

1 **Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2
2 subunit.**

3 Nicholas K. Hurlburt^{1†}, Leah J. Homad^{1†}, Irika Sinha¹, Madeleine F. Jennewein¹, Anna
4 J. MacCamy¹, Yu-Hsin Wan¹, Jim BoonyaratanaKornkit¹, Anton M. Sholukh¹, Panpan
5 Zhou², Dennis R. Burton^{2,3}, Raiees Andrabi², Leonidas Stamatatos^{1,4*}, Marie Pancera^{1*},
6 Andrew T. McGuire^{1,4,5*}.

7 †Authors contributed equally

8 * Correspondence: amcguire@fredhutch.org; mpancera@fredhutch.org or
9 lstamata@fredhutch.org

10

11

12 ¹Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division,
13 Seattle, WA, USA

14 ²Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla,
15 CA, USA

16 ³Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA

17 ⁴Department of Global Health, University of Washington, Seattle, WA, USA

18 ⁵Department of Laboratory Medicine and Pathology, University of Washington, Seattle,
19 WA, USA

20

21 **Abstract**

22 Three highly pathogenic betacoronaviruses have crossed the species barrier and
23 established human-to-human transmission causing significant morbidity and mortality in
24 the past 20 years. The most current and widespread of these is SARS-CoV-2. The
25 identification of CoVs with zoonotic potential in animal reservoirs suggests that
26 additional outbreaks are likely to occur. Evidence suggests that neutralizing antibodies
27 are important for protection against infection with CoVs. Monoclonal antibodies targeting
28 conserved neutralizing epitopes on diverse CoVs can form the basis for prophylaxis and
29 therapeutic treatments and enable the design of vaccines aimed at providing pan-
30 coronavirus protection. To this end, we previously identified a neutralizing monoclonal
31 antibody, CV3-25 that binds to the SARS-CoV-2 fusion machinery, neutralizes the
32 SARS-CoV-2 Beta variant comparably to the ancestral Wuhan Hu-1 strain, cross
33 neutralizes SARS-CoV-1 and displays cross reactive binding to recombinant proteins
34 derived from the spike-ectodomains of HCoV-OC43 and HCoV-HKU1. Here, we show
35 that the neutralizing activity of CV3-25 is also maintained against the Alpha, Delta and
36 Gamma variants of concern as well as a SARS-CoV-like bat coronavirus with zoonotic
37 potential by binding to a conserved linear peptide in the stem-helix region on
38 sarbecovirus spikes. A 1.74Å crystal structure of a CV3-25/peptide complex
39 demonstrates that CV3-25 binds to the base of the stem helix at the HR2 boundary to
40 an epitope that is distinct from other stem-helix directed neutralizing mAbs. Thus, CV3-
41 25 defines a novel site of sarbecovirus vulnerability that will inform pan-CoV vaccine
42 development.

44 **Introduction**

45 Coronaviruses (CoVs) are a large family of viruses that infect many species of
46 birds and mammals, including humans. They are subdivided into four genera; alpha,
47 beta, gamma and delta. Two alpha CoVs, NL63 and 229E, and two beta CoVs (OC43
48 and HKU1) are endemic in the human population and cause mild respiratory cold like
49 symptoms (Cui et al., 2019). Three separate zoonotic transmissions of highly
50 pathogenic beta CoVs to humans have been documented in the last two decades.

51 Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in
52 Saudi Arabia in 2012 and has since been detected in 27 countries (Zaki et al., 2012).
53 There have been ~2,574 reported MERS cases resulting in 884 deaths (35.4% mortality
54 rate). Most cases of MERS are attributed to zoonotic transmission from camels causing
55 clusters of human-to-human transmission among subjects who have close contact,
56 usually in health care settings (Killerby et al., 2020).

57 SARS-CoV-1 was first identified as the causative agent of atypical respiratory
58 syndrome called Severe Acute Respiratory Syndrome in China in 2002. SARS-CoV-1
59 subsequently spread to 29 countries and infected 8098 people causing 774 deaths
60 (9.5% mortality rate). More recently, the highly transmissible SARS-CoV-2 virus
61 emerged in China and rapidly spread through the global population. SARS-CoV-2 has
62 infected ~185 million people and caused over 4 million deaths (Dong et al., 2020).
63 SARS-CoV-2 and SARS-CoV-1 are members of the sarbecovirus subgenus and share
64 ~80% amino acid sequence identity (Wan et al., 2020). SARS-CoV-2 is highly similar to
65 a bat CoV, RaTG13 (Zhou et al., 2020). Several other SARS-like bat coronaviruses

66 have been identified that have zoonotic potential (Cui et al., 2019) suggesting that both
67 viruses likely originated in bats.

68 CoV infection is mediated by the viral spike protein (S) which is a membrane
69 anchored class I fusion protein expressed on the virion surface and is an important
70 target of host immune responses elicited by infection or vaccination. S is comprised of
71 two distinct functional subunits; a N-terminal, membrane distal subunit designated S1
72 and a C-terminal, membrane proximal subunit designated S2. The S2 domain houses
73 the fusion machinery that undergoes large structural rearrangements to mediate fusion
74 of the host and viral membranes. The S1 domain serves to stabilize the S2 subunit in
75 the pre-fusion state and facilitates the attachment to ligands on host cells through the
76 receptor binding domain (RBD)(Tortorici and Veesler, 2019). Cell fusion requires
77 conformational changes induced by receptor binding, as well as further proteolytic
78 cleavage of the S2 subunit to liberate the fusion peptide and trigger conformational
79 changes, which can occur at the cell membrane or following viral endocytosis (Millet
80 and Whittaker, 2015).

81 Despite the overall structural similarity of their S proteins, human coronaviruses
82 use diverse entry receptors (Tortorici and Veesler, 2019, Walls et al., 2020, Wrapp et
83 al., 2020). 229E uses human aminopeptidase N (hAPN), while HKU1 and OC43 cell-
84 entry depends on 9-O-acetylated sialic acids (Vlasak et al., 1988, Tortorici and Veesler,
85 2019, Yeager et al., 1992). NL63, SARS-CoV-1 and SARS-CoV-2 use angiotensin
86 converting enzyme 2 (ACE2) (Hoffmann et al., 2020, Li et al., 2003, Walls et al., 2020,
87 Hofmann et al., 2005). SARS-CoV-2 also uses heparan sulfate as an attachment factor
88 to promote infection (Clausen et al., 2020). MERS-CoV utilizes sialoside receptors as

89 attachment factors and dipeptidyl peptidase 4 (DPP4) as an entry receptor (Park et al.,
90 2019, Raj et al., 2013).

91 Due to extensive CoV genetic diversity, wide range of animal hosts, and potential
92 for zoonotic transmission there is a need for vaccines and therapeutic agents that can
93 prevent or limit future outbreaks (Ghai et al., 2021, Woo et al., 2009). Neutralizing
94 antibodies elicited by vaccination or natural infection are an important correlate of
95 protection against subsequent CoV infection (McMahan et al., 2020, Khoury et al.,
96 2021, Lumley et al., 2021). Further, passive delivery of monoclonal neutralizing
97 antibodies can be used as a countermeasure to prevent CoV-related illness (Weinreich
98 et al., 2021).

99 The primary targets of neutralizing antibodies are within the S1 subunit: the
100 receptor binding domain (RBD) and the N-terminal domain (NTD) (McCallum et al.,
101 2021, Piccoli et al., 2020, Stamatatos et al., 2021, Cerutti et al., 2021, Brouwer et al.,
102 2020, Rogers et al., 2020, Cao et al., 2010, Rockx et al., 2008, Hwang et al., 2006,
103 Prabakaran et al., 2006, Sui et al., 2004, Traggiai et al., 2004, Ying et al., 2014, Tang et
104 al., 2014, Jiang et al., 2014, Niu et al., 2018, Eguia et al., 2020, Kistler and Bedford,
105 2021, Liu et al., 2020, Chi et al., 2020). Due to the diversity in receptor usage and
106 variability of spike sequences across CoVs, RBD and NTD directed mAbs are often
107 virus specific. Even within the same CoV, mutant variants can evade neutralization by
108 monoclonal antibodies (mAbs) and polyclonal sera. Indeed, mutations found in the RBD
109 and NTD of SARS-CoV-2 variants of concern are responsible for increased resistance
110 to serum and monoclonal antibodies. It has been speculated such variants could erode
111 vaccine efficacy over time. The RBD and NTD of other CoVs appear to be subject to

112 and evade immune pressure as well (Kistler and Bedford, 2021, Eguia et al., 2020). In
113 contrast, S2 is more functionally and structurally conserved among CoVs (Tortorici and
114 Veesler, 2019, Shah et al., 2021). However, it is sub-dominant with respect to
115 neutralizing antibody responses as the majority of S2-binding mAbs isolated from
116 SARS-CoV-2 infected donors are non-neutralizing (Rogers et al., 2020, Brouwer et al.,
117 2020, Sakharkar et al., 2021, Jennewein et al., 2021, Andreano et al., 2021).

118 We recently described the isolation of a neutralizing anti-S2 mAb, CV3-25 from a
119 SARS-CoV-2 infected donor (Jennewein et al., 2021). The neutralizing potency of CV3-
120 25 is unaffected by mutations found in the Beta (B.1.351) SARS-CoV-2 variant and can
121 neutralize SARS-CoV-1. CV3-25 also displays cross-reactivity with recombinant spike
122 proteins derived from the betaCoVs, OC43 and HKU1. Here, we demonstrate that the
123 neutralizing activity of CV3-25 is unaffected by mutations found in the Alpha, Delta and
124 Gamma variants and show that it can neutralize a SARS-like bat CoV, WIV1 (Ge et al.,
125 2013). We identified a linear epitope overlapping the stem-helix/HR2 region containing
126 the epitope of CV3-25. A crystal structure of CV3-25 with a 19mer peptide revealed that
127 CV3-25 binds to a solvent-exposed linear epitope that partially unwinds the stem-helix.
128 The CV3-25 epitope is distinct from other mAbs targeting the stem helix region (Sauer
129 et al., 2021, Pinto et al., 2021, Zhou et al., 2021), thus defining a novel site of conserved
130 vulnerability that will enable pan-CoV vaccine design.

131

132

133 **Results**

134 **CV3-25 neutralizes SARS-CoV-2 variants and a SARS-like bat coronavirus.**

135 We previously reported that CV3-25 neutralizes the Wuhan-Hu-1 and Beta (B.1.351)
136 variants of SARS-CoV-2 with comparable potency (Jennewein et al., 2021). Here we
137 evaluated the ability of CV3-25 to neutralize additional SARS-CoV-2 variants Alpha
138 (B.1.1.7), Delta (B.1.617.2) and Gamma (P.1) and a more distantly related SARS-like
139 bat coronavirus, WIV1, which uses ACE2 as an entry receptor and can infect human
140 cell lines. (Ge et al., 2013, Rambaut et al., 2020, Tegally et al., 2020, Faria et al., 2021).
141 Therefore, WIV1 represents a bat CoV with pandemic potential. CV3-25 neutralized all
142 variants and WIV1 with comparable potency (Fig. 1A). In contrast, the RBD-directed
143 CV30 mAb showed reduced potency against the Beta and Gamma variants of concern,
144 both of which harbor mutations in the RBD at position 417 that makes direct contact
145 with CV30 (Hurlburt et al., 2020, Faria et al., 2021, Tegally et al., 2020) (Fig. 1B). WIV1
146 was completely resistant to CV30-mediated neutralization. Combined with the
147 observation that CV3-25 also neutralizes SARS-CoV-1, these data indicate that it binds
148 to an epitope on S2 that is unaffected by mutations found in these variants.

149 **CV3-25 binds to a linear epitope on the SARS-CoV-2 stem helix.**

150 A handful of S2-directed neutralizing mAbs that display varying degrees of CoV
151 cross-binding and/or neutralizing activity have been isolated. A semi-conserved site of
152 vulnerability defined by the 3A3 mAb maps to the membrane-distal end of the pre-fusion
153 S2 subunit and several mAbs have been found to bind the stem helix at the base of the
154 S2 spike (Huang et al., 2021, Wang et al., 2021, Pinto et al., 2021, Zhou et al., 2021,
155 Song et al., 2020). Based on the ability of CV3-25 to neutralize diverse sarbecoviruses
156 (Fig. 1) and the fact that it can bind the ectodomains from additional betacoronaviruses

157 SARS-CoV-1, OC43, and HKU1 (Jennewein et al., 2021), we hypothesized that CV3-25
158 was binding to one of these semi-conserved regions. To test this, we evaluated the
159 ability of the stem helix-directed mAb B6 (Sauer et al., 2021) to bind to the recombinant
160 SARS-CoV-2 spike in the presence of CV3-25. B6 neutralizes pseudoviruses
161 expressing the spike proteins from MERS-CoV, HCoV-OC43 and the MERS-like bat
162 CoV HKU4. It binds to but does not neutralize SARS-CoV-1 and SARS-CoV-2 (Sauer et
163 al., 2021). B6 readily bound to the S2P protein as measured by biolayer interferometry
164 (BLI) but was unable to bind to an S2P-CV3-25 complex indicating that the antibodies
165 compete for binding to the SARS-CoV-2 spike (Fig. 2A).

166 B6 binds to a linear peptide spanning amino acids 1147-1157 of the SARS-CoV-
167 1/SARS-CoV-2 stem helix (Sauer et al., 2021). To test whether CV3-25 binds to a
168 similar epitope, CV3-25 binding to overlapping 15mer linear peptides spanning the stem
169 helix region (1143-1162) from SARS-CoV-2 was measured by ELISA (Fig. 2B-C). CV3-
170 25 bound to two peptides encompassing amino acids 1149-1163 and 1153-1167, with
171 stronger binding to the latter (Fig. 2C). CV3-25 did not bind to any of the other SARS-
172 CoV-2 peptides or to a control peptide from HIV-1 Env. CV3-25 binding was specific, as
173 CV2-10, an S2 directed mAb that does not compete with CV3-25 binding (Jennewein et
174 al., 2021), did not bind either peptide. To confirm binding to this peptide region, we
175 synthesized a peptide spanning 1145-1167 and verified that CV3-25 bound to the
176 peptide with ~5nM affinity using biolayer interferometry (BLI). The measured affinity of
177 CV3-25 for the peptide is lower than it is for a recombinant stabilized spike protein (~0.6
178 nM) (Fig. 2F and Table S2). We note that the association rate of binding to the peptide
179 does not fit well to a 1:1 binding model (Fig. 2E) which may reflect several

180 conformations sampled by the immobilized peptide (a heterogenous ligand) and affect
181 the accuracy of the CV3-25 peptide binding measurement.

182 **Structure of CV3-25 reveals a novel site of vulnerability in S2**

183 To gain insight into the nature of the CV3-25 peptide interaction, the antigen
184 binding fragment (Fab) of CV3-25 was complexed with a synthesized peptide of the C-
185 terminal end of the stem helix (residues 1149-1167). A crystal structure of the Fab-
186 peptide complex was obtained to a resolution of 1.74 Å (Supplementary Table 1). The
187 structure showed that binding to this peptide is almost entirely heavy chain dependent
188 (Fig. 3A and B). The N-terminal end of the peptide forms an α -helix that is engaged by
189 the CDRH1 and CDRH2. The CDRH3 extends under the base of the α -helix directing
190 the extended C-terminal portion of the peptide up into the CDRH1 before turning
191 downward to interact with the light chain. The Fab binds the peptide with a total buried
192 surface area (BSA) of \sim 594 Å², of which \sim 516 Å² is from the heavy chain and \sim 78 Å²
193 from the light chain (Fig. 3C).

194 Alanine scanning of a stem helix peptide was conducted to assess the relative
195 contributions of the interactions observed in the crystal structure (Fig. 3D). This analysis
196 revealed that mutating Lys₁₁₅₇, any of the residues in ₁₁₆₀TSPDV₁₁₆₄, or Leu₁₁₆₆ inhibited
197 or greatly reduced binding (Fig. 3D). This data agrees well with the structural data.
198 Lys₁₁₅₇ buries \sim 133 Å² upon binding, the highest amount of BSA on the peptide, and
199 forms hydrogen bonds with two Asp residues in the CDRH2 (Fig. 3E). ₁₁₆₀TSPDV₁₁₆₄ is
200 the segment of peptide just after the helix that interacts with CDRH3 before curving up
201 to interact with CDRH1 and then the light chain.

202 Reversion of CV3-25 to the inferred germline (iGL) version abrogated CV3-25
203 neutralizing activity despite showing comparable binding to SARS-CoV-S2P under avid
204 conditions (Jennewein et al., 2021). Although the majority of the mAb-peptide contacts
205 are through the CDRH3, Arg₃₁ in the CDRH1 buries the most surface area (75 Å²) in the
206 CV3-25-peptide structure (Fig. 3C). Arg₃₁ forms a water-mediated interaction with
207 Asp₁₁₅₃ and a π-stacking interaction with Phe₁₁₅₆ on the peptide. The germline encoded
208 Ser at the position would be incapable of forming these interactions providing a
209 rationale for the lack of neutralizing activity of iGL-CV3-25.

210 Structural alignment of the stem helix peptides in the CV3-25 and B6 structures
211 show that CV3-25 binds more C-terminal than B6 in the stem helix (Fig. 4A) in
212 agreement with the binding to overlapping linear peptides (Fig. 2C). The stem helix
213 residues that are shared in the structures adopt almost identical conformations (Fig.
214 4A). B6 binds to the hydrophobic face of the amphipathic helix that is predicted to be on
215 the interior of the stem helix bundle of the pre-fusion trimer (Sauer et al., 2021). In
216 contrast, CV3-25 binds to the solvent-exposed hydrophilic face of the helix. An
217 alignment of the CV3-25 stem helix to a cryoEM structure of the native prefusion spike
218 with the stem helix structure resolved (PDBID: 6XR8)(Cai et al., 2020) indicates that the
219 CV3-25-bound stem helix unwinds a full turn, with the helix terminating Pro₁₁₆₂ moving
220 ~13 Å into the interior of the helix bundle (Fig. 4B). The unwinding and repositioning of
221 the stem-helix by CV3-25 would create a clash between residues ₁₁₆₂PDVDL₁₁₆₆ and the
222 CDRH1 and CDRH3 of B6. There are additional potential clashes between the CDRH3
223 on CV3-25 and CDRH2 on B6. Collectively these provide a structural basis for the
224 observed competition between B6 and CV3-25 binding to SARS-CoV-2 S2P, which was

225 confirmed using a linear SARS-CoV-2 peptide (Fig. S2). CV3-25 binding to the stem
226 helix peptide also prevented subsequent binding of the CC40.8 mAb (Fig. S2), which
227 binds to an epitope that is nearly identical to B6 and weakly neutralizes SARS-CoV-1
228 and SARS-CoV-2 (Zhou et al., 2021, Song et al., 2020). CryoET analysis of the SARS-
229 CoV-2 spike on the surface of intact virions shows an extended stalk region
230 downstream of the stem helix (Turonova et al., 2020, Ke et al., 2020). However, all
231 presently available CryoEM structures of the stabilized or membrane solubilized native
232 spikes show poor resolution of the stem helix region and density for the downstream
233 region including HR2 is missing (Walls et al., 2020, Wrapp et al., 2020, Cai et al., 2020).
234 A model of the full length spike ectodomain, including HR2 was determined using
235 homology modelling and molecular dynamic (MD) simulation (Casalino et al., 2020).
236 Aligning the CV3-25-stem helix structure to this model shows good agreement (Fig. 4C).
237 In both the modeled and CV3-25-peptide structures, the stem helix ends at the
238 glycosylated Asn₁₁₅₈, and the extended C-terminal end of the CV3-25 bound peptide
239 adopts a similar conformation to the MD model.

240 The linear peptide in the CV3-25 structure contains one putative N-linked
241 glycosylation site at Asn₁₁₅₈. This glycan is not predicted to clash with CV3-25 binding to
242 the peptide, but in the 6XR8 trimer with the extended stem helix, the glycan on one of
243 the adjacent protomers would potentially clash with the heavy chain of the antibody (Fig.
244 4B). In the MD model, the glycan on the adjacent protomer shifts so that it is no longer
245 clashing with the heavy chain (Fig. 4C). Additionally, the alignment of the model also
246 suggests that the light chain of CV3-25 could potentially bind to the region just

247 downstream of the stem helix at the start of HR2, $_{1168}\text{DISGINASVVN}_{1178}$ (Fig. 4D), a
248 region that shows some sequence conservation amongst coronaviruses (Fig. 4E).

249 Superimposition of the CV3-25/peptide structure onto the post-fusion structure of
250 SARS-CoV-2 spike (PDBid: 6XRA) reveals a different conformation of the CV3-25
251 epitope (Fig. 4F) (Cai et al., 2020). In the post-fusion conformation, the stem helix in this
252 epitope unwinds a full turn, relative to the CV3-25 bound peptide, with the remainder of
253 the stem-helix elongating into a more linear structure. The overall RMSD between the
254 CV3-25 bound peptide and this region in the post-fusion spike is 9.757 \AA^2 over 15 Ca
255 atoms and is therefore unlikely to be compatible with CV3-25 binding. Thus, CV3-25
256 may prevent the transition of the SARS-CoV-2 spike from the pre-fusion to the post-
257 fusion form. In line with this notion, CV3-25 inhibits spike mediated syncytia formation in
258 vitro (Ullah et al., 2021).

259 **Cross-reactivity of CV3-25 with the stem helix of other CoVs**

260 Several of the CV3-25 contact residues are conserved in beta CoVs (Fig. 4E).
261 We therefore evaluated the ability of CV3-25 to bind peptides derived from additional
262 Beta-CoVs spanning the stem helix region by ELISA. CV3-25 bound equally well to
263 peptides derived from SARS-CoV-1/2/WIV1, MERS-CoV, and HCoV-OC43. CV3-25
264 binding was slightly weaker to a peptide derived from HCoV-HKU1 (Fig. 5A), consistent
265 with HKU1 having fewer conserved contact residues (Fig. 4E). Qualitative binding to
266 SARS-CoV-1/2/WIV1, MERS-CoV, HCoV-OC43 and HCoV-HKU1 was confirmed by
267 BLI (Fig. S3). This analysis also revealed a lack of binding to corresponding peptides
268 from the alpha CoVs HCoV-229E and HCoV-NL63 (Fig. S3), consistent with a lack of

269 CV3-25 binding to recombinant HCoV-229E and HCoV-NL63 spike proteins (Jennewein
270 et al., 2021).

271 In contrast, the stem-helix directed mAbs B6 and CC40.8 showed differential
272 binding to these peptides. B6 bound most strongly to the peptide from MERS-CoV,
273 followed by HCoV-OC43, SARS-CoV-2 and HCoV-HKU1 (Fig. 5B), while CC40.8
274 exhibited the strongest binding to HCoV-HKU1, followed by MERS and HCoV-OC43
275 (Fig. 5C). We were unable to detect binding of CC40.8 to the SARS-CoV-2 peptide at
276 the concentration tested here. To assess whether CV3-25 could bind to the linear
277 epitope presented on these peptides in the context of a full-length spike protein, we
278 expressed the membrane anchored, wildtype spike proteins from SARS-CoV-2, SARS-
279 CoV-1, WIV1, HCoV-OC43, HCoV-HKU1, and MERS-CoV on the surface of 293 cells
280 and stained them with fluorescently labeled CV3-25. We included B6, CC40.8, CV30
281 and AMMO1 mAbs for comparison. CV3-25 bound to SARS-CoV-2, SARS-CoV-1,
282 WIV1, consistent with its ability to bind to the stem helix peptide from these spike
283 proteins and neutralize the corresponding pseudoviruses (Fig. 5E-G). Despite binding to
284 the stem helix peptide from MERS-CoV, HCoV-OC43 and HCoV-HKU1, and stabilized
285 soluble versions of the corresponding spike ectodomains (Fig. S4), CV3-25 did not
286 recognize cell-surface expressed spikes (Fig. 5H-J). In line with the lack of binding,
287 CV3-25 failed to neutralize a MERS-CoV pseudovirus or authentic HCoV-OC43 (Fig. 5K
288 and M). Similarly, a monovalent Fab was unable to neutralize HCoV-OC43, indicating
289 that the lack of neutralization was not due to steric shielding of the epitope from full
290 length IgG (Fig. 5L). CV3-25 was also unable to neutralize authentic HCoV-NL63, an
291 alpha CoV (Fig. S5). We conclude that although the CV3-25 epitope is present, it is not

292 equally accessible in the native conformation of the spike protein among the various
293 beta CoVs examined here.

294 **Somatic mutation leads to stronger cross-reactive binding by CV3-25**

295 To assess the role of somatic mutation in CV3-25 cross-reactivity we measured
296 the binding of iGL-CV3-25 to the same linear peptides from SARS-CoV-2, MERS-CoV,
297 HCoV-OC43 and HCoV-HKU1 by ELISA (Fig. 5D). Although the binding to the peptide
298 from SARS-CoV-1/2 and WIV1 was comparable and strong, the binding was severely
299 reduced to MERS and OC43, and to a lesser extent to HKU1. Thus, somatic mutations
300 acquired by CV3-25 lead to broad CoV-peptide reactivity.

301

302 **Discussion**

303 The devastating loss of life, economic and social impacts of the SARS-CoV-2
304 pandemic underscores the need to prevent future CoV outbreaks. The fact that SARS-
305 CoV-2 is the third highly pathogenic CoV to cause significant loss of human life in the
306 past two decades suggests that future CoV outbreaks are plausible if not inevitable.
307 Since neutralizing antibodies are likely important for protection against CoV infection,
308 the isolation and characterization of mAbs targeting conserved neutralizing epitopes
309 present across CoV variants and strains can inform the design of pan-CoV vaccines
310 that can prevent or blunt future outbreaks.

311 So far, six neutralizing mAbs targeting the stem-helix region, elicited by
312 immunization in mice, or humanized mice (B6, 1.6C7 and 28D9), or isolated from
313 SARS-CoV-2 infected humans (CC40.8, S2P6, CV3-25), have been described (Sauer
314 et al., 2021, Wang et al., 2020, Zhou et al., 2021, Pinto et al., 2021, Jennewein et al.,
315 2021). All show varying degrees of cross-reactivity and cross-neutralizing activity
316 against CoVs. Among these mAbs, three S2P6, CC40.8 and B6 have previously been
317 structurally characterized. All form a hydrophobic groove that cradles the hydrophobic
318 face of the amphipathic SARS-CoV-2 stem helix (residues AA 1147-1156 for B6,
319 residues 1142-1159 for CC40.8 and residues 1146-1159 for S2P6). Alanine scanning of
320 a stem helix peptide from MERS S suggests that the 1.6C7 and 28D9 mAbs which were
321 isolated from humanized mice immunized sequentially with recombinant S from OC43,
322 SARS and MERS, bind to a similar epitope region (Wang et al., 2021). In contrast to the
323 other stem helix mAbs, CV3-25 binds to a distinct S2 epitope C terminal and on the

324 opposite face of the amphipathic stem helix thus defining an additional site of
325 vulnerability on pathogenic beta CoVs.

326 Very little high-resolution structural information is available about the
327 conformation of the stem helix, and region C-terminal to the stem-helix. As such, we can
328 only speculate as to why CV3-25 binds well to recombinant spike ectodomains and
329 linear peptides from the MERS-CoV, HCoV-OC43 and HCoV-HKU1 Beta CoVs, but
330 fails to bind full-length cell-surface expressed spikes or neutralize the corresponding
331 viruses/pseudoviruses. CryoEM structures of stabilized NL63, MERS-CoV, SARS-CoV,
332 and SARS-CoV-2 spike proteins only resolve the N-terminus of the stem-helix region
333 (Walls et al., 2020, Walls et al., 2019, Wrapp et al., 2020, Kirchdoerfer et al., 2018,
334 Yuan et al., 2017, Gui et al., 2017, Pallesen et al., 2017). Moreover, complexes of
335 mAbs B6, S26P and CC40.8 with stabilized spikes from MERS, SARS-CoV-2 and
336 HKU1 are also poorly resolved by EM suggesting that this region undergoes significant
337 conformational heterogeneity on recombinant proteins (Song et al., 2020, Sauer et al.,
338 2021, Pinto et al., 2021). Subtomogram averaging of virion-anchored SARS-CoV-2
339 spikes show evidence of flexible hinges in the stalk region (Ke et al., 2020, Turonova et
340 al., 2020). The stalk has been likened to a leg with a hip, knee and ankle joint where the
341 stem helix region corresponds to the upper leg (Turonova et al., 2020). CV3-25 would
342 bind to the dynamic “knee” region and may only recognize one of many conformations
343 adopted by the SARS-CoV-2 spike. If so, it’s possible that a similar conformation is not
344 sampled by membrane-anchored MERS, HKU1 or OC43 spikes.

345 Alternatively, the CV3-25 epitope could be less exposed in the context of the
346 MERS, OC43 and HKU1 membrane-anchored spikes as compared to their

347 corresponding stabilized ectodomains or the membrane-anchored sarbecovirus spikes.
348 We note however, that the smaller size Fab domain of CV3-25 was unable to neutralize
349 the OC43 virus.

350 It has been proposed that the B-cell lineages that gave rise to the stem helix
351 mAbs CC40.8 and S26P were initiated by previous OC43 and HKU1 infection,
352 respectively (Song et al., 2020, Pinto et al., 2021). Despite binding to linear peptides
353 from HKU1 and to a lesser extent OC43, the absence of CV3-25 reactivity with
354 membrane-anchored spikes from endemic HCoVs suggests that the CV3-25 progenitor
355 B cell was activated by the SARS-CoV-2 virus rather than a prior HCoV-infection.

356 The neutralizing potency of CV3-25 is not affected by mutations found in SARS-
357 CoV-2 variants of concern, which harbor mutations that escape from many anti-NTD
358 and anti-RBD antibodies. Moreover, the CV3-25 epitope is strictly conserved among
359 SARS-CoV-1, SARS-CoV-2 and WIV1; the antibody neutralizes pseudoviruses
360 expressing all three spikes, and displays anti-viral activity in K18-hACE2 mice,
361 particularly when Fc receptors are engaged (Ullah et al., 2021).

362 We propose that the CV3-25 epitope is highly relevant to the development of a
363 pan-sarbecovirus vaccine. The fact that CV3-25 binds a linear epitope indicates that it
364 may be possible to design small scaffold based, or subunit vaccines that present the
365 CV3-25 epitope while avoiding eliciting an immunodominant response to non-
366 neutralizing epitopes on S2 and elsewhere on the spike. The observation that CV3-25
367 competes for binding with B6 and CC40.8 despite binding to discrete linear epitopes,
368 indicates that multiple scaffold design strategies may need to be employed to target
369 these two conserved sites of CoV vulnerability in the stem-helix region in order to

370 provide broad neutralizing coverage against diverse CoV. Similarly, a therapeutic
371 combination of non-competing stem-helix mAbs may provide broad neutralizing
372 coverage against emergent pathogenic CoVs since CV3-25 neutralizes diverse
373 sarbecoviruses, and B6 neutralizes multiple merbecoviruses and OC43, a member of
374 the embecovirus subgenus (Sauer et al., 2021)

375

376

377 **Material and Methods**

378 **Cell Lines**

379 All cell lines were incubated at 37°C in the presence of 5% CO₂. 293-6E (human
380 female, RRID:CVCL_HF20) and 293T cells (human female, RRID:CVCL_0063) cells
381 were maintained in Freestyle 293 media with gentle shaking. HEK-293T-hACE2
382 (human female, BEI Resources Cat# NR-52511) were maintained in DMEM containing
383 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin
384 (cDMEM). HCT-8 [HRT-18] cells (human male, ATCC CCL-244) were maintained in
385 RPMI containing 10% horse serum, 2 mM L-glutamine, 100 U/ml penicillin, and 100
386 µg/ml streptomycin. LLC-MK2 cells (*Macaca mulatta*, ATCC CCL-7) were maintained in
387 cDMEM. Huh7 cells (human male, a gift from Dr. Ram Savan, Department of
388 Immunology University of Washington) were maintained in cDMEM.

389 **Recombinant CoV proteins and mAbs**

390 Two stabilized versions of the recombinant SARS-CoV-2 spike protein (S2P and S6P)
391 and the SARS-CoV-2 RBD were produced in 293E cells and purified as previously
392 described (Seydoux et al., 2020, Jennewein et al., 2021). Plasmids encoding the
393 stabilized versions of HCoV-OC43 (619-M66-303: CMV51p> HCoV-OC43 S-2P-T4f-3C-
394 His8-Strep2x2, Addgene plasmid # 166015) and HCoV-HKU1 (R619-M89-303:
395 CMV51p> HCoV-HKU1 S-2P-T4f-3C-His8-Strep2x2, Addgene plasmid # 166014) were
396 gifts from Domonic Esposito. The proteins were expressed in 293E cells and purified
397 using Ni-NTA affinity resin followed by size exclusion chromatography on a superose 6

398 column as described in (Esposito et al., 2020). Recombinant CV3-25, CV30, B6 and
399 AMMO1 were expressed in 293 cells and purified using protein A resin as previously
400 described (Sauer et al., 2021, Jennewein et al., 2021, Snijder et al., 2018).

401 **Generation of plasmids expressing SARS-CoV-2 spike variants and MERS-CoV.**

402 To generate a plasmid encoding the SARS-CoV-2 spike P.1 variant (pHDM-SARS-CoV-
403 2-Spike-P.1) primers were designed that anneal 5' of the L18 codon and just 3' of the
404 V1176F codon on the pHDM-SARS-CoV-2 Spike Wuhan-Hu-1 plasmid (BEI Resources
405 Cat# NR-52514) and used to amplify cDNA corresponding to the N and C termini of the
406 spike protein and the plasmid backbone using Platinum SuperFi II DNA Polymerase
407 (Thermofisher Cat# 12368010) according to the manufacturer's instructions. cDNA
408 encoding the rest of the spike protein including the Δ242-243 deletion and the L18F,
409 T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I, and
410 V1176F mutations was synthesized as two gBlocks (Integrated DNA technologies). The
411 first had 30nt of homology with the PCR amplified vector backbone at the 5' end. The
412 second included 30nt of homology with the 3' end of the first block at the 5' end and
413 30nt of homology with the PCR amplified vector backbone at the 3' end. The gBlocks
414 and PCR product were ligated together using InFusion HD cloning Plus (TakaraBio
415 Cat#638920). To generate a plasmid encoding the SARS-CoV-2 spike B.1.1. variant
416 (pHDM-SARS-CoV-2-Spike-B.1.1.7) primers were designed that anneal 5' of the H69
417 codon and just 3' of the D1118 codon on the pHDM-SARS-CoV-2 Spike Wuhan-Hu-1
418 plasmid (BEI Resources Cat# NR-52514) and used to amplify cDNA corresponding to
419 the N and C termini of the spike protein and the plasmid backbone using Platinum
420 SuperFi II DNA Polymerase (Thermofisher Cat# 12368010) according to the

421 manufacturer's instructions. cDNA encoding the rest of the spike protein including the
422 H69-V70 and Y144 deletions, N501Y, A570D, D614G, P681H, T716I, S982A and
423 D1118H mutations. A plasmid encoding the SARS-CoV-2 Spike B.1.617.2 (pCMV3-
424 SARS-CoV-2-Spike-B.1.617.2) was purchased from Sinobiological (Cat# VG40804-UT).

425 To generate a plasmid encoding the MERS-CoV-2 spike (pHDM-MERS-CoV-Spike)
426 codon-optimized cDNA corresponding to the MERS-CoV S protein (Riyadh_14_2013,
427 GenBank: AHI48572.1) flanked on the 5' end by 30nt of homology upstream of and
428 including the EcoRI site and flanked on the 3' end by 30nt of homology downstream of
429 and including the HindIII site on the pHDM-SARS-CoV-2 Spike Wuhan-Hu-1 plasmid
430 was synthesized by Twist Biosciences. The synthesized DNA was cloned into the
431 pHDM-SARS-CoV-2 Spike Wuhan-Hu-1 plasmid that was cut with EcoRI and HindIII
432 and gel purified to remove the SARS-CoV-2 Spike cDNA using InFusion HD cloning
433 Plus. The sequences of the cDNA of all the spike expression constructs were verified by
434 Sanger sequencing (Genewiz Inc.).

435 **Peptides**

436 Peptides were synthesized by Genscript or A&A Labs with, or without a biotin molecule
437 conjugated to the amino-terminus via aminohexanoic acid.

438 **Pseudovirus neutralization assay**

439 HIV-1 derived viral particles were pseudotyped with full length wildtype S from Wuhan
440 Hu1, B.1.351, B.1.1.7, P.1, WIV1, or MERS-CoV using a previously described reporter
441 system (Crawford et al., 2020). Briefly, plasmids expressing the HIV-1 Gag and pol
442 (pHDM540 Hgpm2, BEI Resources Cat# NR-52517), HIV-1Rev (pRC-CMV-rev1b, BEI

443 Resources Cat# NR-52519), HIV-1 Tat (pHDM-tat1b, BEI resources NR-52518), SARS-
444 CoV-2 spike (pHDM-SARS-CoV-2 Spike Wuhan-Hu-1, pHDM-SARS-CoV-2 Spike-
445 B.1.1.7, SARS-CoV-2 Spike-P.1, pHDM-SARS-CoV-2 Spike-B.1.351 (Stamatatos et al.,
446 2021), pCMV3-SARS-CoV-2-Spike-B.1.617.2, pTWist-WIV1-CoV (a gift from Alejandro
447 Balazs (Addgene plasmid # 164438 ; <http://n2t.net/addgene:164438> ;
448 RRID:Addgene_164438), or pHDM-MERS-CoV Spike and a luciferase/GFP reporter
449 (pHAGE-CMV-Luc2-IRES542 ZsGreen-W, BEI Resources Cat# NR-52516) were co-
450 transfected into 293T cells at a 1:1:1:1.6:4.6 ratio using 293 Free transfection reagent
451 according to the manufacturer's instructions. Pseudoviruses lacking a spike protein
452 were also produced as a control for specific viral entry. Pseudoviron production was
453 carried out at 32 °C for 72 hours after which the culture supernatant was harvested,
454 clarified by centrifugation and frozen at -80 °C.

455 293 cells stably expressing human HEK-293T-hACE2, for SARS-CoV-2 pseudoviruses,
456 or Huh-7 cells for MERS-CoV pseudoviruses were seeded at a density of 4×10^3
457 cells/well in a 100 μ L volume in 96-well flat bottom black-walled, clear bottom tissue
458 culture plates (Greiner CELLSTAR Cat# 655090). The next day, mAbs were serially
459 diluted in 70 μ L of cDMEM in 96-well round bottom master plates in duplicate wells. 30
460 μ L of serially diluted mAbs from the master plate were replica plated into 96-well round
461 bottom plates. An equal volume of viral supernatant was added to 96-well round bottom
462 plates containing identical serial dilutions from the same master plate, and incubated for
463 60 min at 37 °C. Meanwhile 50 μ L of cDMEM containing 6 μ g/mL polybrene was added
464 to each well of 293T-ACE2 or Huh-7 target cells and incubated for 30 min. The media
465 was aspirated from target cells and 100 μ L of the virus-antibody mixture was added.

466 The plates were incubated at 37°C for 72 hours. The supernatant was aspirated and
467 replaced with 100 µL of Steady-Glo luciferase reagent (Promega Cat# E2510) and read
468 on a Fluoroskan Ascent Fluorimeter. Control wells containing virus but no antibody
469 (cells + virus) and no virus or antibody (cells only) were included on each plate.

470 Percent neutralization for each well was calculated as the RLU of the average of the
471 cells + virus wells, minus test wells (cells + mAb + virus), and dividing this result
472 difference by the average RLU between virus control (cells + virus) and average RLU
473 between wells containing cells alone, multiplied by 100. The antibody concentration that
474 neutralized 50% or 80% of infectivity (IC50 and IC80 for mAbs) was interpolated from
475 the neutralization curves determined using the log(inhibitor) vs. response -- Variable
476 slope (four parameters) fit using automatic outlier detection in GraphPad Prism
477 Software.

478 **Biolayer interferometry (BLI)**

479 BLI experiments were performed on an Octet Red instrument at 30°C with shaking at
480 500-1000 rpm.

481 Kinetics analysis:

482 Streptavidin (SA) biosensors (ForteBio) were immersed Kinetics Buffer (KB: 1X PBS,
483 0.01% Tween 20, 0.01% BSA, and 0.005% NaN3, pH 7.4) containing 10µg/ml of
484 biotinylated peptides for 150s, followed by immersion in KB for 60s to achieve a
485 baseline reading. Probes were then immersed in KB containing serially diluted CV3-25
486 Fab for a 300s association phase, followed by a 300s dissociation phase in KB. The
487 background signal from each analyte-containing well was measured using empty

488 reference sensors and subtracted from the signal obtained with each corresponding
489 mAb loaded sensor. Kinetic analyses were performed at least twice with an
490 independently prepared analyte dilution series. Curve fitting was performed using a 1:1
491 binding model and the ForteBio data analysis software. Mean kon, koff values were
492 determined by averaging all binding curves that matched the theoretical fit with an R2
493 value of ≥ 0.98 .

494 Binding competition assays: SA biosensors were immersed in KB containing 10 μ g/ml of
495 biotinylated peptides for 300s, followed by a 20s baseline in KB buffer. Probes were
496 then immersed in KB containing 20 μ g/ml CV3-25, AMMO1, B6 or CC40.8 for a 300s
497 association phase, followed by a 20s baseline in KB buffer and then immersed into KB
498 containing 20 μ g/ml CV3-25, AMMO1, B6 or CC40.8 for a 300s association phase.

499 **ELISA**

500 MaxiSorp microtiter plates (Thermo Scientific Cat#464718) were coated with 300ng/well
501 of streptavidin (New England Biolabs Catalog #: N7021S) overnight at room
502 temperature. Plates were washed 4X with PBS with 0.02% Tween-20 (wash buffer),
503 then incubated with 60 μ L/well of 3% BSA and 0.02% Tween-20 in PBS (blocking
504 buffer) for 1 hr at 37°C. After washing 4X with wash buffer, 380 ng/well of biotinylated
505 peptides diluted in blocking buffer were incubated for 1 hr at 37°C. Plates were washed
506 4X in wash buffer and then mAbs were serially diluted in blocking buffer, added to the
507 plate and incubated for 1 hr at 37°C. Plates were washed 4X in wash buffer and the
508 secondary antibody Goat anti-Human Ig-HRP (Southern Biotech, Cat# 2010-05), was
509 added and incubated at 37°C for 1 hr. Plates were washed 4X wash buffer, and then
510 30 μ L/well of SureBlue Reserve TMB Peroxidase Substrate (Seracare KPL, Cat# 5120-

511 0080) was added and incubated for 3 min followed by addition of 30 μ L of 1 N H₂SO₄ to
512 stop the reaction. The optical density at 450nm was measured using a SpectraMax i3x
513 plate reader (Molecular Devices). All wash steps were performed using a BioTek
514 405/TSMicroplate Washer.

515 **Production of CV3-25 Fab**

516 Purified recombinant CV3-25 IgG was mixed with LysC (NEB) at a ratio of 1 μ g LysC per
517 10mg of IgG and incubated at 37°C for 18h with nutation. The cleaved product was
518 incubated with 1mL of Protein A resin (GoldBio) per 10mg of initial IgG and incubated at
519 room temp for 1 hr to bind any uncleaved IgG and digested Fc. The purified Fab was
520 further purified by SEC using a HiLoad 16/600 Superdex 200pg column.

521 **Crystal screening and structure determination**

522 CV3-25 Fab was incubated with 1.5 molar excess of the synthetic stem helix peptide
523 spanning residues 1149-1167 (Genscript). Initial crystal screening was performed by
524 sitting-drop vapor-diffusion in the MCG Crystallization Suite (Anatrace) using a NT8
525 drop setter (Formulatrix). Poor diffraction crystals grew in MCG-3 well B1 and were
526 optimized using the Additive Screen (Hampton Scientific). Diffracting crystals were
527 obtained in a mother liquor (ML) containing 0.1M Na Acetate:HCl, pH 4.5, 2.0M
528 (NH₄)SO₄, 0.1M Strontium Chloride. The crystals were cryoprotected by soaking in ML
529 supplemented with 26% glycerol. Diffraction data were collected at Advanced Light
530 Source beamline 5.0.2 at 12286keV. The data set was processed using XDS (Kabsch,
531 2010) and data reduction was performed using AIMLESS in CCP4 (Winn et al., 2011) to
532 a resolution of 1.74 \AA . Initial phases were solved by molecular replacement using

533 Phaser in Phenix (Adams et al., 2010) with a search model of Fab 4AB007 (PDBid:
534 5MVZ) divided into Fv and Fc portions. Model building was completed using COOT
535 (Emsley and Cowtan, 2004) and refinement was performed in Phenix with the final
536 refinement run through the PDB_RED0 server (Joosten et al., 2014). The data
537 collection and refinement statistics are summarized in Supplementary Table 1.
538 Structural figures were made in Pymol (Schrodinger, LLC).

539 **Cell surface SARS-CoV-2 S binding assay.**

540 cDNA corresponding to AA 15-1336 of HCoV-OC43 was PCR amplified from pCAGGS-
541 Flag-HCoV-OC43 Spike (a kind gift from Dr. Marceline Côté, University of Ottawa) and
542 cloned into the pTT3 vector using InFusion cloning (Clontech). A Kozak consensus
543 sequence and the TPA leader sequence (MDAMKRGGLCCVLLCGAVFVSPSAS) was
544 added to the 5' end of the cDNA during PCR amplification. cDNA for the HKU1 spike
545 was PCR amplified from pCMV-HCoV-HKU1 (SinoBiological Cat# VG40606-UT) and
546 subcloned into pTT3.

547 pTT3-SARS-CoV-2-S (Seydoux et al., 2020), pHDM-MERS-CoV-Spike, pTWist-WIV1-
548 CoV, pHDM-MERS-CoV-1 Spike, pTT3-HKU1 or pTT3-OC43 Spike were transfected
549 into suspension-adapted 293T cells using 293 Free transfection reagent (EMD Millipore
550 Cat# 72181) or PEI transfection reagent (PolySciences Inc. Cat# 23966) according to
551 the manufacturer's instructions. Transfected cells were incubated for 24h at 37°C with
552 shaking. Meanwhile, 1 µg of each mAb was added to individual wells of a 96 well plate
553 in 50 µl of FACS buffer (PBS + 2% FBS + 1mM EDTA).

554 Spike-transfected or mock-transfected 293T cells were resuspended at 4×10^6 cells/ml in
555 FACS buffer and 50 μ l was added to each well of the 96 well plate. mAb-cell mixture was
556 incubated for 30 minutes on ice. The plates were then washed once with 200 μ l of
557 FACS buffer and stained with of PE-conjugated AffiniPure Fab fragment goat anti-
558 human IgG (Jackson Immunoresearch Cat# 109-117-008) at a 1:100 dilution and
559 live/dead green fluorescent reactive dye (Thermo Fisher Cat# L34970) at a 1:1000
560 dilution in 50 μ l/well of 1X PBS. The staining reaction was incubated for 20 minutes in
561 the dark on ice. The plates were then washed once with 200 μ l of FACS buffer and fixed
562 with 50 μ l of 10% formalin. The plates were centrifuged, and the formalin was removed
563 and replaced with 250 μ l of FACS buffer. The % of live PE+ cells was measured on a
564 Guava easyCyte 5HT Flow Cytometer (Luminex). For each mAb, the % of PE+ mock
565 transfected cells was subtracted from the % of PE+ of spike transfected cells.

566 **OC43 live virus neutralization assay.**

567 HCT-8 [HRT-18] cells (ATCC CCL-244TM) were seeded at 20,000 cells/well in 96-well
568 plates and cultivated in RPMI containing 10% horse serum and penicillin-streptomycin
569 at 37°C for 2 days until reaching near confluence. Fifty-fold of the fifty percent tissue
570 culture infection doses (TCID₅₀) of OC43 (Zeptometrix Cat#0810024CF) per well was
571 used. Serially diluted serum or mAb was mixed with virus in serum-free RPMI and
572 incubated for 1 h at 33°C on a shaker at 150 rpm. Then the, virus:antibody mixture was
573 transferred onto HCT-8 cells and the plate was incubated at 33°C in a CO₂ incubator. At
574 day 5, cells were fixed with -20°C-cold, 70% MeOH for 15 min. Plate was rinsed with
575 PBS (Gibco) and blocked with PBS containing 2.5 % Blotting grade blocker (Bio-Rad)
576 and 0.05% Tween-20 (Sigma) for 1 hr at 37°C. After washing one time with PBS-T

577 (PBS, 0.05% Tween-20), plate was incubated with rabbit anti-nucleocapsid antibody
578 (Sino Biological, Cat# 40643-T62) for 1h at room temperature on a plate shaker at 800
579 rpm. After that, plate was washed three times with PBS-T and incubated with goat anti-
580 rabbit IgG-HRP (Jackson ImmunoResearch, Cat# 111-035-144) for 1 h at room
581 temperature on a plate shaker at 800 rpm. After washing three times with PBS-T, the
582 assay was developed by addition of 1-Step Ultra TMB-ELISA solution (Thermo
583 Scientific Cat# 34028) and reaction was stopped with 2 N sulfuric acid (Fisher
584 Scientific). Optical density at 450 and 620 nm was captured with SpectraMax M2
585 (Molecular Devices). Neutralization was defined as the antibody concentration that
586 reduced OD relative to virus control wells (cells + virus only) after subtraction of
587 background OD in cells-only control wells.

588 **NL63 live virus neutralization assay.**

589 LLC-MK2 cells were seeded at 3,000 cells/well in 96-well plate and cultivated in DMEM
590 containing 10% FBS and penicillin-streptomycin at 37°C for 2 days until reaching near
591 confluence. Fifty-fold of the fifty percent tissue culture infection dose (TCID₅₀) of NL63
592 (BEI resources Cat# NR-470) per well was used. CV3-25 was added to a final
593 concentration of 400 µg/ml and mixed with virus in serum-free RPMI and incubated for 1
594 h at 33°C on a shaker at 150 rpm. Wells containing PBS and no virus were included as
595 controls. After the virus and/or virus:antibody mixture was transferred onto LLC-MK2
596 cells and the plate was incubated at 33°C in CO₂ incubator. Eight days later the cells
597 were visually inspected for evidence of cytopathic effects under a light microscope.

598

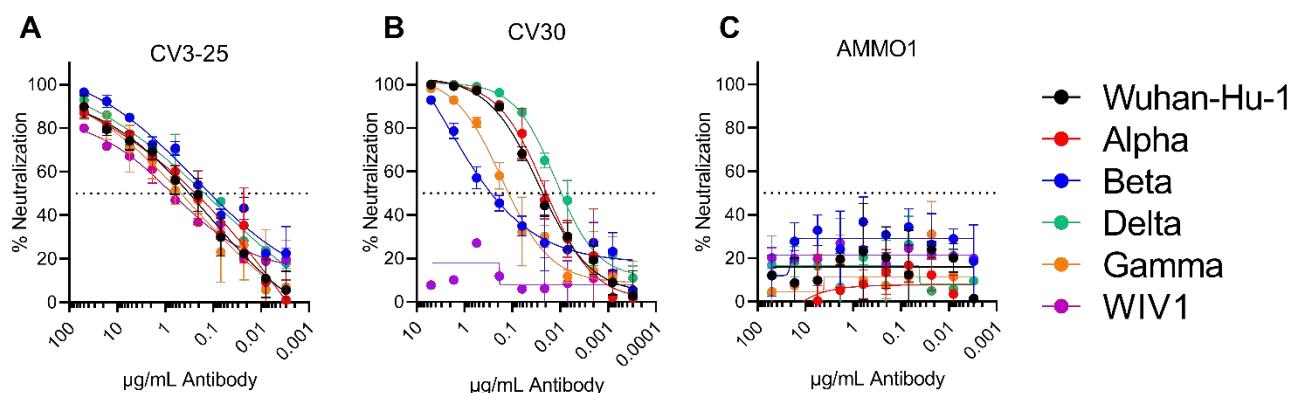
599 **ACKNOWLEDGEMENTS:**

600 **Funding:** This work was supported by generous donations to Fred Hutch COVID-19
601 Research Fund (L.S.), Fast Grants (part of Emergent Ventures at George Mason
602 University) and a COVID pilot award from the Fred Hutch (J.B.) and by the M.J.
603 Murdock Charitable Trust (A.T.M.).

604 X-ray diffraction data was collected at the Berkeley Center for Structural Biology
605 beamline 5.0.2 at the Advanced Light Source (ALS), which is supported in part by the
606 Howard Hughes Medical Institute. ALS is a Department of Energy Office of Science
607 User Facility under Contract No. DE-AC02-05CH11231. We thank the James B.
608 Pendleton Charitable Trust for its generous support of Formulatrix robotic instruments.
609 We thank Stephen C. DeRosa and Kristen W Cohen for providing some of the peptides
610 used in this study. **Author Contributions:** Conceptualization, A.T.M., M.P., and L.S.;
611 Investigation, N.K.H., L.J.H., I.S., M.J, A.J.M., Y-H. W., P.Z., J.B. and A.M.H. Writing -
612 Original Draft, N.K.H., A.T.M, M.P. and L.S.; Writing - Review & Editing, All authors.;
613 Funding Acquisition, L.S. and A.T.M. **Competing interests:** L.S. and A.T.M. have filed
614 a provisional patent application on the CV3-25 monoclonal antibody. A.T.M. has filed a
615 provisional patent application on the B6 monoclonal antibody. All other authors declare
616 no competing interests. **Data and Materials Availability:** All data are available in the
617 manuscript or the supplementary material. The CV3-25/peptide structure has been
618 deposited in the PDB (7RAQ).

619

620


621

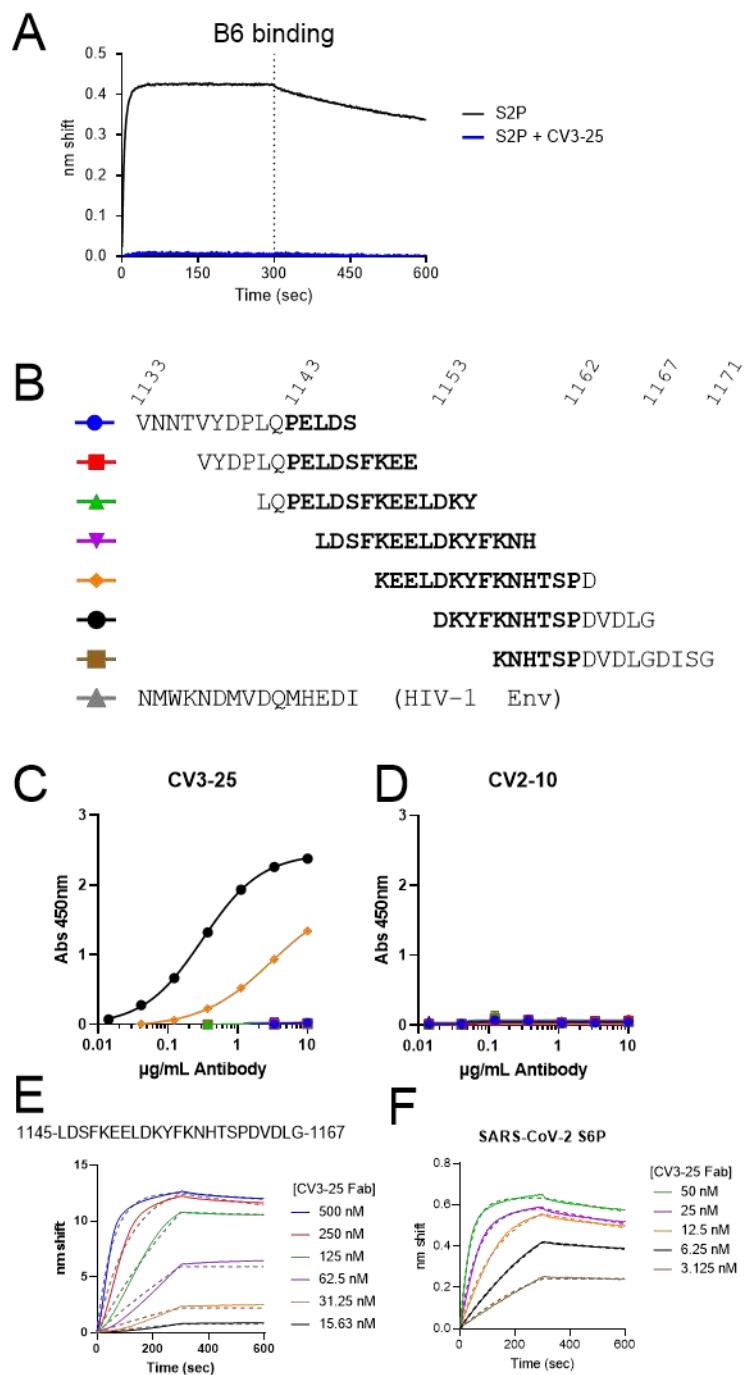
622

623

624

625

626


627

628 **Figure 1. CV3-25 neutralizes SARS-CoV-2 variants and a SARS-like Bat virus.** The
629 S2-binding CV3-25 (A), RBD-binding CV30 (B) and anti-EBV mAb AMMO1 (C) were
630 evaluated for their ability to neutralize the indicated SARS-CoV-2 variants of concern
631 and the SARS-like bat virus WIV1.

632

633

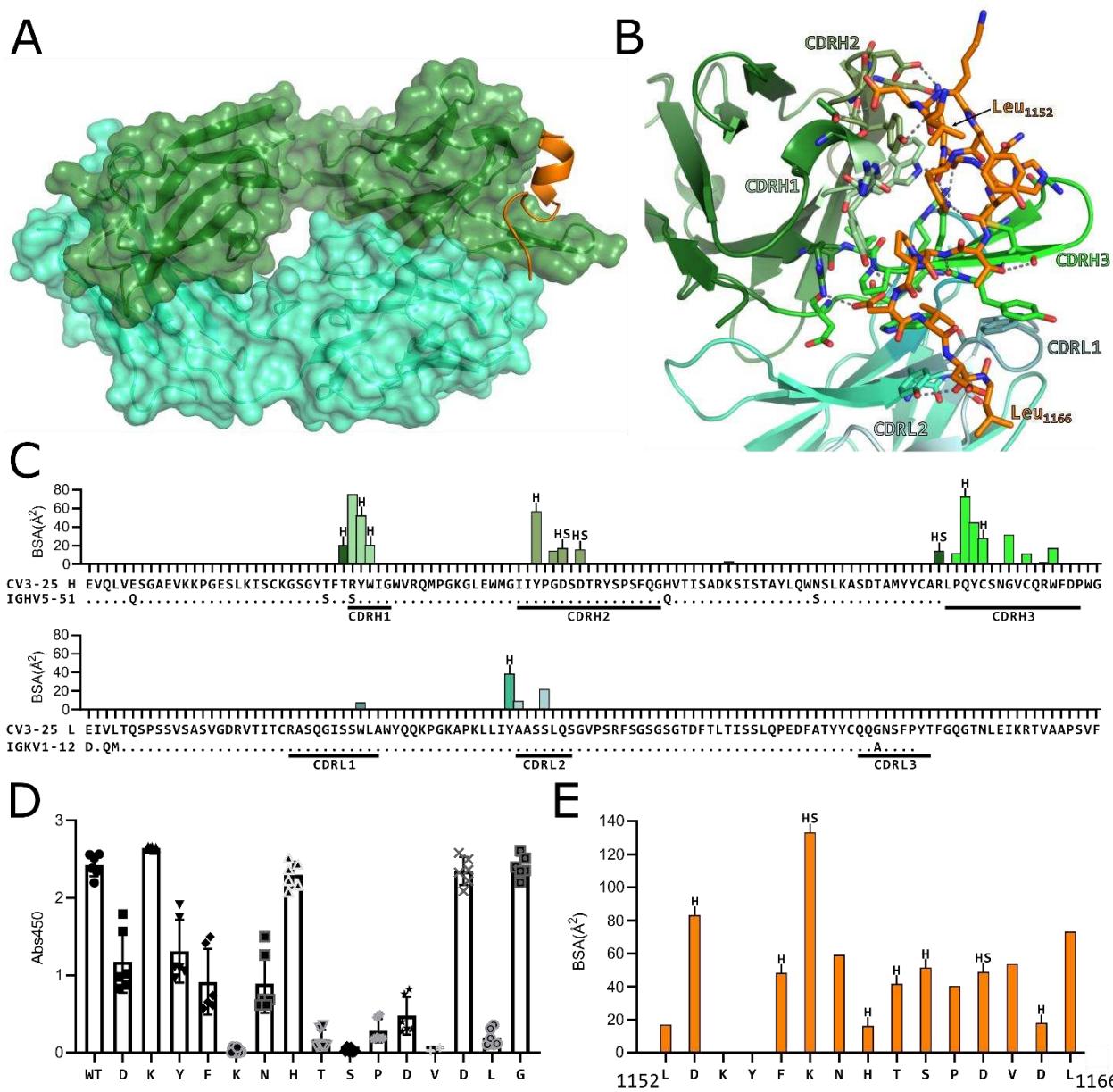
634

635

636

637

638

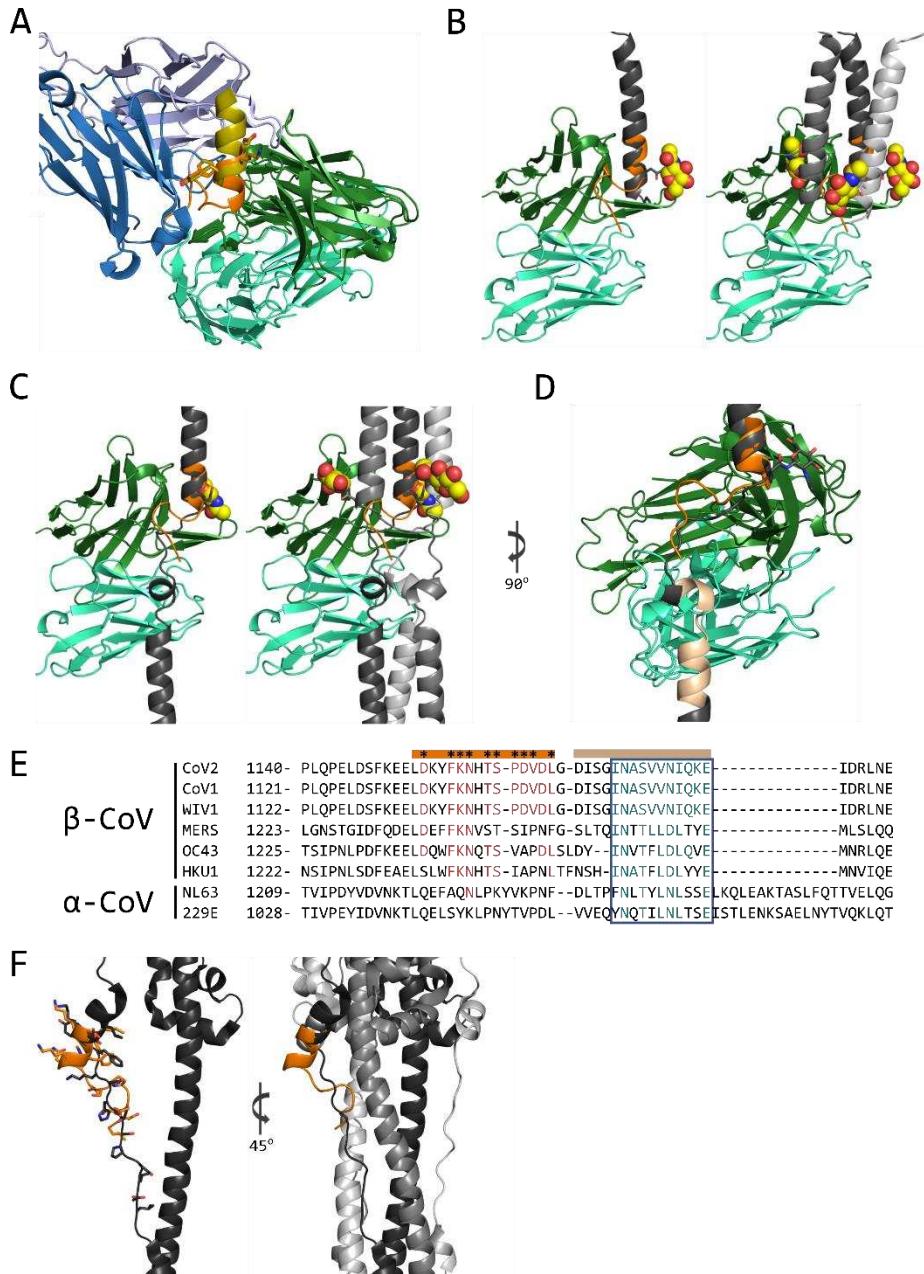

639

640 **Figure 2. CV3-25 binds to a linear peptide encompassing the C-terminus of the**
641 **stem helix.** (A) Binding of the B6 mAb to SARS-CoV-2 S2P alone or a SARS-CoV-2
642 S2P-CV3-25 complex as indicated. (B) Alignment of a set of 15mer peptides that
643 overlap by 11 amino acids spanning residues 1133-1171 of the SARS-CoV-2 spike
644 protein. The region that corresponds to the stem helix in the prefusion wild-type spike
645 protein (based on the 6XR8) is shown in bold. (C) CV3-25 was tested for binding to the
646 peptides in B, and to a 15mer peptide derived from an HIV-1 Env protein. (D) CV2-10,
647 which also binds to S2, but does not compete with CV3-25 was tested for binding to the
648 peptides in B. CV3-25 Fab binding was measured to the indicated stem helix peptide
649 (E) or a stabilized SARS-CoV-2 spike protein (S6P, F) by BLI.

650

651

652


653

654 **Figure 3. (A) Structure of CV3-25 Fab bound to stem helix peptide.** CV3-25-peptide
655 shown in ribbon structure with mAb surface representation shown in transparency. CV3-
656 25 heavy chain is shown in green and light chain in cyan. The peptide is shown in
657 orange. **(B)** Details of the interactions between the Fab and the peptide.
658 Complementary determining regions (CDRs) are labeled and colored as shown.
659 Hydrogen bonds between Fab residues and the peptide are shown with dashed black

660 lines. **(C)** Plots of buried surface area (BSA) of each Fab residue interacting with the
661 peptide and a sequence alignment with the corresponding V-gene. CDRs are labelled
662 and color coded to match the structure shown in B. Residues engaged in a hydrogen
663 bond or salt bridge are marked with an “H” or “S”, respectively. **(D)** Alanine scanning
664 plot of the stem helix region that CV3-25 binds. CV3-25 binding to linear peptides
665 corresponding to amino acids 1153-1167 of the SARS-CoV-2 spike, where each amino
666 acid was substituted by alanine was measured by ELISA. The absorbance at 450 nm
667 resulting from the addition of 1.25 μ g of CV3-25 is shown. Each dot represents a
668 technical replicate from three independent experiments conducted in duplicate. Full
669 titrations are shown in Figure S1. **(E)** Plot of the BSA of each stem helix peptide
670 residue.

671

672
673
674

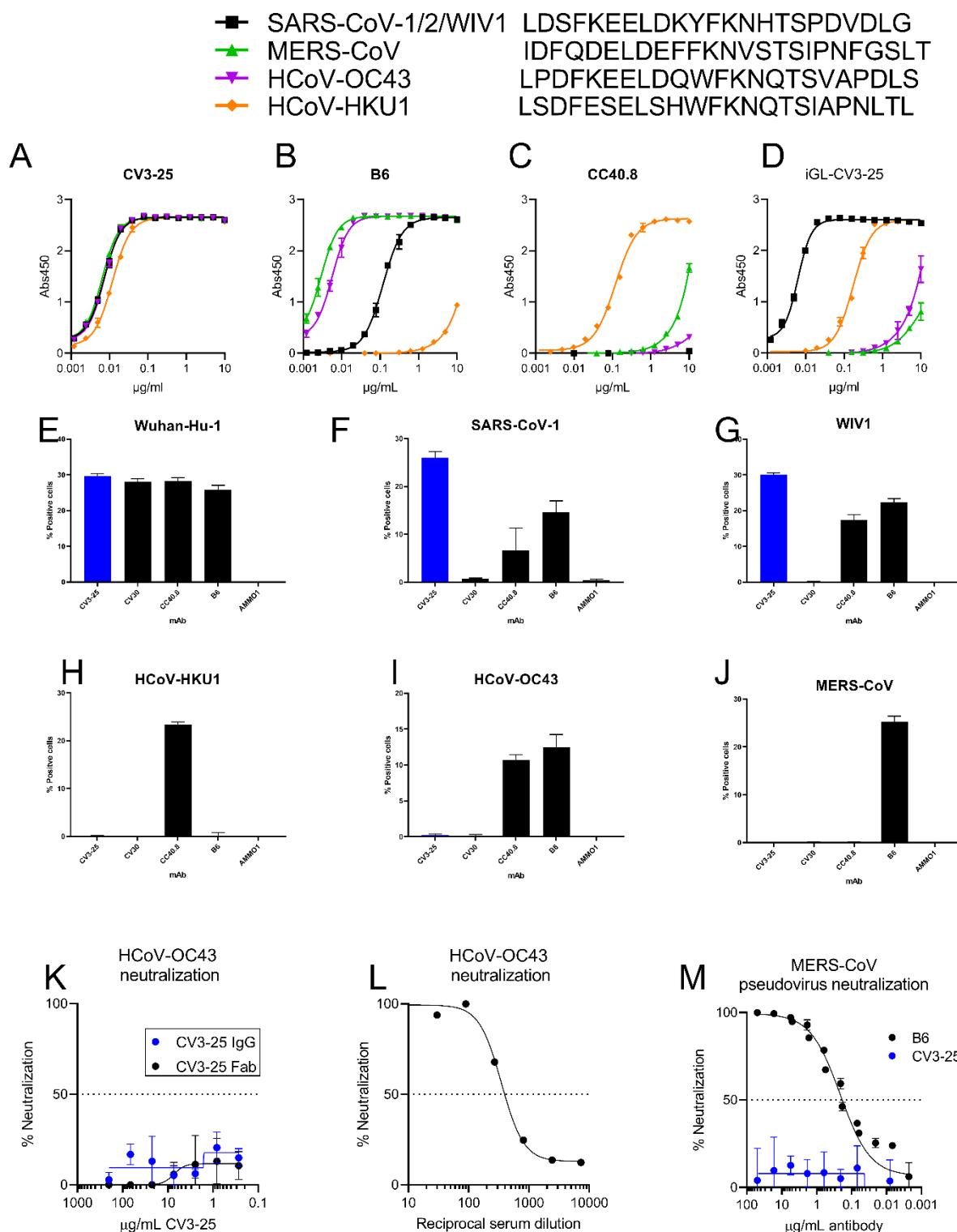

675
676
677
678
679
680
681

Figure 4. (A) Structural alignment of stem helix peptides to CV3-25 Fab and B6 Fab (PDBid: 7M53) shown as ribbon diagram. B6 heavy chain is shown in dark blue and light chain in light blue. CV3-25 heavy chain is shown in green and light chain in cyan. The B6-bound peptide is shown in yellow and the CV3-25-bound peptide in orange. (B) Left, structural alignment of the CV3-25 structure and the stem helix structure (PDBid: 6XR8) shown in cartoon representation. The 6XR8 stem helix is shown in dark gray and

682 the CV3-25-bound peptide is shown in orange. Asn₁₁₅₈ glycan is shown in yellow sphere
683 representation. Left, the alignment with a single protomer, right, an alignment with the
684 trimer. **(C)** Structural alignment of CV3-25 to MD simulation model of the stem helix and
685 HR2 region of the spike protein (Casalino et al., 2020). Asp₁₁₅₈ glycan is shown in
686 yellow sphere representation. Left, an alignment with a single protomer, right an
687 alignment with the trimer. **(D)** Potential interaction area of the N-terminal end of HR2
688 and the light chain of CV3-25 is shown in tan. **(E)** Sequence alignment of the stem helix
689 region of several CoV spike proteins. The peptide bound to CV3-25 is marked by the
690 orange bar and crucial interacting residues are marked by *. The residues conserved in
691 the binding site are shown in red. The region that could interact with the light chain is
692 shown with the tan bar and the conserved region is highlighted by the blue box with
693 similar residues shown in teal. **(F)** Structural alignment of the CV3-25 bound peptide
694 (orange) to the post-fusion S (black, PDBid: 6XRA). The peptide was aligned to
695 ₁₁₅₂LDKY₁₁₅₅ in the spike. Left, the alignment to the protomer. The sidechains of the
696 residues are shown in stick representation, right, the region is shown in context of the
697 trimer.

698

699

701 **Figure 5. CV3-25 binds to stem helix peptides from diverse betacoronaviruses but**
702 **only to cell surface-expressed sarbecovirus spike proteins.** Binding of CV3-25 (**A**),
703 B6 (**B**), CC40.8 (**C**) or the inferred germline version of CV3-25 (**D**), to linear peptides
704 from SARS-CoV-1/2/WIV1, MERS-CoV, HCoV-OC43, and HCoV-HKU1 was measured
705 by ELISA. Spike proteins from SARS-CoV-2 Wuhan-Hu-1 (**E**), SARS-CoV-1 Urbani (**F**),
706 WIV1 (**G**), HCoV-HKU1 (**H**) and HCoV-OC43 (**I**) and MERS-CoV (**J**) were expressed on
707 the surface of 293 cells, and then stained with the indicated fluorescently labeled mAbs
708 and then analyzed by flow cytometry. The percentage of cells that stained positive with
709 the mAbs is indicated on the y-axis. Neutralization of authentic OC43 by CV3-25 IgG or
710 Fab (**K**), or human sera (**L**). (**M**) Neutralization of MERS-CoV pseudovirus by the
711 indicated mAbs.

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728 **References**

729

730 ADAMS, P. D., AFONINE, P. V., BUNKOCZI, G., CHEN, V. B., DAVIS, I. W., ECHOLS, N., HEADD, J. J., HUNG,
731 L. W., KAPRAL, G. J., GROSSE-KUNSTLEVE, R. W., MCCOY, A. J., MORIARTY, N. W., OEFFNER, R.,
732 READ, R. J., RICHARDSON, D. C., RICHARDSON, J. S., TERWILLIGER, T. C. & ZWART, P. H. 2010.
733 PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta
734 Crystallogr D Biol Crystallogr*, 66, 213-21.

735 ANDREANO, E., NICASTRI, E., PACIELLO, I., PILERI, P., MANGANARO, N., PICCINI, G., MANENTI, A.,
736 PANTANO, E., KABANOVA, A., TROISI, M., VACCA, F., CARDAMONE, D., DE SANTI, C., TORRES, J.,
737 L., OZOROWSKI, G., BENINCASA, L., JANG, H., DI GENOVA, C., DEPAU, L., BRUNETTI, J., AGRATI,
738 C., CAPOBIANCHI, M. R., CASTILLETI, C., EMILIOZZI, A., FABBIANI, M., MONTAGNANI, F.,
739 BRACCI, L., SAUTTO, G., ROSS, T. M., MONTOMOLI, E., TEMPERTON, N., WARD, A. B., SALA, C.,
740 IPPOLITO, G. & RAPPOLI, R. 2021. Extremely potent human monoclonal antibodies from
741 COVID-19 convalescent patients. *Cell*, 184, 1821-1835.e16.

742 BROUWER, P. J. M., CANIELS, T. G., VAN DER STRATEN, K., SNITSELAAR, J. L., ALDON, Y., BANGARU, S.,
743 TORRES, J. L., OKBA, N. M. A., CLAIREAUX, M., KERSTER, G., BENTLAGE, A. E. H., VAN HAAREN,
744 M. M., GUERRA, D., BURGER, J. A., SCHERMER, E. E., VERHEUL, K. D., VAN DER VELDE, N., VAN
745 DER KOOL, A., VAN SCHOOTEN, J., VAN BREEMEN, M. J., BIJL, T. P. L., SLIEPEN, K., AARTSE, A.,
746 DERKING, R., BONTJER, I., KOOTSTRA, N. A., WIERSINGA, W. J., VIDARSSON, G., HAAGMANS, B.
747 L., WARD, A. B., DE BREE, G. J., SANDERS, R. W. & VAN GILS, M. J. 2020. Potent neutralizing
748 antibodies from COVID-19 patients define multiple targets of vulnerability. *Science*, 369, 643-
749 650.

750 CAI, Y., ZHANG, J., XIAO, T., PENG, H., STERLING, S. M., WALSH, R. M., JR., RAWSON, S., RITS-VOLLOCH, S.
751 & CHEN, B. 2020. Distinct conformational states of SARS-CoV-2 spike protein. *Science*, 369,
752 1586-1592.

753 CAO, Z., LIU, L., DU, L., ZHANG, C., JIANG, S., LI, T. & HE, Y. 2010. Potent and persistent antibody
754 responses against the receptor-binding domain of SARS-CoV spike protein in recovered patients.
755 *Virol J*, 7, 299.

756 CASALINO, L., GAIEB, Z., GOLDSMITH, J. A., HJORTH, C. K., DOMMER, A. C., HARBISON, A. M., FOGARTY,
757 C. A., BARROS, E. P., TAYLOR, B. C., MCLELLAN, J. S., FADDA, E. & AMARO, R. E. 2020. Beyond
758 Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein. *ACS Cent Sci*, 6, 1722-1734.

759 CERUTTI, G., GUO, Y., ZHOU, T., GORMAN, J., LEE, M., RAPP, M., REDDEM, E. R., YU, J., BAHNA, F.,
760 BIMELA, J., HUANG, Y., KATSAMBA, P. S., LIU, L., NAIR, M. S., RAWI, R., OLIA, A. S., WANG, P.,
761 CHUANG, G.-Y., HO, D. D., SHENG, Z., KWONG, P. D. & SHAPIRO, L. 2021. Potent SARS-CoV-2
762 Neutralizing Antibodies Directed Against Spike N-Terminal Domain Target a Single Supersite.
763 *bioRxiv*, 2021.01.10.426120.

764 CHI, X., YAN, R., ZHANG, J., ZHANG, G., ZHANG, Y., HAO, M., ZHANG, Z., FAN, P., DONG, Y., YANG, Y.,
765 CHEN, Z., GUO, Y., ZHANG, J., LI, Y., SONG, X., CHEN, Y., XIA, L., FU, L., HOU, L., XU, J., YU, C., LI,

766 J., ZHOU, Q. & CHEN, W. 2020. A neutralizing human antibody binds to the N-terminal domain of
767 the Spike protein of SARS-CoV-2. *Science*, 369, 650-655.

768 CLAUSEN, T. M., SANDOVAL, D. R., SPLIID, C. B., PIHL, J., PERRETT, H. R., PAINTER, C. D., NARAYANAN, A.,
769 MAJOWICZ, S. A., KWONG, E. M., MCVICAR, R. N., THACKER, B. E., GLASS, C. A., YANG, Z.,
770 TORRES, J. L., GOLDEN, G. J., BARTELS, P. L., PORELL, R. N., GARRETSON, A. F., LAUBACH, L.,
771 FELDMAN, J., YIN, X., PU, Y., HAUSER, B. M., CARADONNA, T. M., KELLMAN, B. P., MARTINO, C.,
772 GORDTS, P., CHANDA, S. K., SCHMIDT, A. G., GODULA, K., LEIBEL, S. L., JOSE, J., CORBETT, K. D.,
773 WARD, A. B., CARLIN, A. F. & ESKO, J. D. 2020. SARS-CoV-2 Infection Depends on Cellular
774 Heparan Sulfate and ACE2. *Cell*, 183, 1043-1057.e15.

775 CRAWFORD, K. H. D., EGUIA, R., DINGENS, A. S., LOES, A. N., MALONE, K. D., WOLF, C. R., CHU, H. Y.,
776 TORTORICI, M. A., VEESLER, D., MURPHY, M., PETTIE, D., KING, N. P., BALAZS, A. B. & BLOOM, J.
777 D. 2020. Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike
778 Protein for Neutralization Assays. *Viruses*, 12, <https://doi.org/10.3390/v12050513>.

779 CUI, J., LI, F. & SHI, Z. L. 2019. Origin and evolution of pathogenic coronaviruses. *Nat Rev Microbiol*, 17,
780 181-192.

781 DONG, E., DU, H. & GARDNER, L. 2020. An interactive web-based dashboard to track COVID-19 in real
782 time. *Lancet Infect Dis*, 20, 533-534.

783 EGUIA, R., CRAWFORD, K. H. D., STEVENS-AYERS, T., KELNHOFER-MILLEVOLTE, L., GRENINGER, A. L.,
784 ENGLUND, J. A., BOECKH, M. J. & BLOOM, J. D. 2020. A human coronavirus evolves antigenically
785 to escape antibody immunity. *bioRxiv*, 2020.12.17.423313.

786 EMSLEY, P. & COWTAN, K. 2004. Coot: model-building tools for molecular graphics. *Acta Crystallogr D
787 Biol Crystallogr*, 60, 2126-32.

788 ESPOSITO, D., MEHALKO, J., DREW, M., SNEAD, K., WALL, V., TAYLOR, T., FRANK, P., DENSON, J. P.,
789 HONG, M., GULTEN, G., SADTLER, K., MESSING, S. & GILLETTE, W. 2020. Optimizing high-yield
790 production of SARS-CoV-2 soluble spike trimers for serology assays. *Protein Expr Purif*, 174,
791 105686.

792 FARIA, N. R., CLARO, I. M., CANDIDO, D., FRANCO, L. A. M., ANDRADE, P. S., COLETTI, T. M., SILVA, C. A.
793 M., SALES, F. C., MANULI, E. R., AGUIAR, R. S., GABURO, N., CAMILO, C. D. C., FRAIJI, N. A.,
794 CRISPIM, M. A. E., CARVALHO, M. D. P. S. S., RAMBAUT, A., LOMAN, N., PYBUS, O. G., SABINO, E.
795 C. & NETWORK, C. G. 2021. Genomic characterisation of an emergent SARS-CoV-2 lineage in
796 Manaus: preliminary findings. *Virological.org*, <https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586>.

797 GE, X. Y., LI, J. L., YANG, X. L., CHMURA, A. A., ZHU, G., EPSTEIN, J. H., MAZET, J. K., HU, B., ZHANG, W.,
798 PENG, C., ZHANG, Y. J., LUO, C. M., TAN, B., WANG, N., ZHU, Y., CRAMERI, G., ZHANG, S. Y.,
800 WANG, L. F., DASZAK, P. & SHI, Z. L. 2013. Isolation and characterization of a bat SARS-like
801 coronavirus that uses the ACE2 receptor. *Nature*, 503, 535-8.

802 GHAI, R. R., CARPENTER, A., LIEW, A. Y., MARTIN, K. B., HERRING, M. K., GERBER, S. I., HALL, A. J.,
803 SLEEMAN, J. M., VONDOBSCHUETZ, S. & BEHRAVESH, C. B. 2021. Animal Reservoirs and Hosts
804 for Emerging Alphacoronaviruses and Betacoronaviruses. *Emerg Infect Dis*, 27, 1015-1022.

805 GUI, M., SONG, W., ZHOU, H., XU, J., CHEN, S., XIANG, Y. & WANG, X. 2017. Cryo-electron microscopy
806 structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for
807 receptor binding. *Cell Res*, 27, 119-129.

808 HOFFMANN, M., KLEINE-WEBER, H., SCHROEDER, S., KRUGER, N., HERRLER, T., ERICHSEN, S.,
809 SCHIERGENS, T. S., HERRLER, G., WU, N. H., NITSCHE, A., MULLER, M. A., DROSTEN, C. &
810 POHLMANN, S. 2020. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a
811 Clinically Proven Protease Inhibitor. *Cell*, 181, 271-280.e8.

812 HOFMANN, H., PYRC, K., VAN DER HOEK, L., GEIER, M., BERKHOUT, B. & PÖHLMANN, S. 2005. Human
813 coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for
814 cellular entry. *Proc Natl Acad Sci U S A*, 102, 7988-93.

815 HUANG, Y., NGUYEN, A. W., HSIEH, C.-L., SILVA, R., OLALUWOYE, O. S., WILEN, R. E., KAOUD, T. S.,
816 AZOUZ, L. R., QERQEZ, A. N., LE, K. C., BOHANON, A. L., DIVENERE, A. M., LIU, Y., LEE, A. G.,
817 AMENGOR, D., DALBY, K. N., D'ARCY, S., MCLELLAN, J. S. & MAYNARD, J. A. 2021. Identification
818 of a conserved neutralizing epitope present on spike proteins from all highly pathogenic
819 coronaviruses. *bioRxiv*, 2021.01.31.428824.

820 HURLBURT, N. K., SEYDOUX, E., WAN, Y. H., EDARA, V. V., STUART, A. B., FENG, J., SUTHAR, M. S.,
821 MCGUIRE, A. T., STAMATATOS, L. & PANCERA, M. 2020. Structural basis for potent
822 neutralization of SARS-CoV-2 and role of antibody affinity maturation. *Nat Commun*, 11, 5413.

823 HWANG, W. C., LIN, Y., SANTELLI, E., SUI, J., JAROSZEWSKI, L., STEC, B., FARZAN, M., MARASCO, W. A. &
824 LIDDINGTON, R. C. 2006. Structural basis of neutralization by a human anti-severe acute
825 respiratory syndrome spike protein antibody, 80R. *J Biol Chem*, 281, 34610-6.

826 JENNEWEIN, M. F., MACCAMY, A. J., AKINS, N. R., FENG, J., HOMAD, L. J., HURLBURT, N. K., SEYDOUX, E.,
827 WAN, Y.-H., STUART, A. B., EDARA, V. V., FLOYD, K., VANDERHEIDEN, A., MASCOLA, J. R., DORIA-
828 ROSE, N., WANG, L., YANG, E. S., CHU, H. Y., TORRES, J. L., OZOROWSKI, G., WARD, A. B.,
829 WHALEY, R. E., COHEN, K. W., PANCERA, M., MCERLATH, M. J., ENGLUND, J. A., FINZI, A.,
830 SUTHAR, M. S., MCGUIRE, A. T. & STAMATATOS, L. 2021. Isolation and Characterization of Cross-
831 Neutralizing Coronavirus Antibodies from COVID-19+ Subjects. *Cell Reports*, 36, 109353.

832 JIANG, L., WANG, N., ZUO, T., SHI, X., POON, K. M., WU, Y., GAO, F., LI, D., WANG, R., GUO, J., FU, L.,
833 YUEN, K. Y., ZHENG, B. J., WANG, X. & ZHANG, L. 2014. Potent neutralization of MERS-CoV by
834 human neutralizing monoclonal antibodies to the viral spike glycoprotein. *Sci Transl Med*, 6,
835 234ra59.

836 JOOSTEN, R. P., LONG, F., MURSHUDOV, G. N. & PERRAKIS, A. 2014. The PDB_RED0 server for
837 macromolecular structure model optimization. *IUCrJ*, 1, 213-20.

838 KABSCH, W. 2010. XDS. *Acta Crystallogr D Biol Crystallogr*, 66, 125-32.

839 KE, Z., OTON, J., QU, K., CORTESE, M., ZILA, V., MCKEANE, L., NAKANE, T., ZIVANOV, J., NEUFELDT, C. J.,
840 CERIKAN, B., LU, J. M., PEUKES, J., XIONG, X., KRÄUSSLICH, H. G., SCHERES, S. H. W.,
841 BARTENSCHLAGER, R. & BRIGGS, J. A. G. 2020. Structures and distributions of SARS-CoV-2 spike
842 proteins on intact virions. *Nature*, 588, 498-502.

843 KHOURY, D. S., CROMER, D., REYNALDI, A., SCHLUB, T. E., WHEATLEY, A. K., JUNO, J. A., SUBBARAO, K.,
844 KENT, S. J., TRICCAS, J. A. & DAVENPORT, M. P. 2021. Neutralizing antibody levels are highly
845 predictive of immune protection from symptomatic SARS-CoV-2 infection. *Nat Med*.

846 KIRCHDOERFER, R. N., WANG, N., PALLESEN, J., WRAPP, D., TURNER, H. L., COTTRELL, C. A., CORBETT, K.
847 S., GRAHAM, B. S., MCLELLAN, J. S. & WARD, A. B. 2018. Stabilized coronavirus spikes are
848 resistant to conformational changes induced by receptor recognition or proteolysis. *Sci Rep*, 8,
849 15701.

850 KISTLER, K. E. & BEDFORD, T. 2021. Evidence for adaptive evolution in the receptor-binding domain of
851 seasonal coronaviruses OC43 and 229E. *Elife*, 10, e64509.

852 LI, W., MOORE, M. J., VASILIEVA, N., SUI, J., WONG, S. K., BERNE, M. A., SOMASUNDARAN, M.,
853 SULLIVAN, J. L., LUZURIAGA, K., GREENOUGH, T. C., CHOE, H. & FARZAN, M. 2003. Angiotensin-
854 converting enzyme 2 is a functional receptor for the SARS coronavirus. *Nature*, 426, 450-4.

855 LIU, L., WANG, P., NAIR, M. S., YU, J., RAPP, M., WANG, Q., LUO, Y., CHAN, J. F., SAHI, V., FIGUEROA, A.,
856 GUO, X. V., CERUTTI, G., BIMELA, J., GORMAN, J., ZHOU, T., CHEN, Z., YUEN, K. Y., KWONG, P. D.,
857 SODROSKI, J. G., YIN, M. T., SHENG, Z., HUANG, Y., SHAPIRO, L. & HO, D. D. 2020. Potent
858 neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. *Nature*, 584, 450-456.

859 LUMLEY, S. F., O'DONNELL, D., STOESSER, N. E., MATTHEWS, P. C., HOWARTH, A., HATCH, S. B.,
860 MARSDEN, B. D., COX, S., JAMES, T., WARREN, F., PECK, L. J., RITTER, T. G., DE TOLEDO, Z.,
861 WARREN, L., AXTEN, D., CORNALL, R. J., JONES, E. Y., STUART, D. I., SCREATON, G., EBNER, D.,
862 HOOSDALLY, S., CHAND, M., CROOK, D. W., O'DONNELL, A. M., CONLON, C. P., POUWELS, K. B.,
863 WALKER, A. S., PETO, T. E. A., HOPKINS, S., WALKER, T. M., JEFFERY, K., EYRE, D. W. & OXFORD
864 UNIVERSITY HOSPITALS STAFF TESTING, G. 2021. Antibody Status and Incidence of SARS-CoV-2
865 Infection in Health Care Workers. *N Engl J Med*, 384, 533-540.

866 MCCALLUM, M., MARCO, A. D., LEMPP, F., TORTORICI, M. A., PINTO, D., WALLS, A. C., BELTRAMELLO,
867 M., CHEN, A., LIU, Z., ZATTA, F., ZEPEDA, S., DI IULIO, J., BOWEN, J. E., MONTIEL-RUIZ, M., ZHOU,
868 J., ROSEN, L. E., BIANCHI, S., GUARINO, B., FREGNI, C. S., ABDELNABI, R., CAROLINE FOO, S.-Y.,
869 ROTHLAUF, P. W., BLOYET, L.-M., BENIGNI, F., CAMERONI, E., NEYTS, J., RIVA, A., SNELL, G.,
870 TELENTI, A., WHELAN, S. P. J., VIRGIN, H. W., CORTI, D., PIZZUTO, M. S. & VEESLER, D. 2021. N-
871 terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. *bioRxiv*,
872 2021.01.14.426475.

873 MCMAHAN, K., YU, J., MERCADO, N. B., LOOS, C., TOSTANOSKI, L. H., CHANDRASHEKAR, A., LIU, J.,
874 PETER, L., ATYEO, C., ZHU, A., BONDZIE, E. A., DAGOTTO, G., GEBRE, M. S., JACOB-DOLAN, C., LI,
875 Z., NAMPANYA, F., PATEL, S., PESSAINT, L., VAN RY, A., BLADE, K., YALLEY-OGUNRO, J., CABUS,
876 M., BROWN, R., COOK, A., TEOW, E., ANDERSEN, H., LEWIS, M. G., LAUFFENBURGER, D. A.,
877 ALTER, G. & BAROUCH, D. H. 2020. Correlates of protection against SARS-CoV-2 in rhesus
878 macaques. *Nature*, 590, 630-634.

879 MILLET, J. K. & WHITTAKER, G. R. 2015. Host cell proteases: Critical determinants of coronavirus tropism
880 and pathogenesis. *Virus Res*, 202, 120-34.

881 NIU, P., ZHANG, S., ZHOU, P., HUANG, B., DENG, Y., QIN, K., WANG, P., WANG, W., WANG, X., ZHOU, J.,
882 ZHANG, L. & TAN, W. 2018. Ultrapotent Human Neutralizing Antibody Repertoires Against
883 Middle East Respiratory Syndrome Coronavirus From a Recovered Patient. *J Infect Dis*, 218,
884 1249-1260.

885 PALLESEN, J., WANG, N., CORBETT, K. S., WRAPP, D., KIRCHDOERFER, R. N., TURNER, H. L., COTTRELL, C.
886 A., BECKER, M. M., WANG, L., SHI, W., KONG, W. P., ANDRES, E. L., KETTENBACH, A. N.,
887 DENISON, M. R., CHAPPELL, J. D., GRAHAM, B. S., WARD, A. B. & MCLELLAN, J. S. 2017.
888 Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. *Proc
889 Natl Acad Sci U S A*, 114, E7348-E7357.

890 PICCOLI, L., PARK, Y. J., TORTORICI, M. A., CZUDNOCHOWSKI, N., WALLS, A. C., BELTRAMELLO, M.,
891 SILACCI-FREGNI, C., PINTO, D., ROSEN, L. E., BOWEN, J. E., ACTON, O. J., JACONI, S., GUARINO,
892 B., MINOLA, A., ZATTA, F., SPRUGASCI, N., BASSI, J., PETER, A., DE MARCO, A., NIX, J. C., MELE, F.,
893 JOVIC, S., RODRIGUEZ, B. F., GUPTA, S. V., JIN, F., PIUMATTI, G., LO PRESTI, G., PELLANDA, A. F.,
894 BIGGIOGERO, M., TARKOWSKI, M., PIZZUTO, M. S., CAMERONI, E., HAVENAR-DAUGHTON, C.,
895 SMITHHEY, M., HONG, D., LEPORI, V., ALBANESE, E., CESCHI, A., BERNASCONI, E., ELZI, L., FERRARI,
896 P., GARZONI, C., RIVA, A., SNELL, G., SALLUSTO, F., FINK, K., VIRGIN, H. W., LANZAVECCHIA, A.,
897 CORTI, D. & VEESLER, D. 2020. Mapping Neutralizing and Immunodominant Sites on the SARS-
898 CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. *Cell*, 183,
899 1024-1042.e21.

900 PINTO, D., SAUER, M. M., CZUDNOCHOWSKI, N., LOW, J. S., TORTORICI, M. A., HOUSLEY, M. P., NOACK,
901 J., WALLS, A. C., BOWEN, J. E., GUARINO, B., ROSEN, L. E., DI IULIO, J., JERAK, J., KAISER, H.,
902 ISLAM, S., JACONI, S., SPRUGASCI, N., CULAP, K., ABDELNABI, R., FOO, C., COELMONT, L.,
903 BARTHA, I., BIANCHI, S., SILACCI-FREGNI, C., BASSI, J., MARZI, R., VETTI, E., CASSOTTA, A.,
904 CESCHI, A., FERRARI, P., CIPPÀ, P. E., GIANNINI, O., CERUTI, S., GARZONI, C., RIVA, A., BENIGNI,
905 F., CAMERONI, E., PICCOLI, L., PIZZUTO, M. S., SMITHHEY, M., HONG, D., TELENTI, A., LEMPP, F. A.,
906 NEYTS, J., HAVENAR-DAUGHTON, C., LANZAVECCHIA, A., SALLUSTO, F., SNELL, G., VIRGIN, H. W.,

907 BELTRAMELLO, M., CORTI, D. & VEESLER, D. 2021. A human antibody that broadly neutralizes
908 betacoronaviruses protects against SARS-CoV-2 by blocking the fusion machinery. *bioRxiv*,
909 2021.05.09.442808.

910 PRABAKARAN, P., GAN, J., FENG, Y., ZHU, Z., CHOUDHRY, V., XIAO, X., JI, X. & DIMITROV, D. S. 2006.
911 Structure of severe acute respiratory syndrome coronavirus receptor-binding domain
912 complexed with neutralizing antibody. *J Biol Chem*, 281, 15829-36.

913 RAMBAUT, A., LOMAN, N., PYBUS, O., BARCLAY, W., BARRETT, J., CARABELLI, A., CONNOR, T., PEACOCK,
914 T., ROBERTSON, D. L. & VOLZ, E. 2020. *Preliminary genomic characterisation of an emergent*
915 *SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations* [Online]. virological.org.
916 Available: <https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563> [Accessed January 18,
917 2021 2021].

918 ROCKX, B., CORTI, D., DONALDSON, E., SHEAHAN, T., STADLER, K., LANZAVECCHIA, A. & BARIC, R. 2008.
919 Structural basis for potent cross-neutralizing human monoclonal antibody protection against
920 lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge. *J Virol*, 82,
921 3220-35.

922 ROGERS, T. F., ZHAO, F., HUANG, D., BEUTLER, N., BURNS, A., HE, W. T., LIMBO, O., SMITH, C., SONG, G.,
923 WOEHL, J., YANG, L., ABBOTT, R. K., CALLAGHAN, S., GARCIA, E., HURTADO, J., PARREN, M.,
924 PENG, L., RAMIREZ, S., RICKETTS, J., RICCIARDI, M. J., RAWLINGS, S. A., WU, N. C., YUAN, M.,
925 SMITH, D. M., NEMAZEE, D., TEIJARO, J. R., VOSS, J. E., WILSON, I. A., ANDRABI, R., BRINEY, B.,
926 LANDAIS, E., SOK, D., JARDINE, J. G. & BURTON, D. R. 2020. Isolation of potent SARS-CoV-2
927 neutralizing antibodies and protection from disease in a small animal model. *Science*, 369, 956-
928 963.

929 SAKHARKAR, M., RAPPAZZO, C. G., WIELAND-ALTER, W. F., HSIEH, C. L., WRAPP, D., ESTERMAN, E. S.,
930 KAKU, C. I., WEC, A. Z., GEOGHEGAN, J. C., MCLELLAN, J. S., CONNOR, R. I., WRIGHT, P. F. &
931 WALKER, L. M. 2021. Prolonged evolution of the human B cell response to SARS-CoV-2 infection.
932 *Sci Immunol*, 6.

933 SAUER, M. M., TORTORICI, M. A., PARK, Y. J., WALLS, A. C., HOMAD, L., ACTON, O. J., BOWEN, J. E.,
934 WANG, C., XIONG, X., DE VAN DER SCHUEREN, W., QUISPE, J., HOFFSTROM, B. G., BOSCH, B. J.,
935 MCGUIRE, A. T. & VEESLER, D. 2021. Structural basis for broad coronavirus neutralization. *Nat Struct Mol Biol*, 28, 478-486.

936 SEYDOUX, E., HOMAD, L. J., MACCAMY, A. J., PARKS, K. R., HURLBURT, N. K., JENNEWEIN, M. F., AKINS,
937 N. R., STUART, A. B., WAN, Y. H., FENG, J., WHALEY, R. E., SINGH, S., BOECKH, M., COHEN, K. W.,
938 MCELARTH, M. J., ENGLUND, J. A., CHU, H. Y., PANCERA, M., MCGUIRE, A. T. & STAMATATOS, L.
939 2020. Analysis of a SARS-CoV-2-Infected Individual Reveals Development of Potent Neutralizing
940 Antibodies with Limited Somatic Mutation. *Immunity*, 53, 98-105 e5.

941 SHAH, P., CANZIANI, G. A., CARTER, E. P. & CHAIKEN, I. 2021. The Case for S2: The Potential Benefits of
942 the S2 Subunit of the SARS-CoV-2 Spike Protein as an Immunogen in Fighting the COVID-19
943 Pandemic. *Front Immunol*, 12, 637651.

944 SNIJDER, J., ORTEGO, M. S., WEIDLE, C., STUART, A. B., GRAY, M. D., MCELARTH, M. J., PANCERA, M.,
945 VEESLER, D. & MCGUIRE, A. T. 2018. An Antibody Targeting the Fusion Machinery Neutralizes
946 Dual-Tropic Infection and Defines a Site of Vulnerability on Epstein-Barr Virus. *Immunity*, 48,
947 799-811 e9.

948 SONG, G., HE, W. T., CALLAGHAN, S., ANZANELLO, F., HUANG, D., RICKETTS, J., TORRES, J. L., BEUTLER,
949 N., PENG, L., VARGAS, S., CASSELL, J., PARREN, M., YANG, L., IGNACIO, C., SMITH, D. M., VOSS, J.
950 E., NEMAZEE, D., WARD, A. B., ROGERS, T., BURTON, D. R. & ANDRABI, R. 2020. Cross-reactive
951 serum and memory B cell responses to spike protein in SARS-CoV-2 and endemic coronavirus
952 infection. *bioRxiv*, 2020.09.22.308965.

953

954

955 STAMATATOS, L., CZARTOSKI, J., WAN, Y. H., HOMAD, L. J., RUBIN, V., GLANTZ, H., NERADILEK, M.,
956 SEYDOUX, E., JENNEWEIN, M. F., MACCAMY, A. J., FENG, J., MIZE, G., DE ROSA, S. C., FINZI, A.,
957 LEMOS, M. P., COHEN, K. W., MOODIE, Z., MCELRATH, M. J. & MCGUIRE, A. T. 2021. mRNA
958 vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection.
959 *Science*.

960 SUI, J., LI, W., MURAKAMI, A., TAMIN, A., MATTHEWS, L. J., WONG, S. K., MOORE, M. J., TALLARICO, A.
961 S., OLURINDE, M., CHOE, H., ANDERSON, L. J., BELLINI, W. J., FARZAN, M. & MARASCO, W. A.
962 2004. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a
963 human mAb to S1 protein that blocks receptor association. *Proc Natl Acad Sci U S A*, 101, 2536-
964 41.

965 TANG, X. C., AGNIHOTRAM, S. S., JIAO, Y., STANHOPE, J., GRAHAM, R. L., PETERSON, E. C., AVNIR, Y.,
966 TALLARICO, A. S., SHEEHAN, J., ZHU, Q., BARIC, R. S. & MARASCO, W. A. 2014. Identification of
967 human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. *Proc
968 Natl Acad Sci U S A*, 111, E2018-26.

969 TEGALLY, H., WILKINSON, E., GIOVANETTI, M., IRANZADEH, A., FONSECA, V., GIANDHARI, J., DOOLABH,
970 D., PILLAY, S., SAN, E. J., MSOMI, N., MLISANA, K., VON GOTTBURG, A., WALAZA, S., ALLAM, M.,
971 ISMAIL, A., MOHALE, T., GLASS, A. J., ENGELBRECHT, S., VAN ZYL, G., PREISER, W., PETRUCCIONE,
972 F., SIGAL, A., HARDIE, D., MARAIS, G., HSIAO, M., KORSMAN, S., DAVIES, M.-A., TYERS, L.,
973 MUDAU, I., YORK, D., MASLO, C., GOEDHALS, D., ABRAHAMS, S., LAGUDA-AKINGBA, O.,
974 ALISOLTANI-DEHKORDI, A., GODZIK, A., WIBMER, C. K., SEWELL, B. T., LOURENÇO, J.,
975 ALCANTARA, L. C. J., POND, S. L. K., WEAVER, S., MARTIN, D., LESSELLS, R. J., BHIMAN, J. N.,
976 WILLIAMSON, C. & DE OLIVEIRA, T. 2020. Emergence and rapid spread of a new severe acute
977 respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations
978 in South Africa. *medRxiv*, 2020.12.21.20248640.

979 TORTORICI, M. A. & VEESLER, D. 2019. Structural insights into coronavirus entry. *Adv Virus Res*, 105, 93-
980 116.

981 TRAGGIAI, E., BECKER, S., SUBBARAO, K., KOLESNIKOVA, L., UEMATSU, Y., GISMONDO, M. R., MURPHY,
982 B. R., RAPPOLI, R. & LANZAVECCHIA, A. 2004. An efficient method to make human monoclonal
983 antibodies from memory B cells: potent neutralization of SARS coronavirus. *Nat Med*, 10, 871-5.

984 TURONOVA, B., SIKORA, M., SCHURMANN, C., HAGEN, W. J. H., WELSCH, S., BLANC, F. E. C., VON
985 BULOW, S., GECHT, M., BAGOLA, K., HORNER, C., VAN ZANDBERGEN, G., LANDRY, J., DE
986 AZEVEDO, N. T. D., MOSALAGANTI, S., SCHWARZ, A., COVINO, R., MUHLEBACH, M. D., HUMMER,
987 G., KRIJNSE LOCKER, J. & BECK, M. 2020. In situ structural analysis of SARS-CoV-2 spike reveals
988 flexibility mediated by three hinges. *Science*, 370, 203-208.

989 ULLAH, I., PRÉVOST, J., LADINSKY, M. S., STONE, H., LU, M., ANAND, S. P., BEAUDOIN-BUSSIÈRES, G.,
990 SYMMES, K., BENLARBI, M., DING, S., GASSER, R., FINK, C., CHEN, Y., TAUZIN, A., GOYETTE, G.,
991 BOURASSA, C., MEDJAHED, H., MACK, M., CHUNG, K., WILEN, C. B., DEKABAN, G. A., DIKEAKOS,
992 J. D., BRUCE, E. A., KAUFMANN, D. E., STAMATATOS, L., MCGUIRE, A. T., RICHARD, J., PAZGIER,
993 M., BJORKMAN, P. J., MOTHES, W., FINZI, A., KUMAR, P. & UCHIL, P. D. 2021. Live Imaging of
994 SARS-CoV-2 Infection in Mice Reveals Neutralizing Antibodies Require Fc Function for Optimal
995 Efficacy. *bioRxiv*, 2021.03.22.436337.

996 VLASAK, R., LUYTJES, W., SPAAN, W. & PALESE, P. 1988. Human and bovine coronaviruses recognize
997 sialic acid-containing receptors similar to those of influenza C viruses. *Proc Natl Acad Sci U S A*,
998 85, 4526-9.

999 WALLS, A. C., PARK, Y. J., TORTORICI, M. A., WALL, A., MCGUIRE, A. T. & VEESLER, D. 2020. Structure,
1000 Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. *Cell*, 181, 281-292.e6.

1001 WALLS, A. C., XIONG, X., PARK, Y. J., TORTORICI, M. A., SNIJDER, J., QUISPE, J., CAMERONI, E., GOPAL, R.,
1002 DAI, M., LANZAVECCHIA, A., ZAMBON, M., REY, F. A., CORTI, D. & VEESLER, D. 2019. Unexpected

1003 Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. *Cell*, 176, 1026-
1004 1039.e15.

1005 WAN, Y., SHANG, J., GRAHAM, R., BARIC, R. S. & LI, F. 2020. Receptor Recognition by the Novel
1006 Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS
1007 Coronavirus. *J Virol*, 94, e00127-20.

1008 WANG, C., VAN HAPEREN, R., GUTIÉRREZ-ÁLVAREZ, J., LI, W., OKBA, N. M. A., ALBULESCU, I., WIDJAJA, I.,
1009 VAN DIEREN, B., FERNANDEZ-DELGADO, R., SOLA, I., HURDISS, D. L., DARAMOLA, O., GROSVELD,
1010 F., VAN KUPPEVELD, F. J. M., HAAGMANS, B. L., ENJUANES, L., DRABEK, D. & BOSCH, B.-J. 2020.
1011 Isolation of cross-reactive monoclonal antibodies against divergent human coronaviruses that
1012 delineate a conserved and vulnerable site on the spike protein. *bioRxiv*, 2020.10.20.346916.

1013 WANG, C., VAN HAPEREN, R., GUTIÉRREZ-ÁLVAREZ, J., LI, W., OKBA, N. M. A., ALBULESCU, I., WIDJAJA, I.,
1014 VAN DIEREN, B., FERNANDEZ-DELGADO, R., SOLA, I., HURDISS, D. L., DARAMOLA, O., GROSVELD,
1015 F., VAN KUPPEVELD, F. J. M., HAAGMANS, B. L., ENJUANES, L., DRABEK, D. & BOSCH, B. J. 2021. A
1016 conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by
1017 cross-reactive monoclonal antibodies. *Nat Commun*, 12, 1715.

1018 WEINREICH, D. M., SIVAPALASINGAM, S., NORTON, T., ALI, S., GAO, H., BHORE, R., MUSSER, B. J., SOO,
1019 Y., ROFAIL, D., IM, J., PERRY, C., PAN, C., HOSAIN, R., MAHMOOD, A., DAVIS, J. D., TURNER, K. C.,
1020 HOOPER, A. T., HAMILTON, J. D., BAUM, A., KYRATSOUS, C. A., KIM, Y., COOK, A., KAMPMAN,
1021 W., KOHLI, A., SACHDEVA, Y., GRABER, X., KOWAL, B., DICIOCCIO, T., STAHL, N., LIPSICH, L.,
1022 BRAUNSTEIN, N., HERMAN, G. & YANCOPOULOS, G. D. 2021. REGN-COV2, a Neutralizing
1023 Antibody Cocktail, in Outpatients with Covid-19. *N Engl J Med*, 384, 238-251.

1024 WILLIAMS, C. J., HEADD, J. J., MORIARTY, N. W., PRISANT, M. G., VIDEAU, L. L., DEIS, L. N., VERMA, V.,
1025 KEEDY, D. A., HINTZE, B. J., CHEN, V. B., JAIN, S., LEWIS, S. M., ARENDALL, W. B., 3RD, SNOEYINK,
1026 J., ADAMS, P. D., LOVELL, S. C., RICHARDSON, J. S. & RICHARDSON, D. C. 2018. MolProbity: More
1027 and better reference data for improved all-atom structure validation. *Protein Sci*, 27, 293-315.

1028 WINN, M. D., BALLARD, C. C., COWTAN, K. D., DODSON, E. J., EMSLEY, P., EVANS, P. R., KEEGAN, R. M.,
1029 KRISSINEL, E. B., LESLIE, A. G., MCCOY, A., MCNICHOLAS, S. J., MURSHUDOV, G. N., PANNU, N. S.,
1030 POTTERTON, E. A., POWELL, H. R., READ, R. J., VAGIN, A. & WILSON, K. S. 2011. Overview of the
1031 CCP4 suite and current developments. *Acta Crystallogr D Biol Crystallogr*, 67, 235-42.

1032 WOO, P. C., LAU, S. K., HUANG, Y. & YUEN, K. Y. 2009. Coronavirus diversity, phylogeny and interspecies
1033 jumping. *Exp Biol Med (Maywood)*, 234, 1117-27.

1034 WRAPP, D., WANG, N., CORBETT, K. S., GOLDSMITH, J. A., HSIEH, C. L., ABIONA, O., GRAHAM, B. S. &
1035 MCLELLAN, J. S. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.
1036 *Science*, 367, 1260-1263.

1037 YEAGER, C. L., ASHMUN, R. A., WILLIAMS, R. K., CARDELLICHIO, C. B., SHAPIRO, L. H., LOOK, A. T. &
1038 HOLMES, K. V. 1992. Human aminopeptidase N is a receptor for human coronavirus 229E.
1039 *Nature*, 357, 420-2.

1040 YING, T., DU, L., JU, T. W., PRABAKARAN, P., LAU, C. C., LU, L., LIU, Q., WANG, L., FENG, Y., WANG, Y.,
1041 ZHENG, B. J., YUEN, K. Y., JIANG, S. & DIMITROV, D. S. 2014. Exceptionally potent neutralization
1042 of Middle East respiratory syndrome coronavirus by human monoclonal antibodies. *J Virol*, 88,
1043 7796-805.

1044 YUAN, Y., CAO, D., ZHANG, Y., MA, J., QI, J., WANG, Q., LU, G., WU, Y., YAN, J., SHI, Y., ZHANG, X. & GAO,
1045 G. F. 2017. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the
1046 dynamic receptor binding domains. *Nat Commun*, 8, 15092.

1047 ZHOU, P., YUAN, M., SONG, G., BEUTLER, N., SHAABANI, N., HUANG, D., HE, W.-T., ZHU, X., CALLAGHAN,
1048 S., YONG, P., ANZANELLO, F., PENG, L., RICKETTS, J., PARREN, M., GARCIA, E., RAWLINGS, S. A.,
1049 SMITH, D. M., NEMAZEE, D., TEIJARO, J. R., ROGERS, T. F., WILSON, I. A., BURTON, D. R. &

1050 ANDRABI, R. 2021. A protective broadly cross-reactive human antibody defines a conserved site
1051 of vulnerability on beta-coronavirus spikes. *bioRxiv*, 2021.03.30.437769.

1052

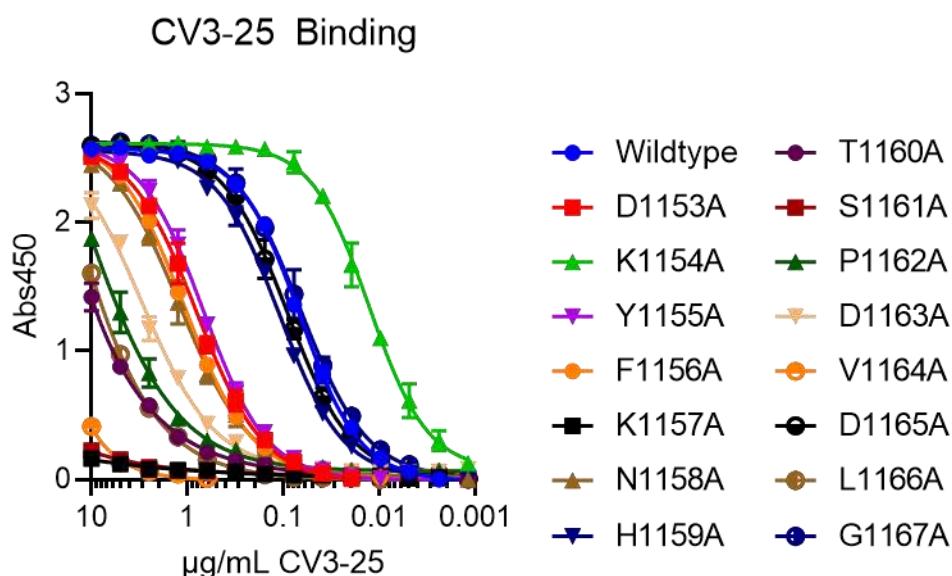
1053

1054 **Supplemental Information**

1055 **Supplementary Table 1.** Data collection and refinement statistics for crystal structure

CV3-25 Fab + Spike peptide 1149-1167	
Data collection	
Space group	P3 ₂ 1
Cell dimensions	
a, b, c (Å)	60.173, 60.173, 285.825
α, β, γ (°)	90, 90, 120
Resolution (Å)	49.01-1.740 (1.77-1.74)
R _{merge} ^a	0.025 (0.309)
<I>/σ(I)	21.7 (2.7)
CC _{1/2}	0.999 (0.670)
Completeness	100 (100)
Redundancy	1.9 (1.9)
Refinement	
Resolution (Å)	48.96-1.74 (2.18-1.74)
No. unique reflections	63190 (6196)
R _{work} ^b /R _{free} ^c	18.64/20.90 (34.85/35.03)
No. atoms	3825
Protein	3479
Water	294
Ligand	52
B-factors (Å ²)	36.1
Protein	35.24
Water	42.33
Ligand	58.63
RMS bond length (Å)	0.012
RMS bond angle (°)	1.57
Ramachadran Plot Statistics^d	
Residues	455
Most Favored region	97.54
Allowed Region	2.46
Disallowed Region	0.00
Clashscore	1.43
PDB ID	7RAQ

1056 ^a R_{merge} = [Σ_hΣ_i |I_h - I_{hi}| / Σ_hΣ_i I_{hi}] where I_h is the mean of I_{hi} observations of reflection h. Numbers in
1057 parenthesis represent highest resolution shell. ^b R_{factor} and ^c R_{free} = |||F_{obs}|| - |F_{calc}||| / ||F_{obs}|| × 100 for
1058 95% of recorded data (R_{factor}) or 5% data (R_{free}). ^d MolProbity (Williams et al., 2018)

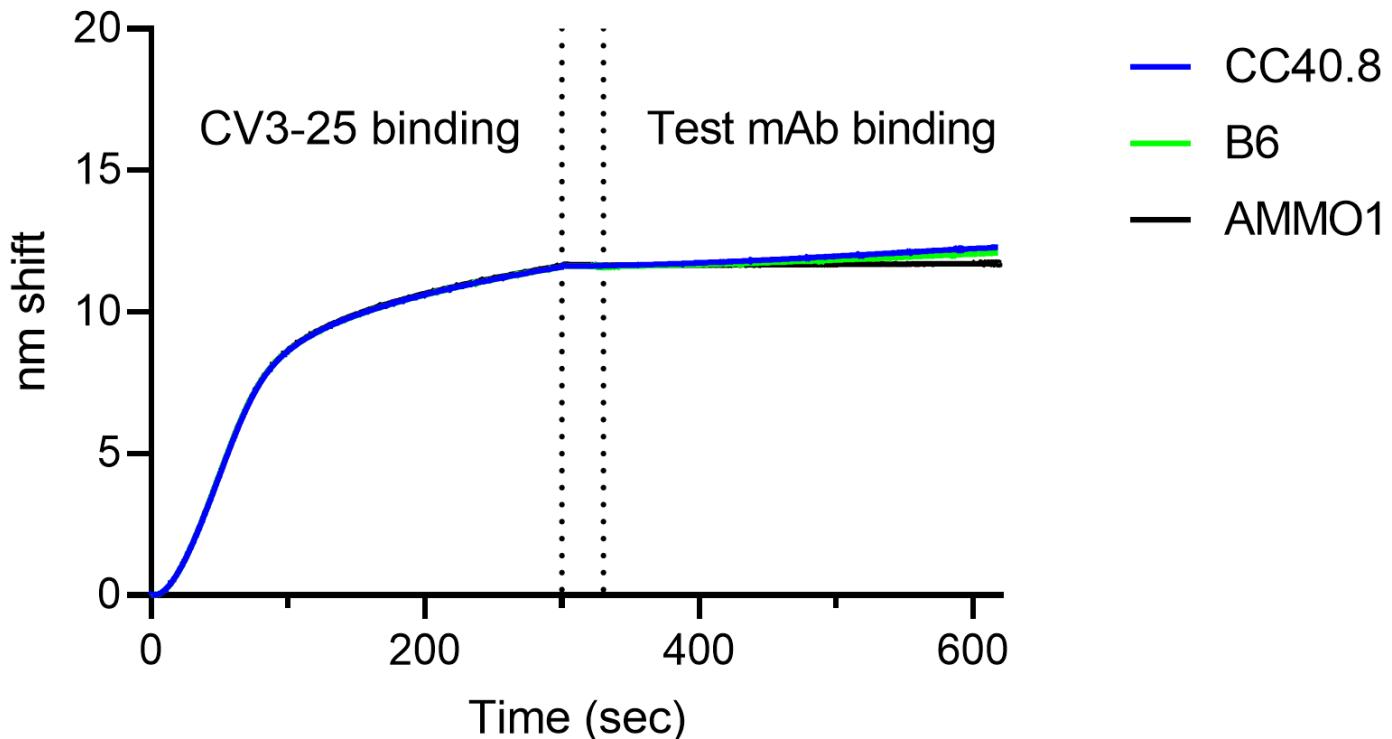

1059

1061 Table S2 CV3-25 binding kinetics

	K_D (M)X10 ⁻⁹	k_{on} (1/Ms)X10 ⁵	k_{on} error (1/Ms)X10 ³	k_{off} (1/s)X10 ⁻⁴	k_{off} error (1/s)X10 ⁻⁵
SARS-CoV-2 stem helix peptide	5.23	0.3	5.8	1.59	1.24
SARS-CoV-2 S6P	0.66	6.0	4.23	3.89	0.72

1062

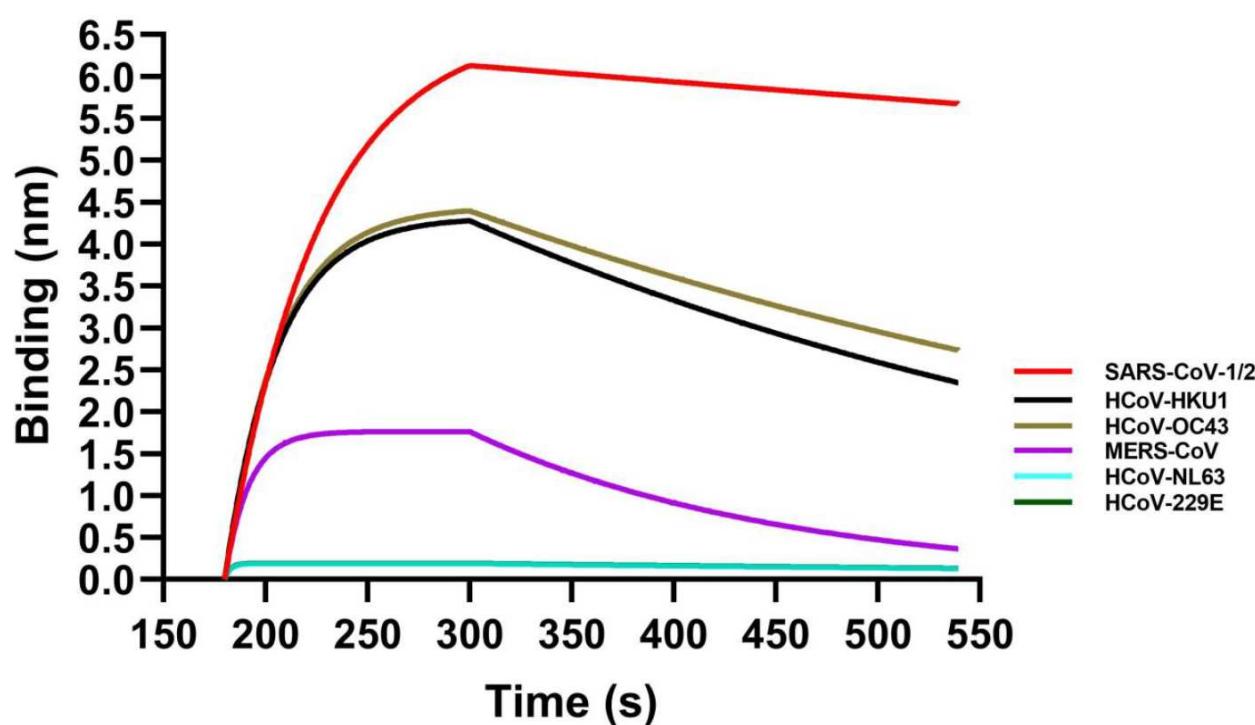
1063


1064

1065 **Figure S1.** CV3-25 binding to linear peptides corresponding to amino acids 1153-1167
1066 of the SARS-CoV-2 spike, where each amino acid was substituted to alanine, was
1067 measured by ELISA.

1068

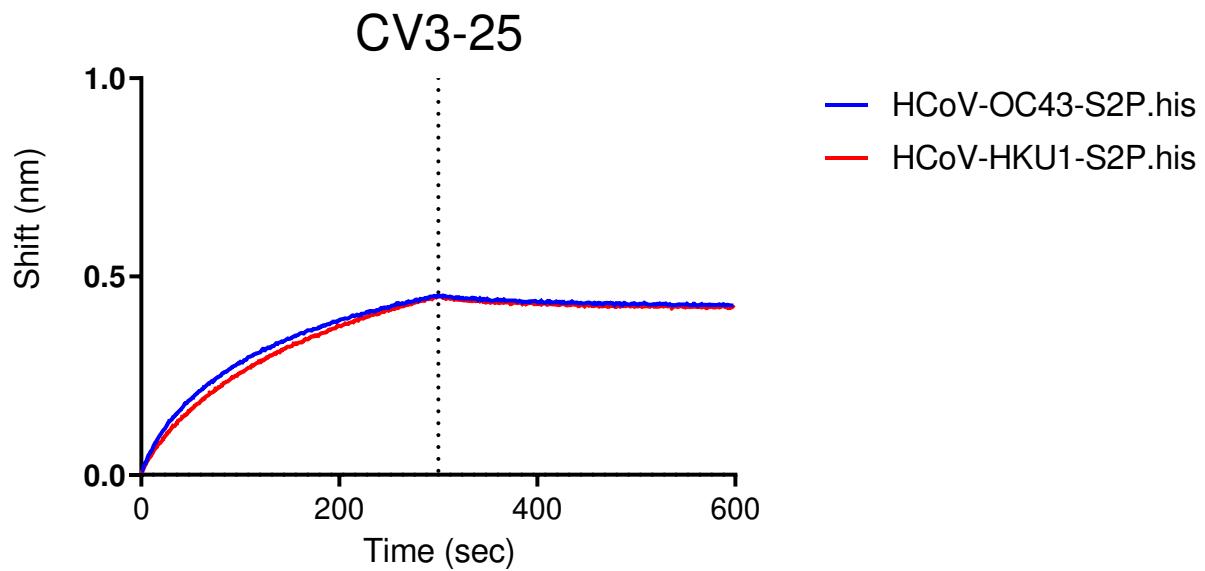
1069


LDSFKEELDKYFKNHTSPDVDLG

1070

1071 **Fig.S2 CV3-25 competes with stem-helix directed neutralizing mAbs.** The indicated
1072 SARS-CoV-2 peptide was immobilized on a streptavidin biosensor and immersed into a
1073 solution containing CV3-25 for 300s. The sensor was then immersed in kinetics buffer
1074 for 30 seconds and then immersed in kinetics buffer containing B6, CC40.8 or AMMO1
1075 as indicated. The dotted lines demarcate the initial binding, baseline, and second
1076 binding steps.

1077



1078 **Figure S3:** CV3-25 binds to linear peptides from diverse Beta CoVs as measured by
1079 BLI. Binding of CV3-25 to linear stem helix-derived peptides from the indicated CoVs
1080 (Zhou et al., 2021) was measured by BLI.

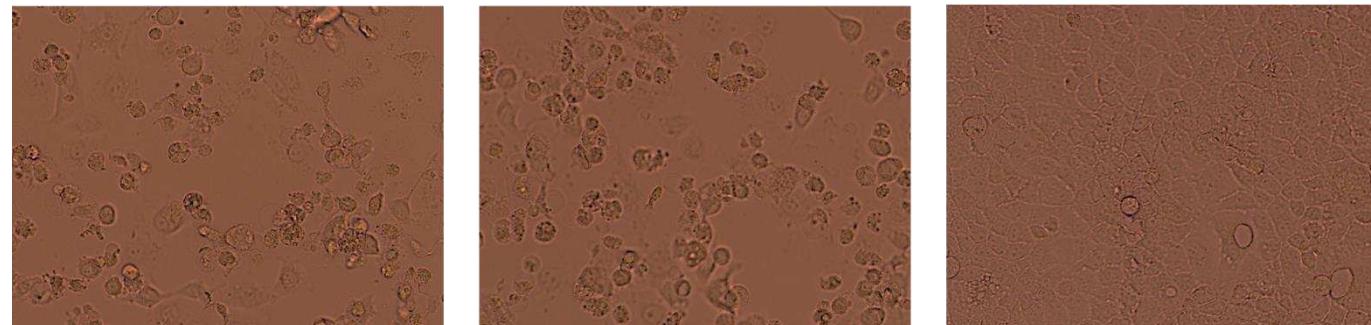
1081

1082

1083

1084 **Figure S4:** CV3-25 binds to stabilized spike ectodomains from HCoV-OC43 and HCoV-
1085 HKU1 as measured by BLI as indicated.

1086


1087

1088

PBS + NL63

CV3-25 + NL63

CV3-25 + PBS

1089 **Figure S5. CV3-25 does not neutralize HCoV-NL63.** LLC-MK2 cells were incubated
1090 with 50X TCID₅₀ NL63 with PBS or 50X TCID₅₀ NL63 plus 400 µg/ml CV3-25, or with
1091 400 µg/ml CV3-25 in PBS as indicated. 8 days later the cells were examined for
1092 cytopathic effects on a light microscope. Representative images from one of four wells
1093 for each condition are shown.