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Abstract

Transcriptome-wide association studies (TWAS)*™, which aim to detect relationships between gene
expression and a phenotype, are commonly used for secondary analysis of genome-wide association
study (GWAS) results. Results of TWAS analyses are often interpreted as indicating a genetically
mediated relationship between gene expression and the phenotype, but because the traditional TWAS
framework does not model the uncertainty in the expression quantitative trait loci (eQTL) effect
estimates®’, this interpretation is not justified. In this study we outline the implications of this issue.
Using simulations, we show severely inflated type 1 error rates for TWAS when evaluating a null
hypothesis of no genetic relationship between gene expression and the phenotype. Moreover, in our
application to real data only 51% of the TWAS associations were confirmed with local genetic
correlation® analysis, an approach which correctly evaluates the same null. Our results thus
demonstrate that TWAS is unsuitable for investigating genetic relationships between gene expression
and a phenotype.
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Main text

TWAS is commonly presented as an alternative to differential gene expression analysis®, to study
relationships between gene expression and a phenotype. Since data containing both gene expression
levels and the phenotype is often unavailable, TWAS uses a separate sample to estimate genetic
associations of SNPs with gene expression (ie. eQTLs). It then imputes the gene expression in a GWAS
sample, and tests the association between this imputed expression and the phenotype.

This two-stage procedure is implemented as follows'®’. First, a model is specified for the

expression E of a particular gene

E:XQ(E+€E, (1)

where X denotes the genotype matrix of SNPs local to that gene and & the residual, while G = Xay
reflects the genetic component of its expression captured by those SNPs. This model is fitted to a
sample with expression data to obtain an estimated weight vector &.

Second, the imputed genetic component GE = X@&g is computed in the GWAS sample for the

phenotype of interest Y. Then, a linear regression model of the form

Y = GEB + &y, (2)

with coefficient § and residual &y, is used to test the relationship between Gy and the phenotype.
Essentially all TWAS methods have this structure (though often requiring only GWAS summary

6.7.10-22 (see Table

statistics), but they differ in their implementation, particularly in how @ is estimated
1). Note that the presentation here is simplified for the sake of brevity, see Methods - Outline of TWAS
framework for details.

This TWAS framework is generally interpreted as testing the genetically mediated relationship
between gene expression levels and the phenotype. We can mathematically quantify this relation as

the covariance cov(Gg, Gy) of the true genetic components of E and Y, where Gy is defined analogous

to Gg in equation (1), such that

Y=Xay +¢y =Gy + &y, (3)

with Gy = Xay. Estimate G is seen as imputing Gg, and since the analysis is entirely based on the

SNPs in X, equation (2) must therefore specifically fit the genetic relation between G and Y. And
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indeed, coefficient 8 is a direct function of the covariance cov(Gg, Y), and plugging in equation (3) this
yields cov(@E, Y) = cov(@E, Gy) + cov(@E,Ey) = cov(@E,Gy) (since &y is independent of X, and
therefore of Gg). In other words, testing § = 0 is equivalent to testing cov(@E, Gy) =0.

However, whereas the true genetic covariance cov(Gg, Gy) is a population-level parameter,
the cov(Gp, Gy) tested by TWAS is a function of the sample-dependent estimate Gg. TWAS does not
model the uncertainty in @E, treating it as a fixed quantity. It therefore cannot be interpreted as testing
the true genetic covariance cov(Gg, Gy), for the following two reasons.

First, cov(@E, Gy) is offset from cov(Gg,Gy) by an error term A, ie. cov(@E, Gy) =
cov(Gg, Gy) + A. But because Gy, is fixed, so is A, and therefore under the TWAS null hypothesis of
cov(@E, Gy) = 0, the true genetic covariance cov(Gg, Gy) equals —A rather than 0. Second, the failure
to model the uncertainty in GE means an important source of sampling variance is ignored, resulting
in underestimation of the standard errors. Interpreted as a test of cov(Gg, Gy), TWAS would thus test
the wrong null value using an underdispersed sampling distribution (Figure 1), resulting in a downward
bias in p-values and inflated type 1 error rates (see Supplemental Information - Mathematical structure
of TWAS).

By way of analogy, this can be likened to using a single sample t-test to compare the means of
a variable between two groups, testing the null hypothesis that the true population mean of one group
is equal to the sample mean of the other group, rather than testing equality of the two true population
means. This disregards that the sample mean is subject to uncertainty, treating the other group as a
population of interest rather than merely a sample drawn from one, and therefore cannot be
interpreted as a valid test of population-level differences. Similarly, like this sample mean, the
cov(@E,Gy) tested by TWAS is an inherently sample-dependent quantity, meaning that we cannot
draw any population-level conclusions by testing its value.

This raises the question whether there are any valid and informative interpretation of
significant TWAS results. And indeed there are considerable limits on which biologically relevant
conclusions can be drawn from TWAS, because the estimate Gz merely represents a weighted sum of

the SNPs in X. If we substitute Gz = X@ in equation (2) we obtain

szaE‘B‘ng, (4)

which shows that TWAS reduces to a constrained version of the general multiple regression model
shown in (3), with coefficient vector ay proportional to weight vector @, ie. ay = @gf. The TWAS null

hypothesis § = 0 implies the multiple regression null hypothesis ay = 6, and vice versa. Thus, like

multiple regression, TWAS ultimately only provides a test of whether the SNPs in X are jointly
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associated with Y, and therefore does not warrant any conclusions about a role of gene expression in
those genetic associations (see Supplemental Information - Relation to joint association testing).

The modelling of uncertainty in eQTL estimates has occasionally been mentioned in TWAS
literature®%2324 but implications for the validity of the TWAS framework have received little scrutiny.
Although the CoMM!* method does explicitly model this uncertainty, due to the model structure it still
suffers from very similar issues as other TWAS methods (see Supplemental Information - Comparison

with CoMM). Note that other methods like colocalization?>?® and Mendelian Randomization?’-2°

may
address this issue within the context of their own respective frameworks, but as these have different
aims and make different assumptions their evaluation is beyond the scope of this paper.

To evaluate the severity of the issues that arise when interpreting TWAS as testing genetically
mediated relationships between gene expression and phenotype, we performed extensive simulations
and applied TWAS to real data. To serve as a reference, we used the local genetic correlation analysis
in LAVA8, which directly tests the true genetic covariance cov(Gg, Gy). To simplify comparison, we
implemented TWAS analysis inside the LAVA framework, using the same preprocessing and test
statistic as for the local genetic correlation analysis, ensuring that the only difference between the two
analyses is the null model being evaluated (see Methods - LAVA implementation of TWAS).

Gene expression and phenotype values were simulated under a null model of no genetic
covariance (cov(Gg, Gy) = 0), separately varying the levels of local genetic signal for each (see
Methods - Primary simulations). In these simulations we found strongly inflated type 1 error rates for
TWAS (Figure 2), with the inflation decreasing with greater eQTL signal strength or sample size, but
increasing with the phenotype’s genetic signal strength. The inflation also gets progressively worse at
lower significance thresholds (Figure 3). Running two other TWAS implementations, FUSION’ and
CoMM*, through these simulation, we observed largely the same pattern of results (Supplemental
Figures 1 and 2). Error rates for local genetic correlation were well-controlled (Supplemental Figure 1).
See Supplemental Information - Simulation results for further discussion.

To gauge the impact of this issue for real data, we applied both TWAS and local genetic
correlation analysis to GWAS of five well-powered phenotypes®32 (see Methods - Data and Methods
- Real data analysis), with eQTL data for 49 different tissues from GTEx3* (v8). Only 51% of significant
TWAS associations were confirmed by the local genetic correlation analyses (Table 2), showing that
when used to detect genetic relations with gene expression, TWAS yields a very high rate of uncertain
and likely spurious associations.

Additional empirical simulations were performed to gain insight into the type 1 error rates of
TWAS in a real data context. For each phenotype, individual null simulation were run for each
previously analysed gene-tissue pair, using the same SNPs and levels of genetic association observed

in the real data (see Methods - Empirical error rate simulations). These simulations show that the type
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100 1 error rate inflation is highly variable across genes and tissues (Table 3). Consistent with the earlier
101 simulations, the level of inflation decreases as the eQTL signal gets stronger, but increases with
102 stronger genetic associations for the phenotype (Supplemental Figure 3). See Supplemental
103  Information - Simulation results for additional discussion.

104 Finally, to evaluate the impact of the eQTL-specific weighting in TWAS, we ran additional
105  analyses on the real data for genes and tissues where no genetic association with gene expression was
106  present (see Methods - Real data analysis). Despite the resulting @y thus essentially being random
107 noise, these analyses still yielded large numbers of significant associations (Supplemental Table 1),
108  further illustrating that significance in a TWAS analysis is not inherently related to eQTL-related
109 information contained in the weights.

110 As we have shown, TWAS is unsuitable for testing genetic relations between gene expression
111 and phenotypes, due to its failure to account for the uncertainty in the estimated gene expression,
112  vyielding severely inflated false positive rates when used for this purpose. Because of this, and since the
113 null hypothesis evaluated by TWAS depends on a sample-specific quantity, the extent to which
114 informative conclusions can be drawn from significant TWAS results are very limited. Investigating
115 genetic expression-phenotype relationships thus requires more robust methods that can account for
116  all the uncertainty in the data and can provide meaningful effect size estimates, such as local genetic

117  correlation analysis methods like LAVA.
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118 Methods
119
120 Outline of TWAS framework

121  The general TWAS framework consists of a two-stage procedure, based on the equations

122

E =Xag + ¢, (1)
123
124  and
125

Y =G + &y (2)
126

127 also given in the main text. For ease of notation, we have omitted model intercepts and covariates
128 from these equations, but in practice these will usually be included. An alternative model may also be
129 used rather than the linear regression in equation (2), such as a logistic regression if the phenotype is
130  dichotomous.

131 For each gene and tissue, equation (1) is first fitted to the eQTL data to obtain the estimated
132 weight vector @. This is then used to compute G in the target GWAS sample in the second stage, and
133 plugged into the linear model in equation (2). A p-value is then obtained by performing a test on the
134 coefficient 5. Note that usually the second stage is only performed for genes and tissues that exhibit
135  sufficient genetic association in the eQTL data. This second stage can also be rewritten in terms of
136  GWAS summary statistics, allowing TWAS to be performed without having direct access to the GWAS
137  sample (see also Supplemental Information - Mathematical structure of TWAS). In this case a genotype
138 matrix X obtained from a separate reference sample is used to estimate LD.

139 Which SNPs are included in X varies, but a common choice is to use all available SNPs within
140 one megabase of the transcription region of the gene. Although for simplicity the same genotype
141 matrix X is used in equation (1) and (2), there will be separate X genotype matrices for each sample.
142  The analysis is therefore restricted to using only those SNPs that are available in both samples, as well
143  asinthe LD reference sample when using summary statistics as input.

144 In practice equation (1) cannot be fitted with a traditional multiple linear regression model,
145 due to the high LD between SNPs (leading to extreme collinearity), and the number of SNPs typically
146 exceeding the sample sizes of eQTL data. Some form of regularization in the regression model is
147  therefore required to obtain @z, and consequently one of the main discrepancies between TWAS
148 implementations is the specific regularization used (see Table 1). In some cases, rather than fitting

149 equation (1), the elements of & are simply set to the marginal SNP effect estimates instead.
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150 Note that some methods?®?2 diverge from this linear model structure (Table 1, non-linear
151 models). Statistically these can be seen as generalizations of the TWAS framework, though
152 conceptually they can no longer be interpreted as imputing the genetic component of gene expression.
153  See Supplemental Information - Non-linear TWAS models for more details.

154

155

156  Local genetic correlation

157  The LAVA implementation of local genetic correlation analysis has been described in detail in Werme
158  etal. (2021)8. In brief, LAVA uses summary statistics and a reference genotype sample to fit equations
159 (1) and (3), obtaining estimates of &z and &y as well as a corresponding sampling covariance matrix
160  for each (a logistic regression equivalent is used for binary phenotypes). To do so, a singular value
161 decomposition for X is computed, pruning away excess principal components to attain regularization
162  of the models and allowing them to be fitted. To accommodate the small sample sizes in the eQTL
163 data, the pruning procedure from the original LAVA approach was adapted by capping the maximum
164  number of principal components to be retained at 75% of the eQTL sample size for each tissue.

165 With the pruned and standardized principal component matrix W = XR (with R the
166  transformation matrix projecting the genotypes onto the principal components), we can write Gy =
167 Wy and Gy = Wyy, where Yz and yy are the genetic effect size vectors for these principal
168  components. Their estimates 75 and Py can be used to obtain &z and &, by reversing the
169  transformation through R, such that &; = Ry and @y = Ryy, with the projection to the principal
170  components effectively providing a form of regularization in the estimation of ay and ay. In practice
171  however, LAVA is defined and implemented directly in terms of yz and yy, and its estimates, rather
172 than working with ag and ay explicitly.

173 For ease of notation, we define the combined matrix G = (Gg, Gy) = Wy for the genetic
174  components, with combined effect size matrix y = (yg, ¥y). We denote the effect sizes for a single
175 principal component j as y;, corrresponding to the jth row of y, and denote the number of principal
176 components as K.

177 The estimates y; and 7y are obtained by reconstructing multiple linear regressions from the
178 input summary statistics (see Werme et al. (2021) for details). This uses two separate equations of the
179 form E = Wyg + (g and Y = Wy, + {y, analogous to equations (1) and (3) but regressing on W

180  rather than X, with residual variances n2 and nZ for {z and {y. From these models we have estimates
T
181  oftheformyy; = WTW)WTE = % (since WTW = I (N — 1), with I the size K identity matrix)

T
182  and similarly )7Y=M with corresponding sampling distributions 7z ~ MVN(yg,0ZI) and

N-1’
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183 Py ~ MVN(yy, 0¢1), where 7 = TITél and g = Nn—_‘z’l are the sampling variances (ie. squared standard
184 errors).

185 For principal component j we therefore have )7j ~ MVN()/]-,Z), where the diagonal elements
186  of X are g and o and the off-diagonal elements are 0 (in the general case the off-diagonal elements

187 represent the sampling covariance resulting from sample overlap, but this is not present in the analyses

o . . . ¢Te _ yTwTwy T. -
188 in this study). Since for the covariance matrix of G we have cov(G) = il A AL follows
189  thatinference on cov(G) can be performed using the sampling distributions for 7z and 7y directly.

190 Using this model, separate univariate tests of joint association of the SNPs in X with E and Y

191  can be performed, testing the null hypotheses y; = 0 and Yy = 0 respectively (using standard linear
192 regression F-test for continuous phenotypes (such as gene expression), or a 2 test for binary
193 phenotypes). This is equivalent to testing the local genetic variances, a prerequisite for the analysis
194  since genetic covariance can only exist in a genomic region where there both phenotypes exhibit some
195  degree of genetic variance.

196 From the above distributions it follows that the expected value E[p7#] = yTy + K%, and we
197  can therefore use the method of moments to estimate cov(G) as cov(G) = #79 — KZ. Since in the
198 present analyses there is assumed to be no sample overlap, the off-diagonal elements of ¥ are 0, and
199  for the estimate for the genetic covariance therefore reduces to cov(Gg, Gy) = 7L Py. The matrix 79
200  hasanon-central Wishart sampling distribution, which is used to obtain p-values to test cov(Gg, Gy) =
201 0 using a simulation procedure (see Werme et al. (2021) for details).

202

203

204  LAVA implementation of TWAS

205 To construct a TWAS model within the LAVA framework, we note that in a linear regression for

cov(Gg,Y)

vary) " Since Var(GE) is considered fixed in TWAS the sampling

206  equation (2) we have B =

207 distribution of[? directly proportional to the distribution of cﬁ\v(@E, Y) (which is the sample estimate

208  of COV(GE,Y)). As both G and Y have means of zero, and since Gz = W7y, we have C/CR/(CA;E,Y) =

¢ty _ptwTy . rwTy

209 N-1_ N-1  TE pN-1

. As previously derived ¥y = IIAV/—Z, and it therefore follows that c/o\V(GAE, Y) =
210  $Ly, the distribution of which depends entirely on the sampling distribution of 7y since 7 is
211 considered fixed. The distribution of cov(Gg,Y) thus has the form N(PLyy, 7£7z0¢). We note that
212  analogous to its estimate, COV(GE, Y) = 9Lyy, and we therefore see that the distribution of the

213 estimate c’o\v((fE, Y) centers on the parameter cov(@E, Y) it is intended to estimate.
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214 What this shows is that we can use the same test statistic 7 7y that is used in the local genetic

215  correlation analysis to perform testing for the TWAS analysis as well, with the only difference being
216  the sampling distribution against which this #27, is compared to obtain the p-value. For the TWAS
217 analysis, under the TWAS null hypothesis of cov(@E, Gy) = 0, this is a normal distribution with mean
218  of 0 and a variance of 7£7z0#, which is used to compute the p-value. Note that this %7y equals a
219 weighted sum Zj}?Ej}?yj of the estimated genetic associations with y;. This implementation is
220  therefore essentially equivalent to how TWAS is performed using GWAS summary statistics in other
221  TWAS methods (eg. Gusev (2016)), except defined in terms of the estimated genetic associations of
222 principal component matrix W rather than the original SNP genotype matrix X.

223

224

225 Data

226  The European panel of the 1,000 Genomes® data (N = 503, as downloaded from

227 https://ctg.cncr.nl/software/magma) was used as genotype reference data to estimate LD. For eQTL

228 data we used the published cis-eQTL summary statistics from GTEx3* (v8, European subset), for 49
229 different tissues. For every analysed gene, this covers all SNPs in the data within one megabase of the
230  transcription start site. Genes were filtered to include only autosomal protein-coding and RNA genes,
231  for a total 24,836 different genes across all tissues (note that not all genes were available for all
232 tissues).

233 GWAS summary statistics were selected for five well-powered phenotypes, chosen to reflect
234  arange of different domains. These were BMI (GIANT)?*® (no waist-hip ratio adjustment), educational
235  attainment (SSGAC)3!, schizophrenia (PGC, wave 3)3, diastolic blood pressure (GWAS Atlas)* and type
236 2 diabetes (GWAS Atlas)®. Sample size and number of SNPs for each sample can be found in Table 2.
237

238

239  Primary simulations

240  Genotype data from the 1,000 Genomes data was used to perform the primary simulations, selecting
241 ten blocks of 5,000 consecutive SNPs, each from a different chromosome. The sample size was scaled
242 up by a factor 20 to obtain a sample size of 10,060 for use in the simulations. Per block, genotype data
243  was projected onto standardized principal components W, pruning away redundant components
244 based on the cumulative genotypic variance explained by the components (retaining those that jointly
245 explain 99% of the total variance). The local heritability of the gene expression and the phenotype

246 were both independently varied, at values of 1%, 2%, 5% and 10% for a total of 16 conditions. Each
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247 condition was repeated for 10,000 iterations per block, and type 1 error rates were computed per
248 condition across the blocks, ie. 100,000 iterations per condition in total.

249 For each iteration, true genetic effect sizes yr and yy for the principal components under the
250  null hypothesis of cov(Gg, Gy) = 0 were generated by drawing values from a normal distribution from
251  anormaldistribution for each, then regressing one vector on the other and retaining only the residuals
252  forthe outcome vector to ensure that yz and yy were exactly independent. Simulated gene expression
253  and phenotype values were then generated as E = Wyy + & and Y = Wyy + &, drawing the
254  residuals &z and &y from normal distributions with variance parameters such that the expected
255  explained variance equalled the desired local heritability for that condition.

256 Effect size estimates ¢ and y, as well as estimates of the residual variance parameters, were
257  then obtained by multiple regression of E and Y on W. These were analysed with both the LAVA local

258 genetic correlation model as well as the TWAS model implemented in the LAVA framework to obtain

259 p-values. To evaluate the impact of a smaller sample size for the eQTL data, a second estimate ?élK)

260 of the eQTL effects using only 10% of the full simulation sample was obtained, and also analyzed using
261  the TWAS model.

262 To validate the implementation of the TWAS model, for each iteration an additional TWAS
263  analysis was performed under the actual TWAS null model of cov(@E, GY) = 0. This was accomplished

264 by generating a new vector yy that was exactly independent of the ¥z already estimated for the

~(TWAS)

265 iteration, then generating a new Y and estimating 7, as before and analysing this together with
266 ¥ using the TWAS model.
267 Simulations were also performed for FUSION” and CoMM, using the same procedure but

268 running only 1,000 iterations per condition (100 per block). For the eQTL weight estimation step in
269  FUSION, heritability values were set to their true value for the condition rather than estimating them
270 from the data, and both the elastic net and LASSO models were used. For CoMM, due to computational
271 constraints only 1,000 SNPs could be used in the simulations. As an additional reference, the TWAS
272  simulations using the implementation in LAVA were therefore repeated with only 1,000 SNPs as well.
273

274

275 Real data analysis

276  TWAS and local genetic correlation analyses were performed on the GWAS data as follows, separately
277  for each of the five phenotypes. In all the analyses, SNP filtering was applied to remove all SNPs with
278 a minor allele frequency below 0.5%, and only SNPs available in the 1,000 Genomes data, the GTEx

279 data, and the GWAS sample for that phenotype were used.

10
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280 For every gene-tissue pair, univariate analysis was first performed for that gene for both the
281  gene expression and the phenotype, to determine the level of genetic association for each. Note that
282 univariate p-values were only computed if the estimated genetic variances (that is, the diagonal
283  elements of cov(Gg, Gy)) were both positive. Bivariate analyses were then performed if both
284 univariate p-values were below 0.05/24,836 (ie. Bonferroni-corrected for the number of genes).

285 The significance threshold for the bivariate analyses was set separately for each phenotype, at
286  a Bonferroni-correction for the total number of gene-tissue pairs for which bivariate analysis was
287 performed for that phenotype (see Table 2). As the aim was to represent the level of TWAS and local
288  genetic correlation result for a full analysis of a single phenotype, no further correction was applied
289 across the phenotypes.

290 In a secondary analysis, to evaluate inflation in the absence of gene expression signal. TWAS
291 analysis was also performed for all gene-tissue pairs for which the univariate p-value of the gene
292 expression was greater than 0.05. Filtering on the univariate p-value for the phenotype was maintained
293  atthe same 0.05/24,836 level.

294

295

296  Empirical error rate simulations

297 In addition to the primary simulations, we ran additional empirical simulations to estimate type 1 error
298 rates per phenotype and per gene-tissue pair, at genetic association levels observed in the real data.
299  This procedure is conceptually equivalent to the primary simulations as described above, but was
300 optimized for computational feasibility as follows.

301 As noted above in the section Local genetic correlation, the matrix 77 on which the TWAS
302  test statistic is based has a non-central Wishart sampling distribution when accounting for the
303 uncertainty in the eQTL estimates, with its parameters dependent on cov(G), £ and K. Under the null
304  hypothesis of cov(Gg, Gy) = 0 the off-diagonal elements of cov(G) are 0 (as are those of Z, as there
305 is no sample overlap in the present analyses), and the diagonal elements of both cov(G) and X are set
306 totheir corresponding estimates obtained from the local genetic correlation analysis output in the real
307  data application.

308 These diagonal elements of cov(G) and X represent the genetic variance and residual variance,
309 which together determine the relative level of detectable genetic association (separately for gene
310 expression and the outcome phenotype), filling the role of the local heritability parameter in the
311 primary simulations. As such, simulating based on these values provides type 1 error estimates at
312 realistic levels of genetic association.

313 The type 1 error rates are computed by generating 20 million draws of $77 for each gene-

314  tissue pair for each phenotype, then computing the corresponding TWAS p-values for each draw. Type
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315 1 error rates for that gene-tissue pair are then computed as the proportion of iterations with p-value
316 below the Bonferroni-corrected threshold used in the bivariate analyses for that phenotype (see Table
317 2).

318 By obtaining draws of #77 directly from this non-central Wishart distribution with parameters
319 as specified above, the need to explicitly generate and analyse simulated E and Y is removed,
320 considerably reducing the computational burden. Moreover, the simulation process was set up to
321  allow the random draws to be shared across different gene-tissue pairs with different values for
322  cov(G) and X but the same K, making it feasible to obtain separate simulations for each individual

323 gene-tissue pair.
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Table 1. Overview of available TWAS analysis methods.
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Method

Weight estimation?

Base model extensions

Linear models

Gamazon (2015)¢ - PrediXcan

Gusev (2016)7 - FUSIONP

Mancuso (2017)1° - RhoGE
Barbeira (2018)!! - MetaXcan
Su (2018)12 - MiST

Hu (2019)23 - UTMOST

Yang (2019)* - CoMM
Mancuso (2019)%5 - FOCUS

Nagpal (2019)16 - TIGAR
Liu (2020)27 - T-GEN

Luningham (2020)18 - BGW-TWAS
Bhattacharya (2021)° - MOSTWAS

Non-linear models

Xu (2017)20 - ASPU
Zhang (2020)2

Tang (2021)22 - VC-TWAS

Marginal
LASSO
Elastic net
Top eQTL
BLUP
Bayesian LMM
LASSO
Elastic net
BLUP
Marginal
LASSO
Elastic net
External

Multivariate LASSO
Collaborative mixed model
External

Dirichlet process regression
Spike & Slab

Spike & Slab

Elastic net
BLUP

External
External

External

Models additional variance component for genetic effects not
mediated by predicted expression

Simultaneously models multiple tissues during weight
estimation
Estimates weights and associations with phenotype

simultaneously in single model

Models multiple genes at once, as well as additional pleiotropic
genetic effects on phenotype

Multivariate model with multiple outcome phenotypes
Incorporates epigenetic information into weight estimation
process

Models additional trans-eQTL component

Models additional components for trans-eQTL or other
molecular phenotypes

Uses adaptive test combining sums of powers of score statistics
for different powers (includes linear model)

Uses adaptive test combining linear model with sum of squared
score statistics

Uses sum of powers of score statistics instead of linear model

LASSO: least absolute shrinkage and selection operator; BLUP: best linear unbiased predictor; LMM: linear mixed model
a Multiple entries for a method denote different options; ‘marginal’ refers to marginal SNP effect sizes being used as weights, ‘external’

means the method requires precomputed weights from an external source

® The name ‘FUSION’ and the LASSO and elastic net options for this method were added after publication of the Gusev (2016) paper

Table 2. Summary of results of TWAS and local genetic correlation analyses of five phenotypes.

Number Number Significance Significant associations Significant genes®
Phenotype Sample size®  of SNPsP of tests threshold TWAS LAVA 1 Both TWAS LAVA 1 Both
BMI30 807K 6.28M 84,567 591 x 1077 2,227 1,098 1,094 1,400 695 693
Blood pressure33 361K 5.94M 54,622 9.15x 1077 760 437 436 533 293 292
Diabetes33 18.5K/366K 5.94M 18,967 2.63x10°° 320 144 142 209 114 112
Educational 766K 618M 45160  1.11x 107 846 499 499 514 292 292
attainment3!
Schizophrenia3? 67.4K/94.0K 6.08M 61,137 8.18 x 1077 655 302 301 472 228 228
Total 4,808 2,480 2,472 3,128 1,622 1,617
% of TWAS 51.6% 51.4% 51.8% 51.7%

Results were Bonferroni corrected per phenotype for the number gene-tissue pairs for which both the gene expression as well as the
phenotype showed significant univariate genetic association at p < 0.05/24,836 (see Methods - Real data analysis). r; denotes the local

genetic correlation.

2 Showing case/control for binary phenotypes
b After filtering for overlap with 1,000 Genomes and GTEx SNPs
¢ Genes that showed significant association in at least one tissue
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Table 3. Summary of type 1 error rate inflation estimates from empirical simulations for each individual gene-tissue pair,
at Bonferroni-corrected significance threshold.

Quantiles
Phenotype Mean Maximum 5% 25% Median 75% 95%
BMI 60.2 45,898 1.44 4.23 10.5 29.6 196.5
Blood pressure 12.5 1,317 1.26 2.95 6.23 12.5 41.0
Diabetes 41.0 6,676 1.19 2.54 4.89 8.55 59.8
Educational attainment 16.1 2,328 1.26 2.94 6.10 11.6 41.2
Schizophrenia 20.3 6,263 1.28 3.18 6.73 13.9 56.6

Type 1 error rate inflation is defined as the estimated error rate divided by the significance threshold, computed at the Bonferroni-corrected
significance thresholds listed in Table 2.
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Figure 1. lllustration of distributions under the null hypothesis Hy: cov(Gg, Gy) = 0. Shown is an example of the
distributions of the test statistic (for the LAVA TWAS implementation), scaled such that the true null distribution has a variance
of one. The true null distribution (red) is the true distribution of the test statistic under this H,, accounting for the uncertainty
in eQTL estimates. The TWAS-assumed distribution is the sampling distribution that the TWAS model compares the same test
statistic against to compute its p-value. As shown, the TWAS-assumed distribution has a smaller variance than the null
distribution, resulting from the fact that it does not account for the uncertainty in Gy. Unlike the true null distribution it also
does not center on 0, reflecting the fact that under the TWAS-assumed distribution cov(Gg, Gy) equals the error term —A
rather than 0 (see Supplemental Information - Mathematical structure of TWAS). The direction and degree to which this
distribution is shifted away from 0 depends on the data, and will vary across genes and tissues. The areas corresponding to
the p-value for a test statistic value of 1.96 have been shaded in, which gives a p-value of 0.05 for under the true null
distribution but a p-value of 0.016 under the TWAS-assumed null. This shows that for the same observed value of the test
statistic, the p-value computed by the TWAS model will be too low.
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Figure 2. Results from primary simulations. Shown is the type 1 error rate (at significance threshold of 0.05) of the TWAS model relative to the null
hypothesis of no genetic covariance (cov(Gg, Gy) = 0), at different levels of local heritability for outcome phenotype (horizontal axis) and gene
expression (separate lines). Simulation sample size is 10,060 for the outcome phenotype, and either 10,060 (left) or 1,006 (right) for the eQTL data.
As shown, the type 1 error rates become increasingly inflated at higher phenotype heritability as well as at lower gene expression heritability or sample
size.
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Figure 3. Type 1 error rate inflation as a function of significance threshold in primary simulations. Shown is the type 1 error
rate inflation relative to the null hypothesis of no genetic covariance (cov(Gg, Gy) = 0), for different levels of a; the error rate
inflation is defined as the type 1 error rate divided by the significance rate a, and equals 1 if the error rates are well-controlled.
Results are for the same simulations as depicted in Figure 2 (left panel, with eQTL sample size of 10,060). As shown, the error
rate inflation becomes progressively more pronounced as lower « are used.
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