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Abstract

Host-virus association data form the backbone of research into eco-evolutionary drivers of viral diversity
and host-level zoonotic risk. However, knowledge of the wildlife virome is inherently constrained by
historical discovery effort, and there are concerns that the reliability of ecological inference from host-
virus data may be undermined by taxonomic and geographical sampling biases. Here, we evaluate
whether current estimates of host-level viral diversity in wild mammals are stable enough to be
considered biologically meaningful, by analysing a comprehensive dataset of discovery dates of 6,571
unique mammal host-virus associations between 1930 and 2018. We show that virus discovery rates in
mammal hosts are still either constant or accelerating, with little evidence of declines towards viral
richness asymptotes in even highly-sampled hosts. Consequently, inference of relative viral richness
across host species has been unstable over time, particularly in bats, where intensified surveillance since
the early 2000s caused a rapid rearrangement of species’ ranked viral richness. Our results show that
comparative inference of host-level virus diversity across mammals is highly sensitive to even short-term
changes in sampling effort. We advise caution to avoid overinterpreting patterns in current data, since
our findings suggest that an analysis conducted today could feasibly draw quite different conclusions

than one conducted only a decade ago.
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Introduction

Pathogens are unevenly associated with hosts across the tree of life, and understanding the
coevolutionary processes that drive these patterns is important for both fundamental ecological and
health-motivated research. For example, data on how viral diversity is distributed across species and
geographies can provide insights into biogeographical trends and anthropogenic drivers of cross-species
transmission and disease emergence (1-3). Researchers have developed numerous hypotheses about the
mechanisms underlying differences in virus diversity across hosts, from broad macroevolutionary trends
(e.g., bats were found to be infected by a greater apparent diversity of viruses than other mammal orders
(4)) to narrower ecological associations (e.g., longer-lived bats living in larger groups host a greater
apparent diversity of viruses (5)). Such work frequently investigates the number of viruses known to
infect a given host species (i.e. viral richness), based on synthetic datasets of known host-virus

associations that are often compiled for this kind of hypothesis testing (4,6,7).

However, recent work has raised concerns that such datasets inspire false confidence in analytical
inferences. Although host-virus association datasets take an increasingly complete inventory of current
scientific knowledge (8), a substantial proportion of known viruses remain excluded due to long lead
times before official taxonomic recognition, which itself is not uniform across the virome (9). An even
greater proportion of the global virome remains completely undescribed (10,11), with current
knowledge strongly influenced by discovery strategies (12). There are concerns that these issues may
undermine inference about the distribution of zoonotic risk among host taxa (9), and indeed multiple
studies have shown that apparent patterns in zoonotic virus richness become insignificant after
correcting for total viral richness (13,14). Yet it remains unclear how this problem could impact more
basic scientific questions, including those concerning macroecological patterns in species-level viral

diversity.

In this study, we evaluate whether — given the limits of current data — host-level estimates of viral
diversity in mammals can be considered biologically meaningful based on their temporal consistency.
Even when a species’ total viral diversity has been ground-truthed using a combination of thorough
metagenomic sampling and rarefaction-based estimation (15), estimates suggest only ~3-7% of their
viruses are captured by existing host-virus association data (10). With such a small proportion of viruses
described, it seems plausible that comparative studies of viral diversity are using numbers that are both
subject to change and highly sensitive to differences in sampling strategies between different taxonomic

groups of hosts and viruses.
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91 We test this hypothesis by analysing a dataset of 6,571 mammal host-virus associations and their year of
92 discovery (defined as the earliest year that a virus was reported in association with a given host), which
93 represents a comprehensive inventory of known associations from 1930 to 2018 (Supp. Figure 1). Our
94 analyses focus on wild mammals, because the historical intensity of pathogen discovery effort on
95 domestic species could confound inference of broader trends across mammals (Supp. Figure 2). Firstly,
9  we examine virus accumulation curves to test whether current absolute viral richness estimates in well-
97 sampled orders and species are likely to be accurate, applying a test borrowed from research on parasite
98 biodiversity (16,17): richness estimates can only be taken as “stable” — and thus reflective of values close
99 to the truth — if accumulation curves have passed an inflection point towards an asymptote (18). In

100  contrast, if viral diversity is still accumulating exponentially, current estimates may have little correlation

101 to “true” (unknown) viral richness. Secondly, we evaluate the historical stability of relative viral richness

102 estimates across wild mammal host species, families and orders, by testing the rank correlation between

103 present-day and past estimates at annual timesteps. If the correlation of relative viral richness remains

104  fairly stable over time despite changes in sampling effort, this would suggest that species viromes have

10s  been sampled proportionally, and thus current data can (despite being incomplete) still provide

106 meaningful comparative information about macroecological patterns in viral diversity across mammals.

107

108  Methods

109

110 Mammal bost-virus association data over time. We accessed mammal host-virus records (1,277

111 mammal species and 1,756 viruses, of which 1,073 are currently ratified by the International

112 Committee on the Taxonomy of Viruses, ICTV) from a taxonomically-reconciled, dynamic, multi-

113 source database that is the most comprehensive data source for host-virus associations (VIRION;

14 https://github.com/viralemergence/virion). VIRION compiles data from several static data sources
115 (6), the NCBI Genbank database, and the USAID PREDICT project database (8). Here, we define a
116 host-virus association based on broad evidence of infection: either serological, PCR-based, or viral

117 isolation. Some records describe recently-discovered viral strains that are not yet resolved to species
118 level; to ensure these do not inflate viral richness estimates, we only included taxonomically-resolved
119 virus species, defined as either ratified by ICTV (n=1,073) or reconciled to the internal viral taxonomy
120  of the PREDICT project (n=683) (8).

121

122 We defined the “discovery year” for each unique host-virus pair (n=6,571), as the earliest year a given
123 virus was reported in a given host, based on either date of publication (for literature-based records),
124 accession (for NCBI Nucleotide and GenBank-based records), or sample collection (for records from
125 the USAID PREDICT database). The full database contains host-virus association data up to and

126 including 2021; however, novel association records become notably sparser after 2018 (Supp. Figure
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127 1), likely due to delays between viral sampling and full reporting, including taxonomic assignment (6).
128 We therefore excluded all post-2018 records, as such lags could bias inference about virus discovery

129 rate trends in recent years. To examine temporal trends in publication effort (a proxy for discovery

130 effort), for each host species we also extracted annual counts of virus-related publications (by searching
131 for host species binomial plus all known synonyms and “virus” or “viral”) from the PubMed database
132 using the R package ‘rentrez’ (19).

133

134 We visualised cumulative virus discovery curves and publication count trends over time at order-level
135 (Supp. Figures 2-3) and across all wild mammal species (Supp. Figure 4). With the exception of

136 individual species-level models (Supp. Figure 5), all subsequent analyses included wild species only

137 (n=1,246) and excluded domestic and common laboratory species, as these species have been subject to
138 very different discovery processes (Supp. Figure 2).

139

140 Modelling trends in viral discovery rates at order- and species-level. We modelled temporal trends in

141 viral discovery rates by fitting generalised additive models (GAM:s) to annual counts of viruses

142 discovered in a given taxon (1930-2018), and with a nonlinear trend of year fitted using penalised thin-
143 plate regression splines in ‘mgcv’ (20). We fitted viral discovery models at the order-level (including the
14 top 8 best-sampled mammal orders, which have the highest known viral richness: Cetartiodactyla,

145 Rodentia, Carnivora, Primates, Chiroptera, Lagomorpha, Perissodactyla and Eulipotyphla), and at the
146 species-level for the top 50 highest viral richness species in our dataset. Virus discovery counts were

147 modelled as a Poisson process for all orders, with the exception of Chiroptera, Rodentia and Primates,
148 which were modelled using a negative binomial likelihood due to high overdispersion in counts in

149 recent years (Figure 1). If discovery curves have reached an inflection point in any species or taxon, we
150 would expect to observe a consistent downward trend in discovery rates in recent years. To test this,

151 we identified time periods showing strong evidence of either an increasing or declining trend, defined
152 as periods during which the 95% confidence interval of the first derivative of the fitted spline does not
153 overlap zero. We also examined the sensitivity of inferences to more conservative definitions of viral

154  diversity by additionally conducting order-level analyses using either only ICTV-ratified virus species
155 or defining viral diversity at the genus level (Supp. Figure 6).

156

157 Evaluating the temporal stability of relative viral richness estimates across taxa. A key untested

158 assumption of most studies that leverage host-virus association data for ecological inference is that,

159 although the mammal virome remains largely uncharacterised, currently known differences in virome
160 composition between species (or higher taxonomic groupings) are nonetheless broadly representative
161 of “true” underlying patterns in viral diversity. If this were the case, estimated differences in relative

162 viral richness across taxa would be expected to stay relatively stable over time, even as discovery effort
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163 gradually fills the gaps in species-level virus inventories. Alternatively, unequal distribution of

164  sampling effort across species and time (for example, disproportionate focus on certain host groups of
16s  particular zoonotic interest) may severely impact this assumption (9), by causing instability and rapid
166 reordering of viral richness estimates across taxa. We tested this by calculating the rank correlation of
167 viral richness in 2018 to viral richness estimates in annual timesteps backward to 1960 (i.e. comparing
168 the similarity of each annual historical “snapshot” of viral richness to the final snapshot in the study
19 end year) using Spearman’s p. We conducted this analysis at several taxonomic levels, comparing viral
170 richness at the species level (across all mammal species, and separately within each of the key orders

171 listed above), and comparing two different metrics at family and order levels (total viral richness and
172 mean species-level viral richness). We visualised these as curves to examine stability over time. All

173 analyses were conducted in R 4.0.3 (R Core Team, 2020).

174

175 Results

176

177 Both cumulative discovery curves and fitted GAMs show that viral discovery in mammals is still in an
178 upward growth phase, with little evidence of discovery rates consistently declining towards zero or

179 viral richness reaching an asymptote for either domestic or wild species (Figure 1; Supp. Figure 2). This
180 trend is mirrored in virus-related publication counts, which are still exponentially increasing year-on-
181 year across most mammal orders and cover an increasingly broad species range over time (Supp. Figure
182 3). The GAM results show evidence for a general uptick in discovery rates at two main historical

183 junctures (Figure 1). Viral discovery rates first substantially increased during the 1960s, when

184 technological improvements — including density gradient centrifugation for viral isolation, and

185 establishment of the first human diploid fibroblast cell lines and the now-ubiquitous African Green
186 monkey kidney Vero cell line — facilitated industrial-scale production of viruses for research or

187 vaccines (21). Discovery rates again increased sharply throughout the 2000s, which coincided with

188 improvements in molecular techniques for detection and next generation sequencing, and with

189 growing funding for wildlife virus surveillance on zoonotic emergence prevention grounds following
190  the 2002 SARS-CoV epidemic (and a subsequent uptick in research and surveillance effort focused on
191 bats; Supp. Figure 3). The overall picture is the same at the species level, with the estimated mean

192 cumulative viral richness across all wild species still increasing exponentially (Supp. Figure 4) and little
193 evidence of discovery rates declining within even very highly-sampled species (many of which are

194  domestic; Supp. Figure 5). These overall trends are very similar when using several more conservative
195 definitions of viral richness (viral genera, ICTV-ratified viruses, or stricter detection criteria excluding
196 serologic detection; Supp. Figure 6).

197
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198 A consequence of this accelerating trend in virus discovery is that inference of relative viral richness

199 across species and higher taxonomic levels has been unstable over the last 60 years (Figure 2). Across all
200  mammals, there is a consistent, gradual temporal decay in rank correlation between present-day and

200 historical estimates of total viral richness, with species-level curves declining markedly more steeply

202 than those at higher taxonomic levels (dropping to p = 0.48 by 1991; Figure 2a). Estimates of mean

203 species-level viral richness at order and family levels (arguably a more relevant metric when considering
204 species contributions to community pathogen maintenance and transmission) are substantially more
205 effort-sensitive than total viral richness, showing much steeper declines (Figure 2a). Within well-

206 sampled mammal orders there is substantial variation in the historical stability of species-level relative
207 viral richness estimates, and results before 1970 become markedly more unstable due to data sparsity in
208 several orders (Figure 2b). Notably, within Chiroptera there has been an extremely rapid reordering of
200 species-level viral richness estimates since 2000 (declining to p=0.59 by 2010, and to p=0.28 by 2001)
210 asaconsequence of the ongoing uptick in research effort (Supp. Figure 3) and viral discovery rates

211 (Figure 1) that occurred after the emergence of SARS-CoV (22).

212

213 Discussion

214

215 Our results suggest that for the majority of mammal species, viral diversity metrics are still a shifting
216 target, and are largely reflective of historical sampling bias. Given that even the best-studied species do
217 not have fully characterized viromes, these estimates are likely to continue shifting in coming years.
218 Inference made on them, however, mightbecome canonical in the literature — and embed false narratives
219 about viral ecology - if these analyses are not repeated as the global virome becomes better described.
220 The situation might be improved by massively-coordinated, well-funded projects aiming to accelerate
221 viral discovery (11,23), provided sampling strategies are carefully designed to be taxonomically and
222 geographically representative. However, the rapid recharacterisation of the bat virome that has occurred
223 since the first SARS epidemic highlights a significant risk: if sampling strategies are primarily motivated
224 by either existing (zoonotic) viral diversity estimates or health security concerns linked to specific taxa,
225 such initiatives might only further decouple observed and true underlying viral diversity.

226

227 Indeed, the unprecedented general upward trend in wildlife virus discovery effort since 2000 has not
228  been uniformly distributed across taxa and geographical regions. Wild rodents and bats have been
229 particularly heavily sampled and show the highest instability in richness estimates. Ungulates
230  (artiodactyla and perissodactyla) are unique among taxa in that reported viral diversity among domestic
231 species exceeds that detected in wildlife (Supp. Figure 1). While this might reflect the unique ecology of
232 farmed livestock, it is more probable that the data reflect a bias toward sampling from livestock, which

233 poses fewer logistical hurdles than sampling from wild ungulates. Further, many viral discovery efforts
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234 focus on detection of targeted viral taxa (e.g. family-level consensus PCR) rather than unbiased
235 approaches that remain cost-prohibitive and analytically challenging. Such evolving detection biases -
236 including renewed efforts to identify bat betacoronaviruses following the emergence of SARS-CoV-2 -
237 could, for example, continue to reinforce the perception of certain host taxa as unusually virus-diverse,
238 although evidence for this remains inconclusive (13). Consequently, it is concerning that a broad
239 comparative study of correlates and geographical patterns of host-virus relationships conducted in 2000
240 mightfeasibly have drawn quite different conclusions than a similar study conducted in 2010 or in 2020.
241

242 The problem we have identified is not necessarily surprising to many virologists, who have historically
243 been more hesitant to make inference on these limited samples than disease ecologists, and have
244 encouraged particular caution with respect to inference about human health risks (9). Multiple studies
245 have found that correcting for undersampling undermines widespread assumptions about zoonotic risk
246 (13,14), and we suggest that future studies should similarly attempt to reject the null hypothesis that
247 downstream patterns of zoonotic risk are a neutral consequence of total observed viral diversity. Given
248 that present-day data are a tiny observed subset of the latent “true” host-virus network, there will also
249 likely be value in employing network- or measurement error-based methods that explicitly account for
250 observation biases in analyses of the wildlife virome (24). Overall, since current patterns of host-level
251 viral richness represent an unstable and biased snapshot of the mammal virome, we suggest that
252 inference from host-virus association data needs to be carefully qualified, and may not be a
253 comprehensive foundation for setting future agendas on viral zoonosis research or One Health policy.
254
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327 Figures

328

329 Figure 1: Virus discovery rates within well-sampled mammal orders are still either constant
33  or accelerating. Points show the number of novel viruses discovered per year (1930-2018) infecting
331 wild species of each of the top 8 most virus-diverse mammalian orders. Lines and shading show the
332 fitted temporal trend in virus discovery rate (mean and pointwise 95% confidence interval) estimated
333 using generalised additive models (see Methods). Line colour indicates time periods during which

334 there is either strong evidence of an upward (green) trend in discovery rates (95% confidence interval

335 of the first derivative of the fitted trend not overlapping zero) or no significant trend (blue).
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32 Figure 2. Estimates of relative viral richness across wild mammal taxa are unstable over time.
343 Curves show the rank correlation coefficient (Spearman’s p) between viral richness in 2018 (vertical
344 dashed line), and at annual intervals to 1960. Top panel shows curves for all wild mammals (A),

345 comparing viral richness at the species level (n=1,246), and both total viral richness (solid lines) and
346 mean species-level viral richness (dashed lines) within higher taxonomic groupings (order, n=21;

37 family, n=108) (A). Bottom panel shows separate curves of species-level viral richness within 6 major
38 mammalian orders (B; Artiodactyla, n=153 species; Carnivora, n=148; Chiroptera, n=307;

399 Lagomorpha, n=17; Primates, n=157; Rodentia, n=350). Curve shape denotes temporal stability or
350  instability of relative viral richness estimates across species/taxa; a sharper incline over a given period
351 corresponds to a faster rearrangement of ranked viral richness (i.e. greater instability) in response to

352 discovery effort.
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Supplementary Figures

Supplementary Figure 1: Historical trends in viral discovery in mammals from 1930 to 2021.
Top panel shows the annual total number of host-virus association records in the VIRION dataset
used for this analysis (see Methods). Bottom panel shows the number of novel host-virus associations
reported in each year (i.e. the year in which each unique association was reported for the first time;
n=6,571 in total). Point size represents the number of host species in which novel associations were
reported per-year. Novel associations show a general decline post-2018 despite the high number of
records overall; this discrepancy is likely in part due to lags between detection and reporting (including

ICTV ratification; see Methods), so the analyses in this paper only include data up to and including
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Supplementary Figure 2: Cumulative viral discovery curves for all mammalian orders linked

to at least one virus species in our data. Curves show cumulative viral richness over time across all

wild (blue) and domestic (green) species in each mammalian order. Numbers in parentheses denote

total known viral richness in each order in 2018, the cut-off date for inclusion in these analyses (Gibb
etal. 2021).
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Supplementary Figure 3: Trends in virus-related publication effort for the most-studied

mammalian orders. Points show the annual total number of virus-related publications recorded on

PubMed across all wild host species within our dataset (search: “species binomial AND virus OR

viral” across the timespan 1930-2018), summed to the order-level. Point size denotes the number of

species which had any virus-related publications in that year (i.e. the taxonomic breadth of publication

effort). Blue lines are fitted generalised additive model trends, shown for visualisation purposes.

Numbers in parentheses denote the total virus-related publications per order in 2018.
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Supplementary Figure 4: Overall trend in cumulative viral richness and virus-related
publication effort at the species-level. Lines and shaded ribbons show the average trend in
cumulative species-level viral richness, and virus-related publications from PubMed from 1930 to 2018
(mean and pointwise 95% confidence interval), across all wild mammal species in our dataset
(n=1,246). Trends were fitted to annual cumulative counts across all species using generalised additive
models with a negative binomial error distribution (to account for overdispersion in counts across

species) using ‘mgev’ (see Methods).
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Supplementary Figure 5: Fitted trends in viral discovery rates for the top 50 highest viral

richness mammal species. Points show the number of viruses discovered per year infecting the

named mammal species (including both domesticated and wild species), with plot titles showing its

total recorded viral richness as of 2018 (in parentheses). Lines and shading show the fitted temporal

trend in virus discovery rate (mean and pointwise 95% confidence interval) estimated using Poisson

generalised additive models (see Methods). Models were fitted to the time series of annual discovery

counts, starting at the year the first virus was reported in a species. Line colour indicates time periods

during which there is strong evidence of either an upward (green) or downward (yellow) trend in

discovery rates (95% confidence interval of the first derivative of the fitted trend not overlapping zero).
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465  Supplementary Figure 6: Order-level discovery trends under different taxonomic and

466  detection-based definitions of viral discovery. We repeated discovery curve analyses at mammal
467 order level (Figure 1) based on three alternative, more conservative definitions of viral discovery:

468 detection by either nucleic acid detection, live virus detection or isolation (i.e. excluding serologic

469 detections; A), ICTV-ratified virus species only (B) or viral genera (C) (see Methods for details of

470  generalised additive model fitting). The overall shape of discovery trends is very similar to those based
471 on all virus species (Figure 1), although upward trends under stricter detection criteria are generally
472 steeper (A) and rates in recent years for ICT V-ratified viruses are lower (B), likely due to delays

473 between virus identification and taxonomic ratification (see Introduction).
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