
1 

 

 

Reconsidering the validity of transcriptome-wide association studies 

 
Christiaan de Leeuw1*, Josefin Werme1, Jeanne Savage1, Wouter Peyrot1,2, Danielle Posthuma1,3 

 

 

 
1 Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, VU University, Amsterdam, The 

Netherlands 

 
2 Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands 

 
3 Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, Amsterdam Neuroscience, 

VU University Medical Centre, Amsterdam, The Netherlands 

 

* Corresponding Author: Christiaan de Leeuw, c.a.de.leeuw@vu.nl 

 

 

 

 

 

Abstract 

 

Transcriptome-wide association studies (TWAS)1–5, which aim to detect relationships between gene 

expression and a phenotype, are commonly used for secondary analysis of genome-wide association 

study (GWAS) results. Results of TWAS analyses are often interpreted as indicating a genetically 

mediated relationship between gene expression and the phenotype, but because the traditional TWAS 

framework does not model the uncertainty in the expression quantitative trait loci (eQTL) effect 

estimates6,7, this interpretation is not justified. In this study we outline the implications of this issue. 

Using simulations, we show severely inflated type 1 error rates for TWAS when evaluating a null 

hypothesis of no genetic relationship between gene expression and the phenotype. Moreover, in our  

application to real data only 51% of the TWAS associations were confirmed with local genetic 

correlation8 analysis, an approach which correctly evaluates the same null. Our results thus 

demonstrate that TWAS is unsuitable for investigating genetic relationships between gene expression 

and a phenotype.  
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Main text  1 

 2 

TWAS is commonly presented as an alternative to differential gene expression analysis9, to study 3 

relationships between gene expression and a phenotype. Since data containing both gene expression 4 

levels and the phenotype is often unavailable, TWAS uses a separate sample to estimate genetic 5 

associations of SNPs with gene expression (ie. eQTLs). It then imputes the gene expression in a GWAS 6 

sample, and tests the association between this imputed expression and the phenotype. 7 

 This two-stage procedure is implemented as follows1,6,7. First, a model is specified for the 8 

expression � of a particular gene  9 

 10 

 � = Āÿ� + �� , (1) 

 11 

where Ā denotes the genotype matrix of SNPs local to that gene and �� the residual, while ÿ� = Āÿ� 12 

reflects the genetic component of its expression captured by those SNPs. This model is fitted to a 13 

sample with expression data to obtain an estimated weight vector ÿ��.  14 

Second, the imputed genetic component ÿ̂� = Āÿ�� is computed in the GWAS sample for the 15 

phenotype of interest ā. Then, a linear regression model of the form 16 

 17 

 ā = ÿ̂�Ā + ÿ�, (2) 

 18 

with coefficient Ā and residual ÿ�, is used to test the relationship between ÿ̂� and the phenotype. 19 

Essentially all TWAS methods have this structure (though often requiring only GWAS summary 20 

statistics), but they differ in their implementation, particularly in how ÿ�� is estimated6,7,10–22 (see Table 21 

1). Note that the presentation here is simplified for the sake of brevity, see Methods - Outline of TWAS 22 

framework for details. 23 

This TWAS framework is generally interpreted as testing the genetically mediated relationship 24 

between gene expression levels and the phenotype. We can mathematically quantify this relation as 25 

the covariance cov(ÿ� , ÿ�) of the true genetic components of � and ā, where ÿ� is defined analogous 26 

to ÿ� in equation (1), such that  27 

 28 

 ā = Āÿ� + �� = ÿ� + ��, (3) 

 29 

with ÿ� = Āÿ�. Estimate ÿ̂� is seen as imputing ÿ�, and since the analysis is entirely based on the 30 

SNPs in Ā, equation (2) must therefore specifically fit the genetic relation between ÿ� and ā. And 31 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.08.15.456414doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.15.456414
http://creativecommons.org/licenses/by-nd/4.0/


3 

 

indeed, coefficient Ā is a direct function of the covariance cov(ÿ̂� , ā), and plugging in equation (3) this 32 

yields cov(ÿ̂� , ā) = cov(ÿ̂� , ÿ�) + cov(ÿ̂� , ��) = cov(ÿ̂� , ÿ�) (since �� is independent of Ā, and 33 

therefore of ÿ̂�). In other words, testing Ā = 0 is equivalent to testing cov(ÿ̂� , ÿ�) = 0. 34 

 However, whereas the true genetic covariance cov(ÿ� , ÿ�) is a population-level parameter, 35 

the cov(ÿ̂� , ÿ�) tested by TWAS is a function of the sample-dependent estimate ÿ̂�. TWAS does not 36 

model the uncertainty in ÿ̂�, treating it as a fixed quantity. It therefore cannot be interpreted as testing 37 

the true genetic covariance cov(ÿ� , ÿ�), for the following two reasons.  38 

First, cov(ÿ̂� , ÿ�) is offset from cov(ÿ� , ÿ�) by an error term Δ, ie. cov(ÿ̂� , ÿ�) =39  cov(ÿ� , ÿ�) + Δ. But because ÿ̂� is fixed, so is Δ, and therefore under the TWAS null hypothesis of  40 cov(ÿ̂� , ÿ�) = 0, the true genetic covariance cov(ÿ� , ÿ�) equals 2Δ rather than 0. Second, the failure 41 

to model the uncertainty in ÿ̂� means an important source of sampling variance is ignored, resulting 42 

in underestimation of the standard errors. Interpreted as a test of  cov(ÿ� , ÿ�), TWAS would thus test 43 

the wrong null value using an underdispersed sampling distribution (Figure 1), resulting in a downward 44 

bias in p-values and inflated type 1 error rates (see Supplemental Information - Mathematical structure 45 

of TWAS). 46 

By way of analogy, this can be likened to using a single sample t-test to compare the means of 47 

a variable between two groups, testing the null hypothesis that the true population mean of one group 48 

is equal to the sample mean of the other group, rather than testing equality of the two true population 49 

means. This disregards that the sample mean is subject to uncertainty, treating the other group as a 50 

population of interest rather than merely a sample drawn from one, and therefore cannot be 51 

interpreted as a valid test of population-level differences. Similarly, like this sample mean, the 52 cov(ÿ̂� , ÿ�) tested by TWAS is an inherently sample-dependent quantity, meaning that we cannot 53 

draw any population-level conclusions by testing its value.  54 

This raises the question whether there are any valid and informative interpretation of 55 

significant TWAS results. And indeed there are considerable limits on which biologically relevant 56 

conclusions can be drawn from TWAS, because the estimate ÿ̂� merely represents a weighted sum of 57 

the SNPs in Ā. If we substitute ÿ̂� = Āÿ�� in equation (2) we obtain 58 

 59 

 ā = Āÿ��Ā + ÿ�, (4) 

 60 

which shows that TWAS reduces to a constrained version of the general multiple regression model 61 

shown in (3), with coefficient vector ÿ� proportional to weight vector ÿ��, ie. ÿ� = ÿ��Ā. The TWAS null 62 

hypothesis Ā = 0 implies the multiple regression null hypothesis ÿ� = 0⃗ , and vice versa. Thus, like 63 

multiple regression, TWAS ultimately only provides a test of whether the SNPs in Ā are jointly 64 
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associated with ā, and therefore does not warrant any conclusions about a role of gene expression in 65 

those genetic associations (see Supplemental Information - Relation to joint association testing). 66 

The modelling of uncertainty in eQTL estimates has occasionally been mentioned in TWAS 67 

literature1,14,23,24, but implications for the validity of the TWAS framework have received little scrutiny. 68 

Although the CoMM14 method does explicitly model this uncertainty, due to the model structure it still 69 

suffers from very similar issues as other TWAS methods (see Supplemental Information - Comparison 70 

with CoMM). Note that other methods like colocalization25,26 and Mendelian Randomization27–29 may 71 

address this issue within the context of their own respective frameworks, but as these have different 72 

aims and make different assumptions their evaluation is beyond the scope of this paper. 73 

To evaluate the severity of the issues that arise when interpreting TWAS as testing genetically 74 

mediated relationships between gene expression and phenotype, we performed extensive simulations 75 

and applied TWAS to real data. To serve as a reference, we used the local genetic correlation analysis 76 

in LAVA8, which directly tests the true genetic covariance cov(ÿ� , ÿ�). To simplify comparison, we 77 

implemented TWAS analysis inside the LAVA framework, using the same preprocessing and test 78 

statistic as for the local genetic correlation analysis, ensuring that the only difference between the two 79 

analyses is the null model being evaluated (see Methods - LAVA implementation of TWAS). 80 

Gene expression and phenotype values were simulated under a null model of no genetic 81 

covariance (cov(ÿ� , ÿ�) = 0), separately varying the levels of local genetic signal for each (see 82 

Methods - Primary simulations). In these simulations we found strongly inflated type 1 error rates for 83 

TWAS (Figure 2), with the inflation decreasing with greater eQTL signal strength or sample size, but 84 

increasing with the phenotype9s genetic signal strength. The inflation also gets progressively worse at 85 

lower significance thresholds (Figure 3). Running two other TWAS implementations, FUSION7 and 86 

CoMM14, through these simulation, we observed largely the same pattern of results (Supplemental 87 

Figures 1 and 2). Error rates for local genetic correlation were well-controlled (Supplemental Figure 1). 88 

See Supplemental Information - Simulation results for further discussion. 89 

To gauge the impact of this issue for real data, we applied both TWAS and local genetic 90 

correlation analysis to GWAS of five well-powered phenotypes30–33 (see Methods - Data and Methods 91 

- Real data analysis), with eQTL data for 49 different tissues from GTEx34 (v8). Only 51% of significant 92 

TWAS associations were confirmed by the local genetic correlation analyses (Table 2), showing that 93 

when used to detect genetic relations with gene expression, TWAS yields a very high rate of uncertain 94 

and likely spurious associations. 95 

Additional empirical simulations were performed to gain insight into the type 1 error rates of 96 

TWAS in a real data context. For each phenotype, individual null simulation were run for each 97 

previously analysed gene-tissue pair, using the same SNPs and levels of genetic association observed 98 

in the real data (see Methods - Empirical error rate simulations). These simulations show that the type 99 
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1 error rate inflation is highly variable across genes and tissues (Table 3). Consistent with the earlier 100 

simulations, the level of inflation decreases as the eQTL signal gets stronger, but increases with 101 

stronger genetic associations for the phenotype (Supplemental Figure 3). See Supplemental 102 

Information - Simulation results for additional discussion. 103 

 Finally, to evaluate the impact of the eQTL-specific weighting in TWAS, we ran additional 104 

analyses on the real data for genes and tissues where no genetic association with gene expression was 105 

present (see Methods - Real data analysis). Despite the resulting ÿ�� thus essentially being random 106 

noise, these analyses still yielded large numbers of significant associations (Supplemental Table 1), 107 

further illustrating that significance in a TWAS analysis is not inherently related to eQTL-related 108 

information contained in the weights. 109 

As we have shown, TWAS is unsuitable for testing genetic relations between gene expression 110 

and phenotypes, due to its failure to account for the uncertainty in the estimated gene expression, 111 

yielding severely inflated false positive rates when used for this purpose. Because of this, and since the 112 

null hypothesis evaluated by TWAS depends on a sample-specific quantity, the extent to which 113 

informative conclusions can be drawn from significant TWAS results are very limited. Investigating 114 

genetic expression-phenotype relationships thus requires more robust methods that can account for 115 

all the uncertainty in the data and can provide meaningful effect size estimates, such as local genetic 116 

correlation analysis methods like LAVA.     117 
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Methods 118 

 119 

Outline of TWAS framework 120 

The general TWAS framework consists of a two-stage procedure, based on the equations  121 

 122 

 � = Āÿ� + �� , (1) 

 123 

and 124 

 125 

 ā = ÿ̂�Ā + ÿ� (2) 

 126 

also given in the main text. For ease of notation, we have omitted model intercepts and covariates 127 

from these equations, but in practice these will usually be included. An alternative model may also be 128 

used rather than the linear regression in equation (2), such as a logistic regression if the phenotype is 129 

dichotomous. 130 

For each gene and tissue, equation (1) is first fitted to the eQTL data to obtain the estimated 131 

weight vector ÿ��. This is then used to compute ÿ̂� in the target GWAS sample in the second stage, and 132 

plugged into the linear model in equation (2). A p-value is then obtained by performing a test on the 133 

coefficient Ā. Note that usually the second stage is only performed for genes and tissues that exhibit 134 

sufficient genetic association in the eQTL data. This second stage can also be rewritten in terms of 135 

GWAS summary statistics, allowing TWAS to be performed without having direct access to the GWAS 136 

sample (see also Supplemental Information - Mathematical structure of TWAS). In this case a genotype 137 

matrix Ā obtained from a separate reference sample is used to estimate LD.  138 

 Which SNPs are included in Ā varies, but a common choice is to use all available SNPs within 139 

one megabase of the transcription region of the gene. Although for simplicity the same genotype 140 

matrix Ā is used in equation (1) and (2), there will be separate Ā genotype matrices for each sample. 141 

The analysis is therefore restricted to using only those SNPs that are available in both samples, as well 142 

as in the LD reference sample when using summary statistics as input.  143 

 In practice equation (1) cannot be fitted with a traditional multiple linear regression model, 144 

due to the high LD between SNPs (leading to extreme collinearity), and the number of SNPs typically 145 

exceeding the sample sizes of eQTL data. Some form of regularization in the regression model is 146 

therefore required to obtain ÿ��, and consequently one of the main discrepancies between TWAS 147 

implementations is the specific regularization used (see Table 1). In some cases, rather than fitting 148 

equation (1), the elements of ÿ�� are simply set to the marginal SNP effect estimates instead.  149 
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Note that some methods20–22 diverge from this linear model structure (Table 1, non-linear 150 

models). Statistically these can be seen as generalizations of the TWAS framework, though 151 

conceptually they can no longer be interpreted as imputing the genetic component of gene expression. 152 

See Supplemental Information - Non-linear TWAS models for more details. 153 

 154 

 155 

Local genetic correlation 156 

The LAVA implementation of local genetic correlation analysis has been described in detail in Werme 157 

et al. (2021)8. In brief, LAVA uses summary statistics and a reference genotype sample to fit equations 158 

(1) and (3), obtaining estimates of ÿ�� and ÿ�� as well as a corresponding sampling covariance matrix 159 

for each (a logistic regression equivalent is used for binary phenotypes). To do so, a singular value 160 

decomposition for Ā is computed, pruning away excess principal components to attain regularization 161 

of the models and allowing them to be fitted. To accommodate the small sample sizes in the eQTL 162 

data, the pruning procedure from the original LAVA approach was adapted by capping the maximum 163 

number of principal components to be retained at 75% of the eQTL sample size for each tissue. 164 

With the pruned and standardized principal component matrix ÿ = Ā� (with � the 165 

transformation matrix projecting the genotypes onto the principal components), we can write ÿ� =166 ÿā� and ÿ� = ÿā�, where ā� and ā� are the genetic effect size vectors for these principal 167 

components. Their estimates ā�� and ā�� can be used to obtain ÿ�� and ÿ�� by reversing the 168 

transformation through �, such that ÿ�� = �ā�� and ÿ�� = �ā��, with the projection to the principal 169 

components effectively providing a form of regularization in the estimation of ÿ� and ÿ�. In practice 170 

however, LAVA is defined and implemented directly in terms of ā� and ā� and its estimates, rather 171 

than working with ÿ� and ÿ� explicitly. 172 

For ease of notation, we define the combined matrix ÿ = (ÿ� , ÿ�) = ÿā for the genetic 173 

components, with combined effect size matrix ā = (ā� , ā�). We denote the effect sizes for a single 174 

principal component � as ā�, corrresponding to the �th row of ā, and denote the number of principal 175 

components as �. 176 

The estimates ā�� and ā�� are obtained by reconstructing multiple linear regressions from the 177 

input summary statistics (see Werme et al. (2021) for details). This uses two separate equations of the 178 

form � = ÿā� + Ā� and ā = ÿā� + Ā�, analogous to equations (1) and (3) but regressing on ÿ 179 

rather than Ā, with residual variances ā�2  and ā�2 for  Ā� and Ā�. From these models we have estimates 180 

of the form ā�� = (ÿĀÿ)−1ÿĀ� = ����−1 (since ÿĀÿ = ā�(� 2 1), with ā� the size � identity matrix) 181 

and similarly ā�� = ����−1, with corresponding sampling distributions ā��  ~ MVN(ā� , ��2ā) and 182 
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ā�� ~ MVN(ā�, ��2ā), where ��2 = ��2�−1 and ��2 = ��2�−1 are the sampling variances (ie. squared standard 183 

errors).  184 

For principal component � we therefore have ā��  ~ MVN(ā�, Σ), where the diagonal elements 185 

of Σ are ��2 and ��2 and the off-diagonal elements are 0 (in the general case the off-diagonal elements 186 

represent the sampling covariance resulting from sample overlap, but this is not present in the analyses 187 

in this study). Since for the covariance matrix of ÿ we have cov(ÿ) = ����−1 = �������−1 = āĀā, it follows 188 

that inference on cov(ÿ) can be performed using the sampling distributions for ā��  and ā�� directly. 189 

Using this model, separate univariate tests of joint association of the SNPs in Ā with � and ā 190 

can be performed, testing the null hypotheses ā� = 0⃗  and ā� = 0⃗  respectively (using standard linear 191 

regression F-test for continuous phenotypes (such as gene expression), or a �2 test for binary 192 

phenotypes). This is equivalent to testing the local genetic variances, a prerequisite for the analysis 193 

since genetic covariance can only exist in a genomic region where there both phenotypes exhibit some 194 

degree of genetic variance. 195 

From the above distributions it follows that the expected value �[ā�Āā�] = āĀā + �Σ, and we 196 

can therefore use the method of moments to estimate cov(ÿ) as cov� (ÿ) = ā�Āā� 2 �Σ. Since in the 197 

present analyses there is assumed to be no sample overlap, the off-diagonal elements of Σ are 0, and 198 

for the estimate for the genetic covariance therefore reduces to cov� (ÿ� , ÿ�) = ā��Āā��. The matrix ā�Āā� 199 

has a non-central Wishart sampling distribution, which is used to obtain p-values to test cov(ÿ� , ÿ�) =200 0 using a simulation procedure (see Werme et al. (2021) for details).  201 

 202 

 203 

LAVA implementation of TWAS 204 

To construct a TWAS model within the LAVA framework, we note that in a linear regression for 205 

equation (2) we have Ā̂ = cov� (�̂�,�)var� (�̂�) . Since var� (ÿ̂�) is considered fixed in TWAS the sampling 206 

distribution of Ā̂ directly proportional to the distribution of cov� (ÿ̂� , ā) (which is the sample estimate 207 

of cov(ÿ̂� , ā)). As both ÿ̂� and ā have means of zero, and since ÿ̂� = ÿā��, we have cov� (ÿ̂� , ā) =208 �̂����−1 = ��������−1 = ā��Ā ����−1. As previously derived ā�� = ����−1, and it therefore follows that cov� (ÿ̂� , ā) =209 ā��Āā��, the distribution of which depends entirely on the sampling distribution of ā�� since ā�� is 210 

considered fixed. The distribution of cov� (ÿ̂� , ā) thus has the form N(ā��Āā�, ā��Āā����2). We note that 211 

analogous to its estimate, cov(ÿ̂� , ā) = ā��Āā�, and we therefore see that the distribution of the 212 

estimate cov� (ÿ̂� , ā) centers on the parameter cov(ÿ̂� , ā) it is intended to estimate. 213 
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What this shows is that we can use the same test statistic ā��Āā�� that is used in the local genetic 214 

correlation analysis to perform testing for the TWAS analysis as well, with the only difference being 215 

the sampling distribution against which this ā��Āā�� is compared to obtain the p-value. For the TWAS 216 

analysis, under the TWAS null hypothesis of cov(ÿ̂� , ÿ�) = 0, this is a normal distribution with mean 217 

of 0 and a variance of ā��Āā����2, which is used to compute the p-value. Note that this ā��Āā�� equals a 218 

weighted sum ∑ ā���ā����  of the estimated genetic associations with ā���. This implementation is 219 

therefore essentially equivalent to how TWAS is performed using GWAS summary statistics in other 220 

TWAS methods (eg. Gusev (2016)7), except defined in terms of the estimated genetic associations of 221 

principal component matrix ÿ rather than the original SNP genotype matrix Ā. 222 

 223 

 224 

Data 225 

The European panel of the 1,000 Genomes35 data (N = 503, as downloaded from 226 

https://ctg.cncr.nl/software/magma) was used as genotype reference data to estimate LD. For eQTL 227 

data we used the published cis-eQTL summary statistics from GTEx34 (v8, European subset), for 49 228 

different tissues. For every analysed gene, this covers all SNPs in the data within one megabase of the 229 

transcription start site. Genes were filtered to include only autosomal protein-coding and RNA genes, 230 

for a total 24,836 different genes across all tissues (note that not all genes were available for all 231 

tissues).  232 

 GWAS summary statistics were selected for five well-powered phenotypes, chosen to reflect 233 

a range of different domains. These were BMI (GIANT)30 (no waist-hip ratio adjustment), educational 234 

attainment (SSGAC)31, schizophrenia (PGC, wave 3)32, diastolic blood pressure (GWAS Atlas)33 and type 235 

2 diabetes (GWAS Atlas)33. Sample size and number of SNPs for each sample can be found in Table 2. 236 

 237 

 238 

Primary simulations 239 

Genotype data from the 1,000 Genomes data was used to perform the primary simulations, selecting 240 

ten blocks of 5,000 consecutive SNPs, each from a different chromosome. The sample size was scaled 241 

up by a factor 20 to obtain a sample size of 10,060 for use in the simulations. Per block, genotype data 242 

was projected onto standardized principal components ÿ, pruning away redundant components 243 

based on the cumulative genotypic variance explained by the components (retaining those that jointly 244 

explain 99% of the total variance). The local heritability of the gene expression and the phenotype 245 

were both independently varied, at values of 1%, 2%, 5% and 10% for a total of 16 conditions. Each 246 
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condition was repeated for 10,000 iterations per block, and type 1 error rates were computed per 247 

condition across the blocks, ie. 100,000 iterations per condition in total. 248 

For each iteration, true genetic effect sizes ā� and ā� for the principal components under the 249 

null hypothesis of cov(ÿ� , ÿ�) = 0 were generated by drawing values from a normal distribution from 250 

a normal distribution for each, then regressing one vector on the other and retaining only the residuals 251 

for the outcome vector to ensure that ā� and ā� were exactly independent. Simulated gene expression 252 

and phenotype values were then generated as � = ÿā� + �� and ā = ÿā� + ��, drawing the 253 

residuals �� and �� from normal distributions with variance parameters such that the expected 254 

explained variance equalled the desired local heritability for that condition. 255 

Effect size estimates ā�� and ā��, as well as estimates of the residual variance parameters, were 256 

then obtained by multiple regression of � and ā on ÿ. These were analysed with both the LAVA local 257 

genetic correlation model as well as the TWAS model implemented in the LAVA framework to obtain 258 

p-values. To evaluate the impact of a smaller sample size for the eQTL data, a second estimate ā��(1�)
 259 

of the eQTL effects using only 10% of the full simulation sample was obtained, and also analyzed using 260 

the TWAS model. 261 

To validate the implementation of the TWAS model, for each iteration an additional TWAS 262 

analysis was performed under the actual TWAS null model of cov(ÿ̂� , ÿ�) = 0. This was accomplished 263 

by generating a new vector ā� that was exactly independent of the ā�� already estimated for the 264 

iteration, then generating a new ā and estimating ā��(Ā��ÿ)
 as before and analysing this together with 265 ā�� using the TWAS model. 266 

Simulations were also performed for FUSION7 and CoMM14, using the same procedure but 267 

running only 1,000 iterations per condition (100 per block). For the eQTL weight estimation step in 268 

FUSION, heritability values were set to their true value for the condition rather than estimating them 269 

from the data, and both the elastic net and LASSO models were used. For CoMM, due to computational 270 

constraints only 1,000 SNPs could be used in the simulations. As an additional reference, the TWAS 271 

simulations using the implementation in LAVA were therefore repeated with only 1,000 SNPs as well.  272 

  273 

 274 

Real data analysis 275 

TWAS and local genetic correlation analyses were performed on the GWAS data as follows, separately 276 

for each of the five phenotypes. In all the analyses, SNP filtering was applied to remove all SNPs with 277 

a minor allele frequency below 0.5%, and only SNPs available in the 1,000 Genomes data, the GTEx 278 

data, and the GWAS sample for that phenotype were used. 279 
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For every gene-tissue pair, univariate analysis was first performed for that gene for both the 280 

gene expression and the phenotype, to determine the level of genetic association for each. Note that 281 

univariate p-values were only computed if the estimated genetic variances (that is, the diagonal 282 

elements of cov� (ÿ� , ÿ�)) were both positive. Bivariate analyses were then performed if both 283 

univariate p-values were below 0.05/24,836 (ie. Bonferroni-corrected for the number of genes).  284 

The significance threshold for the bivariate analyses was set separately for each phenotype, at 285 

a Bonferroni-correction for the total number of gene-tissue pairs for which bivariate analysis was 286 

performed for that phenotype (see Table 2). As the aim was to represent the level of TWAS and local 287 

genetic correlation result for a full analysis of a single phenotype, no further correction was applied 288 

across the phenotypes.  289 

In a secondary analysis, to evaluate inflation in the absence of gene expression signal. TWAS 290 

analysis was also performed for all gene-tissue pairs for which the univariate p-value of the gene 291 

expression was greater than 0.05. Filtering on the univariate p-value for the phenotype was maintained 292 

at the same 0.05/24,836 level. 293 

 294 

 295 

Empirical error rate simulations 296 

In addition to the primary simulations, we ran additional empirical simulations to estimate type 1 error 297 

rates per phenotype and per gene-tissue pair, at genetic association levels observed in the real data. 298 

This procedure is conceptually equivalent to the primary simulations as described above, but was 299 

optimized for computational feasibility as follows. 300 

 As noted above in the section Local genetic correlation, the matrix ā�Āā� on which the TWAS 301 

test statistic is based has a non-central Wishart sampling distribution when accounting for the 302 

uncertainty in the eQTL estimates, with its parameters dependent on cov(ÿ), Σ and �. Under the null 303 

hypothesis of cov(ÿ� , ÿ�) = 0 the off-diagonal elements of cov(ÿ) are 0 (as are those of Σ, as there 304 

is no sample overlap in the present analyses), and the diagonal elements of both cov(ÿ) and Σ are set 305 

to their corresponding estimates obtained from the local genetic correlation analysis output in the real 306 

data application.  307 

These diagonal elements of cov(ÿ) and Σ represent the genetic variance and residual variance, 308 

which together determine the relative level of detectable genetic association (separately for gene 309 

expression and the outcome phenotype), filling the role of the local heritability parameter in the 310 

primary simulations. As such, simulating based on these values provides type 1 error estimates at 311 

realistic levels of genetic association.  312 

The type 1 error rates are computed by generating 20 million draws of ā�Āā� for each gene-313 

tissue pair for each phenotype, then computing the corresponding TWAS p-values for each draw. Type 314 
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1 error rates for that gene-tissue pair are then computed as the proportion of iterations with p-value 315 

below the Bonferroni-corrected threshold used in the bivariate analyses for that phenotype (see Table 316 

2).  317 

By obtaining draws of ā�Āā� directly from this non-central Wishart distribution with parameters 318 

as specified above, the need to explicitly generate and analyse simulated � and ā is removed, 319 

considerably reducing the computational burden. Moreover, the simulation process was set up to 320 

allow the random draws to be shared across different gene-tissue pairs with different values for 321 cov(ÿ) and Σ but the same �, making it feasible to obtain separate simulations for each individual 322 

gene-tissue pair.   323 
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Table 1. Overview of available TWAS analysis methods. 

 

Method Weight estimationa Base model extensions 

Linear models   

Gamazon (2015)6 - PrediXcan Marginal 

LASSO 

Elastic net 

- 

Gusev (2016)7 - FUSIONb Top eQTL 

BLUP 

Bayesian LMM 

LASSO 

Elastic net 

- 

Mancuso (2017)10 - RhoGE BLUP - 

Barbeira (2018)11 - MetaXcan Marginal 

LASSO 

Elastic net 

- 

Su (2018)12 - MiST External Models additional variance component for genetic effects not 

mediated by predicted expression  

Hu (2019)13 - UTMOST Multivariate LASSO Simultaneously models multiple tissues during weight 

estimation 

Yang (2019)14 - CoMM Collaborative mixed model Estimates weights and associations with phenotype 

simultaneously in single model 

Mancuso (2019)15 - FOCUS External Models multiple genes at once, as well as additional pleiotropic 

genetic effects on phenotype 

Nagpal (2019)16 - TIGAR Dirichlet process regression Multivariate model with multiple outcome phenotypes 

Liu (2020)17 - T-GEN Spike & Slab Incorporates epigenetic information into weight estimation 

process 

Luningham (2020)18 - BGW-TWAS Spike & Slab Models additional trans-eQTL component 

Bhattacharya (2021)19 - MOSTWAS Elastic net 

BLUP 

Models additional components for trans-eQTL or other 

molecular phenotypes 

Non-linear models   

Xu (2017)20 - ASPU External Uses adaptive test combining sums of powers of score statistics 

for different powers (includes linear model) 

Zhang (2020)21 External Uses adaptive test combining linear model with sum of squared 

score statistics  

Tang (2021)22 - VC-TWAS External Uses sum of powers of score statistics instead of linear model 

LASSO: least absolute shrinkage and selection operator; BLUP: best linear unbiased predictor; LMM: linear mixed model 
a Multiple entries for a method denote different options; 8marginal9 refers to marginal SNP effect sizes being used as weights, 8external9 
means the method requires precomputed weights from an external source 
b The name 8FUSION9 and the LASSO and elastic net options for this method were added after publication of the Gusev (2016) paper 

 

 

 

 
Table 2. Summary of results of TWAS and local genetic correlation analyses of five phenotypes. 

Phenotype Sample sizea 

Number 

of SNPsb 

Number 

of tests 

Significance 

threshold 

Significant associations Significant genesc 

TWAS LAVA �ÿ Both TWAS LAVA �ÿ Both 

BMI30 807K 6.28M 84,567 5.91 × 10−7 2,227 1,098 1,094 1,400 695 693 

Blood pressure33 361K 5.94M 54,622 9.15 × 10−7 760 437 436 533 293 292 

Diabetes33 18.5K/366K 5.94M 18,967 2.63 × 10−6 320 144 142 209 114 112 

Educational 

attainment31 
766K 6.18M 45,160 1.11 × 10−6 846 499 499 514 292 292 

Schizophrenia32 67.4K/94.0K 6.08M 61,137 8.18 × 10−7 655 302 301 472 228 228 

Total     4,808 2,480 2,472 3,128 1,622 1,617 

% of TWAS      51.6% 51.4%  51.8% 51.7% 

Results were Bonferroni corrected per phenotype for the number gene-tissue pairs for which both the gene expression as well as the 

phenotype showed significant univariate genetic association at þ < 0.05/24,836 (see Methods - Real data analysis). �� denotes the local 

genetic correlation. 
a Showing case/control for binary phenotypes 
b After filtering for overlap with 1,000 Genomes and GTEx SNPs 
c Genes that showed significant association in at least one tissue 
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Table 3. Summary of type 1 error rate inflation estimates from empirical simulations for each individual gene-tissue pair, 

at Bonferroni-corrected significance threshold. 

Phenotype Mean Maximum 

Quantiles 

5% 25% Median 75% 95% 

BMI 60.2 45,898 1.44 4.23 10.5 29.6 196.5 

Blood pressure 12.5 1,317 1.26 2.95 6.23 12.5 41.0 

Diabetes 41.0 6,676 1.19 2.54 4.89 8.55 59.8 

Educational attainment 16.1 2,328 1.26 2.94 6.10 11.6 41.2 

Schizophrenia 20.3 6,263 1.28 3.18 6.73 13.9 56.6 

Type 1 error rate inflation is defined as the estimated error rate  divided by the significance threshold, computed at the Bonferroni-corrected 

significance thresholds listed in Table 2. 
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Figure 1. Illustration of distributions under the null hypothesis Ā�: ���(ÿ�, ÿ�) = �. Shown is an example of the 

distributions of the test statistic (for the LAVA TWAS implementation), scaled such that the true null distribution  has a variance 

of one. The true null distribution (red) is the true distribution of the test statistic under this Ā0, accounting for the uncertainty 

in eQTL estimates. The TWAS-assumed distribution is the sampling distribution that the TWAS model compares the same test 

statistic against to compute its p-value. As shown, the TWAS-assumed distribution has a smaller variance than the null 

distribution, resulting from the fact that it does not account for the uncertainty in ÿ̂�. Unlike the true null distribution it also 

does not center on 0, reflecting the fact that under the TWAS-assumed distribution �ý�(ÿ� , ÿ�) equals the error term 2� 

rather than 0 (see Supplemental Information - Mathematical structure of TWAS). The direction and degree to which this 

distribution is shifted away from 0 depends on the data, and will vary across genes and tissues. The areas corresponding to 

the p-value for a test statistic value of 1.96 have been shaded in, which gives a p-value of 0.05 for under the true null 

distribution but a p-value of 0.016 under the TWAS-assumed null. This shows that for the same observed value of the test 

statistic, the p-value computed by the TWAS model will be too low.  
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Figure 2. Results from primary simulations. Shown is the type 1 error rate (at significance threshold of 0.05) of the TWAS model relative to the null 

hypothesis of no genetic covariance (�ý�(ÿ� , ÿ�) = 0), at different levels of local heritability for outcome phenotype (horizontal axis) and gene 

expression (separate lines). Simulation sample size is 10,060 for the outcome phenotype, and either 10,060 (left) or 1,006 (right) for the eQTL data. 

As shown, the type 1 error rates become increasingly inflated at higher phenotype heritability as well as at lower gene expression heritability or sample 

size.  
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Figure 3. Type 1 error rate inflation as a function of significance threshold in primary simulations. Shown is the type 1 error 

rate inflation relative to the null hypothesis of no genetic covariance (�ý�(ÿ� , ÿ�) = 0), for different levels of ÿ; the error rate 

inflation is defined as the type 1 error rate divided by the significance rate ÿ, and equals 1 if the error rates are well-controlled. 

Results are for the same simulations as depicted in Figure 2 (left panel, with eQTL sample size of 10,060). As shown, the error 

rate inflation becomes progressively more pronounced as lower ÿ are used. 
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