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Abstract
Bacterial specialized metabolites are a proven source of antibiotics and cancer
therapies, but whether we have sampled all the secondary metabolite chemical
diversity of cultivated bacteria is not known. We analysed ~ 170,000 bacterial
genomes and ~ 47,000 metagenome assembled genomes (MAGs) using a modified
BiG-SLiCE and the new clust-o-matic algorithm. We found that only 3% of the
natural products potentially encoded in bacterial genomes have been experimentally
characterized. We show that the variation of secondary metabolite biosynthetic
diversity drops significantly at the genus level, identifying it as an appropriate
taxonomic rank for comparison. Equal comparison of genera based on Relative
Evolutionary Distance revealed that Streptomyces bacteria encode the largest
biosynthetic diversity by far, with Amycolatopsis, Kutzneria and Micromonospora also
encoding substantial diversity. Finally we find that several less-well-studied taxa,
such as Weeksellaceae (Bacteroidota), Myxococcaceae (Myxococcota),
Pleurocapsa and Nostocaceae (Cyanobacteria), have potential to produce highly
diverse sets of secondary metabolites that warrant further investigation.

Introduction
Specialized metabolites (also called secondary metabolites) are biomolecules that
are not essential for life but rather offer specific ecological or physiological
advantages to their producers allowing them to thrive in particular niches. These
Natural Products (NPs) are more chemically diverse than the molecules of primary
metabolism, varying in both structure and mode of action among different
organisms1. Historically, microbial NPs and their derivatives have contributed and
continue to contribute a substantial part of chemical entities brought to the clinic,
especially as anticancer compounds and antibiotics2–4. Regrettably, the emergence
of antibiotic-resistant pathogens3 concomitant to a stagnation of antimicrobial
discovery pipelines2,4 is leading to a global public health crisis3.

Nonetheless, genomics-based approaches to NP discovery5,6 have revealed a
largely untapped and much more diverse source of biosynthetic potential within
genomes3,7. These findings were possible following the discovery that bacterial
genes encoding the biosynthesis of secondary metabolites are usually located in
close proximity to each other, forming recognizable Biosynthetic Gene Clusters
(BGCs). However, while the numbers and kinds of BGCs clearly differ across
microbial genomes7,8 and metabolomic data indicate that some biosynthetic
pathways are unique to specific taxa9, a systematic analysis of the taxonomic
distribution of BGCs has not yet been performed. Similarly, while useful estimates of
the chemical diversity of specific taxa have been provided8, methodical comparisons
across taxa are lacking. Because of this, the scientific community appears undecided
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on the best strategy for natural product discovery: should the established known NP
producers be studied further or should the community be investigating underexplored
taxa7,10? A relatively recent question is how much chemical diversity is hidden in
uncultured bacteria. Metagenomic assembled genomes from uncultured bacteria
have demonstrated a big potential of unknown BGCs7. It is unclear to what extent
unexplored associated ecological niches and (micro)environments are also
associated with unique and unexplored chemistry.

Here, we harnessed recent advances in computational genomic analysis of BGCs to
survey the enormous amount of genome data accumulated by the scientific
community so far. Using a global approach based on more than 170,000 publicly
available genomes, we created a comprehensive overview of the biosynthetic
diversity found across the entire bacterial kingdom. We clustered 1,185,995 BGCs
into 62,449 Gene Cluster Families (GCFs), and calibrated the granularity of the
clustering to make it directly comparable to chemical classes as defined in NP
Atlas11. This facilitated an analysis of the variance of diversity across major
taxonomic ranks, which showed the genus rank to be the most appropriate to
compare biosynthetic diversity across homogeneous groups. This finding allowed us
to conduct comparisons within the bacterial kingdom. Evident patterns emerged from
our analysis, revealing popular taxa as prominent sources of both actual and
potential biosynthetic diversity, and multiple yet uncommon taxa as promising
producers.

Main text
Biosynthetic diversity of the bacterial kingdom

To assess the global number of Gene Cluster Families found in sequenced bacterial
strains, we ran AntiSMASH12 on ~170,000 genomes from the NCBI RefSeq
database13 (Supplementary Table 1), spanning 48 bacterial phyla containing 464
families (according to the Genome Taxonomy DataBase classification - GTDB14). We
also included almost 50,000 bacterial Metagenome Assembled Genomes (MAGs)
from 6 metagenomic projects of various origins15–20 (Table 1 and Supplementary
Table 1). To accurately group similar BGCs – which likely encode pathways towards
the production of similar compounds – into Gene Cluster Families (GCFs) across
such a large dataset, we used a slightly modified version of the BiG-SLiCE tool21,
which has been calibrated to output GCFs that match the grouping of known
compounds in the NP Atlas database11 (see Methods: Quantification of biosynthetic
diversity with BiG-SLiCE). The resulting GCFs were then used to measure
biosynthetic diversity across taxa.
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Table 1. Input datasets and biosynthetic diversity with different BiG-SLiCE cut-offs. The
“Complete Dataset” was used for the computation of the actual and potential biosynthetic diversity
found in all cultured (and some uncultured) bacteria. The dataset “RefSeq bacteria with known
species taxonomy” was used for pinpointing the emergence of biosynthetic diversity, for which
accurate taxonomic information was needed, and for identifying groups of promising producers. The
“T”s under Gene Cluster Families represent different BiG-SLiCE l2-normalized euclidean thresholds;
the values under T=0.4 stand out due to it being considered the most suitable cut-off. BGC to GCF
assignment for each threshold can be found in Supplementary Tables 2-5. *MAG sources: bovine
rumen15, chicken caecum16, human gut17, ocean18, uncultivated bacteria19, various sources20.

Dataset Genomes BGCs
Gene Cluster Families

T = 0.4 T = 0.5 T = 0.6 T = 0.7

Complete Dataset

All RefSeq bacteria 170,549 1,060,592 51,052 37,785 28,057 19,152

Bacterial MAGs* 47,098 125,403 21,354 - - -

Total 217,647 1,185,995 62,449 - - -

RefSeq bacteria
with known
species taxonomy

Complete Genomes 16,004 94,904 16,984 13,546 10,399 7,151

Draft Genomes 147,265 913,642 37,123 27,748 20,638 14,016

Total 163,269 1,008,546 41,870 31,237 23,227 15,766

The number of GCFs in RefSeq ranged from 19,152 to 51,052 depending on the
cut-off used by BiG-SLiCE (Table 1). While, as expected, the pure numbers of the
analysis changed based on the l2-normalized euclidean threshold, the overall
tendencies observed remained the same (Figure 1a, Supplementary Figure 1). The
effect that the chosen threshold has on these results presented a challenge to our
investigation, as previous estimations have also shown great heterogeneity when
different thresholds were used7,8, precluding direct comparisons of their predictions.
As each BGC can be considered a proxy for its encoded pathways and their
products, differing thresholds will result in different degrees of granularity in the
grouping of compound structures (Extended Data Figure 1). Nevertheless, linear
relationships are not always applicable, as shown previously22, and a specific
threshold will need to be set anyway to make comparisons possible. For this, we
sought to directly relate the choice of our BGC clustering threshold to the clustering
of their compound structures. NPAtlas, a database of known microbial small
molecules, provides hierarchical clustering of the compound structures via Morgan
fingerprinting and Dice similarity scoring11. As many as 947 compounds in NPAtlas
are mapped to a known BGC in MIBiG repository23, giving us the opportunity to use
them as an anchor for choosing our clustering threshold. After mapping the
BiG-SLiCE groupings of known BGCs from the MIBiG to the compound clusters in
NPAtlas (Supplementary Figure 2), we chose a threshold of 0.4, as it provided the
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most congruent agreements between the two groupings, with v-score=0.94 (out of
1.00) and ΔGCF=-17.

Figure 1. Biosynthetic diversity of the sequenced bacterial kingdom. Panel a: Bar plots of Gene
Cluster Families (GCFs, as defined by BiG-SLiCE) of nine most biosynthetically diverse genera using
different thresholds (T). The absolute number of GCFs changes from threshold to threshold, but the
general tendencies (highest to lowest GCF count) are consistent between them. Panel b: Rarefaction
curves of all RefSeq bacteria based on BiG-SLiCE (red) and based on clust-o-matic (orange), and
rarefaction curve of the Complete Dataset, which includes bacterial MAGs (blue), based on
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BiG-SLiCE. BiG-SLiCE GCFs were calculated with T=0.4. Clust-o-matic GCFs were calculated with
T=0.5. The solid lines represent interpolated and actual data, while the dotted lines represent
extrapolated data. The number of chemical classes documented in NPAtlas11, which come from
bacterial producers (gray dotted line - 2,487), corresponds to 2.5% - 3.3% of the predicted potential of
the bacterial kingdom (number of GCFs at 1.6 million genomes). The Y values (number of
extrapolated GCFs) at the right end of the graph are 97,760.12 (blue), 81,748.32 (red) and 72,411.11
(orange). Panel c: Venn Diagram of GCFs (as defined by BiG-SLiCE, T=0.4) of the bacterial RefSeq,
Minimum Information about a Biosynthetic Gene cluster (MIBiG23) and bacterial MAGs datasets. More
information on the MiBIG dataset can be found in Supplementary Table 6. About 53,4% of the GCFs
of MAGs are unique (blue shape) to this dataset.

This calibration of thresholds of GCFs to families of chemical structures allowed us
to perform a rarefaction analysis to assess how genomically encoded biochemical
diversity (expressed as the number of distinct GCFs) increases with the number of
sequenced and screened genomes (Figure 1b). The curve appears far from
saturated, while the slope is steeper still if the bacterial MAGs are included in the
analysis. When compared to the number of chemical classes documented in the
NPAtlas11 database (Figure 1b), it appears that, to date, only about 3% of the
kingdom’s biosynthetic diversity has been experimentally accessed.

In an attempt to evaluate the potential contribution of metagenomic data to Natural
Product (NP) discovery, we studied how many of the GCFs found in the MAGs
datasets were unique to this dataset (Figure 1c). Around 53,4% of GCFs in the
MAGs were not found in the RefSeq strains or in the Minimum Information about a
Biosynthetic Gene cluster database (MIBiG23). Paradoxically, in Figure 1b, the
contribution of MAGs does not reflect this finding, but this is most likely because the
metagenomic dataset is of limited size and does not cover the full microbial diversity
of the biosphere. An analysis of the uniqueness of GCFs found in different
environments, although only limited to one20 of the MAGs datasets, suggests that a
connection exists between the biogeography of microbiomes and the uniqueness of
their biosynthetic diversity, as the majority of GCFs (74.43 %) are biome-specific
(Extended Data Figure 2, Supplementary Table 7).The latter finding is concordant
with recent proof that most genes have a strong biogeography signal24.

Variation in biosynthetic diversity drops at genus level

To identify the most promising bacterial producers, it is important to compare them at
a specific taxonomic level. Several studies indicate that there is significant
discontinuity in how BGCs are distributed across taxonomy: ‘lower’ taxonomic ranks
like species within a genus carry more similar biosynthetic diversity, than ‘higher’
taxonomic ranks like phyla within a kingdom. To assess which taxonomic rank is the
most appropriate to evaluate biosynthetic potential, we aimed to determine up to
which taxonomic level the biosynthetic diversity remains homogeneous within that
taxon. For this analysis, from our initial dataset, we left out the MAGs and only used
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the RefSeq bacterial strains as taxonomic assignment up to species rank (based on
GTDB14) was available only for the latter dataset(Table 1).

We first decorated the GTDB14 bacterial tree with GCF values from the BiG-SLiCE
analysis (Figure 2a), revealing the biosynthetic diversity found within currently
sequenced genomes at the phylum rank. It immediately stood out that biosynthetic
diversity was differently dispersed among the bacterial phyla, in accordance with
published data7,25. As expected for known NP producers, the phyla Proteobacteria
and Actinobacteria appeared particularly diverse8,26,27. However, these phyla are
amongst the most studied and therefore the most sequenced8,26,27, a bias that was
addressed later in the study.

Next, we examined whether the diversity of each phylum contributed to the domain’s
total diversity, or if there was overlap among them. For this reason, we depicted the
number of unique GCFs within each phylum, as well as the pairwise overlaps (Figure
2b). In most phyla, the vast majority (on average 73.81 ± 20.35%) of their GCFs
appeared to be unique to them and not found anywhere else. This is coherent with
the fact that HGT events, although relatively frequent for BGCs28, are much more
common among closely related taxa29.
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Figure 2. Comparison of biosynthetic diversity among phyla. Panel a: The Genome Taxonomy
DataBase (GTDB14) bacterial tree was visualized with iTOL30 v6.5.2, decorated with Gene Cluster
Families (GCFs) values (as defined by BiG-SLiCE at T=0.4), collapsed at the phylum rank and
accompanied by bar plot of GCFs in logarithmic scale (100 to 104). The number of genomes belonging
to each phylum is displayed next to the tree’s leaf nodes. Panel b: GCFs, as defined by BiG-SLiCE
(T=0.4), unique to phyla (solid shapes) and with pairwise overlaps between phyla (ribbons), visualized
with circlize31. Each phylum has a distinct color. Actinobacteriota (2) and Proteobacteria (40) seem
particularly rich in unique GCFs.

Once we obtained information on the diversity of different phyla, as well as the rest
of the major taxonomic ranks (classes, orders, families, genera, species), we
proceeded to determine from which taxonomic rank biosynthetic diversity levels no
longer show high variability. Therefore, we conducted a variance analysis that
included each taxonomic rank, from phylum to species. For each rank, the variance
value was computed based on the #GCFs values of immediately lower-ranked taxa
(see Methods: Variance Analysis). The distribution of these variance values for each
rank is visualized in Figure 3a.

There is a noticeable drop in the range of variance values for each rank, while
diversity becomes highly homogeneous at the species level (Figures 3a,b). The
plunge is most striking from the family to the genus level (Figure 3a), with even the
outliers all falling under the 103- line in the genus rank. Different species within a
genus are likely to display uniform biosynthetic diversity, while much dissimilarity is
observed between different genera belonging to the same family (Figure 3b).
Additional statistical analysis confirmed the significance of this observation
(Supplementary Figure 3) thus pinpointing, for the first time, the genus rank as the
most appropriate for comparative analyses.
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Figure 3. Relations of taxonomic levels to variability in biosynthetic diversity. Panel a: Modified
“raincloud plots”32 of major taxonomic ranks (X axis in logarithmic scale). Each boxplot represents the
dispersion of variance values of a certain taxonomic rank, computed from the number of Gene Cluster
Families (GCFs as defined by BiG-SLiCE at T=0.4) of the immediately lower rank. The boxplots’
center line represents the median value; the box limits represent the upper and lower quartiles.
Whiskers represent a 1.5x interquartile range. Points outside of the whiskers are outliers. Sample
sizes are: Phyla n=21, Classes n=33, Orders n=89, Families n=224, Genera n=1,607, Species
n=13,065. Jittered raw data points are plotted under the boxplots for better visualization of the values’
distribution. The red line connects the mean variance values of each rank. There is a noticeable drop
in dispersion of variance values from the family rank to the genus rank (see also Supplementary
Figure 3), indicating that the genera are suitable taxonomic groups to be characterised as diverse and
be compared to each other. Panel b: Biosynthetic diversity of various taxa, measured in absolute
numbers of distinct GCFs as defined by BiG-SLiCE (T=0.4) from currently sequenced genomes. Top
50 most diverse orders (1), Streptomycetales families (2), Streptomycetaceae genera (3), top 50 most
diverse Streptomyces species (4). The difference in variance is visible in the graphs 1,2,3, but
becomes homogeneous at the species level as is shown in graph 4.

Taxa that are sources of substantial biosynthetic diversity

The identification of the genus level as the most informative rank to measure
biosynthetic diversity across taxonomy paved the way for a comprehensive
comparative analysis of biosynthetic potential across the bacterial tree of life.
However, to be able to systematically compare diversity values among groups, said
groups need to be uniform. In this case, a common phylogenetic metric was
necessary. We chose Relative Evolutionary Divergence (RED) and a specific
threshold that was based on the GTDB’s range of RED values for the genus rank14 to
define REDgroups: groups of bacteria analogous to genera but characterized by
equal evolutionary distance (see Methods: Definition of REDgroups). Our
classification revealed the inequalities in within-taxon phylogenetic similarities among
the genera, with some being divided into multiple REDgroups (for example the
Streptomyces genus was split into 21 REDgroups: Streptomyces_RG1,
Streptomyces_RG2 etc.) and some being joined together with other genera to form
mixed REDgroups (for example Burkholderiaceae_mixed_RG1 includes the genera
Paraburkholderia, Paraburkholderia_A, Paraburkholderia_B, Burkholderia,
Paraburkholderia_E and Caballeronia). This disparity among the genera reaffirmed
the importance of defining the REDgroups as a technique that allowed for fair
comparisons among bacterial producers.

The resulting 3,779 REDgroups showed huge differences in biosynthetic diversity as
measured by the numbers of GCFs found in genomes sequenced from these groups
so far, with the maximum diversity at 3,339 GCFs, average at 17 GCFs and
minimum at 1 GCF. Nevertheless, the variance of diversity within the REDgroups
was even more uniform than in the genera (Supplementary Figure 4). Some of the
top groups (Extended Data Table 1, Supplementary Table 8) included known rich NP
producers, such as Streptomyces, Pseudomonas_E and Nocardia23,26,27,33.
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Although very informative, this analysis is biased because of large differences in the
number of sequenced strains among the groups, with the economically or medically
important strains having been sequenced more systematically than others. To
overcome this bias, rarefaction analyses were conducted for each REDgroup (Figure
4b, Supplementary Table 8), as performed in previous studies34,35. Additionally, to
examine how effectively this method overcomes the sequencing bias, a random
sampling approach was taken (see Methods: Random sampling), which showed
comparable results to the original analysis (Supplementary Table 9). With all the
information on REDgroups, and in order to provide a global overview of the actual
biosynthetic diversity and the potential number of GCFs, we modified and
complemented the bacterial tree from Parks et. al.14, as shown in Figure 4a
(Extended Data Figure 3). The dispersion of these values across the various phyla
can also be seen, with the exceptional outliers standing out: Streptomyces_RG1,
Streptomyces_RG2, Amycolatopsis_RG1, Kutzneria, and Micromonospora. All these
are groups known for their NP producers8,26,27,36 and they remain in the top (Extended
Data Table 1, Supplementary Table 8), seemingly having much unexplored
biosynthetic potential.

To ensure that our conclusions are not the product of algorithmic artifacts, we reran
the analysis using an alternative method of quantifying biosynthetic diversity, which
was developed independently, yet for the same purpose. This alternative approach,
called clust-o-matic, is based on a sequence similarity all-versus-all distance matrix
of BGCs and subsequent agglomerative hierarchical clustering in order to form
GCFs (see Methods: Quantification of biosynthetic diversity with clust-o-matic). Like
for BiG-SLiCE, we calibrated the threshold for clust-o-matic based on NP Atlas
clusters. When comparing the results (Figure 4c,d, Supplementary Table 8), despite
slight differences in absolute numbers, the two algorithms appeared to identify very
similar trends.
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Figure 4. Overview of actual and potential biosynthetic diversity of bacterial kingdom,
compared at REDgroup level. Panel a: GTDB14 bacterial tree up to REDgroup level, visualized with
iTOL30 v6.5.2, colour coded by phylum, decorated with barplots of actual (orange) and potential
(purple) Gene Cluster Families (GCFs), as defined by BiG-SLiCE (T=0.4). Top REDgroups with most
potential GCFs include the following: A: Streptomyces_RG1, B: Streptomyces_RG2, C:
Amycolatopsis_RG1, D: Kutzneria, E: Pseudomonas_E. Phyla known to be enriched in NP producers
are immediately visible (Actinobacteriota, Protobacteriota), with the most promising groups coming
from the Actinobacteriota phylum (the highest peak belongs to a REDgroup containing Streptomyces
strains). Simultaneously, within the underexplored phyla, there seems to be significant biosynthetic
diversity and potential. An interactive version of Figure 4a can be accessed online (Extended Data
Figure 3). Panel b: Rarefaction curves of REDgroups (BiG-SLiCE T=0.4). In panels b, c and d the
solid lines represent interpolated and actual data, while the dotted lines represent extrapolated data.
The letters “L”, “M” and “H” correspond to Low- (0-389 pGCFs), Medium- (390-649 pGCFs) and
High-diversity (more than 650 pGCFs) producers. The “L” range includes 3,737 REDgroups (shades
of green), the “M” range includes 22 (shades of yellow/orange), while the “H” range includes 20
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REDgroups (shades of red). The vast majority of REDgroups belong to the low-diversity producers
(the mean of all REDgroups’ pGCFs is 29). The labels of most promising REDgroups are indicated
(the letters a-e correspond to the peaks in panel a). Streptomyces strains are included in several of
them. Panel c: Rarefaction curves of the most promising REDgroups (BiG-SLiCE T=0.4). Panel d:
Rarefaction curves of the most promising REDgroups (clust-o-matic T=0.5). Though the exact
numbers differ, the similarities between the two methods are apparent.

Streptomyces, even when split into multiple REDgroups, is in the top groups both
based on the known biosynthetic diversity and based on the estimated potential
values. 5,908 (+103 Streptomyces_B, +39 Streptomyces_C, +16 Streptomyces_D)
GCFs appear to be unique to the group, even among other phyla (Figure 5a). This is
in agreement with previous studies investigating how much overlap there is among
the main groups of producers37. What is more, streptomycetes appear to be the
source of a good percentage of the biosynthetic diversity attributed to the
Actinobacteria phylum, as seen in Figure 5b.

However, taxa less popular for NP discovery also show promise, as was evidenced
by a comparison of our results with data from the NPASS database of Natural
Products38 (Figure 5c). Among the 20 overall most promising REDgroups we found
at least 6 groups that show promise but whose members are either not catalogued in
the database as NP sources or are connected to few (<15) known compounds:
Amycolatopsis_RG1, Kutzneria, Xanthobacteriaceae_mixed_RG1,
Mycolicibacterium_RG1, Nonomuraea, Kitasatospora_RG1. The
Amycolatopsis_RG1 group only includes three rare species: Amycolatopsis
antarctica, marina and nigrescens. Other promising REDgroups with very few known
producers include Cupriavidus (from Proteobacteria phylum),
Weeksellaceae_mixed_RG1 (from Bacteroidota phylum) and Pleurocapsa (from
Cyanobacteria phylum). More information about the promising underexplored taxa
can be found in Supplementary Table 8.
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Figure 5. Unique diversity in the known producer Streptomyces and promising potential of
less popular taxa. Panel a: Unique Gene Cluster Families (GCFs) as defined by BiG-SLiCE (T=0.4),
of phyla and Streptomyces (solid shapes) and pairwise overlaps of phyla - phyla and phyla -
Streptomyces (ribbons), visualized with circlize31. Each taxon has a distinct color. The smaller shapes
and ribbons represent smaller phyla that can be seen in Extended Data Figure 4. The genus
Streptomyces appears to have a very high amount of unique GCFs comparable to entire phyla, such
as Proteobacteria. Panel b: Unique GCFs as defined by BiG-SLiCE (T=0.4), of non-streptomycete
Actinobacteriota and all Streptomyces genera (solid shapes) and pairwise overlaps between
Actinobacteriota and Streptomyces (ribbons), visualized with circlize31. The Streptomyces genus, only
one of many belonging to the Actinobacteriota phylum, appears to be responsible for a big percentage
of the phylum’s unique diversity (see big pink ribbon). Panel c: Left: Potential (pGCFs) and actual
(GCFs) number of Gene Cluster Families as defined by BiG-SLiCE (T=0.4), of top 20 most promising
REDgroups. Right: number of Natural Products (NPs) found in the NPASS database38, that originate
from species included in each REDgroup. The REDgroups with few (< 15) to no known NPs
associated with them are marked with red stars on the right side of the graph. Several of the displayed
groups are in the latter category: Amycolatopsis_RG1, Kutzneria, Xanthobacteraceae_mixed_RG1

13

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2022. ; https://doi.org/10.1101/2021.08.11.455920doi: bioRxiv preprint 

https://paperpile.com/c/cw0ckX/gL8ed
https://paperpile.com/c/cw0ckX/gL8ed
https://paperpile.com/c/cw0ckX/NskvU
https://doi.org/10.1101/2021.08.11.455920
http://creativecommons.org/licenses/by/4.0/


(containing the genera Bradyrhizobium, Rhodopseudomonas, Tardiphaga and Nitrobacter),
Mycolicibacterium_RG1, Nonomuraea, Kitasatospora_RG1.

Discussion
Using two different algorithms, we mined deposited bacterial sequencing data to
identify Biosynthetic Gene Clusters (BGCs) and grouped them into gene cluster
families (GCFs) according to chemical families of encoded compounds. We identified
maximal emergence of the highest biosynthetic diversity close to the genus rank and
chose to further investigate analogous taxonomic groups (REDgroups). Rarefaction
analysis identified the highest biosynthetic potential and the most promising bacterial
taxa among many known diverse groups as well as multiple promising understudied
producers. To the best of our knowledge, this is the largest survey of secondary
metabolite production to date, and our study provides a reproducible pipeline to
underpin drug discovery efforts.

The biosynthetic capacity of the bacterial kingdom was previously assessed by
Cimermancic et. al.7, but the dataset analysed was 33,000 BGCs compared with the
1,185,995 BGCs we analysed. Additionally they used ClusterFinder, which is known
as a more exploratory identification tool7,39. Projects that exploit publicly available
genomic data are reliant on the quality of genomes sequenced as well as the
efficiency of available genome mining methods, which have some limitations40. For
instance, the study of GCF uniqueness among taxa may be affected by antiSMASH’s
imperfect BGC boundary prediction12. Even though BiG-SLiCE converts BGCs into
features based only on domains related to biosynthesis21, genomic context unrelated
to the biosynthetic pathway of a BGC could still have a role in the GCF assignment;
this issue cannot be fully addressed with currently available tools. However,
antiSMASH’s ability to discern cluster limits and detect BGCs from cultured strains
and MAGs is comparable to alternative tools, while its ability to predict different BGC
types is unparalleled41, as is apparent from its common use in Natural Product (NP)
research7,9,25,33,35,42. What is more, the fact that it is rule-based12 implies the possibility
of undetected types of clusters and increases the likelihood that our calculations
have underestimated the true biosynthetic potential of bacterial organisms.

Furthermore, our pipeline was the first to use the GTDB14 taxonomy for studying
global bacterial biosynthetic diversity. This enabled us to avoid misclassifications of
NCBI taxonomic placement43–46. The use of rarefaction curves allowed us to infer the
biosynthetic potential of bacterial groups, as done in some smaller-scaled
projects7,8,34,35. This method aims to enable fair comparisons among incomplete
samples47. However, while overestimation is not expected to happen, for those
groups that contain very few genomes, there is a tendency to underestimate their
potential capacity47. Hence, sequencing bias of popular taxa still affects our results.
We tried to minimize the bias within the pipeline as much as possible while retaining
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high diversity of bacterial taxa; therefore, we decided not to exclude REDgroups with
very few members from the dataset. We also ran an additional random sampling
analysis using the most populated REDgroups and confirmed the reproducibility of
our results. Nonetheless, the remaining bias will only be eliminated with the inclusion
of increased biodiversity in sequencing projects17,20.

Our analysis identified a plethora of unexplored taxonomic groups with substantial
biosynthetic potential9,10,48–50. At the same time, it revealed that undiscovered
biosynthetic diversity present in well-characterized NP producers. For example,
multiple Proteobacteria taxa were identified among the top producers:
Pseudomonas, Pseudoalteromonas, Paracoccus, Serratia among others. This is in
accordance with the known biosynthetic potential of the Proteobacteria phylum36.
Furthermore, we identified taxa that are less well represented in sequence
databases as being potentially useful sources of secondary metabolites, including
myxobacterial genera Cystobacter, Melittangium, Archangium, Vitiosangium,
Sorangium and Myxococcus9,33,51, and Chryseobacterium and Chryseobacterium_A52

from the Bacteroidota phylum. However, the most diverse groups of metabolites are
predicted to be produced by actinobacterial strains of well-known and well-studied
NP producers such as Actinoplanes, Amycolatopsis, Micromonospora,
Mycobacterium, Nocardia and Streptomyces8,26,27,37. These bacteria produce most of
the natural product antibiotics26 and our analysis confirms that recent analyses of
biosynthetic novelty in the genomes of rare actinobacteria suggest that there is still
much more natural product diversity to be discovered in this group as more
diversified strains get sequenced8,26,27,53.

Streptomyces is a genus of the Actinobacteria phylum that contains some of the
most complex bacteria that we know of, though by far not the most sequenced in our
dataset (Supplementary Figure 5). These bacteria have been known as NP
producers for a long time37, as single strains containing a high number of BGCs have
been discovered, taking up to 10% of their genome54. However, members of other
genera contain comparable absolute numbers of BGCs. This is the first time that a
systematic comparison of the diversity of the encoded compounds within bacterial
genera has been conducted, revealing how diverse Streptomyces are compared to
all others37. The factors that cause this taxonomic group to stand out are not
completely clear but probably related to their sophisticated lifestyle. Many
observations suggest that NP biosynthesis drives speciation within the Streptomyces
genus8. The exploration of factors that led to the rise of biosynthetic diversity in
Streptomyces to such an impressive degree will be the subject of further
investigations in the future.

Having the genomic capacity for the biosynthesis of secondary metabolites does not
always herald the discovery of a novel chemistry55,56. Sometimes, the bacterium in
question cannot be grown or BGCs are not expressed in laboratory
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conditions26,48,50,55,56. This issue is related to the complexity of BGCs; we have only
just scratched the surface of their intricate regulation and connection to primary
metabolism5,48,55,57. However, efforts to decode biosynthetic mechanisms for the
activation of silent clusters need to be tailored to specific producer groups26,27,56, such
as groups phylogenetically related to promising producers, e.g. members of the
Pseudonocardiaceae family (REDgroups Amycolatopsis_RG1 & Kutzneria in Figure
4, these and more REDgroups in Supplementary Table 8), partly on the grounds that
each phylum has unique diversity (Figure 2b).

Original approaches to the prioritization issue of NP research continue to emerge,
fuelled by the advances in metagenomics and computational tools that enable the
use of the biosynthetic potential of unculturable bacteria from environmental
samples58. Furthermore, apart from the few metagenomic projects whose MAGs we
incorporated in the first part of our analysis, there are multiple such projects publicly
available, some of which have been the focus of NP studies59. Although the
reconstruction of genomes from metagenomes remains a challenge60 and the
assembly will often miss BGCs61, which has indirectly prevented their comparison to
the cultured bacteria in the current project, metagenomics is proving a promising
source of information on NPs and their producers7,37,48,58,59, as made apparent in the
present investigation. We expect the effect of this field on NP research to become
more evident in the following years.

The collection of microbial data from a large variety of habitats points to another
interesting aspect, namely the relation between the biome of origin of the producers
and the uniqueness of their biosynthetic diversity. Although this connection has been
investigated to some extent24,25,35,36,50 drawing more definitive conclusions will require
the use of a wider-scale dataset and the availability of more detailed and
standardized metadata of producers’ genomes.

Our analysis provides a global overview of diverse known and promising
understudied NP-producing taxa. We expect this to greatly help overcome one of the
main bottlenecks of Natural Product discovery: the prioritization of producers for
research58.

Online Methods
BGC data set

We obtained 170,585 complete and draft bacterial genomes (Table 1) from RefSeq13

on 27 March 2020. Furthermore, a dataset of 47,098 MAGs was included in the first
part of the analysis (see Results: Biosynthetic diversity of the bacterial kingdom). For
the rest of the study, we used only 161,290 RefSeq bacterial genomes whose
taxonomic classification up to the species level was known (Table 1). All genomes
were analyzed with antiSMASH (version 5)12, which identified their BGCs
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(Supplementary Table 1). The entirety of the MIBiG23 database (accessed on 27
March 2020) was included in parts of our analysis (their IDs can be found in
Supplementary Table 6).

Taxonomic classification

Due to multiple indications regarding a lack of accuracy of NCBI's taxonomic
classification of bacterial genomes43–46, we chose to use the Genome Taxonomy
Database (GTDB14) instead. The bacterial tree of 120 concatenated proteins (GTDB
release 89), as well as the classifications of organisms up to the species level, were
included in the analysis.

Quantification of biosynthetic diversity with BiG-SLiCE

For a bacterium to be regarded as biosynthetically diverse, we considered not the
number of BGCs important, but rather how different these BGCs are to each other. In
order to quantify this diversity, we analyzed all BGCs with the new BiG-SLiCE tool21,
which groups similar clusters into Gene Cluster Families (GCFs). However, the first
version of this tool has an inherent bias towards multi-protein families BGCs,
producing uneven coverage between BGCs of different classes (i.e., due to their lack
of biosynthetic domain diversity, all lanthipeptide BGCs may be grouped together
using the Euclidean threshold of T=900, which in contrast is ideal for clustering
Type-I Polyketide BGCs). To alleviate this issue and provide a fair measurement of
biosynthetic diversity between the taxa, we modified the original distance
measurement by normalizing the BGC features under L^2-norm, which will produce
a cosine-like distance when processed by the Euclidean-based BIRCH algorithm.
This usage of cosine-like distance will virtually balance the measured distance
between BGCs with “high” and “low” feature counts (Supplementary Figure 6a), in
the end providing an improved clustering performance when measured using the
reference data of manually-curated MIBiG GCFs (Supplementary Figure 6b).

The GTDB14 (release 89) bacterial tree was pruned so that it included only the
organisms that are part of our dataset. Then, having both the taxonomic
classification of all bacteria, as well as how many GCFs their BGCs group into, the
pruned GTDB tree was decorated with #GCFs values at each node. This allowed for
the evaluation of the biosynthetic diversity of any clade, including the main
taxonomic ranks. To pick a single threshold for subsequent taxonomy richness
analysis, we compared BiG-SLiCE results on 947 MIBiG BGCs versus the
compound-based clustering provided by the NPAtlas database11 (Supplementary
Figure 2). A final threshold of T=0.4 was chosen based on its similarity to NPAtlas’s
compound clusters (V-score=0.9X, GCF counts difference=+XX).
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Quantification of biosynthetic diversity with clust-o-matic

We aimed to repeat and evaluate the reproducibility of the BGC-to-GCF
quantification step of BiG-SLiCE with an alternative, independently derived
algorithm. For that instead of grouping BGCs into GCFs based on biosynthetic
domain diversity, we developed an algorithm that considers full core biosynthetic
genes. Biosynthetic gene clusters that were detected in the input data by antiSMASH
5.1 were parsed to deliver core biosynthetic protein sequences. Those protein
sequences were subjected to all-against-all multi-gene sequence similarity search
with DIAMOND62 2.0 using default settings. Only one best hit per query core gene
per BGC was allowed divided by a total core protein length, resulting in the final
pairwise BGC score always being within range of 0 to 1. Pairwise BGC similarity
scores were used to build a distance matrix that was later subjected to
agglomerative hierarchical clustering in python programming language (package
scipy.cluster.hierarchy). The same process as described in the paragraph above (for
BiG-SLiCE in that case) was performed for identification of the most suitable
threshold for the clust-o-matic algorithm. The determined optimal threshold of 0.5
was then used to generate GCFs, which were then fed into the next steps in parallel
to the original set of GCFs obtained from BiG-SLiCE.

Biogeography Analysis

One20 of the MAGs datasets was accompanied by sufficient metadata that allowed
for a study of a potential connection between biosynthetic diversity patterns and the
biomes of origin of the corresponding MAGs. The GCFs for each ecosystem type
were collected by combining information from Supplementary Tables 1, 2 of this
project and from the Nayfach paper20 Supplementary Information. This led to the
creation of Supplementary Table 7. Then, the largest occurring intersections were
computed and visualised in Extended Data Figure 2 using the UpSet63 visualisation
technique.

Variance Analysis

In order to pinpoint the emergence of biosynthetic diversity, the within-taxon
homogeneity was compared among the main taxonomic ranks. For each rank, the
variance value was computed (with NumPy64) based on the #GCFs values of
immediately lower-ranked taxa, as long as there were at least two such taxa. For
example, a phylum that includes only one class in our dataset was omitted from this
computation. But a phylum with two or more classes would be assigned a variance
value computed from its classes’ #GCFs values. The distribution of these variance
values was plotted for each rank in Figure 3a. We noticed a significant reduction in
variance from the family to the genus rank, which was confirmed with an additional
statistical test (Supplementary Figure 3, Supplementary Methods). A similar variance
analysis was performed to compare genera and REDgroups (Supplementary Figure
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4) but in this case variance was calculated based on the strains’ biosynthetic
diversity.

Definition of REDgroups

To study the biosynthetic diversity of genera, we attempted to achieve uniform taxa.
The creators of GTDB used Relative Evolutionary Divergence (RED) for taxonomic
rank normalization14; it is a metric that relies heavily on the branch length of a
phylogenetic tree and is consequently dependent on the rooting. The GTDB
developers provided us with a bacterial tree decorated with the average RED values
of all plausible rootings at each node. Since GTDB accepts a range of RED values
for each taxonomic rank placement14, we chose the median of GTDB genus RED
values, namely 0.934, as a cutoff threshold. Any clade in the GTDB bacterial tree
with an assigned RED value higher than the threshold was considered one group
(Supplementary Figure 7) that we named "REDgroup". For REDgroup naming
conventions, see Supplementary Figure 7.

Rarefaction analysis

The extrapolation of potential #GCFs values was achieved by conducting rarefaction
analyses, by use of the iNEXT R package65. A GCF presence/absence table
(GCF-by-strain matrix) was constructed for each group considered and was then
used as "incidence-raw" data in the iNEXT main function, where 500 points were
inter- or extrapolated with an endpoint of 5000 for the REDgroups, and of 1.6 million
(about 8 times the number of strains in the Complete Dataset) in each group for the
RefSeq analyses (where 2000 points were inter- or extrapolated). By default, the
number of bootstrap replications is 50.

Random sampling

In order to test whether the above methods (creation of REDgroups and the
subsequent rarefaction analyses) overcome the inherent sequencing bias in our
dataset, a random sampling technique was used. A reduced dataset was tested that
included only those REDgroups containing at least 20 members. For each
REDgroup, a sample of 20 genomes was randomly chosen (using the Python
“random” module), while preserving the species diversity of the group. The latter was
achieved by ensuring that genomes belonging to as many species as possible are
included in each sample; if all species of a REDgroup were included but the
genomes were fewer than 20, the remaining “spots” were distributed evenly among a
random sample of the REDgroup’s species. One hundred iterations of this process
were calculated for all REDgroups in this reduced dataset and rarefaction analyses
were conducted for the random samples in each iteration. Finally, the average
potential GCFs (pGCFs) value for each REDgroup from all iterations was calculated
and reported in Supplementary Table 9.
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Identification of unknown producers

We investigated the genera included in the most promising REDgroups, to find out
whether they include species that are producers of known compounds. Hence, the
species names were cross-referenced with the species named as producers in the
NPASS depository38 (accessed on 15 October 2020), taking care to match the
GTDB-given names to the NCBI-given names that the database uses.

Data availability
The datasets generated and analyzed during the current study are available in the
following zenodo repository: https://doi.org/10.5281/zenodo.6365726.

Code availability
The clust-o-matic code is available here: https://github.com/Helmholtz-HIPS

The modified BiG-SLiCE script (that accepts as input a regular BiG-SLiCE output
folder, then outputs the GCF membership in a tsv file) is available both in our zenodo
repository (file name: perform_l2norm_clustering.py) and under the following link:
https://github.com/medema-group/bigslice/blob/master/misc/useful_scripts/perform_l
2norm_clustering.py

Supplementary information
Supplementary Methods and Figures
Supplementary Methods and Supplementary Figures 1-7 with their legends are
provided in an additional file.
Supplementary Table 1
Accession numbers, GTDB-based taxonomic information and BGC IDs of all
genomes from all datasets used in the analysis. MAG datasets: mag_uba19,
mag_humangut17, mag_chicken16, mag_bovine15, mag_ocean18, GEMS20. Available
in the zenodo repository.

Supplementary Table 2
BGC to BiG-SLiCE GCF assignment and centroid distance for T=0.4 (which proved
to be the most suitable threshold). Available in the zenodo repository.

Supplementary Table 3
BGC to BiG-SLiCE GCF assignment and centroid distance for T=0.5. Available in the
zenodo repository.

Supplementary Table 4
BGC to BiG-SLiCE GCF assignment and centroid distance for T=0.6. Available in the
zenodo repository.
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Supplementary Table 5
BGC to BiG-SLiCE GCF assignment and centroid distance for T=0.7. Available in the
zenodo repository.

Supplementary Table 6
BGC IDs, MiBIG IDs, producer GTDB-based taxonomic information and GCF
assignment (for BiG-SLiCE T=0.4) for all MiBIG BGCs included in the creation of
Figure 1C.

Supplementary Table 7
Biogeography analysis of the Nayfach MAGs dataset20. Number of genomes, BGCs,
GCFs and unique GCFs per ecosystem type (as defined in the corresponding
paper20).

Supplementary Table 8
REDgroup full metadata: Node IDs (can be used in the exploration of the tree in
Extended Data 3), labels, number of members, number of BGCs, number of GCFs
and potential GCFs (pGCFs) as defined by BiG-SLiCE (T=0.4) and clust-o-matic
(T=0.5), GTDB taxonomic information and number of products in the NPASS
database whose producer is a member of the REDgroup (NPASS_hits).

Supplementary Table 9
Comparison of random sampling analysis results to original results. The table
includes: Node IDs, labels, number of members, number of BGCs, number of GCFs
and potential GCFs (pGCFs) as defined by BiG-SLiCE (T=0.4), the original ranking
based on the pGCFs, the average pGCFs from all random sampling iterations, the
ranking based on the random sampling and GTDB taxonomic information.
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