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1 Abstract

2 Advances in single-cell RNA-sequencing technology over the last decade have enabled exponential increases in
3 throughput: datasets with over a million cells are becoming commonplace. = The burgeoning scale of data
4 generation, combined with the proliferation of alternative analysis methods, led us to develop the scFlow toolkit
5 and the nf-core/scflow pipeline for reproducible, efficient, and scalable analyses of single-cell and single-nuclei
6 RNA-sequencing data. The scFlow toolkit provides a higher level of abstraction on top of popular single-cell
7 packages within an R ecosystem, while the nf-core/scflow Nextflow pipeline is built within the nf-core framework
8 to enable compute infrastructure-independent deployment across all institutions and research facilities. Here
9 we present our flexible pipeline, which leverages the advantages of containerization and the potential of Cloud
10 computing for easy orchestration and scaling of the analysis of large case/control datasets by even non-expert
11 users. We demonstrate the functionality of the analysis pipeline from sparse-matrix quality control through to
12 insight discovery with examples of analysis of four recently published public datasets and describe the extensibility

13 of scFlow as a modular, open-source tool for single-cell and single nuclei bioinformatic analyses.

1« Introduction

15 Single-cell RNA sequencing (scRNA-seq) has enabled transcriptomic profiling at single-cell res-
16 olution, providing unprecedented insight into gene expression within cell populations (Shema
17 et al., 2019). However, a satisfactory framework for standardized, computationally efficient

18 analyses of scRNA-seq (or snRNA-seq) data has not been available to date.  Lack of full
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19 community agreement on quality measures and standards for quality control, typically large
20 analytical batch effects and multiple parameter optimisations necessary in current tools have
21 confounded reproducibility of results. Moreover, the burgeoning scale of scRNA-seq datasets
» made possible by technological advances including integrated fluidic circuits, nanodroplets,
23 and in situ barcoding, has led to a concomitant increase in computational demands for in-
2 dividual dataset, underscoring a need for efficient scaling, particularly with recognition of the
s value of meta-analyses (Aldridge and Teichmann, 2020). A comprehensive solution to these
2% challenges has not been provided (Eisenstein, 2020). Nonetheless, the benefits of reproducible
27 computational practices in the life sciences are clear and a source of extensive discourse in the
2 literature (Baker, 2016; Perkel, 2020). The demand from governments, funders, and publishers
20 for FAIR (findable, accessible, interoperable, and reusable) standards in data-driven sciences is
50 highly pertinent to scRNA-seq analyses (Sansone et al., 2019). Better realisation of these goals
31 for scRNA-seq can be promoted by standardisation of core elements in analysis pipelines to
32 enable common approaches to annotating data for quality and its characterisation. Common
33 metrics and a scalable analytical framework would better enable the integration, re-use, and re-
s purposing of published datasets within and across diseases to drive novel discoveries (Griining
55 et al., 2018). Challenges toward the development of such a pipeline include the deluge of compu-
s tational techniques for key analytical steps (Heiser and Lau, 2020), interoperability challenges
37 between analytical tools (Tekman et al., 2020), the extensiveness of complete parameter speci-
38 fications (Raimundo et al., 2020), the iterative nature of hyperparameter optimisation (Menon,
30 2019), the complexity of software dependencies for end-to-end analyses (Gruening et al., 2018),

s and the need for flexibility to handle complex experimental designs (Luecken and Theis, 2019).

s To this end, we have developed scFlow, an open-source analysis pipeline comprising i) the scFlow
22 toolkit built in R with high levels of abstraction on top of popular single-cell analysis tools (e.g.
53 Seurat, Monocle, Scater) and ii) nf-core/scFlow, a version-controlled, citable, NextFlow pipeline
w for the efficient orchestration of reproducible scRNA-seq analyses with scFlow (Di et al., 2017).
a5 Comprehensive reports with publication-quality figures detailing QC metrics, clustering, differ-
s ential expression and pathway analyses are automatically generated. The modular nature of the
a7 scFlow toolkit provides the flexibility to specify alternate algorithms for key analytical steps

ss  while capturing analysis parameters comprehensively and generating interactive reports and
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publication-quality outputs. The nf-core/scFlow NextFlow workflow, which is engineered to
follow strict best-practices guidelines of the nf-core community framework, enables “one-click”
scRNA-seq analyses for users that apply easily specifiable analytical parameters and experimen-
tal design specifications to orchestrate reproducible and portable (computational infrastructure-
independent) analyses inside containerized environments (Ewels et al., 2020). The extensibility
and modular design of scFlow should enable future updates to incorporate new methods in the
field. Below, we briefly summarize the core features of scFlow and its application to published

single-cell datasets.

Implementation

Overview

scFlow is comprised of two components: i) an independent R package, scFlow, containing a
toolkit for analysis of single-cell RN A sequencing data and ii) a Nextflow pipeline, nf-core/scflow,
for orchestrating end-to-end, reproducible, automated and scalable single-cell analyses using the

scFlow R package (Fig. 1).
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Figure 1: Single-cell analysis pipeline with nf-core/scflow using the scFlow
toolkit. Gene-cell matrices from multi-sample case/control studies are analysed reproducibly
across major analytical steps: (a) individual sample quality control including ambient RNA
profiling, thresholding, and doublet/multiplet identification, (b) merged quality control includ-
ing inter-sample quality metrics and sample outlier identification, (c¢) dataset integration with
visualization and quantitative metrics of integration performance, (d) flexible dimension reduc-
tion with UMAP and/or tSNE, (e) clustering using Leiden/Louvain community detection, (f)
automated cell-type annotation with rich cell-type metrics and marker gene characterization,
(g) flexible differential gene expression for categorical and numerical dependent variables, (h)
impacted pathway analysis with multiple methods and databases, and (i) Dirichlet modeling
of cell-type composition changes. A high-quality, fully annotated, quality-controlled SingleCell-
Experiment (SCE) object is output for additional downstream tertiary analyses. Interactive
HTML reports are generated for each analytical step indicated (grey icon). Analyses are effi-
ciently parallelized where relevant (steps a,g,h, and i) and all steps benefit from NextFlow cache
enabling parameter tuning with pipeline resumg particularly useful for dimension reduction (d)

and clustering (e).
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e« The scFlow R package is built to enable standardized workflows following best practices on top of
65 popular single-cell R packages, including Seurat, Monocle, scater, emptyDrops, DoubletFinder,
66 LIGER, and MAST (Hao et al., 2021; Cao et al., 2019; McCarthy et al., 2017; Lun et al., 2019;
67 McGinnis et al., 2019; Welch et al., 2019). scFlow provides the ability to undertake common an-
e alytical tasks required by users that involve multiple tools with a single command (i.e. a higher
o0 level of abstraction). The Bioconductor SingleCellExperiment class (Amezquita et al., 2020)
70 is utilized throughout, with the interconversion between package-specific object classes handled
7 “under-the-hood” to perform analytical steps and return their results seamlessly. Analytical
72 parameters are recorded comprehensively and made readily available to enable reproducible op-
73 timizations of analyses. Interactive HTML reports are generated for each stage of the analysis
74 that describes algorithm performance metrics and provide publication-quality plots of a wide
75 range of outputs, along with bibliographic citations for the analytical packages used. These re-
76 ports thus provide the user with informative summaries of their specific analytical steps in ways
77 that can highlight the impact of parameter choices and guide their revision when needed. The
78 use of modular functions which receive and return a SingleCellExperiment object with relevant
79 metadata appended allows new algorithms to be readily implemented. The following example
so illustrates a complete sample quality-control with default parameters using scFlow in R, includ-
s1 ing ambient RNA profiling, gene/cell annotation, thresholding, doublet/multiplet removal, and

82 generation of an interactive HTML report with key plots: -

83 sce <- read_sparse_matrix(matrix_path) %>%
s generate_sce(metadata) %>%

s find_cells() %>%

s annotate_sce() %>%

sz filter_sce() %>%

ss find_singlets() %>%

g0 filter_sce() %>%

o report_qgc_sce()


https://doi.org/10.1101/2021.08.16.456499
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.16.456499; this version posted August 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

a1 Analytical steps with scFlow

92 Quality-control

o3 Initial quality-control is performed individually for each sample (Fig. la), using the post-
94 demultiplexed sparse gene-cell counts matrix as input. Each sparse matrix is combined with
s unique sample metadata to generate the initial SingleCellExperiment (SCE) object. Ambient
o6 RNA profiling is performed optionally, using the EmptyDrops algorithm to flag and subse-
o7 quently filter cellular barcodes which do not deviate from an ambient RNA expression profile
s representing cell-free transcripts (Lun et al., 2019). The SCE is subsequently annotated with
90 rich gene and cell-level metrics and appended with key plots to guide parameter selection ac-
10 cording to best practices, including barcode rank plots, and histograms of total counts, total
w1 features, and relative mitochondrial and ribosomal gene counts (Luecken and Theis, 2019).
102 The ability to adaptively threshold cell metrics based on median absolute deviations enables
103 consistent thresholding criteria to be applied across samples with different characteristics (e.g.

104 between batches, across data from different species) to support integrative analyses.

105 The pipeline provides an option for submitting filtered post-QC SCE for doublet/multiplet
s detection using the DoubletFinder algorithm (McGinnis et al., 2019). Cells are embedded in
107 reduced dimensional space using PCA, tSNE, and UMAP to facilitate visualization of putative
108 non-singlets (which typically form isolated clusters or are embedded at the peripheries of major
100 clusters) identified by the algorithm. A post-QC summary report brings relevant plots and
10 algorithm performance metrics together to facilitate the joint consideration of QC covariates
i in univariate thresholding decisions, consistent with best practices (Luecken and Theis, 2019)

112 (Fl].e 1)
13 Hosted file

s File_1_Zhou_et_al_human_dimis_qc_report.html available at https://authorea.com/
115 users/226952/articles/480342-scflow-a-scalable-and-reproducible-analysis-

116 pipeline-for-single-cell-rna-sequencing-data

u7  Following the merging of multiple post-QC samples, an additional post-merge QC step is applied

us  to evaluate comparative metrics of sample quality (Fig. 1b). Firstly, a “bulk” RNA seq PCA
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1o plot of samples is generated by pseudobulking counts by sample, with an additional hierarchical
120 clustering plot of binarized gene expressivity to highlight samples with a divergent feature space.
121 Next, the total number of cells contributed by each sample is determined, and violin plots and
122 interactive tables are generated for each user-specified cellular variable of interest (e.g. total
123 counts, total features, relative mitochondrial counts, etc.), optionally stratified by experimental
124 variables (e.g. batch). The tables additionally provide outlier warnings ([?]20) and alerts ([?]30)
125 for each sample QC metric. Together, these results are collated in a post-merge QC report (File
126 2) both to guide the identification of putative sample-level outliers and any required revisions

127 of QC parameters.
13 Hosted file

120 File_2_Mathys_et_al_merged_report.html available at https://authorea.com/users/
130 226952/articles/480342-scflow-a-scalable-and-reproducible-analysis-pipeline-

131 for-single-cell-rna-sequencing-data

132 Integration and dimensionality reduction

133 Latent metagene factors representing shared features of cell identity across different experimen-
13« tal samples can be generated using the linked inference of genomic experimental relationships
135 (LIGER) algorithm (Fig. 1c) (Welch et al., 2019). Providing these latent factors as inputs
136 in place of principal components for dimensionality reduction can improve dataset integra-
137 tion. Dimensionality reduction then is performed using the uniform manifold approximation
s and projection (UMAP) or t-distributed stochastic neighbour embedding (tSNE) algorithms to
130 generate 2D or 3D embeddings (Fig. 1) (Kobak and Berens, 2019; Becht et al., 2018). The
uo performance of any dataset integrations can subsequently be assessed across user-specified ex-
11 perimental covariates (e.g. batch, sex, disease) using a combination of juxtaposed reduced
122 dimension plots with and without integration and quantitative scores of cell mixing using ‘re-
13 jection rates’ from the k-nearest-neighbor batch-effect (kBET) algorithm (iittner2019?). These
14 results, together with details of the latent factors generated by LIGER (e.g. UpSet plots of
us dataset participation), are brought together in an integration report that serves to characterise
us performance of the integration algorithm and thus can be used to guide revisions of integration

17 and dimensionality reduction parameters (Fig. 1c) (File 3).
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s Hosted file

1o File_3_Ximerakis_et_al_integrate_report.html available at https://authorea.com/
150 users/226952/articles/480342-scflow-a-scalable-and-reproducible-analysis-

151 pipeline-for-single-cell-rna-sequencing-data

152 Clustering and cell-type annotation

153 Cell clusters are identified with the Leiden or Louvain community detection algorithms imple-
15« mented in Monocle using the UMAP or tSNE embeddings as inputs (Fig. le) (Traag et al., 2019;
155 Trapnell et al., 2014). Following clustering, automated cell-type prediction is performed on cell
156 clusters using the expression weighted cell type enrichment (EWCE) algorithm against reference
157 datasets previously generated with EWCE (Fig. 1f) (Skene and Grant, 2016). Detailed cell-type
158 metrics are subsequently generated, including plots of the relative proportions of cell-types by
159 user-specified experimental variables (e.g. sample, diagnosis), histograms of user-specified cell
10 metrics (e.g. total counts, total features, relative mitochondrial counts) and detailed dot-plots
11 and interactive tables of cluster and cell-type marker genes generated using Monocle (Trapnell
12 et al., 2014). These results are collated into a comprehensive cell-type metrics report (File 4),
163 enabling multi-parametric characterisation of cell types and guiding any subsequent manual

164 revisions of cell-type labels or clustering parameters that may be demanded.
165 Hosted file

166 File_4_Mathys_et_al_celltype_metrics_report.html available at https://authorea.
167 com/users/226952/articles/480342-scflow-a-scalable-and-reproducible-analysis-

168 pipeline-for-single-cell-rna-sequencing-data

160 Differential gene expression and impacted pathway analysis

10 Differential gene expression (DGE) within cell-types can be evaluated for both categorical (e.g.
i1 diagnosis) and numerical (e.g. age, pathology scores) dependent variables while accommodating
12 complex experimental designs and controlling for covariates (Fig. 1g). A pre-processing step
173 enables optional filtering of genes based on expressivity, pseudobulking, input matrix transfor-
17+ mation (e.g. Log2, CPM), and co-variate scaling and centering. The default DGE method

175 in scFlow is a generalized linear mixed model (GLMM) with a random effect (RE) term (e.g.,
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176 to account for correlations within individual samples) as implemented within the model-based
177 analysis of single-cell transcriptomics (MAST) algorithm (Zimmerman et al., 2021; Finak et al.,
s 2015). An interactive DGE HTML report with a volcano plot and searchable tables is genera-

179 ted, including details of model parameters, inputs, and outputs (File 5).
10 Hosted file

181 File_5_Mathys_et_al_0ligo_MASTZLM_Control_vs_pathological_diagnosisAD_de_report.html
1.2 available at https://authorea.com/users/226952/articles/480342-scflow-a-scalable-

183 and-reproducible-analysis-pipeline-for-single-cell-rna-sequencing-data

1ss Impacted pathway analysis (IPA) is performed on DGE tables to identify enrichment of diffe-
15 rentially expressed genes in specific pathways (Fig. 1h). Comprehensive methods and databases
166 available within the enrichR (Kuleshov et al., 2016), ROntoTools (Khatri et al., 2007), and
157 WebGestaltR (Liao et al., 2019) packages can be used simultaneously for the generation of
188 an interactive HTML report including dot-plots for the top enriched pathways and searchable

10 tables of results across different methods (File 6).
10 Hosted file

11 File_6_Mathys_et_al_0ligo_MASTZLM_Control_vs_pathological_diagnosisAD_DE_ipa_report.html
192 available at https://authorea.com/users/226952/articles/480342-scflow-a-scalable-

193 and-reproducible-analysis-pipeline-for-single-cell-rna-sequencing-data

19« Modeling of relative cell-type proportions

105 Statistically significant changes in cell-type composition across categorical dependent variables
s (e.g. case vs control) can be examined using a Dirichlet-multinomial regression model, which
17 accounts for dependencies in cell-type proportions within samples (Fig. 1i) (Smillie et al., 2019).
108 Adjusted p-values and plots of relative abundance are generated for each cell-type and collated

199 in an HTML report together with composition matrices used in model generation (File 7).
200 Hosted file

201 File_7_Ximerakis_et_al_dirichlet_report.html available at https://authorea.com/

202 users/226952/articles/480342-scflow-a-scalable-and-reproducible-analysis-
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203 pipeline-for-single-cell-rna-sequencing-data

2« Pipeline orchestration with nf-core/scflow

205 Overview

200 We built the nf-core/scflow pipeline using Nextflow within the nf-core framework to enable
207 standardized, portable, and reproducible analyses of case/control single-cell RNA sequencing
208 data (Ewels et al., 2020). Pipelines built using Nextflow inherit its portability, native support
200 for container technologies, and features including cache-based pipeline resume capability and
210 amenability to live-monitoring (Di et al., 2017). The nf-core framework provides a means
a1 to produce high-quality, best-practices analysis pipelines with Nextflow which are ready for

212 deployment across all institutions and research facilities (Ewels et al., 2020).

213 Workflow

2. The codebase for both the scFlow R package toolkit and the nf-core/scflow pipeline are stored
215 in open-source GitHub repositories (Fig. 2). Both repositories are version controlled and uti-
216 lize continuous integration (CI) workflows to ensure code updates pass build and functionality
217 tests. In addition, updates to nf-core/scflow trigger an automated CI action to validate that
218 the analysis of a small case/control dataset runs to completion without errors. Version updates
219 to the scFlow R package trigger a CI action to build a new version-tagged Docker image which
20 is uploaded to a Docker registry. This image is built from a Dockerfile specification which addi-
21 tionally installs the complete set of software dependencies, including 414 versioned R packages

222 and additional system-level dependencies (scFlow 0.7.1, see supplemental data).

223 The execution of an nf-core/scFlow pipeline run automatically retrieves the correct version of
24 the Docker image from the Docker registry and generates reproducible containerized analysis
25 environments for each analytical process using Docker or Singularity. Analyses are performed on
26 the compute platform preferred by the user given the potential for implementation on local, high-
227 performance computing cluster (HPC) or in Cloud based environments (Di et al., 2017) (Fig.
28 2). Live-monitoring of pipeline progress is possible using Nextflow Tower [https://tower.nf/],
220 a hosted and open-source solution providing live statistics on resource usage (e.g. CPU, RAM,

230 10, time) and cost (for Cloud analyses). Pipeline runs can also be optionally launched directly
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21 from within the Nextflow Tower GUI.
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Figure 2: Workflow for scFlow and nf-core/scflow. Open-source code for both scFlow
and nf-core/scflow is version-controlled and stored in GitHub repositories with continuous in-
tegration (CI) to build and test updated code. Container images including software dependen-
cies are automatically built on version updates and uploaded to a Docker registry. Pipeline
runs with nf-core/scflow utilize containerized environments using Docker /Singularity to perform
analyses reproducibly across diverse compute infrastructure including local workstations, high-
performance clusters (HPC), or Cloud services including Google Cloud, Amazon Web Services,
Microsoft Azure, and Kubernetes. Real-time monitoring and optional launching of pipeline runs

can be performed using NextFlow Tower.

22 Executing a nf-core/scflow pipeline run

233 A pipeline run with nf-core/scflow requires three inputs: (1) a two-column manifest file with
234 paths to gene-cell matrices and a unique sample key; (2) a sample sheet with sample information
235 for each input matrix in the manifest file; and, (3) a parameters configuration file (documen-
236 tation for each parameter is available at https://nf-co.re/scflow/dev/parameters). A
237 complete, automated, scalable, and reproducible case-control analysis following the steps in

238 Figure 1 can then be performed with a single line of code: -

230 nextflow run nf-core/scflow \
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20 --manifest Manifest.tsv \
241 ——input Samplesheet.tsv \
242 —c scflow_params.config \

23 —-profile local

24 Switching from a local workstation analysis to a Cloud based analysis can be achieved simply
25 by changing the profile parameter. For example, a Google Cloud analysis with automated
26 staging of input matrices from Cloud storage (e.g. a Google Storage Bucket) can be achieved
27 using -profile gcp. Additionally, pre-configured institutional profiles for a range of university
28 and research institution HPC systems are readily available via nf-core [https://github.com/

29 nf-core/configs].

20  During an nf-core/scflow run, comprehensive pipeline outputs are generated including flat-file
21 tables, images, and interactive HTML reports. As Nextflow utilizes an intelligent cache based
252 on hashed inputs to each analytical task, the pipeline can be stopped at any time, parame-
23 ters adjusted, and the pipeline resumed with the addition of the '-resume’ option. As only
24 tasks downstream of the changed parameters are affected and re-run, parameter optimization
255 is both simplified and accelerated, particularly for the early steps of dimensionality reduction,

26 clustering, and optional revision of automated cell-type annotations.

257

» METHODS

0  Ambient RNA profiling

260 Our implementation of EmptyDrops includes the default options with the emptyDrops R pack-
261 age, with the following additions. The threshold of UMI counts above which a cellular barcode
262 will be retained can optionally be determined based on a quantile approach as described previ-
263 ously and implemented in the CellRanger software by 10X Genomics (Zheng et al., 2017). This
264 ‘auto’ option for the retain parameter retains all barcodes with >10% of the counts in the top
s nth barcodes, where n is 1% of the expected recovered cell count specified by the ‘expect_-

%66 cells’” parameter. The distribution of p-values for presumed ambient barcodes is evaluated for
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267 uniformity — as expected under the null-hypothesis — using a Kolmogorov-Smirnov test. De-
268 fault emptyDrops parameters used by scFlow are: lower=100, retain="auto’, expect_cells=3000,

29 and niters=30000.

o Thresholding

on For thresholds determined adaptively, a user-specified number of median absolute deviations
22 (nMADs) is applied using the Scater package (McCarthy et al., 2017) as previously de-
213 scribed (Lun et al., 2016b):

o MAD(x) = median(|z; — Z|). Default thresholding parameters used by scFlow are: min_-
a5 library_size=100, max_library_size="adaptive’, min_features=100, max_features=’adaptive’,
76 max_mito=’adaptive’, min_ribo=0, max ribo=1, min_counts=2, min_cells=2, drop_un-
277 mapped=TRUE, drop_mito=TRUE, drop_ribo=FALSE, and nmads=4.0. Outliers for inter-
273 sample post-merge quality-control metrics are determined based on standard deviation (o)

279 across samples with warnings provided at the [?]20 level and alerts at the [?]3c level.

20 Pseudobulking

21 Pseudobulking is performed by summation of counts by sample as previously described (Lun
22 et al., 2016a). For computational efficiency, the calculations are performed using matrix mul-
283 tiplication where rows (gene counts) are multiplied by columns of a sample annotation model

284 Matrix: ¢y = a;;bj.

25 Doublet/multiplet detection

286 The DoubletFinder algorithm is implemented essentially as described using the DoubletFinder
27 R package (McGinnis et al., 2019) with the following additions. A fixed doublet rate, or
28 alternatively, a doublets-per-thousand-cells increment (’dpk’ parameter) can be set to scale the
280 doublet rate with the number of cells considered, as recommended by 10X Genomics. The ‘pK’
200 parameter can be fixed or determined following a parameter sweep to identify the ‘BCmetric’
201 maxima across a range of ‘pK’ values, as described in the DoubletFinder vignette. Default
202 parameters used for DoubletFinder in scFlow are: pca_dims=20, var_features=2000, dpk=S8,

203 and pK=0.02.
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20 Dataset integration

25 LIGER (’rliger’ package) was used for dataset integration which uses an integrative non-negative
206 matrix factorization (iNMF) method to identify shared and dataset-specific factors. The latent
207 metagene factors are generated as previously described (Welch 2019, Liu 2020). Four pre-
208 processing steps are applied: (1) normalization for UMIs per cell using ‘rliger::normalize’, (2)
200 subsetting the most variable genes for each dataset using ‘rliger::selectGenes’, (3) scaling by
s0 root-mean-square across cells using ‘rliger::scaleNotCenter’ to ensure different genes have the
so0  same variance, and (4) filtering of non-expressive genes. For integration, we use the union of
302 the top ‘num_genes’ variable genes from each dataset. To ensure that the union is not signifi-
303 cantly skewed towards a specific dataset(s), we identify possible outlying dataset(s) using Venn
seand UpSet diagrams generated by ‘nVennR::plotVenn’ (Perez-Silva 2018) and ‘UpSetR::upset’
35 (Conway 2017), respectively. The shared and dataset-specific factors are subsequently gener-
306 ated from the normalized and scaled inputs using iNMF with the ‘rliger::optimize ALS’ function.
307 Finally, the ‘rliger::quantile_norm’ function is applied to integrate the datasets together using a
s maximum-factor assignment followed by refinement using a k-nearest neighbours (KNN) graph.
s0  Default parameters used for LIGER are: take_gene_ union=FALSE, remove_missing=TRUE,
3.0 num_genes=3000, combine=“union”, capitalize=FALSE, use_cols=TRUE, k=30, lambda=>5.0,
sin thresh=0.0001, max_iters=100, nrep=1, rand_seed=1, knn k=20, ref_dataset=NULL, min_-
sz cells=2, quantiles=50, resolution=1 and centre=FALSE. Performance of the integration algo-
s13 rithm is evaluated quantitatively using the kBET algorithm essentially as previously described
s (Biittner 2019). A low ‘rejection rate’ determined by kBET indicates cells from different batches

315 (and/or other user-defined categorical covariates) are well-mixed.

s Dimensionality reduction

siz The top m principal components are calculated based on highly variable genes using
s1is ‘Seurat::RunPCA’ for Seurat based sub-workflows, otherwise ‘monocle3::preprocess_cds’ is
si9 used. Embeddings for tSNE are generated using ‘Seurat::RunTSNE’ for Seurat based sub-
320 workflows, otherwise, Jesse Krijthe’s ‘Rtsne::Rtsne’ implementation of Van der Maaten’s Barnes-
;22 Hut algorithm is used [https://github.com/jkrijthe/Rtsne]. Default parameters for tS-

32 NE are: dims=2, initial dims=30, perplexity=50, theta=0.5, stop_lying_iter=250, mom -
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33 switch_iter=250, max_iter= 1000, pca_center=TRUE, pca_scale=FALSE, normalize=TRUE,
32« momentum=0.5, final_ momentum=0.8, eta=1000, and exaggeration_factor=12. Embeddings
35 for UMAP are generated using ‘Seurat::RunUMAP’ for Seurat based sub-workflows, other-
326 wise, James Melville’s ‘uwot::umap’ implementation of the UMAP algorithm is used [https:
s27 //github.com/jlmelville/uwot]. Default parameters used for UMAP are: pca_dims=30,
328 n_neighbors=35, n_components=2, init= ‘spectral’, metric="euclidean’, n_epochs=200, lear-
320 ning_rate=1, min_dist=0.4, spread=0.85, set_op_mix_ratio=1, local_connectivity=1, repulsion_-

330 strength=1, negative_sample_rate=>5, and fast_sgd=FALSE.

s Clustering

322 Clustering of cells using the Louvain or Leiden community detection algorithms is performed
333 using the ‘monocle3::cluster_cells’ function, with the modified ability to cluster on any na-
s med reducedDims matrix of the SingleCellExperiment object (e.g. UMAP embeddings from
355 LIGER generated latent factors, UMAP Liger). Default parameters are set to cluster_me-

336 thod=’leiden’, res=1e-5, k=100, and louvain_iter=1.

sr  Cell-type annotation

33 Automated cell-type annotation is performed using the expression weighted cell type enrichment
39 (EWCE) package essentially as previously described (Skene and Grant, 2016). Reference data-
a0 sets containing annotated cell-types are first processed using EWCE to produce cell-type data
s (CTD’) files comprised of cell-type-specific transcriptional signatures. In our analyses, we have
sz used ‘CTD’ files generated from the Allen human brain atlas (Hodge et al., 2019) and a mouse
us  brain dataset (Zeisel et al., 2015). The top 10% most specific genes are used as marker genes
sas for each cell-type. Up to m (default: 10000) cells sampled from the numbered Louvain/Leiden
a5 clusters are evaluated for statistical enrichment in target gene lists of length n from the re-
ss  ference ‘CTD’ against a background probability distribution generated by 1000 permutations
37 of random background gene lists of length n. Each cluster is subsequently annotated with the
us  highest scoring (lowest adjusted p-value) cell-type and the complete set of results are returned

a0 with the SingleCellExperiment metadata.
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0 Differential gene expression

51 For DGE, a pre-processing step is first performed to subset genes based on expressivity within a
2 specific cell-type (default: [?]1 count in [?]10% of cells). Next, the percentage of variance in gene
353 expression explained by inter-sample variation within a reference class (e.g. healthy/control)
s« can optionally be calculated using the ‘scater::getVarianceExplained’ function (McCarthy et al.,
35 2017).  These values are ranked and appended to the output DGE table as an additional
356 sense check and optional gene list filtering criterion. The proportion of genes detected in each
357 cell is then calculated and scaled to obtain the cellular detection rate (CDR), as previously

s described (Finak et al., 2015):

N
CDR; =1/NY z,

g=1
350 Numerical predictors (e.g. age, quantitative histopathology measure) can be scaled and centered
s0  prior to model fitting. Optionally, pseudobulking also can be performed, as described above
st (). After pre-processing, DGE models with MAST are performed essentially as previously
32 described (Finak et al., 2015). A log2(TPM + 1) expression matrix is calculated from the
33 raw counts matrix, and a two-part (i.e., including a discrete logistic regression component for
364 expression rate and a continuous Gaussian component conditioned on each cell expressing a
35 gene) generalized regression model is fit independently for each gene. The CDR is included as
366 a covariate alongside additional user-specified experimental covariates, which can include, for
ss7 example, the individual sample as a random effect (Zimmerman et al., 2021). False-discovery

ss rate (FDR) adjusted p-values are determined using the Benjamini & Hochberg method.

w0 Impacted pathway analysis

370 Enrichment of gene lists in pathways are evaluated using methods encompassing Over Repre-
s sentation Analysis (ORA) (Khatri et al., 2012), Gene Set Enrichment Analysis (GSEA) (Sub-
sz ramanian et al., 2005), and Network Topology-based Analysis (Wang et al., 2017). Databases
s73 and methods from one or more of the R packages WebGestaltR (Liao et al., 2019), ROnto-

st Tools (Mitrea et al., 2013), and enrichR (Chen et al., 2013) are applied as previously described,
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a5 and can be queried simultaneously. Results are returned as standard tool output tables and dot
srs  plots of enrichment /odds ratio vs adjusted p-values (FDR) for the top n pathways are generated

377 and collated into an IPA HTML report.

ss Dirichlet modeling of cell-type composition

a9 To identify statistical differences in cell-type proportions between categorical dependent vari-
0 ables (e.g. case vs control), a Dirichlet multinomial regression is performed (Smillie et al.,
ss1 2019). A sample (rows) by cell-types (columns) matrix of cell numbers is generated and nor-
ss2 malized to relative proportions (0, 1) such that the sum of proportions of each cell-type ¢ in
83 sample y equals one: Zcozlyc = 1. If extreme values of 0 or 1 are present, a transforma-
s8¢ tion is applied using the DirichletReg R package to shrink values away from these extremes
s by transforming each component y of Y by computing y* = [y(n — 1) + 1/d]/n where n is
386 the number of observations in Y, as implemented in the ‘DR_data’ function in the R package
ss7 DirichletReg (Maier, 2014). The “common” model (counts ~ dependent_variable) is fit using
ss  the ‘DirichletReg::DirichReg’ function and p-values are extracted. Bar plots for each cell-type
30 are generated and collated with input and output tables for the cell-type proportions HTML

390 report.

;00 Dataset pre-processing

sz Inputs for scFlow are standardized sparse-matrices generated by widely-used pipelines (e.g.
303 Cell Ranger) for processing, reference genome mapping, and de-multiplexing of raw single-cell
s sequencing data (Zheng et al., 2017). As public datasets vary with respect to data deposition
305 format, custom scripts were required for each of the four analysed datasets to (a) pre-process
306 matrices into standard per-sample gene-cell counts matrices and/or (b) build a sample sheet with
37 pertinent experimental data attached. Raw gene-cell count matrix and sample-level metadata
38 for (Mathys et al., 2019) and the human dataset for (Zhou et al., 2020) were downloaded from the
300 AD Knowledge Portal [https://www.synapse.org| (Synapse ID: syn18485175) and the count
200 matrix for the respective dataset was split into per sample gene-cell count matrices. Mouse
a1 datasets (Zhou et al., 2020)(Ximerakis et al., 2019) were downloaded from GEO (https://

202 www.ncbi.nlm.nih.gov/geo/) (ID:GSE140511 and GSE129788, respectively) and split into per
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a3 sample gene-cell count matrices. The feature names for gene-cell count matrices from (Ximerakis
a0s et al.,; 2019) were mouse gene symbols which were first converted to mouse Ensembl IDs. All data

a05 preprocessing scripts are available at https://github.com/combiz/scFlow_Supplementary.

406 INextflow

a7 The nf-core/scflow pipeline was coded in Nextflow with domain-specific language 2 (DSL2) ac-
a8 cording to nf-core guidelines. The major analytical steps outlined in Figure 1 are performed
a0 across Nextflow processes implemented in DSL2 modules as detailed in (S??7). Included are de-
a0 tails of the underlying scFlow functions utilized for each process, an overview of process outputs,
aun and parallelization support (i.e. simultaneous analysis of multiple samples/models across multi-
a2 ple independent compute instances/jobs). These processes represent modular units of pipeline
a3 execution in Nextflow, simplifying the modification of individual pipeline steps, and allowing
a4 process-level resource allocation. Detailed information on pipeline usage, parameters, and

a5 outputs are provided in the nf-core/scflow documentation online [https://nf-co.re/scflow].

a6 Software availability

a7 The code for the scFlow R package is available in a GitHub repository
a8 |[https://github.com/combiz/scflow] with  associated  function  documentation
a0 at https://combiz.github.io/scFlow. The code for the nf-core/scflow pipeline is avail-
w20 able in a GitHub repository [https://github.com/nf-core/scflow| with pipeline
41 documentation at https://nf-co.re/scflow. A general usage manual is available
a2 at https://combiz.github.io/scflow-manual/. All code is open-source and available under

23 the GNU General Public License v3.0 (GPL-3).

424

»s Results

26 To demonstrate the performance and flexibility of scFlow for automated case-control sc/sn-
27 RNA seq analyses, four previously published datasets were retrieved from online repositories,

w8 pre-processed, and submitted to nf-core/scflow for analysis with a single line of code (Mathys
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a9 et al., 2019; Ximerakis et al., 2019; Zhou et al., 2020). These studies encompass samples from
430 both human and mouse species, include both single-cell and single-nuclei data, span a range of
a1 samples per study (12 - 48), and each represent a different type of experimental design with

32 different confounds and variables of interest (Table 1).

Dataset Species  Input Sam- Disease Tis-  Cell/Nuclei Plat-
matrices ples sue form
Mathys et al., Hu- Raw 48 Alzheimer’s Brain Nuclei 10X
2019 man
Zhou et al., Hu- Filtered 22 Alzheimer’s Brain  Nuclei 10X
2020 man
Zhou et al., Mouse Filtered 12 Alzheimer’s Brain  Nuclei 10X
2020 (model)
Ximerakis et al., Mouse Filtered 16 Aging Brain Cell 10X
2019

Table 1: Characteristics of individual datasets analysed in this study with nf-core/scflow.

a3 Selected cell-level quality-control metrics and cell/gene-level inclusion and exclusion QC checks
a3 presented here highlight the valuable quality-control data captured by the pipeline (Fig-
a5 ure 3). The complete set of pipeline QC outputs are included in the supplemental materials
16 (e.g. per-sample QC reports, study post-merge reports, QC metrics summary table). The
437 extensive variation between samples within - and across - studies that is apparent illustrates
a8 the importance of tailored thresholding (e.g. minimum and maximum counts, features, relative

a0  mitochondrial counts, etc.) and the potential benefits of identifying sample-level outliers.
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Figure 3: Selected quality-control metrics in 98 samples across four datasets. The
mean (bar £SEM) of the sample-level medians (points) of four key cell-level metrics — total
counts, total genes, relative mitochondrial counts, and relative ribosomal counts — are presented
for each of the four analysed datasets (colours) in the left column. The right column includes
examples of cell- and gene-level quality control inclusion and exclusion checks used for filtering

of input matrices for downstream analyses.

a0 The UMAP embeddings with cell-type annotations show a good separation (global distance)
a1 between major cell-types (e.g. oligodendrocytes and astrocytes) with relative proximity of rela-
a2 ted cell-types (e.g. neuronal sub-types) for each of the four datasets, as expected (Figure 4a).
43 Additionally, the cell-type markers identified by the pipeline are consistent with known markers
aa  for the cell-types (see supplemental data, cell-type metrics reports). The UMAP embeddings
w5 for all four datasets were generated from latent metagene factors computed by LIGER. This

w6 integration approach leads to UMAP embeddings that are less driven by known sources of va-
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riation in the data (e.g. diagnosis, age, genotype). This is demonstrated both visually — by

contrast to a unintegrated (left) UMAP (Figure 4b) — and by a reduced kBET ‘rejection rate’,

reflecting improved cell mixing (Figure 4c). Improved integration across multiple additional

sources of sample-level variance (e.g. individual, sex) are also evident (see supplemental data,

integration reports). Together these provide evidence that integration of the data was effective,

with a greater contribution of shared, relative to sample-specific, factors to the separation of

cells in reduced dimensional space.

Mathys et al., 2019 (Human),

1Zhou et al., 2020 (Human),

‘Ximerakis et al., 2019 (Mouse);

‘Zhou et al., 2020 (Mouse)!
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Figure 4: Cell-type annotation and key integration results from the analysis of four

datasets with the nf-core/scflow pipeline. For each study, a) UMAP plot of the final clus-

ters with their cell-type annotations, b) UMAP of an unintegrated (left) and LIGER~integrated

(right) dataset highlighting the categorical variable of interest, c¢) box plots of expected and ob-

served kBET ‘rejection rates’ from unintegrated (left) and LIGER-integrated (right) UMAPs.

The relative proportion of cell-types in each study, further stratified by the major dependent

variable of interest, is summarized in Figure 5a.

in each cell-type using a mixed-model in MAST with a random effect for individual.

Differential gene expression was evaluated

The

number of differentially expressed genes identified as up-regulated and down-regulated for each

cell-type are highlighted (Figure 4b).

For a selected cell-type from each study, the number,

significance (adjusted p-value), and magnitude (fold-change) of evaluated genes are illustrated
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w0 in a volcano plot (Figure 4c). Although an in-depth contrast of our results with those in
461 the original studies is beyond the scope of this manuscript, the identification of the canonical
462 Alzheimer’s disease implicated gene ‘Apoe’ in the microglia of mouse cells in the Alzheimer’s
463 mouse dataset from Zhou et al. provides an example of the potential for insight discovery
a4 using our pipeline. Overall, these results, associated with similarly identified cells and derived
465 using the same, well-controlled analytical pipeline and parameters, highlight the clear differences
466 between differentially expressed gene sets from different studies and tissue types. By doing so,
467 they also allow more confident generalisations regarding those features that are reproducible
w8 (e.g., the greater complexity and numbers of significantly differentially expressed genes in the
460 rapidly isolated single-cell mouse brain transcriptomes relative to those in the human single

a0 nuclear transcriptomes from post mortem brain tissue).
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Figure 5: Relative cell-type proportions and summary of differential expression anal-

ysis results.

a) Bar plots showing the relative proportions of cell-types between the categorical

variables of interest for each of the datasets, b) Numbers of statistically significant up and down-

regulated genes per cell-type; cell-types for which no differential expressed genes were found were

omitted, ¢) Volcano plots of differentially expressed genes for the specified cell types of the four

datasets.
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« Discussion

472 The use of pipelines for the analysis of large datasets involving multiple, complex analytical steps
473 is essential to achieve reproducible results. The wide range of alternative tools available for most
474 analytical steps of single-cell RNA sequencing, combined with the different experimental ques-
475 tions and confounds particular to each dataset, often leads to project-specific code. These would
476 typically require the manual revision of code to analyze a new dataset or to utilize an alternative
a7 algorithm for an analytical step. The scFlow toolkit and nf-core/scflow pipeline address this
478 by implementing standardized, modular code: the flexibility to handle complex experimental
479 designs and apply alternative algorithms are handled at the level of parameter specification.
a0 This modular approach also lends itself well to extensibility, as new tools in the field may be
481 readily incorporated for an individual analytical task. The decoupling of analysis logic from
sz resource allocation by Nextflow provides portability and scalability, with nf-core/scflow ready
483 to run on local workstations, HPC environments, and Cloud services including Google Cloud,
484 Amazon Web Services, and Microsoft Azure. This scalability will allow scFlow to keep pace

485 with the burgeoning scale of single-cell RNA sequencing datasets.

a6 The use of containerization technology by nf-core/scflow provides a consistent computing en-
a7 vironment to ensure that the complex software and system dependencies used for analysis are
48 comprehensively captured and are re-usable. Taken together with the version-control of pipeline
a0 code, and the generation of a citable unique digital object identifier (DOI) via nf-core for each
200 versioned update to the pipeline, there is reassurance both of the reproducibility and the citabil-

a1 ity of an analysis.

a2 We expect that the ease-of-use of nf-core/scflow and its flexibility to integrate datasets should
403 be particularly useful for case-control and joint studies, including cell-atlas projects where data
204 may be generated at different sites using different scRNA-seq protocols. The ability to adap-
105 tively threshold samples and evaluate inter-sample quality-control metrics can inform sample

a6 inclusion/exclusion criteria and potentially greatly improve the quality of such data resources.

a7 In summary, the scFlow toolkit and nf-core/scflow pipeline provide a robust and easy-to-use
108 analysis approach, leveraging the best scRNA-seq analysis tools in the R ecosystem with state-

100 of-the-art data science to provide scalable, reproducible, and extensible analyses of scRNA-seq
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