susceptible to environmental inputs. Our cross-
sectional, observational design did not allow us to examine whether policy changes mitigating 
socioeconomic inequality (e.g., increases in minimum wage, child tax credits) and structural 
racism (e.g., eliminating the legacy of redlining, police reforms) affects children’s DNA-
methylation profiles. Such investigations remain high-priority areas for future research. Salivary 
DNA-methylation measures may be useful as surrogate endpoints for assessing the effectiveness 
of programs and policies that aim to reduce effects of childhood social inequality on lifespan 
development. 

Our analysis of racial/ethnic group differences found that children reporting Latinx-only 
or Black+ relative to White-only social identity exhibited higher chronic inflammation, faster 
pace of biological aging, and lower cognitive functioning, as indicated by DNA-methylation 
measures. Children reporting Black+ or Latinx-only identity lived, on average, in substantially 
more socioeconomically disadvantaged families and neighborhoods compared to children 
reporting White-only identity. Socioeconomic disadvantage statistically accounted for some, but 
not all, of the differences between racial/ethnic groups in DNA-methylation profiles. For 
example, the social advantage of White identity, or White privilege, remained evident in DNA-
methylation profiles after accounting for the lower rates of both family-level and neighborhood-
level disadvantage experienced by White families. Thus, our findings are consistent with 
observations that racial and ethnic disparities leave biological traces in the first two decades of 
life and reflect multiple dimensions of social inequality (4, 5). Family and neighborhood 
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indicators of socioeconomic disadvantage, privilege, and intergenerational mobility capture 
relevant but limited aspects of the effects of racism on child development (6). Additional factors 
that are often neglected, such as the impact of race-based discrimination in education and 
healthcare systems and chronic exposure to interpersonal and vicarious discrimination in daily 
life, may explain further variance in the effects of racial/ethnic marginalization (18–20). Given 
that research in developmental psychology investigating the role of race, including racial 
disparities in adversity, is rare, scientific understanding of how racism manifests in children’s 
lives and affects their development remains limited (21).  

We found that salivary DNA-methylation profiles were associated with several measures 
of cognitive functioning with non-negligible effect sizes. After correcting for multiple 
comparisons, DNA-methylation profiles of higher inflammation were associated with lower in-
laboratory processing speed, general executive function, perceptual reasoning, and verbal 
comprehension. Lower Epigenetic-g was associated with lower perceptual reasoning, verbal 
comprehension, reading, and math performance. Faster pace of biological aging was correlated 
with lower verbal comprehension and perceptual reasoning. Notably, Epigenetic-g explained 
11.1% of the variation in math performance.  

DNA methylation is a dynamic process and can be tissue specific with, for example, 
different epigenetic signatures in brain, blood, and saliva. Whereas we measured methylation in 
salivary DNA, the original estimates on which our profiles were based were estimated from 
DNA methylation in blood. Recent research suggests that salivary DNA-methylation collected 
with Oragene kits (as was done here) in children is particularly enriched for immune cells rather 
than epithelial cells (22). It may therefore be particularly sensitive to inflammatory processes, 
which contribute to DNA-methylation profiles of inflammation (DNAm-CRP) and pace of aging 
(DunedinPoAm). In contrast, genetic profiles related to inflammation (i.e., polygenic scores of 
CRP) were not associated with cognitive functioning. Our findings linking DNAm-CRP with 
DunedinPoAm and cognitive functioning are in line with experimental animal studies reporting 
that social adversity increases expression of genes linked to inflammation, which may be 
critically involved in multi-system aging processes (i.e., “inflammaging”) and can modulate the 
development of the brain (7, 8). Yet, the measurements we studied are molecular derivatives of 
unobserved inflammatory processes, not direct observations of chronic inflammation. 
Accordingly, this type of omics research is not well-suited to identifying precise biological 
processes.  

In conclusion, our findings suggest that salivary DNA-methylation profiles are promising 
candidate biomarkers of major dimensions of social inequality experienced in real-time during 
childhood. Because saliva can easily be collected in large-scale pediatric epidemiological 
studies, salivary DNA-methylation profiles might be useful as surrogate endpoints in evaluation 
of ontogenetic theories and social programs that address the childhood social determinants of 
lifelong cognitive disparities. 
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Method 
Sample  
The Texas Twins Project. The Texas Twin Project is an ongoing longitudinal study that includes 
the collection of saliva samples for DNA and DNA-methylation extraction since 2012 (23). 
Participants in the current study were 1213 (622 female) children and adolescents, including 433 
monozygotic and 780 dizygotic twins (see zygosity measure) from 617 unique families, aged 8 
to 19 years (M = 13.66, SD = 3.06) that had at least one DNA-methylation sample. 195 
participants contributed two DNA-methylation samples (time between repeated samples: M = 22 
months, SD = 6.5, range 3 – 38 months) and 16 samples were assayed in duplicate for reliability 
analyses (total methylation sample n = 1424). Participants self-identified as White only (62%), 
Latinx only (12.2%), Latinx and White (8.1%), Black and potentially another race/ethnicity 
(10%), Asian and potentially another race/ethnicity but not Latinx or Black (7.5%), and 
Indigenous American, Pacific Islander or other, but not Latinx, Black, or Asian (0.6%). The 
University of Texas Institutional Review board granted ethical approval. Please see Table 1 for 
descriptive statistics, including sample sizes for each measure after exclusion based on DNA-
methylation preprocessing. 
 
Measures 
DNA-methylation  
DNA-methylation preprocessing. Saliva samples were collected during a laboratory visit using 
Oragene kits (DNA Genotek, Ottawa, ON, Canada). DNA extraction and methylation profiling 
was conducted by Edinburgh Clinical Research Facility (UK). The Infinium MethylationEPIC 
BeadChip kit (Illumina, Inc., San Diego, CA) was used to assess methylation levels at 850,000 
methylation sites. DNA methylation preprocessing was primarily conducted with the ‘minfi’ 
package in R (24). Within-array normalization was performed to address array background 
correction, red/green dye bias, and probe type I/II correction, and it has been noted that at least 
part of the probe type bias is a combination of the first two factors (Dedeurwaerder et al., 2014). 
Noob preprocessing as implemented by minfi’s “preprocessNoob” (25) is a background 
correction and dye-bias equalization method that has similar within-array normalization effects 
on the data as probe type correction methods such as BMIQ (Teschendorff et al., 2013). 

In line with our preregistered preprocessing plan, CpG probes with detection p > 0.01 and 
fewer than 3 beads in more than 1% of the samples and probes in cross-reactive regions were 
excluded (26). None of these failed probes overlapped with the probes used for DNA-
methylation scores. 44 samples were excluded because (1) they showed low intensity probes as 
indicated by the log of average methylation <9 and their detection p was > 0.01 in >10% of their 
probes, (2) their self-reported and methylation-estimated sex mismatch, and/or (3) their self-
reported and DNA-estimated sex mismatch. Cell composition of immune and epithelial cell 
types (i.e., CD4+ T-cell, natural killer cells, neutrophils, eosinophils, B cells, monocytes, CD8+ 
T-cell, and granulocytes) were estimated using a newly developed child saliva reference panel 
implemented in the R package “BeadSorted.Saliva.EPIC” within “ewastools” (22). Surrogate 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2021. ; https://doi.org/10.1101/2021.08.19.456979doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.19.456979
http://creativecommons.org/licenses/by-nc-nd/4.0/


DNA-METHYLATION AND COGNITION 
 

Raffington et al. 14 

variable analysis was used to correct methylation values for batch effects using the “combat” 
function in the SVA package (27). 
 
DNA-methylation scores.  
DNAm-CRP. DNAm-CRP was computed on the basis of an epigenome-wide association study of 
CRP (9). Using the summary statistics of the associations between CpG sites and adult CRP, we 
created one methylation score per person by summing the product of the weight and the 
individual beta estimate for each individual at each of the 218 CpG sites significantly associated 
(p �<�1.15�×�10−7) with CRP.  
 
DunedinPoAm. DunedinPoAm was developed from DNA-methylation analysis of Pace of Aging 
in the Dunedin Study birth cohort. Pace of Aging is a composite phenotype derived from analysis 
of longitudinal change in 18 biomarkers of organ-system integrity measured when Dunedin 
Study members were all 26, 32, and 38 years of age (28). Elastic-net regression machine learning 
analysis was used to fit Pace of Aging to Illumina 450k DNA-methylation data generated from 
blood samples collected when participants were aged 38 years. The elastic net regression 
produced a 46-CpG algorithm. Increments of DunedinPoAm correspond to “years” of 
physiological change occurring per 12-months of chronological time. The Dunedin Study mean 
was 1, i.e. the typical pace of aging among 38-year-olds in that birth cohort. Thus, 0.01 
increment of DunedinPoAm corresponds to a percentage point increase or decrease in an 
individual’s pace of aging relative to the Dunedin birth cohort at midlife. DunedinPoAm was 
calculated based on the published algorithm (16) using code available at 
https://github.com/danbelsky/DunedinPoAm38.  
 
Epigenetic-g. Salivary “epigenetic-g” was computed on the basis of a blood-based epigenome 
wide association study of general cognitive functions (g) in adults (11). We calculated 
epigenetic-g based on the algorithm available at 
https://gitlab.com/danielmccartney/ewas_of_cognitive_function. Prior to computation, 
methylation values were scaled within each CpG site (mean = 0, SD = 1). All DNA-methylation 
scores were residualized for array, slide, batch, cell composition and then standardized to ease 
interpretation. 
 
Genetics 
Genotyping and imputation. DNA samples were genotyped at the University of Edinburgh using 
the Illumina Infinium PsychArray, which assays ~590,000 single nucleotide polymorphisms 
(SNPs), insertions-deletions (indels), copy number variants (CNVs), structural variants, and 
germline variants across the genome. Genetic data was subjected to quality control procedures 
recommended for chip-based genomic data (29, 30). Briefly, samples were excluded on the basis 
of poor call rate (< 98%) or inconsistent self-reported and biological sex, while variants were 
excluded if missingness exceeded 2%. As further variant-level filtering has been shown to have a 
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detrimental effect on imputation quality (31), quality control thresholds for minor allele 
frequency (MAF) and Hardy–Weinberg equilibrium (HWE) were applied after phasing and 
imputation. 

Untyped markers were imputed on the Michigan Imputation Server 
(https://imputationserver.sph.umich.edu). Specifically, genotypes were phased and imputed with 
Eagle v2.4 and Minimac4 (v1.5.7), respectively, while using the 1000 Genomes Phase 3 v5 
reference panel (32). To ensure that only high-quality typed and imputed markers were used for 
analysis, variants were excluded if they had a MAF < 1e-3, a HWE p-value < 1e-6, or an 
imputation quality score < .90. These procedures produced a final set of 4,703,309 genetic 
markers to be used in analyses. 
 
DNA preprocessing. DNA samples were genotyped at the University of Edinburgh using the 
Illumina Infinium PsychArray, which assays ~590,000 single nucleotide polymorphisms (SNPs), 
insertions- deletions (indels), copy number variants (CNVs), structural variants, and germline 
variants across the genome. Genotypes will be subjected to quality control procedures 
recommended for chip-based genomic data (29, 30). Briefly, samples will be excluded due to 
poor call rate (< 98%) and inconsistent self-reported and biological sex. Variants will be 
excluded if more than 2% of data is missing. Untyped variants will be imputed on the Michigan 
Imputation Server (https://imputationserver.sph.umich.edu). As part of this process, genotypes 
will be phased with Eagle v2.4 and imputed with Minimac4 (v1.5.7), using the 1K Genomes 
Phase 3 v5 panel  as a reference panel (32). Thresholds for minor allele frequency (MAF < 1e-3) 
and Hardy-Weinberg Equilibrium (HWE p-value < 1e-6) will be applied after phasing and 
imputation, as variant-level filtering has been shown to have a detrimental effect on imputation 
quality (31). Finally, imputed genotypes will be excluded if they suffer from poor imputation 
quality (INFO score < .90).  

 
Polygenic scores. PGS-CRP was computed in two steps. First, GWAS summary statistics were 
adjusted for linkage disequilibrium, or LD (i.e., correlation structures in the genome that capture 
population stratification). The preregistered analysis plan proposed using SBayesR (33) for LD-
adjustment. However, as the GWAS summary statistics used to compute PGS-CRP did not meet 
the data requirements of SBayesR (e.g., effect allele frequency, per SNP sample size), we elected 
to use PRScs for LD-adjustment instead. PRScs is a program that uses Bayesian regression to 
infer posterior SNP effects using continuous shrinkage priors. PRScs has been shown to improve 
prediction accuracy of PGSs over other widely used PGS approaches (34). PRScs requires 
GWAS summary statistics and an external reference panel of the same ancestry as the GWAS. 
For the summary statistics, we used publicly available data from a GWAS of CRP in 204,402 
individuals solely of European ancestry (17). For the reference panel, we used the 1000 Genomes 
Project (32) European reference panel (phase 3 v5; provided with the software) that was 
restricted to HapMap3 SNPs (35).   
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Second, we used PLINK v2 (36) to apply the LD-adjusted SNP effects from PRScs in the 
Texas Twins Project sample. The resulting PGS-CRP is described by the following equation: 

��� �  � ����
	

�

�

 

where m is the number of SNPs, �
 is the estimated effect of the �th SNP and �, coded as 0, 1 or 
2, is the number of effect alleles of the �th SNP. All PGS analyses were restricted to individuals 
solely of European ancestries in order to reduce the risk of spurious findings due to population 
stratification. PGS-CRP was residualized for the top five genetic principal components and 
genotyping batch and then standardized using Z-scores (M=1; SD=0). 
 
Cognitive function 
Processing speed. Three tasks were used to construct a latent measure of processing speed that 
were available in participants in grades three through eight: Symbol Search (Wechsler, 2003) 
Pattern Comparison, and Letter Comparison (Salthouse & Babcock, 1991). Each task assessed 
how quickly and accurately participants identified similarities between symbols, patterns, or 
letters.  
 
Executive functions. The current study included 15 tasks assessing 4 EF domains that were 
available in participants in grades three through eight: inhibition, switching, working memory, 
and updating. Tasks were administered orally, on the computer, or on paper. Inhibition was 
assessed with four tasks: Animal Stroop (39), Mickey (40), and Stop Signal. The study originally 
used an auditory Stop Signal task (41), which was replaced with a visual Stop Signal task (42) 
after the third year of data collection to accommodate the needs of administering EF tasks in the 
MRI scanner. Switching was assessed using four tasks: Trail Making (Salthouse, 2011), Local-
Global (44), Plus-Minus (44), and a computerized Cognitive Flexibility task (45). Cognitive 
Flexibility replaced the Plus-Minus task, again to accommodate MRI task administration after 
the third year of data collection. Working memory was assessed using three tasks: Symmetry 
Span (46), Digit Span Backward (37), and Listening Recall (47). These tasks tap spatial, verbal, 
and auditory working memory, respectively. Updating was assessed with four tasks: Keeping 
Track (44), Running Memory for Letters (48), 2-Back task (49), and, as a replacement to the 2-
Back task after the third year of data collection, a 1- and 2-back task (49). More comprehensive 
task descriptions can be found in Engelhardt et al. (50). 
Previous research in this sample (50, 51) demonstrated that variation in EF is best captured by a 
hierarchical factor model, with individual EF tasks loading onto one of four latent factors 
representing each EF domain and each of these loading onto a common EF factor. This same 
hierarchical model was adopted in all the analyses presented in the current research to examine 
general EF.   
 
Verbal comprehension and Perceptual reasoning  
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We administered the Wechsler Abbreviated Scale of Intelligence (WASI-II; Wechsler, 2011) to 
all participants to assess perceptual reasoning, also called non-verbal fluid intelligence, and 
verbal comprehension, also called verbal crystallized intelligence. Perceptual reasoning is the 
sum of the age-normed t-scores on the Block Design and Matrix Reasoning subtests. Verbal 
comprehension is the sum of the age-normed t-scores on the Vocabulary and Similarities 
subtests.  
 
Math and reading. To assess more specific reading comprehension and mathematics skills, 
participants in grades three through eight completed the Passage Comprehension and Calculation 
subtests, respectively, of the Woodcock-Johnson III Tests of Academic Achievement (53). The 
dependent variable for the reading and math subtests is total number of items correct.  
 
Socioeconomic context. 
Family-level socioeconomic disadvantage. The family-level measure was computed from parent 
reports of household income, parental education, occupation, history of financial problems, food 
insecurity (based on the US Household Food Security Survey Module (54)), father absence, 
residential instability (changes in home address), and family receipt of public assistance. These 
were aggregated to form a composite measure of household-level cumulative socioeconomic 
disadvantage described in (2), and coded such that higher scores reflect greater disadvantage. 
 
Neighborhood-level socioeconomic disadvantage. The neighbourhood-level measure was 
composed from tract-level US Census data according to the method described in (2). Briefly, 
participant addresses were linked to tract-level data from the US Census Bureau American 
Community Survey averaged over five years (https://www.census.gov/programs-surveys/acs). A 
composite score of neighbourhood-level socioeconomic disadvantage was computed from tract-
level proportions of residents reported as unemployed, living below the federal poverty 
threshold, having less than 12 years of education, not being employed in a management position, 
and single mothers. These were aggregated to form a neighbourhood-level socioeconomic 
disadvantage composite measure described in (2), and coded such that higher scores reflect 
greater disadvantage. 
 
Neighborhood opportunity.  
The neighborhood opportunity measure indexed the intergenerational economic mobility of 
children of low-income parents. It examines average annual household income in 2014-15 of 
offspring (born between 1978-1983, who are now in their mid-thirties) of low-income parents 
(defined as mean pre-tax income at the household level across five years (1994, 1995, 1998-
2000) at the 25th percentile of the national income distribution, or $27000/year) within each 
census tract. Household income was obtained from federal tax return records between 1989-
2015, the 2000 and 2010 Decennial Census (US Census Bureau, 2000, 
2010; https://data2.nhgis.org/main), and 2005-2015 American Community Surveys 
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(https://www.census.gov/programs-surveys/acs). Census tracts reflect where the child resided 
through the age of 23. This data was compiled by and obtained from the Opportunity Atlas 
(https://opportunityatlas.org; 53) . 
 
 
 
Developmental covariates. 
Body mass index (BMI). BMI is socially-patterned with high BMI being more common in 
children from lower socioeconomic status families and neighborhoods (56). BMI is also 
associated with differential DNA-methylation patterns across the genome (57). We therefore 
considered BMI in our analysis. We measured BMI from in-laboratory measurements of height 
and weight transformed to gender- and age-normed z-scores according to the method published 
by the US Centers for Disease Control and Prevention 
(https://www.cdc.gov/growthcharts/percentile_data_files.htm).  
 
Pubertal development. Puberty is sometimes reported to onset at younger ages in children 
growing up in conditions of socioeconomic disadvantage (58). Puberty is also associated with a 
range of DNA-methylation changes (59, 60). We therefore consider children’s pubertal 
development in our analysis. Pubertal development was measured using children’s self-reports 
on the Pubertal Development Scale (61). The scale assesses the extent of development across 
five sex-specific domains (for both: height, body hair growth, skin changes; for girls: onset of 
menses, breast development; for boys: growth in body hair, deepening of voice). A total pubertal 
status score will be computed as the average response (1 = “Not yet begun” to 4 = “Has finished 
changing”) across all items. Pubertal development was residualized for age, gender, and an age 
by gender interaction. 
 
Tobacco exposure. Smoking is a socially-patterned health behavior to which children from lower 
socioeconomic status families and neighborhoods are disproportionately exposed (62). It is also 
associated with differential DNA-methylation patterns across the genome (63, 64). We therefore 
considered tobacco exposure in our analysis. We measured tobacco exposure using a DNA-
methylation smoking (DNAm-smoke) score created by summing the product of the weight and 
the individual beta estimate for each individual at each CpG site significantly associated with 
smoking in the discovery EWAS (63). Excluding self-reported tobacco users (n=53) did not 
significantly alter results.  
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Table 1. Descriptive statistics. 
Sample n M SD 
DNAm-CRP a  1365  0.03  0.02 

Epigenetic-g a  1365  -0.02  0.20 

DunedinPoAm a  1365 1.02   0.06 

PGS-CRP b  654 0  1 

Processing speed  869  0  1 

General executive functions  869  0  1 

Perceptual reasoning  1328  104.18  14.48 

Verbal comprehension  1329  105.61  14.02 

Reading  625  30.97  4.9 

Math  619  21.24  6.48 

Family-level socioeconomic disadvantage  993  -0.02  0.96 

Neighborhood-level socioeconomic disadvantage 1218  -0.02  1 

Neighborhood opportunity  950  0.31  0.62 

Body mass index  1364  0.4  1.34 

Pubertal development  1325  2.61  0.92 

Tobacco use (yes/no)  58/631   –    – 

DNAm-smoke  1365   -13.62  1.84 
a After exclusion of participants based on DNA-methylation preprocessing (n=44), excluding 
technical replicates (n=15), and including repeated samples (n= 182). Means of raw scores 
before residualizing for cell composition, array, slide, and batch. Scores were standardized (mean 
= 0, SD = 1) for analyses. 
b PGS-CRP only computed for individuals solely of recent European ancestries. 
 
Statistical analyses 
Six cognitive outcomes were examined in each cognitive model: (1) Processing speed, (2) 
general executive functions, (3) perceptual reasoning, (4) verbal comprehension, (5) reading, and 
(6) math. 
 
Regression models. We performed multilevel, multivariate regression models fit with FIML in 
Mplus 8.2 statistical software (65). To account for nesting of repeated measures within 
individuals, and multiple twin pairs within families, a sandwich correction was applied to the 
standard errors in all analyses. All models included a random intercept, representing the family-
level intercept of the dependent variable, to correct for non-independence of twins. All models 
included age, gender, and an age by gender interaction as covariates. We controlled for multiple 
testing using the Benjamini–Hochberg false discovery rate (FDR) method (66). 
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Supplement 
 

Table S1. Associations between socioeconomic inequality and racial/ethnic identity with 
DNA-methylation profiles. 

 DNAm-CRP  Epigenetic-g DunedinPoAm 
No further covariates a 

 b 95% CI p b 95% CI p b 95% CI p 
Family-level 
disadvantage 

0.22 0.12– 0.31 <0.001 -0.14 -0.23 – -0.04 0.005 0.28 0.18– 0.37 <0.001 

Neighborhood-
level disadvantage 

0.25 0.17 – 0.33 <0.001 -0.23 -0.31– -0.15 <0.001 0.24 0.15 – 0.34 <0.001 

Neighborhood 
opportunity 

-0.12 -0.21– -0.03 0.012 0.19 0.10 – 0.28 <0.001 -0.19 -0.30 – -0.08 0.001 

Latinx 0.15 0.07– 0.24 0.001 -0.10 -0.17– -0.02 0.012 0.18 0.10– 0.27 <0.001 
Latinx-White 0.10 -0.02– 0.22 0.108 -0.08 -0.17 – 0.01 0.081 0.09 -0.01– 0.19 0.089 
Black+ 0.08 0.02 – 0.15 0.012 -0.30 -0.38– -0.22 <0.001 0.19 0.11– 0.28 <0.001 
Asian+ -0.01 -0.09– 0.07 0.776 -0.10 -0.17– -0.03 0.004 0.11 -0.01– 0.22 0.058 

Controlling for BMI 
 b 95% CI p b 95% CI p b 95% CI p 
BMI 0.33 0.24– 0.42 <0.001 -0.13 -0.22–  -0.05 0.001 0.30 0.21– 0.40 <0.001 
Family-level 
disadvantage 

0.11 0.01– 0.21 0.024 -0.08 -0.17 – 0.01 0.076 0.19 0.08 – 0.29 <0.001 

Neighborhood-
level disadvantage 

0.15 0.07– 0.23 <0.001 -0.20 -0.27– -0.12 <0.001 0.14 0.05 – 0.24 0.004 

Neighborhood 
opportunity 

-0.05 -0.15– 0.05 0.314 0.16 0.07 – 0.25 <0.001 -0.09 -0.20 – 0.01 0.088 

Latinx 0.10 0.01– 0.18 0.029 -0.08 -0.16– -0.01 0.027 0.13 0.04– 0.22 0.004 
Latinx-White 0.07 -0.03– 0.17 0.180 -0.07 -0.15 – 0.02 0.150 0.06 -0.03 – 0.14 0.213 
Black+ 0.01 -0.07– 0.07 0.975 -0.25 -0.33 – -0.17 <0.001 0.11 0.02 – 0.19 0.011 
Asian+ 0.01 -0.07– 0.09 0.857 -0.10 -0.17 – -0.04 0.003 0.13 0.02 – 0.24 0.025 

Controlling for puberty 
 b 95% CI p b 95% CI p b 95% CI p 
Puberty 0.13 0.02– 0.24 0.020 0.04 -0.05– 0.13 0.392 0.05 -0.07– 0.18 0.402 
Family-level 
disadvantage 

0.21 0.12 – 0.31 <0.001 -0.12 -0.22– -0.03 0.011 0.28 0.18– 0.39 <0.001 

Neighborhood-
level disadvantage 

0.25 0.16– 0.34 <0.001 -0.23 -0.31 – -0.15 <0.001 0.25 0.11– 0.34 <0.001 

Neighborhood 
opportunity 

-0.12 -0.22 – -0.01 0.027 0.20 0.11– 0.30 <0.001 -0.17 -0.28– -0.06 0.003 

Latinx 0.15 0.06– 0.24 0.001 -0.10 -0.18– -0.03 0.008 0.18 0.09– 0.27 <0.001 

Latinx-White 0.14 0.01 – 0.26 0.033 -0.08 -0.17– 0.01 0.088 0.11 0.01– 0.21 0.035 

Black+ 0.09 0.03 – 0.16 0.007 -0.28 -0.36– -0.20 <0.001 0.19 0.11– 0.27 <0.001 

Asian+ -0.01 -0.09 – 0.07 0.801 -0.10 -0.17– -0.03 0.006 0.11 -0.01 – 0.22 0.059 

Controlling for DNAm-smoke 
 b 95% CI p b 95% CI p b 95% CI p 
DNAm-smoke 0.40 0.28– 0.51 <0.001 0.34 0.22– 0.45 <0.001 0.24 0.11 – 0.37 <0.001 
Family-level 
disadvantage 

0.21 0.11– 0.30 <0.001 -0.11 -0.21 – -0.02 0.017 0.28 0.18– 0.38 <0.001 

Neighborhood-
level disadvantage 

0.22 0.14– 0.30 <0.001 -0.24 -0.31– -0.16 <0.001 0.23 0.14 – 0.33 <0.001 

Neighborhood 
opportunity 

-0.11 -0.21– -0.02 0.022 0.19 0.10– 0.27 <0.001 -0.17 -0.27– -0.06 0.003 

Latinx 0.11 0.03 – 0.20 0.011 -0.13 -0.20– -0.05 0.001 0.16 0.07– 0.25 0.001 
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Latinx-White 0.12 0.01 – 0.23 0.048 -0.07 -0.16– 0.01 0.093 0.11 0.01 – 0.20 0.028 
Black+ 0.14 0.07 – 0.20 <0.001 -0.23 -0.31– -0.14 <0.001 0.22 0.14 – 0.31 <0.001 
Asian+ -0.02 -0.09 – 0.06 0.677 -0.10 -0.16– -0.03 0.004 0.11 -0.01 – 0.22 0.067 

Controlling for family-level disadvantage 
 b 95% CI p b 95% CI p b 95% CI p 
Family-level 
disadvantage 

0.19 0.07– 0.30 0.002 -0.01 -0.11– 0.08 0.764 0.24 0.13 – 0.36 <0.001 

Latinx 0.10 0.01– 0.20 0.036 -0.10 -0.17– -0.02 0.018 0.12 0.02 – 0.22 0.019 
Latinx-White 0.12 0.00 – 0.23 0.050 -0.08 -0.17– 0.01 0.081 0.10 0.01 – 0.20 0.047 
Black+ 0.01 -0.06 – 0.09 0.739 -0.27 -0.35– -0.19 <0.001 0.09 -0.01 – 0.18 0.057 
Asian+ 0.01 -0.08 – 0.09 0.914 -0.10 -0.17– -0.03 0.005 0.13 0.02 – 0.24 0.021 

Standardized regression coefficients (b), 95% confidence intervals (CIs), and uncorrected p-
values calculated by regressing DNA-methylation measures on socioeconomic measures and 
racial/ethnic identity with and without controlling for normed BMI z-scores, puberty 
(residualized for age within each gender), and DNA-methylation profiles of smoking (DNAm-
smoke), separately. P-values, where FDR corrected p-values < 0.05, are marked in bold. aAll 
models included covariate adjustment for child’s age, gender, and an age by gender interaction. 
Methylation scores were residualized for technical covariates (array, slide, batch, cell 
composition). 
 
 
Table S2. Associations between racial/ethnic identity and dimensions of socioeconomic 
inequality. 
 Family-level disadvantage Neighborhood-level disadvantage Neighborhood opportunity 
 b 95% CI p b 95% CI p b 95% CI p 
Latinx 0.25 0.16 – 

0.35 
<0.001 0.43 0.33– 

0.52 
<0.001 -0.29 -0.41– -

0.17 
<0.001 

Latinx-White 0.02 -0.09 – 
0.12 

0.763 0.04 -0.06– 
0.15 

0.444 0.03 -0.11– 0.16 0.700 

Black+ 0.43 0.35 – 
0.52 

<0.001 0.33 0.25– 
0.41 

<0.001 -0.28 -0.38– -
0.18 

<0.001 

Asian+ -0.10 -0.19– -
0.02 

0.017 -0.06 -0.13– -
0.01 

0.037 0.09 0.01– 0.17 0.040 

Standardized regression coefficients (b), 95% confidence intervals (CIs), and uncorrected p-
values calculated by regressing socioeconomic measures on racial/ethnic identity. Participants 
self-identified as White only (62%), Latinx only (12.2%), Latinx-White (8.1%), Black and 
potentially another race/ethnicity (10%), Asian and potentially another race/ethnicity but not 
Latinx or Black (7.5%), and Indigenous American, Pacific Islander or other, but not Latinx, 
Black, or Asian (0.6%, part of reference group due to small sample size). White-only identity is 
reference group. P-values, where FDR corrected p-values < 0.05, are marked in bold. 
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Table S3. Associations between socioeconomic inequality with DNA-methylation profiles 
for each racial/ethnic group. 
 DNAm-CRP Epigenetic-g DunedinPoAm 

White 
 b 95% CI p b 95% CI p b 95% CI p 

Family-level 
disadvantage 

0.11 
-0.02– 
0.24 

0.098 0.04 
-0.08– 
0.15 

0.505 0.23 
0.08– 
0.37 

0.002 

Neighborhood-
level disadvantage 

0.23 
0.11– 
0.35 

<0.001 -0.10 
-0.21– 
0.00 

0.052 0.21 
0.06– 
0.37 

0.007 

Neighborhood 
opportunity 

-0.07 
-0.19–
0.06 

0.312 0.14 
0.03– 
0.25 

0.013 -0.12 -0.3– 0.06 0.182 

Latinx 
 b 95% CI p b 95% CI p b 95% CI p 

Family-level 
disadvantage 

0.33 
0.07– 
0.59 

0.014 -0.15 
-0.31–
0.01 

0.059 0.118 
-0.18–
0.42 

0.439 

Neighborhood-
level disadvantage 

0.11 
-0.12– 
0.33 

0.352 -0.24 
-0.43– -

0.04 
0.019 0.01 

-0.27–
0.29 

0.925 

Neighborhood 
opportunity 

-0.18 
-0.43– 
0.07 

0.160 0.16 
-0.04– 
0.37 

0.111 -0.18 
-0.51– 
0.15 

0.278 

Latinx-White 
 b 95% CI p b 95% CI p b 95% CI p 
Family-level 
disadvantage 

0.53 0.13– 
0.93 

0.010 -0.17 -0.42– 
0.09 

0.200 0.29 -0.07– 
0.64 

0.118 

Neighborhood-
level disadvantage 

0.19 
-0.1– 
0.47 

0.197 -0.31 
-0.52– -

0.1 
0.004 0.11 

-0.16–
0.38 

0.436 

Neighborhood 
opportunity 

-0.01 
-0.20– 
0.18 

0.945 0.11 
-0.08– 
0.29 

0.261 -0.12 
-0.33– 
0.08 

0.232 

Black + 
 b 95% CI p b 95% CI p b 95% CI p 
Family-level 
disadvantage 

0.06 
-0.22– 
0.34 

0.678 -0.24 
-0.69– 
0.21 

0.301 0.19 
-0.13–
0.51 

0.252 

Neighborhood-
level disadvantage 

0.49 0.22– 
0.75 

<0.001 -0.25 -0.62– 
0.15 

0.211 0.47 0.14– 
0.79 

0.005 

Neighborhood 
opportunity 

-0.24 
-0.44– -

0.04 
0.018 0.13 

-0.16– 
0.42 

0.371 -0.25 
-0.52– 
0.02 

0.065 

Asian + 
 b 95% CI p b 95% CI p b 95% CI p 
Family-level 
disadvantage 

0.08 
-0.18–
0.34 

0.562 -0.05 
-0.33– 
0.23 

0.722 0.07 
-0.26– 
0.41 

0.668 

Neighborhood-
level disadvantage 

0.07 
-0.2– 
0.33 

0.629 -0.13 
-0.39– 
0.14 

0.341 -0.10 
-0.45–
0.25 

0.590 

Neighborhood 
opportunity 

0.25 -0.36 –
0.86 

0.428 -0.06 -0.64–
0.53 

0.856 -0.02 -0.85– 0.8 0.959 

Standardized regression coefficients (r) and 95% confidence intervals (CIs) and uncorrected p-
value calculated by regressing DNA-methylation measures on socioeconomic measures, 
separately. Participants self-identified as White only (62%), Latinx only (12.2%), Latinx-White 
(8.1%), Black and potentially another race/ethnicity (10%), Asian and potentially another 
race/ethnicity but not Latinx or Black (7.5%), and Indigenous American, Pacific Islander or 
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other, but not Latinx, Black, or Asian (0.6%). All models included covariate adjustment for age, 
gender, and an age by gender interaction. Methylation scores were residualized for technical 
covariates (for methylation: array, slide, batch, cell composition). 
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Table S4. Associations between DNA-methylation and genetic profiles with cognitive functions. 
 Processing speed Executive functions Perceptual reasoning Verbal comprehension Reading Math 

No further covariates a  
 r CI p r CI p r  CI p r CI p r CI p r CI p 
DNAm-CRP -0.15 

 
-0.24 – 
-0.05 

0.003 -0.21 -0.36– 
-0.07 

0.004 -0.16 -0.26 – 
-0.07 

0.001 -0.14 
 

-0.25 – 
-0.03 

0.013 -0.07 -0.20 – 
0.06 

0.310 -0.10 -0.27–
0.06 

0.218 

Epigenetic-g 0.04 
 

-0.11 – 
0.17 

0.657 0.16 -0.05– 
0.37 

0.126 0.15 0.07 – 
0.24 

<0.001 0.17 0.07 – 
0.27 

0.001 0.22 0.09 – 
0.42 

0.001 0.33 0.18 – 
0.49 

<0.001 

DunedinPoAm -0.09 
 

-0.20 – 
0.01 

0.082 -0.12 -0.27 –  
0.02 

0.090 -0.20 -0.30 –  
-0.10 

<0.001 -0.19 -0.29 – 
-0.08 

<0.001 -0.07 -0.20 – 
0.08 

0.366 -0.10 -0.27 – 
0.06 

0.218 

PGS-CRP -0.02 -0.13– 
0.09 

0.738 0.01 -0.13– 
0.14 

0.957 0.02 -0.08– 
0.12 

0.690 -0.05 -0.16– 
0.07 

0.409 -0.08 -0.24– 
0.08 

0.327 -0.04 -0.19– 
0.08 

0.553 

Controlling for BMI 
 r CI p r CI p r  CI p r CI p r CI p r CI p 
BMI -0.10 -0.18– 

-0.02 
0.017 -0.24 -0.35 – 

-0.12 
<0.001 -0.18 -0.27 – 

-0.10 
<0.001 -0.19 -0.29– 

-0.08 
0.001 -0.19 -0.31– 

-0.06 
0.003 -0.24 -0.36– 

-0.12 
<0.001 

DNAm-CRP -0.09 -0.20 – 
0.02 

0.115 -0.09 -0.26– 
0.07 

0.260 -0.10 -0.20 – 
0.00 

0.053 -0.07 -0.20 – 
0.05 

0.257 0.03 -0.12– 
0.17 

0.737 -0.01 -0.17 – 
0.15 

0.918 

Epigenetic-g -0.01 -0.21 – 
0.14 

0.956 0.10 -0.12 – 
0.32 

0.351 0.14 0.06– 
0.22 

0.001 0.15 0.06 – 
0.25 

0.001 0.20 0.06– 
0.34 

0.005 0.30 0.14 – 
0.45 

<0.001 

DunedinPoAm -0.04 -0.16 – 
0.08 

0.499 -0.02 -0.18–   
0.14 

0.825 -0.14 -0.25 – 
-0.04 

0.008 -0.12 -0.24– 
-0.01 

0.030 0.02 -0.13 – 
0.17 

0.815 0.01 -0.18– 
0.19 

0.975 

PGS-CRP 0.00 -0.11 – 
0.10 

0.965 0.04 -0.10– 
0.17 

0.604 0.03 -0.06– 
0.12 

0.530 -0.04 -0.14– 
0.08 

0.534 -0.07 -0.22– 
0.09 

0.388 -0.02 -0.15– 
0.12 

0.794 

Controlling for puberty 
 r CI p r CI p r  CI p r CI p r CI p r CI p 
Puberty -0.12 -0.21–

-0.02 
0.019 -0.14 -0.28 – 

-0.03 
0.043 0.08 -0.03– 

0.18 
0.159 0.04 -0.09– 

0.17 
0.547 -0.11 -0.25– 

0.03 
0.112 -0.07 -0.20– 

0.06 
0.311 

DNAm-CRP -0.12 -0.22–
-0.02 

0.014 -0.19 -0.34– 
-0.01 

0.017 -0.17 -0.26– 
-0.07 

<0.001 -0.14 -0.26– 
-0.03 

0.013 -0.05 -0.18– 
0.09 

0.523 -0.11 -0.26– 
0.04 

0.134 

Epigenetic-g 0.03 -0.11– 
0.16 

0.680 0.16 -0.08– 
0.49 

0.142 0.15 0.07– 
0.23 

<0.001 0.17 0.07– 
0.26 

0.001 0.22 0.09– 
0.36 

0.001 0.33 0.18– 
0.49 

<0.001 

DunedinPoAm -0.08 -0.18– 
0.01 

0.125 -0.11 -0.25– 
0.04 

0.137 -0.20 -0.30– 
-0.10 

<0.001 -0.19 -0.29– 
-0.08 

<0.001 -0.06 -0.20– 
0.09 

0.446 -0.10 -0.27– 
0.07 

0.250 

PGS-CRP -0.01 -0.12– 
0.10 

0.885 0.02 -0.12– 
0.16 

0.797 0.01 -0.09– 
0.10 

0.923 -0.05 -0.16– 
0.06 

0.386 -0.07 -0.23– 
0.09 

0.382 -0.04 -0.19– 
0.11 

0.571 

Controlling for DNAm-smoke 
 r CI p r CI p r  CI p r CI p r CI p r CI p 
DNAm-smoke 0.08 -0.06– 

0.22 
0.28 0.08 -0.14– 

0.30 
0.480 -0.11 -0.22– 

0.01 
0.081 -0.10 -0.22– 

0.03 
0.119 -0.17 -0.37– 

0.04 
0.114 -0.14 -0.37– 

0.08 
0.205 

DNAm-CRP -0.20 -0.33– 
-0.07 

0.003 -0.25 -0.44– 
-0.06 

0.012 -0.13 -0.23– 
-0.03 

0.011 -0.12 -0.23– 
-0.01 

0.045 -0.01 -0.16– 
0.16 

0.972 -0.06 -0.25– 
0.13 

0.541 

Epigenetic-g 0.03 -0.14– 
0.20 

0.737 0.22 -0.03– 
0.48 

0.089 0.15 0.07– 
0.23 

<0.001 0.16 0.06– 
0.26 

0.002 0.23 0.09– 
0.37 

0.001 0.35 0.19– 
0.50 

<0.001 
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DunedinPoAm -0.10 -0.22– 
0.01 

0.070 -0.13 -0.28– 
0.03 

0.121 -0.18 -0.28 – 
-0.08 

<0.001 -0.17 -0.28– 
-0.07 

0.001 -0.03 -0.18– 
0.11 

0.646 -0.07 -0.25– 
0.11 

0.46 

PGS-CRP -0.02 -0.13– 
0.09 

0.733 0.00 -0.14– 
0.14 

0.964 0.02 -0.07– 
0.12 

0.665 -0.05 -0.16– 
0.07 

0.416 -0.07 -0.24– 
0.09 

0.368 -0.04 -0.18– 
0.11 

0.636 

Controlling for family-level disadvantage 
 r CI p r CI p r  CI p r CI p r CI p r CI p 
Family-level 
disadvantage 

-0.07 -0.24– 
0.04 

0.170 -0.22 -0.36– 
-0.08 

0.002 -0.20 -0.29 – 
-0.11 

<0.001 -0.29 -0.40– 
-0.19 

<0.001 -0.17 -0.31– 
-0.03 

0.019 -0.26 -0.41– 
-0.11 

0.001 

DNAm-CRP -0.12 -0.39– 
-0.04 

0.013 -0.15 -0.30– 
-0.01 

0.046 -0.11 -0.21 – 
-0.02 

0.020 -0.07 -0.18– 
0.05 

0.237 -0.04 -0.17– 
0.10 

0.590 -0.08 -0.22– 
0.07 

0.292 

Epigenetic-g 0.01 -0.13– 
0.15 

0.877 0.12 -0.10– 
0.33 

0.301 0.15 0.07 – 
0.23 

<0.001 0.16 0.06– 
0.25 

0.001 0.21 0.07– 
0.35 

0.003 0.31 0.15– 
0.47 

<0.001 

DunedinPoAm -0.07 -0.18– 
0.04 

0.210 -0.06 -0.22– 
0.09 

0.426 -0.15 -0.25 – 
-0.05 

0.004 -0.11 -0.22– 
-0.01 

0.041 -0.03 -0. 
0.1117
– 0.11 

0.673 -0.05 -0.21– 
0.12 

0.564 

PGS-CRP -0.02 -0.13– 
0.09 

0.721 0.00 -0.13– 
0.14 

0.959 0.02 -0.07 – 
0.12 

0.675 -0.04 -0.15– 
0.07 

0.444 -0.07 -0.23– 
0.09 

0.376 -0.03 -0.17– 
0.11 

0.645 

Standardized regression coefficients (r) and 95% confidence intervals (CIs) and uncorrected p-value calculated by regressing 
cognitive functions on DNA-methylation measures and PGS-CRP with and without controlling for normed BMI z-scores, puberty 
(residualized for age within each sex), DNA-methylation profiles of smoking (DNAm-smoke), and family-level disadvantage 
separately. P-values, where FDR corrected p-values < 0.05, are marked in bold. PGS analyses were restricted to participants of 
European ancestries as indicated by genetic ancestry PCs that are comparable to the GWAS discovery sample. aAll models included 
covariate adjustment for age, gender, and an age by gender interaction. Methylation scores and PGS-CRP were residualized for 
technical covariates (for methylation: array, slide, batch, cell composition; for PGS-CRP: genetic ancestry PCs).  
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Table S5. Associations between DNA-methylation with cognitive functions for each racial/ethnic group. 
 Processing speed Executive functions Perceptual reasoning Verbal comprehension Reading Math 

White 
 r CI p r CI p r  CI p r CI p r CI p r CI p 
DNAm-CRP  -0.07 

 
-0.19– 
0.05 

 0.254  -0.14 
 

-0.33, 
0.04 

 0.134  -0.13 
 

-0.25, 
-0.02 

 0.027  -0.01 
 

-0.17, 
0.14 

 0.896  0.08 
 

-0.08, 
0.24 

 0.341  -0.07 
 

-0.25, 
0.10 

 0.421 

Epigenetic-g 0.06 
 

-0.16– 
0.27 

 0.617  0.11 
 

-0.25, 
0.46 

 0.554  0.12 
 

0.01, 
0.23 

 0.030  0.15 
 

0.01, 
0.29 

 0.038  0.22 
 

0.03, 
0.41 

 0.026  0.40 
 

0.20, 
0.60 

 
<0.001 

DunedinPoAm  -0.03 
 

-0.20–
0.13 

 0.706  -0.08 
 

-0.30, 
0.14 

 0.466 -0.16 
 

-0.32, 
0.00 

 0.052  -0.04 
 

-0.21, 
0.13 

 0.627  0.09 
 

-0.11, 
0.29 

 0.391  0.024 
 

-0.20, 
0.25 

 0.832 

Latinx 
 r CI p r CI p r  CI p r CI p r CI p r CI p 
DNAm-CRP 0.04 -0.22– 

0.31 
0.751  0.07 

 
-0.22, 
0.36 

 0.628  -0.25 
 

-0.53, 
0.028 

 0.078  -0.31 
 

-0.63, 
0.02 

 0.065  -0.22 
 

-0.50, 
0.07 

 0.137  0.11 
 

-0.33, 
0.55 

 0.626 

Epigenetic-g  -0.17 -0.66– 
0.32 

 0.491  0.01 
 

-0.29, 
0.29 

 0.992  0.05 
 

-0.21, 
0.30 

 0.726  0.25 
 

-0.01, 
0.51 

 0.064  0.18 
 

-0.07, 
0.44 

 0.163  0.07 
 

-0.42, 
0.55 

 0.785 

DunedinPoAm 0.18  
 

-0.26– 
0.62 

 0.419  0.29 
 

-0.11– 
0.70 

 0.156 -0.28 
 

-0.70– 
0.14 

 0.193  -0.02 
 

-0.35– 
0.32 

 0.920  -0.04 
 

-0.45– 
0.37 

 0.843  -0.02 
 

-0.67– 
0.65 

 0.965 

Latinx-White 
 r CI p r CI p r  CI p r CI p r CI p r CI p 
DNAm-CRP  -0.30 -0.64– 

0.04 
 0.079  -0.38 

 
-0.68– 
-0.09 

 0.011  -0.03 
 

-0.37– 
0.31 

 0.855  -0.09 
 

-0.33– 
0.14 

 0.440  -0.26 
 

-0.66– 
0.14 

 0.199  -0.27 
 

-0.97– 
0.43 

 0.456 

Epigenetic-g  0.02 -0.50– 
0.54 

 0.933  0.34 
 

-0.01– 
0.69 

 0.055  0.35 
 

-0.01– 
0.70 

 0.053  0.04 
 

-0.26– 
0.35 

 0.789  0.14 
 

-0.38– 
0.67 

 0.595  0.53 
 

-0.45– 
1.51 

 0.288 

DunedinPoAm  -0.20 
 

-0.40– 
0.01 

 0.058  -0.14 -0.45– 
0.17 

 0.375  -0.23 
 

-0.50– 
0.04 

 0.093  -0.28 
 

-0.51– 
-0.05 

 0.016  -0.15 -0.44– 
0.15 

 0.340  -0.22 
 

-0.80– 
0.37 

 0.473 

Black+ 
 r CI p r CI p r  CI p r CI p r CI p r CI p 
DNAm-CRP 0.00 

 
-0.34– 
0.35 

 0.982  -0.01 
 

-0.46– 
0.44 

 0.966  -0.13 
 

-0.40– 
0.13 

 0.329  -0.24 
 

-0.52– 
0.04 

 0.089  0.27 
 

-1.39– 
1.93 

 0.749  0.12 
 

-0.94– 
1.19 

 0.813 

Epigenetic-g  -0.37 
 

-1.18– 
0.45 

 0.377  0.05 
 

-0.21– 
0.30 

 0.717  0.21 
 

-0.03– 
0.46 

 0.092  0.17 
 

-0.06– 
0.40 

 0.150  -0.16 
 

-0.95– 
0.63 

 0.686  -0.42 
 

-1.12– 
0.27 

 0.232 

DunedinPoAm  0.01 
 

-0.34– 
0.35 

 0.982  0.01 
 

-0.34– 
0.36 

 0.962  -0.24 
 

-0.49– 
0.02 

 0.066  -0.29 
 

-0.59– 
0.00 

 0.051  -0.36 
 

-0.82– 
0.10 

 0.13  -0.52 
 

-2.27– 
1.24 

 0.564 

Asian+ 
 r CI p r CI p r  CI p r CI p r CI p r CI p 
DNAm-CRP  0.07 

 
-0.42– 
0.57 

 0.771  0.03 
 

-0.35– 
0.42 

 0.866  0.17 
 

-0.16– 
0.51 

 0.314  0.12 
 

-0.23– 
0.47 

 0.511  0.14 
 

-0.31– 
0.59 

 0.533  0.05 
 

-0.55– 
0.64 

 0.881 

Epigenetic-g  0.69 
 

-0.21– 
1.59 

 0.131  0.24 
 

-0.38– 
0.87 

 0.441  0.12 
 

-0.21– 
0.46 

 0.471  0.16 
 

-0.24– 
0.55 

 0.438  0.51 
 

-0.05– 
1.07 

 0.076  0.88 
 

0.57– 
1.2 

 
<0.001  

DunedinPoAm  0.02 
 

-0.37– 
0.41 

 0.935  -0.02 
 

-0.47– 
0.43 

 0.922  0.24 
 

-0.10– 
0.57 

 0.166  -0.17 
 

-0.53– 
0.18 

 0.333  0.08 
 

-0.49– 
0.65 

 0.783  0.012 
 

-0.71– 
0.74 

 0.973 
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Standardized regression coefficients (r) and 95% confidence intervals (CIs) and uncorrected p-value calculated by regressing 
cognitive functions on DNA-methylation measures, separately. Participants self-identified as White only (62%), Latinx only (12.2%), 
Latinx-White (8.1%), Black and potentially another race/ethnicity (10%), Asian and potentially another race/ethnicity but not Latinx 
or Black (7.5%), and Indigenous American, Pacific Islander or other, but not Latinx, Black, or Asian (0.6%). aAll models included 
covariate adjustment for age, gender, and an age by gender interaction. Methylation scores were residualized for technical covariates 
(for methylation: array, slide, batch, cell composition).
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Table S6. Co-twin-control associations between DNA-methylation and cognitive functions. 
 DNAm-CRP Epigenetic-g DunedinPoAm 

 rA CI p rA CI p rA CI p 
Processing 
speed 

0.12 -0.20– 0.44 0.449 -0.09 -0.58– 0.40 0.723 -0.06 -0.43– 0.32 0.769 

Executive 
functions 

-0.10 -0.46– 0.25 0.560 0.04 -0.56– 0.64 0.902 0.21 -0.28– 0.71 0.398 

Perceptual 
reasoning 

-0.17 -0.30– -0.04 0.009 0.34 0.07– 0.61 0.014 -0.09 -0.34– 0.16 0.479 

Verbal 
comprehension 

0.03 -0.27– 0.32 0.866 0.53 0.09– 0.97 0.018 0.21 -0.19– 0.60 0.308 

Reading 0.03 -0.27– 0.33 0.833 0.54 0.02– 1.07 0.044 0.17 -0.24– 0.58 0.424 
Math  -0.01 -0.37– 0.34 0.943 0.25 -0.28– 0.78 0.358 0.08 -0.46– 0.78 0.784 

 rC CI p rC CI p rC CI p 
Processing 
speed 

-1 -1 – -1 0.000 0.29 -0.43– 1 0.436 -0.33 -1.38–0.71 0.533 

Executive 
functions 

-1 -1 – -1 0.000 0.24 -0.79– 1.27 0.649 -0.96 -2.74 – 0.81 0.286 

Perceptual 
reasoning 

0.60 0.47– 0.72 0.000 -1 -1 – -1 0.000 -1 -1 – -1 0.000 

Verbal 
comprehension 

1 1 – 1 0.000 -0.13 -0.92– 0.66 0.741 -1 -1 – -1 0.000 

Reading -1 -1 – -1 0.000 -1 -1 – -1 0.000 -1 -1 – -1 0.000 
Math  -1 -1 – -1 0.000 0.15 -0.73– 1.03 0.734 -0.68 -2.22– 1.35 0.390 

 rE CI p rE CI p rE CI p 
Processing 
speed 

-0.08 -0.38– 0.22 0.619 0.21 -0.14– 0.56 0.235 0.14 -0.17– 0.44 0.392 

Executive 
functions 

0.07 -0.07 – 0.21 0.328 0.10 -0.07– 0.27 0.241 0.01 -0.16 – 0.17 0.919 

Perceptual 
reasoning 

0.04 -0.08 – 0.16 0.500 -0.01 -0.12 – 0.12 0.950 0.01 -0.10– 0.12 0.870 

Verbal 
comprehension 

-0.02 -0.14– 0.09 0.701 -0.06 -0.19 – 0.07 0.403 0.01 -0.13– 0.13 0.964 

Reading 0.02 -0.16– 0.20 0.834 -0.17 -0.35– 0.02 0.074 -0.04 -0.23 – 0.16 0.727 
Math  -0.02 -0.19 – 0.15 0.825 -0.01 -0.21– 0.19 0.927 0.05 -0.19– 0.29 0.699 

Regression coefficients, 95% confidence intervals (CIs), and p-value calculated in a bivariate 
biometric model that decomposed the association between DNA-methylation and cognition into 
components representing additive genetic factors (A), environmental factors shared by twins 
living in the same home (C), and environmental factors unique to each twin (E). rA is the 
correlation between the A components of variation in DNA-methylation and cognition, which 
reflects the extent to which genetic variation in DNAm accounts for differences in cognitive 
functioning. rC is the correlation between the C components of variation in DNA-methylation 
and cognition, which reflects the extent to which shared environmental variation in DNAm 
accounts for differences in cognitive functioning. rE is the correlation between the E components 
of variation in DNA-methylation and cognition, which reflects the extent to which identical 
twins who differ from their co-twins in DNAm show corresponding differences in their cognitive 
functioning. 
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Figure S1. Associations between three DNA-methylation profiles (DNAm-CRP, Epigenetic-
g, and DunedinPoAm) and a polygenic score of inflammation (PGS-CRP) with six
measures of cognitive functioning in children and adolescents with listwise deletion. The
plot depicts the standardized regression coefficients (r) and 95% confidence intervals (CIs)
calculated by regressing cognitive functions on DNA-methylation measures and PGS-CRP,
separately with listwise deletion. PGS analyses were restricted to participants solely of recent
European ancestries as indicated by genetic ancestry PCs that are comparable to the GWAS
discovery sample. All models included covariate adjustment for child’s age and gender, and
technical covariates. Higher cognitive values indicate higher task performance. Higher DNAm-
CRP and PGS-CRP values indicate a methylation profile and genetic profile of higher chronic
inflammation, respectively. Higher Epigenetic-g values indicate a methylation profile associated
with higher cognitive functioning. Higher DunedinPoAm values indicate a methylation profile of
faster biological aging.  
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