

Deploying photons for communication within neuronal networks

Montserrat Porta-de-la-Riva,¹ Adriana Carolina Gonzalez,¹ Neus Sanfeliu-Cerdán,¹ Shadi Karimi,¹ Sara González-Bolívar,¹ Luis Felipe Morales-Curiel,¹ Cedric Hurth,² and Michael Krieg^{1, #}

¹ Neurophotonics and Mechanical Systems Biology, ICFO, Institut de Ciències Fotòniques, Spain

² Optoelectronics, ICFO, Institut de Ciències Fotòniques, Castelldefels, Spain

Correspondence to michael.krieg@icfo.eu

Deficiencies in neurotransmission lead to neurological disorders or misinterpretation of perceived threats. To restore defects in cellular communication, we developed a synthetic, photon-assisted synaptic transmission (PhAST) system. PhAST is based on luciferases and channelrhodopsins that enable the transmission of a neuronal state across space, using photons as neurotransmitters. We demonstrate the ability to overcome synaptic barriers and rescue the behavioral deficit of a genetically engineered glutamate mutant with conditional, Ca^{2+} -triggered photon emission between two cognate neurons of the *Caenorhabditis elegans* nociceptive avoidance circuit. We also deploy these ingredients for a-synaptic transmission between two unrelated cells in a sexually dimorphic neuronal network. Functional PhAST could sensitize otherwise poorly responsive males to touch and hence expand the behavioral repertoire. Our study, thus, establishes a powerful framework for complex photon-based communication between neurons in a living animal, that can readily be expanded to synthetic neuronal networks, organoids or non-invasive brain-machine interfaces.

1 A major overarching challenge in applied neuroscience is to establish control over spatiotem-
2 poral signalling within the brain. Optogenetics (1) is a promising strategy to control neuronal
3 activity by exploiting orthogonal light-activated ion channels (2) that are ectopically expressed
4 in target neurons. However, in vertebrates—including humans—the light needs to be delivered
5 via skull-implanted light sources, which emit potentially harmful intensities (3) in order to reach
6 target neurons in deeper brain layers. Due to scattering of light in dense brain tissue, a light
7 source must be close to target neurons in order to achieve cell- or even circuit-specific activity (3).
8 Recently, bioluminescence-driven optogenetic effectors were introduced for blue-light informed,
9 trans-cellular signal trans-duction (4), a strategy that bears extraordinary potential for establishing
10 prosthetic neurotransmitters in living animals (5). However, the implementation of photons as
11 transcellular signals remained challenging, primarily because of the low quantum yield inherent
12 to bioluminescence and the resulting difficulty in recruiting sufficient numbers of active channels
13 for postsynaptic depolarization in a cell-specific manner.

14 Here, we capitalized on the simple genetics and known structural and functional connec-
15 tions of the model organism *Caenorhabditis elegans* to establish a genetically encoded, cell-
16 and thus circuit-selective optogenetic sniper strategy to control neuronal activity at the synaptic
17 level without the need for external light delivery. In order to achieve photon-amplified synap-
18 tic transmission (PhAST), we targeted the expression of calcium-dependent synthetic luciferases
19 (enhanced Nanolanters (6), eNLs) as conditional quantum emitters to presynaptic neurons and
20 combined them with postsynaptic localized high-photocurrent channelrhodopsin mutants (7). Our
21 ultimate goal was to complement a chemical synaptic transmission defect engineered into the
22 well-characterized nociceptive avoidance circuit of *C. elegans* (8).

23 We took advantage of a neuronal model circuit defective in glutamatergic neurotransmission
24 resulting from the lack of *eat-4*, a vesicular glutamate transporter responsible for packaging these
25 neurotransmitters in synaptic vesicles (8–10). ASH is a polymodal nociceptor that responds to
26 mechanical nose touch and makes direct synaptic connections with AIB and AVA neurons in an
27 *eat-4*-dependent manner (8, 11, 12) (Fig. S1A,B). We compared the behavioural response to ex-

28 ernal nose touch delivered by an eyebrow hair to the tip of the nose of the animal (where sensory
29 endings of mechanical nociceptors are located; Fig. 1A) in wildtype and mutant animals (Fig. S1).
30 In agreement with previous work (9), we found that wildtype animals responded to 70% of nose
31 contacts (Video 1, Fig. S1B), while *eat-4(ky5)* mutant animals only responded to 2% of touches
32 (Fig. S1C,D).

33 In order to specifically observe the activation of ASH and the transmission of neuronal signal
34 from ASH to AVA and AIB (Fig. 1), we designed a microfluidic device that delivers mechanical
35 stresses to the nose while simultaneously measuring calcium activity in ASH and interneurons
36 (Fig. 1A, Fig. S2). We called this device Trap'N'Slap. The Trap'N'Slap contains a pneumatic
37 actuator (13) that drives a deformable polydimethylsiloxane diaphragm (Fig. 1a, Fig. S2C, Video
38 2) into an immobilized animal, permitting high-resolution fluorescence imaging. We characterized
39 this deformation as a function of pressure and confirmed that our method visibly deforms the nose
40 of a trapped animal (Fig. 1A, Fig. S2D,E and Video 2). Next, we loaded animals expressing the
41 genetically encoded fluorescent calcium indicators GCaMP (14) or jRGECO1a (15) in the ASH
42 sensory neuron into the Trap'N'Slap; both dyes reproducibly underwent an increase in signal
43 intensity upon pneumomechanical nose touch (Fig. 1B, Fig. S3A).

44 Having shown that ASH is specifically activated in our micromechanical device, we next en-
45 gineered jRGECO1a specifically into AVA and AIB interneurons (Fig. 1C,D) using promoters
46 previously described (8, 16, 17) (Methods), with the goal of following signal transmission from the
47 sensory to the interneuron layer. After a pneumatic nose touch delivered for 2 s, both AVA and
48 AIB robustly activated with Ca^{2+} response dynamics that greatly exceeded the stimulus duration
49 (Fig. 1C,D). When we presented the same stimulus to the glutamate-deficient *eat-4(ky5)* animals,
50 we still observed ASH responses (Fig. S3B), but AVA and AIB failed to respond with discernible
51 Ca^{2+} dynamics (Fig. 1E,F), indicating that chemical communication between ASH and AVA/AIB
52 on the synaptic level was effectively broken. Together, our pneumatically actuated microfluidic de-
53 vices and calcium-imaging system constituted a framework for our subsequent efforts to optically
54 restore and follow the flow of information in a neuronal circuit through PhAST.

55 Next, we expressed light-sensitive ion channels as effectors in the postsynaptic interneurons
56 AIB and AVA (Fig. 2a). We generated transgenic animals expressing channelrhodopsin2-**HaRDCore**
57 (ChR2-HRDC) with the previously characterized H134R (18) and D156C (19) mutations, yield-
58 ing a light-gated channel with an unprecedented photon-current relationship and improved surface
59 expression (7). We selectively expressed ChR2-HRDC in AVA using an intersectional genetic
60 strategy (16) and in AIB with the *npr-9* promoter as previously (8, 17) (Fig. 2B,C; Methods). We
61 confirmed the functionality of the channelrhodopsin by recording the escape response after illu-
62 minating individual animals transgenic for ChR2-HRDC in both AIB and AVA (Fig. 2D, Fig. S4,
63 Video 6, 7) with and without the all-trans retinal (ATR) photosensitizer (Fig. 2E). We carefully
64 titrated decreasing light levels and extrapolated the data with a binary logistic regression model
65 (Methods) to estimate the response probability at the lowest light intensities (Fig. 2F). With this
66 approach, we inferred that animals still responded at intensities below $1 \text{ fW}/\mu\text{m}^2$. For comparison,
67 because a single photon carries an energy of 1e-19 J , responses at the lowest light intensities used
68 here were evoked with fewer than $10.000 \text{ photons}\cdot\text{s}^{-1}\mu\text{m}^{-1}$. Importantly, no activity was recorded
69 in AVA neurons that did not express ChR2-HRDC (data not shown) and in AVA neurons that were
70 not supplemented with ATR (Fig. 2E, Suppl. Text), consistent with light triggering ChR2-HRDC
71 activity and concomitant neuronal depolarization. We also recorded the escape response in ani-
72 mals lacking ASH specific or systemic glutamatergic signalling; AIB response was dependent on
73 *eat-4* in downstream neurons, whereas AVA response was not (Fig. S4). In summary, we estab-
74 lished the most sensitive neuronal system for light-driven behavioural responses (Fig. 2F) in *C.*
75 *elegans* reported to date.

76 To obtain a genetically encoded light source that functionally interacts with light-gated ion
77 channels, we engineered a conditionally light-emitting luciferase into ASH mechanosensory neu-
78 rons as a source of quantum emitters. eNLs (6) are chimeras that carry a luciferase moiety (luc)
79 fused to a fluorescent protein that selects the colour of the emitted photons. To facilitate a good
80 spectral match with downstream channelrhodopsin while maximizing energy transfer from lu-
81 ciferase to the fluorescent protein, we chose mTurquoise2 (20) as the photon emitter (Fig. 3A).

82 Importantly, the luciferase in eNL is split by a calcium-sensing domain to achieve conditional
83 photon emission in the presence of the high Ca^{2+} concentrations that are typical for neuronal acti-
84 vation (21). Given the estimated resting Ca^{2+} concentration of 60-90 nM in ASH (22), we chose
85 a calcium sensor domain with a K_d of 250 nM in order to maximize the sensitivity and dynamic
86 range of our eNL (6).

87 We first expressed a codon-optimized eNL under the ASH-specific *sra-6* promoter (23) (Fig.
88 1A) as well as the *eat-4* promoter, which is active in all glutamatergic neurons, including ASH
89 nociceptors (Fig. 3B). We confirmed strong cyan fluorescence in the heads of animals under ex-
90 ternal blue light excitation (Fig. 3B). However, due to the limited photon budget of luciferases in
91 the absence of high intracellular calcium (6), it was impossible to visualize light emission result-
92 ing from luciferase's intrinsic activity using standard optical microscopes (data not shown). To
93 overcome this limitation, we built an improved LOw-Light microscope with an optimized optical
94 axis, high-power objectives, and a single photon-sensitive camera chip (Fig. 3C). In this config-
95 uration and with novel chemical cofactors delivering higher quantum yield (hikarazine (24)) and
96 bio-availability (fluorofurimazine (25)), we visualized photon emission from both of our ASH and
97 glutamate transgenes, demonstrating that luciferases can emit light *in situ* (Fig. 3D). We also vi-
98 sualized photon production by eNLs upon an increase in calcium influx in body-wall muscles and
99 observed light emission by the eNLs on the contracted body-wall muscles of *C. elegans* during
100 unconstrained animal locomotion (Video 8; Fig. 3E). These data establish that our eNLs increase
101 their quantum yield and emit photons more efficiently in the presence of calcium.

102 To further visualize how ASH activity and the concomitant increase in intracellular calcium
103 (Fig. S3) induces a quantum emission, we performed a calcium-imaging experiment in the Trap'N'Slap
104 under mechanical stimulation in our LOw-Light microscope (Fig. 1A, Fig.3). However, even with
105 the technical improvements in microscopy and cofactor chemistry described above, the obtained
106 signal was very faint, especially at short exposure times (Fig. 3D), due to the low 'off' activity
107 of the Ca^{2+} dye. This limitation precluded functional imaging with the eNL under mechanical
108 stimulation. To achieve our goal of observing an increase in the quantum yield of photons trig-

109 gered by neuronal depolarization, we resorted to a luminescence plate reader capable of recording
110 and counting relative luminescence levels (Methods). We first recorded baseline luminescence in
111 ASH-specific and broadly expressed eNLs in glutamatergic neurons. Then, we added 0.1 mM
112 glycerol, which repels *C. elegans* (26), and measured luminescence 3 s later. ASH is the main—
113 and so far only—polymodal neuron known to evoke a cellular response and calcium increase upon
114 glycerol-mediated osmolarity changes (26, 27). Strikingly, we detected a significant and similar
115 increase in photon yield for two strains expressing an eNL exclusively in ASH or, more broadly,
116 in glutamatergic neurons ($p < 1 \cdot 10^{-8}$, $N > 20$, permutation t-test (28); Fig. 3F). Taken to-
117 gether, these experiments demonstrate that calcium-induced photon emission under physiological
118 conditions is fast and reproducible in freely behaving animals.

119 Having shown that photon emission can be triggered by stimulation of neuronal activity in
120 presynaptic compartments, we expressed the eNL and ChR2-HRDC together in the same worm,
121 supplemented the animal's diet with both co-factors (ATR and Hikarazine), and assayed the pros-
122 thetic circuit's efficiency in complementing the genetic *eat-4(ky5)* disruption of the glutamatergic
123 signalling pathway from ASH→AVA/AIB (Fig. S5A). We first immobilized individual animals in
124 the trapping channel of Trap'N'Slap and delivered a pneumatic stimulus to the nose. In agreement
125 with our previous experiment (Fig. S1), animals carrying all transgenes but lacking the two cofac-
126 tors did not exhibit a calcium increase in response to mechanical nose touch (Fig. S5B). However,
127 when these animals were fed both cofactors, we detected a robust increase in AVA and, to a lesser
128 extent, AIB activity after nose touch (Fig. S5C,D). This result motivated us to ask whether the ob-
129 served signal transmission from the sensory to the interneuron layer is sufficient to drive reversals
130 in the nose touch avoidance behaviour. We thus counted the number of times that an individual
131 animal with glutamatergic deficits displayed an escape response upon nose touch with an eyebrow
132 hair, as an indicator for a functional reconstitution of the nociceptive avoidance circuit in presence
133 of the required cofactors. Even though we registered more behavioural responses on the popu-
134 lation level for *eat-4* mutants that were supplemented with Hikarazine and ATR than untreated
135 mutant controls, the average log odds ratio of detecting a positive response versus no response in

136 each individual *eat-4* mutant did not depend on cofactor presence (Fig. S5F). Thus, we were not
137 able to detect an effect of our treatment on the single-animal level. We conclude that despite de-
138 tecting an increase in Ca^{2+} activity, we failed to observe rescue of nose touch avoidance behaviour
139 responses (Fig. S5E,F).

140 Because many neurons downstream of ASH are glutamatergic (e.g. AIB and RIM (29)), we
141 reasoned that a lack of systemic glutamate signalling interferes with successful reconstitution of
142 the nociceptive avoidance response. We thus established a conditional CRE/lox strategy to obtain
143 a cell-specific knockout of *eat-4* restricted to ASH sensory neurons. We first flanked exons 1
144 and 2 with two loxP sites using CRISPR/Cas9 (Fig. S6A,B) and confirmed that neither Ca^{2+}
145 signalling in AIB (Fig. S6C) nor avoidance behaviour (Fig. S6E,H) were significantly affected by
146 the genomic loxP sites or by the expression of CRE by itself (Fig. S6F,H). We then coexpressed
147 CRE and confirmed successful recombination with a fluorescent reporter of CRE activity (30, 31)
148 (Fig. S6B,D). Successful excision of *eat-4* by a conditional CRE recombinase is expected to delete
149 the two described transcription start sites and to lead to loss-of-function of glutamate signalling
150 through ASH and a nose touch phenotype. As expected, we consistently observed a loss of nose
151 touch avoidance behaviour (Fig. S6G,H) consistent with a defect in ASH signal transmission. In
152 agreement with previous results (32), of the various mechanosensors that activate upon mechanical
153 nose touch, ASH contributes to more than 60% of the total responses recorded to nose touch. Thus,
154 a conditional allele can be used to interfere with synaptic transmission in ASH to downstream
155 interneurons.

156 We then engineered a cell-specific *eat-4* knockout mutant with the ASH-restricted eNL (Fig.
157 3) and AVA::ChR2-HRDC (Fig. 2E) and visualized Ca^{2+} signals in AVA after stimulation in
158 the microfluidic chip (Fig. 4A). Without the critical cofactor for the eNL, no calcium dynamics
159 corresponded with the mechanical stimulus from the pneumomechanical device in AVA or AIB
160 (Fig. 4B,C). In contrast, a robust Ca^{2+} increase in AVA related to the pneumatic stimulus to the
161 nose occurred after incubation with a high concentration of Hikarazine (Fig. 4D,E). As in worms
162 harbouring the systemic glutamate defect (Fig. S5), in these ASH(*eat-4*) knockout animals, AIB

163 did only respond occasionally to the imposed stimulus (Fig. 4F).

164 We next sought to determine whether PhAST from the sensory to the interneuron layer rescues
165 the ASH-specific defect and elicits a nociceptive avoidance response in our behavioural paradigm
166 (Fig. 4G). In the absence of both cofactors, baseline behavioral activity was similar to that in the
167 ASH(*eat-4*) mutant (Fig. 4G). We then carried out the nose-touch assay 10 times on 30 animals
168 harbouring three alleles of the same transgenes (1000 touches per condition; Table S1, Fig. 4,
169 Fig. S7). In addition, we tested an eNL that was specifically targeted to the synapses in ASH
170 through a *sng-1* fusion (33) (Fig. S8A,B) and detected a consistently higher response probability in
171 animals supplemented with ATR and hikarazine (Fig. S8C,D). With the most efficient transgene,
172 the behavioural response was close to that of worms without *eat-4* defects (Fig. 4I). Statistical
173 modeling of the response rate (Methods) suggested that the odds of rescuing avoidance in mutants
174 is up to 20 times higher with PhAST than without it in average (Fig. 4I). Taken together, these
175 experiments establish that photons can be used to encode and transmit the activity state between
176 two neurons within a neuronal circuit.

177 We next sought to test a gain-of-function experiment and asked if PhAST can sensitize a be-
178 havioral response by wiring two neurons that normally do not form synaptic connections. The
179 connectome of *C. elegans* suggests various sex-related differences between hermaphrodite and
180 male individuals (34). In particular, no synapses have been found between ASH and AVA in males
181 (Fig. 5A,B) (34), suggesting a sexually dimorphic behavioral nociceptive avoidance response. In-
182 deed, males do not avoid nose touch with an eyebrow hair as efficiently as hermaphrodite animals
183 (Fig. 5C) and AVA in *C. elegans* males did not respond with an increase in Ca^{2+} to mechanical
184 stimulus delivered through the Trap'N'Slap device (not shown). We thus sought to wire the con-
185 nection between ASH and AVA with the aim to sensitize and 'feminize' the response of males
186 to mechanical nose touch. To achieve this, we performed our PhAST experiments in males in
187 absense and the presence of the necessary cofactors ATR and hikarazine. Strikingly, in presence
188 of both cofactors, *C. elegans* males responded almost indistinguishable to hermaphrodites (Fig.
189 5C) and showed up to 10 times higher odds ratio than the average of untreated males. Together,

190 this shows that PhAST is able to sensitize a sexually dimorphic circuit for nociceptive avoidance
191 behavior and thus functionally wire an unconnected pair of neurons.

192 In summary, here we replaced the mechanism for endogenous chemical neurotransmission be-
193 tween a sensory neuron and a pair of interneurons with a genetically encoded, photon-assisted
194 synaptic transmitter (PhAST) system and showcased its ability to overcome a genetically con-
195 structed synaptic barrier. Then we use PhAST to wire anatomically unconnected neurons with
196 a behavioral consequence. These experiments constitute the first demonstration that light can be
197 genetically encoded as the transmitter of a state variable between two cells. Our research there-
198 fore complements luminopsin, a self-illuminating microbial rhodopsin that is a fusion between
199 channelrhodopsin and a luciferase, which was previously employed as an inhibitory construct to
200 suppress the activity of coelenterazine-exposed transgenic neurons (35).

201 Will this approach be universally applicable across the neuronal network? Based on optimistic
202 estimates of photon production by eNLs and the activity states of ChR2-HRDC (SI Text), we as-
203 sume that not more than a dozen channels are open at the same time in a single neuron. Given
204 the extraordinarily high input resistance of *C. elegans* neurons (36), the simultaneous opening of
205 a few ion channels likely depolarizes the neuron by tens of millivolts (37), which is sufficient for
206 signal propagation in isopotential neurons (38). The next challenge will be to couple unrelated
207 circuits and to generate or suppress synaesthetic interactions (39) between sensory neurons and
208 downstream interneurons or to construct synthetic, self-actuating networks based on artificial neu-
209 romuscular communication (40). Future improvements in bioluminescent enzymes, light-gated
210 ion channels, and subcellular targeting will enable unprecedented optical control over neuronal
211 function, non-invasively and with extraordinary specificity and precision.

212 **Acknowledgments** We thank the NMSB and SLN labs for discussions and suggestion through-
213 out the work and for use of their microscopes. We thank the ICFO BIL and NFL for support
214 with animal maintenance and SU8 lithography, respectively. We thank Cori Bargmann, Shawn
215 Xu, Sander van der Heuvel, Alexander Gottschalk, Peter Askjaer, Thomas Kirkland and the CGC

216 (National Institutes of Health - Office of Research Infrastructure Programs (P40 OD010440)) for
217 providing reagents; Yves Janin, Pau Gorostiza, Robert Kittel, and Anna Kim for discussions and
218 suggestions on bioluminescence, optogenetics and microfabrication; and Pau Gorostiza and Peter
219 Askjaer for critical comments on the manuscript.

220 **Funding** MK acknowledges financial support from the ERC (MechanoSystems, 715243), HFSP
221 (CDA00023/2018), Spanish Ministry of Economy and Competitiveness through the Plan Nacional
222 (PGC2018-097882-A-I00), FEDER (EQC2018-005048-P), “Severo Ochoa” program for Centres
223 of Excellence in R&D (CEX2019-000910-S; RYC-2016-21062), from Fundació Privada Cellex,
224 Fundació Mir-Puig, and from Generalitat de Catalunya through the CERCA and Research pro-
225 gram (2017 SGR 1012), in addition to funding through H2020 Marie Skłodowska-Curie Actions
226 (754510 to AG) and Mineco (FPIPRE2019-088840 to NS).

227 **Author contributions** MPR: animal husbandry, molecular biology, CRISPR, CRE recombina-
228 tion, optogenetic and nociceptive experiments, data analysis, and manuscript writing. ACG: mi-
229 crofluidics, calcium imaging, bioluminescence imaging, and the first manuscript draft. NS: be-
230 havioural assays, molecular biology. CH, SG, SK: microfabrication, design, simulations. LFCM:
231 bioluminescence imaging, microscopy. MK: Study concept, acquisition of funding, data analysis,
232 software programming, and manuscript writing.

233 **Competing Interests** The authors declare that they have no competing financial interests.

234 **Code and Material availability** All reagents produced are freely available upon request to the
235 corresponding author. All data needed to evaluate the conclusions in the paper are present in the
236 paper and/or the Supplementary Materials. Some strains will be deposited to the CGC. Scripts
237 developed supporting the analysis can be accessed under Gitlab::NMSB.

238 References

- 239 1. K. Deisseroth, *Nature Methods* **8**, 26 (2011).
- 240 2. E. E. Steinberg, D. J. Christoffel, K. Deisseroth, R. C. Malenka, *Current opinion in neurobi-*
241 *ology* **30**, 9 (2015).
- 242 3. A. M. Aravanis, *et al.*, *Journal of neural engineering* **4**, S143 (2007).
- 243 4. C. K. Kim, K. F. Cho, M. W. Kim, A. Y. Ting, *eLife* **8**, 1 (2019).
- 244 5. M. Sureda-vives, K. S. Sarkisyan pp. 1–11 (2020).
- 245 6. K. Suzuki, *et al.*, *Nature Communications* **7**, 1 (2016).
- 246 7. A. Bergs, *et al.*, *PLoS ONE* **13**, 1 (2018).
- 247 8. B. J. Piggott, J. Liu, Z. Feng, S. A. Wescott, X. S. Xu, *Cell* **147**, 922 (2011).
- 248 9. R. Y. Lee, E. R. Sawin, M. Chalfie, H. R. Horvitz, L. Avery, *The Journal of neuroscience : the*
249 *official journal of the Society for Neuroscience* **19**, 159 (1999).
- 250 10. T. H. Lindsay, T. R. Thiele, S. R. Lockery, *Nature Communications* **2** (2011).
- 251 11. D. Witvliet, *et al.*, *BioRxiv* pp. 1–26 (2020).
- 252 12. J. G. White, E. Southgate, J. N. Thomson, S. Brenner, *Philosophical transactions of the Royal*
253 *Society of London. Series B, Biological sciences* **314**, 1 (1986).
- 254 13. A. L. Nekimken, *et al.*, *Lab Chip* **17**, 1116 (2017).
- 255 14. A. H. Kahn-Kirby, *et al.*, *Cell* **119**, 889 (2004).
- 256 15. H. Dana, *et al.*, *eLife* **5**, 1 (2016).
- 257 16. C. Schmitt, C. Schultheis, S. J. Husson, J. F. Liewald, A. Gottschalk, *PLoS ONE* **7**, e43164
258 (2012).

259 17. W. G. Bendena, *et al.*, *Proceedings of the National Academy of Sciences of the United States*
260 *of America* **105**, 1339 (2008).

261 18. G. Nagel, *et al.*, *Current Biology* **15**, 2279 (2005).

262 19. a. Dawydow, *et al.*, *Proceedings of the National Academy of Sciences* **111**, 13972 (2014).

263 20. J. Goedhart, *et al.*, *Nature Communications* **3** (2012).

264 21. D. E. Clapham, *Cell* **131**, 1047 (2007).

265 22. Y. Tanimoto, *et al.*, *eLife* **6**, 1 (2017).

266 23. E. R. Troemel, J. H. Chou, N. D. Dwyer, H. A. Colbert, C. I. Bargmann, *Cell* **83**, 207 (1995).

267 24. E. P. Coutant, *et al.*, *Chemistry - A European Journal* **26**, 948 (2020).

268 25. Y. Su, *et al.*, *Nature Methods* **17**, 852 (2020).

269 26. M. a. Hilliard, *et al.*, *Embo J* **24**, 63 (2005).

270 27. S. Kato, Y. Xu, C. E. Cho, L. F. Abbott, C. I. Bargmann, *Neuron* **81**, 616 (2014).

271 28. J. Ho, T. Tumkaya, S. Aryal, H. Choi, A. Claridge-Chang, *Nature Methods* **16**, 565 (2019).

272 29. E. Serrano-Saiz, *et al.*, *Cell* **155**, 659 (2013).

273 30. S. Ruijtenberg, S. Van Den Heuvel, *Cell* **162**, 300 (2015).

274 31. R. Das, *et al.*, *bioRxiv* (2021).

275 32. J. M. Kaplan, H. R. Horvitz, *Proceedings of the National Academy of Sciences of the United*
276 *States of America* **90**, 2227 (1993).

277 33. M. L. Nonet, *Journal of Neuroscience Methods* **89**, 33 (1999).

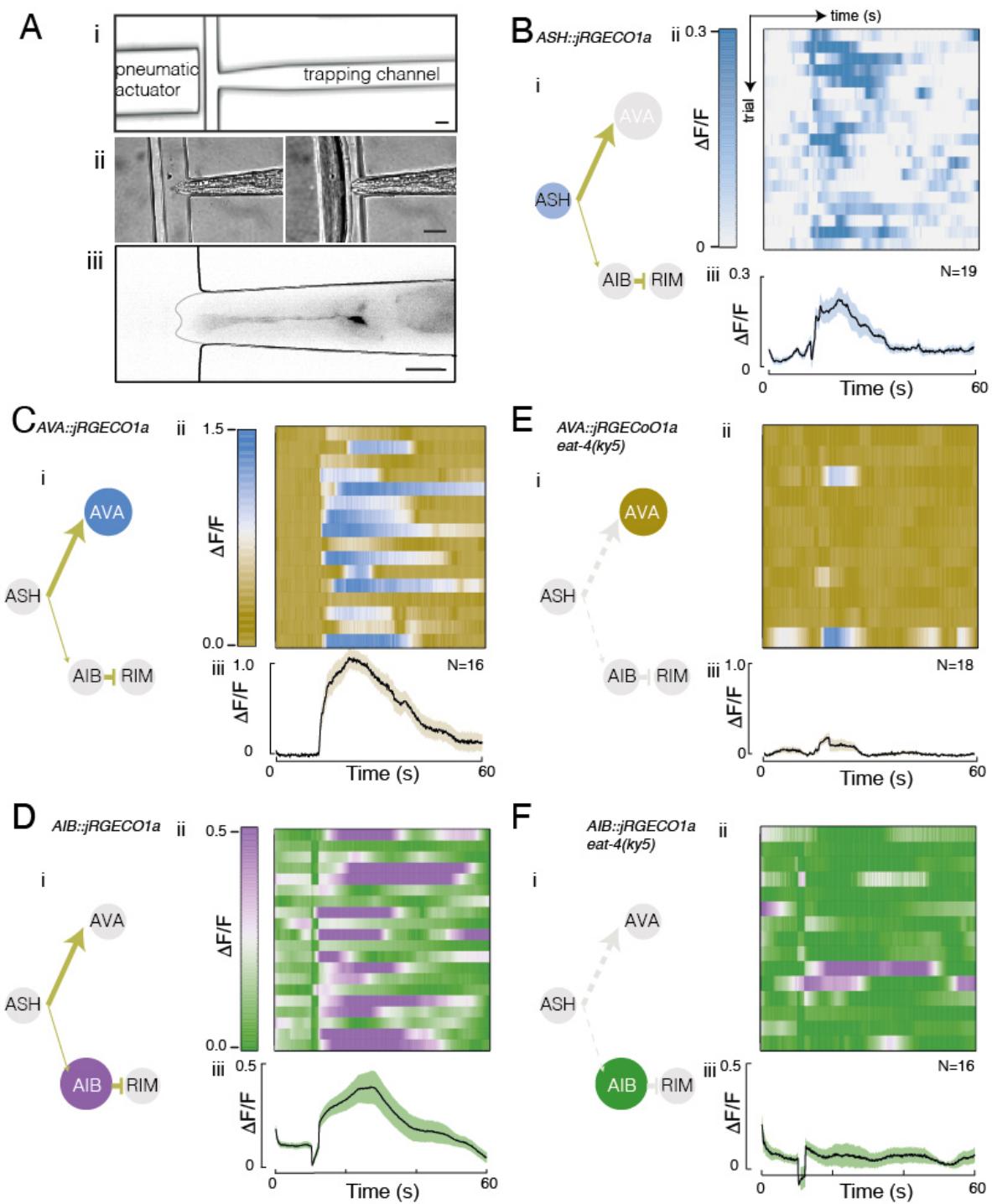
278 34. S. J. Cook, *et al.*, *Nature* **571**, 63 (2019).

279 35. K. Berglund, *et al.*, *Proceedings of the National Academy of Sciences* p. 201510899 (2016).

280 36. S. J. Tripathy, J. Savitskaya, S. D. Burton, N. N. Urban, R. C. Gerkin, *Frontiers in Neuroin-*
281 *formatics* **8**, 1 (2014).

282 37. Lockery, Goodman, *Nature Neurosci* **12**, 377 (2009).

283 38. M. B. Goodman, D. H. Hall, L. Avery, S. R. Lockery, *Neuron* **20**, 763 (1998).

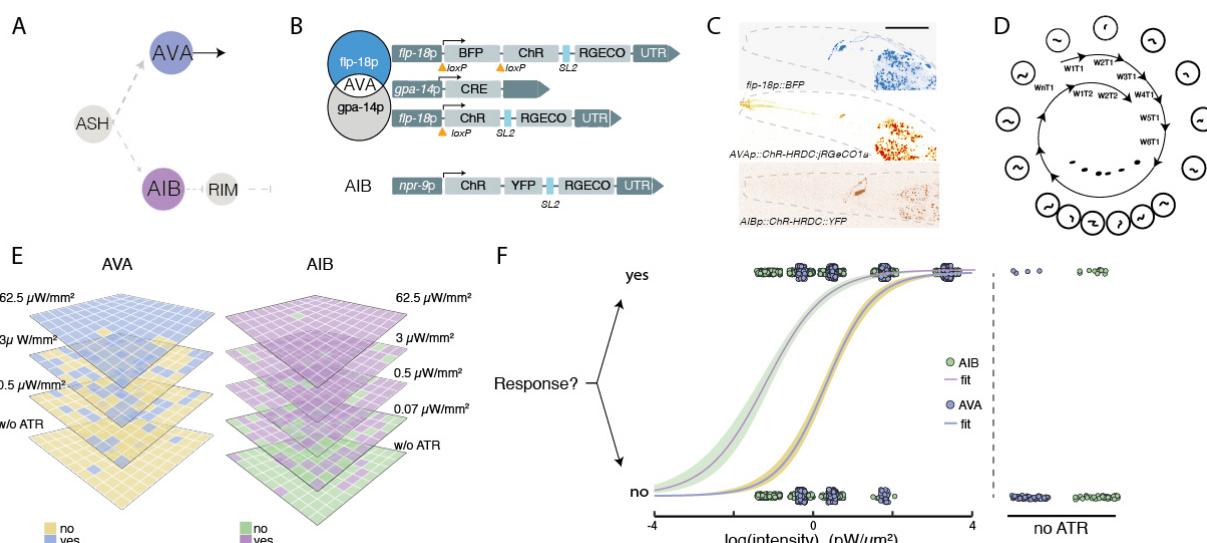

284 39. O. Shriki, Y. Sadeh, J. Ward, *PLoS Computational Biology* **12**, 1 (2016).

285 40. O. Aydin, *et al.*, *Proceedings of the National Academy of Sciences of the United States of*
286 *America* **116**, 19841 (2019).

287 41. E. P. Coutant, *et al.*, *Organic and Biomolecular Chemistry* **17**, 3709 (2019).

288 **Figure Legends**

289 **Figure 1**

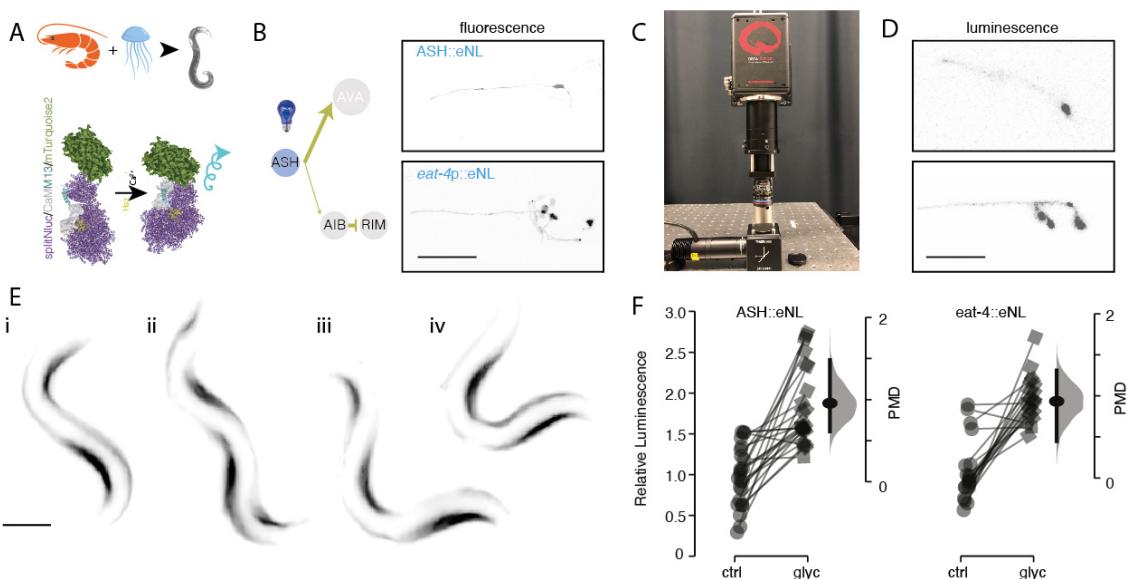


290

291 **A nose-touch defect derived from mutations in synaptic transmission**

292 **A** (i) Layout of the central part of the microfluidic Trap'N'Slap with (ii) representative pictures
293 of a trapped animal before and during mechanical stimulation. (iii) Representative image of an
294 animal expressing the calcium indicator GCaMP in ASH. Scale bars = 20 μ m. **B-F** i) Schematic
295 of the ASH nociceptive avoidance circuit with nodes indicating presynaptic (ASH) and postsy-
296 naptic (AVA, AIB, RIM) neurons; edges are colour-coded according to neurotransmitter (yellow,
297 glutamate). Grey dashed edges correspond to disrupted, thus inactive neurotransmission in the
298 *eat-4* mutant. Node coloured according to the kymograph lookup table. Edge thickness reflects
299 the number of connections between neurons. ii) Normalized and baseline-subtracted kymograph
300 of neuronal cell body intensity versus experimental time. A 2-s stimulus was delivered after 10
301 s. Each row (N) is derived from a different stimulation. iii) Average, normalized fluorescence
302 intensity of the Ca^{2+} indicator in (B) ASH, (C,E) AVA, and (D,F) AIB in (B-D) control and (E,F)
303 glutamatergic mutant animals (*eat-4(ky5)*). Mean \pm standard deviation is shown. See Methods for
304 details.

305 **Figure 2**

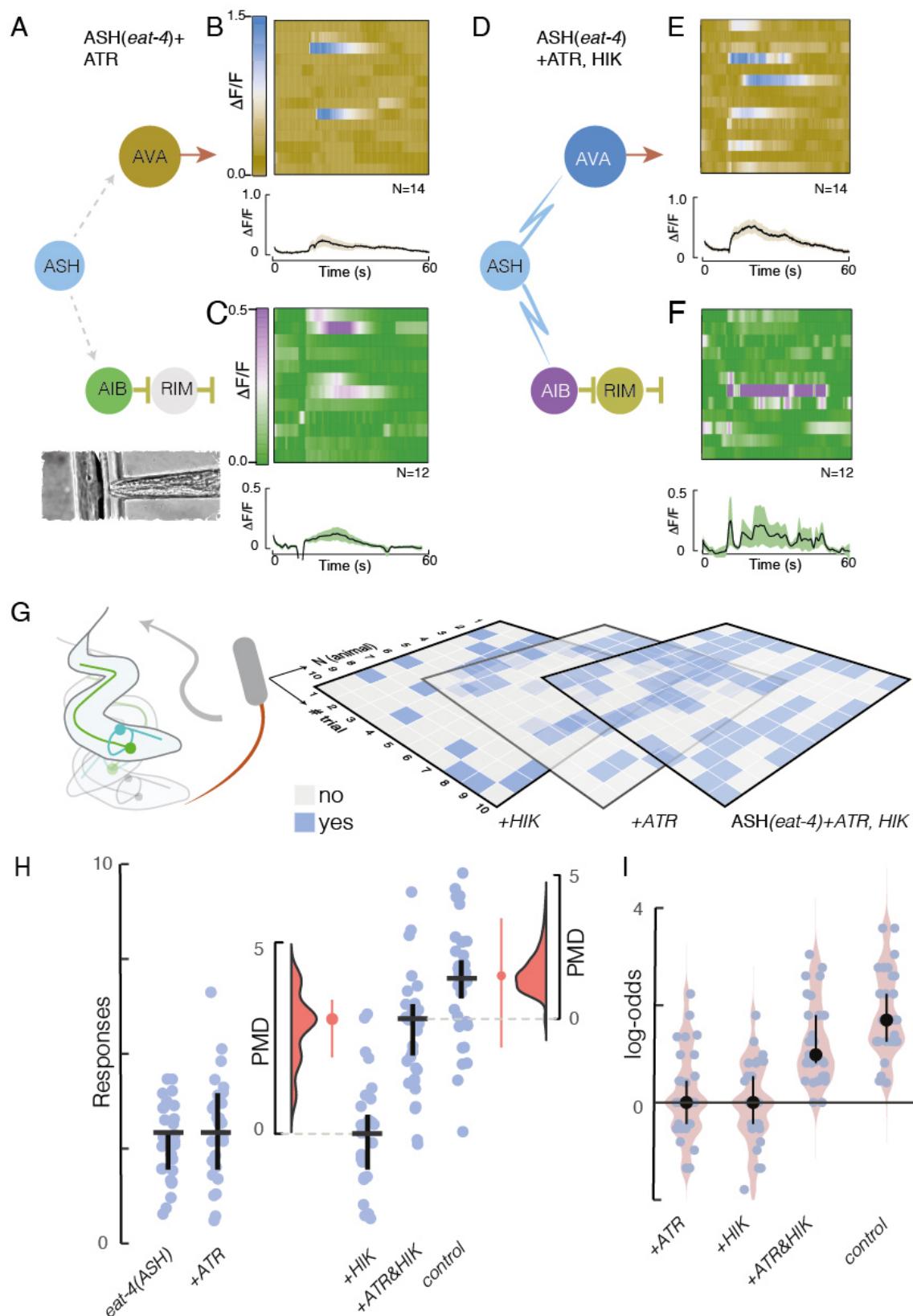

306

307 Postsynaptic light sensitivity of a new combination of ChR2 mutants

308 **A** Schematic of the ASH nociceptive avoidance circuit with ultra-sensitive light-gated ChR2s in
 309 AVA and AIB. Grey dashed edges correspond to disrupted neurotransmission in the *eat-4* mu-
 310 tant. **B** Genetic strategy for cell-specific targeting of ChR2-HRDC to AVA and AIB. AVA was
 311 targeted using an intersectional strategy employing promoters *flp-18* and *gpa-14*, which exclu-
 312 sively overlap in AVA. Successful recombination removes the loxP-flanked BFP and brings ChR-
 313 HRDC::jRGECO1a under *flp-18p* control. ChR-HRDC expression in AIB was achieved with the
 314 single *npr-9* promotor as described (17). **C** Representative confocal microscopy pictures of AVA
 315 expressing BFP and the red-shifted Ca^{2+} indicator jRGECO1a before (upper) and after (mid-
 316 dle) CRE-mediated recombination. The lower image depicts AIB expressing ChR2-HRDC::YFP.
 317 Scale bar = 30 μ m. **D** Experimental routine for interrogating light-sensitive behaviour. A single
 318 worm (Wx) per plate was stimulated with blue light once (T1) before trialing the next plate with
 319 a different animal. Ten rounds of one stimulation constitute a single dataset. In total, 30 animals
 320 were tested, each 10 times. **E** Representative outcome of the behavioural response to blue light at
 321 the indicated intensities of animals expressing ChR-HRDC in AVA or AIB in the absence or pres-
 322 ence of the photosensitizer ATR. **F** Behavioural avoidance response curve as a function of light

323 intensity. Solid line is a binary logistic regression of the no/yes response. For control experiments,
324 ATR was omitted from the food source and individual animals were illuminated at the maximum
325 light intensity of 2.4 mW/mm². N=300 stimulations of 30 animals per condition.

326 **Figure 3**

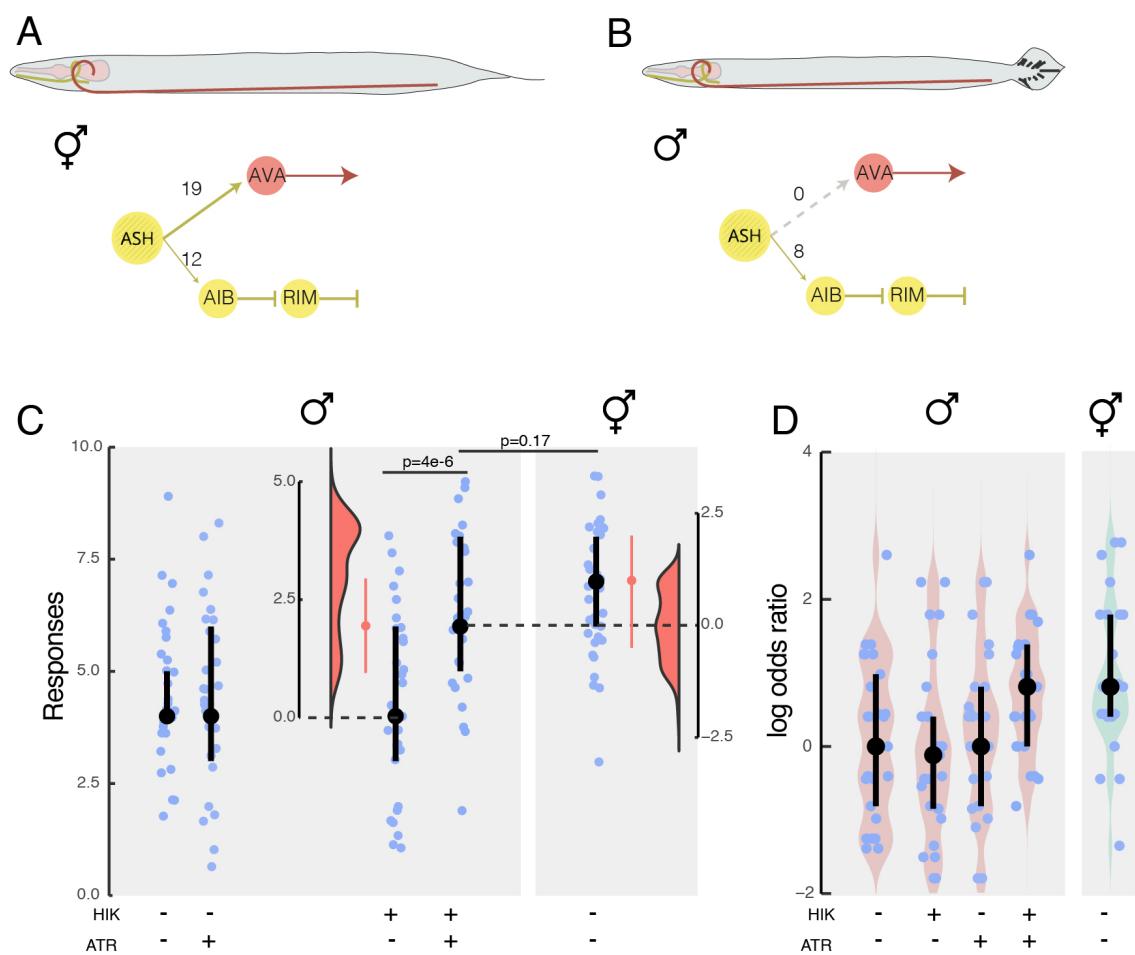

327

328 **A calcium-triggered synaptic photon emitter**

329 **A** Schematic of the working principle of the switchable luciferase. A luciferase fused to mTurquoise2
330 (eNL (6)) is reconstituted upon Ca^{2+} binding and oxidizes a cofactor (yellow) in order to emit
331 light. **B** Schematic of the circuit for eNL expression in ASH with representative commercial spin-
332 ning disk confocal microscopy of ASH (top) and all glutamatergic neurons (bottom) in *C. elegans*.
333 Scale bar = 50 μm . **C** LowLight microscope with an optimized optical axis and low-noise pho-
334 todetectors. **D** Bioluminescence emitted by ASH (top) and all glutamatergic neurons (bottom)
335 acquired on the custom LowLight microscope. Exposure time = 1 s. Scale bar = 50 μm . **E**
336 Luminescence micrographs of a crawling sequence recorded with an animal expressing calcium-
337 sensitive eNLs in body-wall muscles, representative for 8 out of 10 videos. Images recorded with
338 1 s of exposure time on the LowLight microscope. See also Video 8. Scale bar = 100 μm . **F**
339 Neuronal activation by 0.1 mM glycerol triggers photon emission through Ca^{2+} entry. Measure-
340 ments are paired with and without glycerol. The floating axis to the right indicates a bootstrapped
341 distribution of the paired mean difference (PMD), with the horizontal bars indicating the 95% con-
342 fidence interval. P-values were $p < 1e - 12$ for both comparisons as derived from a two-sided

343 permutation t-test.

344 **Figure 4**



345

346 **PhAST rescues nociceptive avoidance behavior and postsynaptic neuronal activity**

347 **A-F** Calcium recordings from the indicated neurons of ASH-conditional *eat-4* mutant worms
348 trapped inside the microfluidic chip (A-C) without and (D-F) with prior exposure to the cofac-
349 tors hikarazine (HIK) and ATR. (A,D) Schematic of the circuit with nodes colour-coded according
350 to the look-up table of the kymographs and edges coloured according to the neurotransmitter used
351 (yellow, glutamate; red, acetylcholine; grey, mutant condition; blue, photons). (B,C,E,F) Stacked
352 kymographs of individual Ca^{2+} recordings from (B,E) AVA and (C,F) AIB in the conditional ASH
353 mutant (ASH(*eat-4*)) with (E,F) and without (B,C) cofactors. Plots below the kymographs depict
354 mean \pm standard deviation (N=number of recordings). **G** Schematic of the behavioural experiment
355 with three representative grid plots of the response of ASH-conditional *eat-4* mutant animals in
356 the presence and absence of cofactors. **H** Rescue experiments in the conditional *eat-4* background.
357 A vertical jitter was applied for display purposes to differentiate individual datapoints. Horizon-
358 tal bar indicates the median, vertical bar indicates 95% confidence interval of the median (N=30
359 animals). Floating axes indicate the bootstrapped distribution of the paired median difference and
360 its 95% confidence interval. **I** Log-odds ratio of detecting a positive response in the indicated
361 animals compared to untreated mutant animals. Median \pm 95% confidence interval. Control =
362 wildtype animal without a defect in glutamatergic signalling.

363 **Figure 5**

364

365 **Feminizing a sexually dimorphic behavior in males with PhAST**

366 **A, B** Sketch of a (A) hermaphrodite and a (B) male with its corresponding nociceptive avoidance
 367 circuit. Numbers on the edges indicate the sex-specific numbers of synapses detected in electron
 368 micrographs (34). **C** Individual responses of male animals expressing the PhAST system in pres-
 369 ence and absence of the ATR and hikarazine cofactors, compared to untreated hermaphrodites of
 370 the same genotype. A vertical jitter was applied for display purposes to differentiate individual
 371 datapoints. Dot indicates the median, vertical bar indicates 95% confidence interval of the median
 372 ($N=30$ animals). Floating axes indicate the bootstrapped distribution of the paired median differ-
 373 ence and its 95% confidence interval. p -values derived from Wald test statistics above indicated

374 combinations. **D** Log-odds ratio of detecting a positive response in an individual animal of the in-
375 dicated condition compared to an untreated random male animal. Individual males were compared
376 to randomized individuals. Median \pm 95% confidence interval.

377 Supplementary Data: Functional photon communication 378 within neuronal networks

379 Montserrat Porta-de-la-Riva¹, Adriana Carolina Gonzalez,¹ Neus Sanfeliu-Cerdán,¹ Shadi
380 Karimi,¹ Sara González-Bolívar,¹ Luis Felipe Morales-Curiel,¹ Cedric Hurth,² and Michael
381 Krieg^{1, #}

382 ¹ Neurophotonics&Mechanical Systems Biology, ICFO, Institut de Ciències Fotòniques,
383 Castelldefels, Spain

384 ² Optoelectronics, ICFO, Institut de Ciències Fotòniques, Castelldefels, Spain

385 [#] correspondence to michael.krieg@icfo.eu

386 Contents

387 1 Supplementary Text 1: Estimates for photon budget	25
388 2 Supplementary Text 2: CRE recombinase expression	26
389 3 Supplementary Text 3: Choice of Luciferase and Channelrhodopsin	28
390 4 Methods	28
391 5 Supplementary Figures	42
392 6 Supplementary Videos	55
393 7 Tables	56
394 Supplementary References	56

395 1 Supplementary Text 1: Estimates for photon budget

396 A recent estimate in the number of available channelrhodopsin necessary for neuronal depolariza-
397 tion of mammalian neurons was previously estimated to be in the order of 1 million molecules (1).
398 How do our result compare with this estimate? We calculated the anticipated and required photon
399 budget to depolarize the postsynaptic neuron sufficiently to evoke signal propagation via light-
400 activated channels. We first estimated how many photons we will obtain given a certain luciferase
401 concentration and synapse volume. Using published values for quantum yield (10/s) (6) and typi-
402 cal overexpression concentrations (10^{-6} M or 3000 molecules) in a synapse with a radius of $0.5\mu\text{m}$
403 ($\approx 0.5\text{fL}$), we expect to obtain approx. 30000 photons/s/synapse. Since a typical calcium transient
404 in ASH in our experiments lasts about $>>5\text{s}$ (Fig. 1) and ASH forms 27 synapses with AVA and
405 AIB (Fig. S1, Ref. (11)), we thus expect to have $\approx 4.5 \times 10^6$ photons available for stimulation, or
406 2pW. Because the synaptic cleft is less than the wavelength of the light, we assume there is neither
407 absorption nor scattering, such that this value corresponds to a photon flux of $0.7\mu\text{W/mm}^2$ through
408 the postsynaptic membrane halfspace. Because not all photons are emitted in direction of the tar-
409 get cell, this value is overestimated by a factor that depends on the area overlap in the synaptic
410 contact.

411 To calculate the relative photon absorption E of the ChR2 in the membrane we apply Lambert-
412 Beer's law, which relates the path length d (thickness of the membrane/channelrhodopsin), the
413 concentration of absorbers c and extinction coefficient ϵ (1-photon absorbance cross section, 50000
414 L mol $^{-1}$ cm $^{-1}$ for ChR2; (4)). With reasonable values of the surface area of a synapse of $1\mu\text{m}^2$ and
415 an estimated density of 190 molecules/ μm (19), we estimate the concentration of ChR2-HRDC of
416 $62\mu\text{M}$ within the postsynaptic membrane. Subsequently, according to Lambert-Beer ($E = c \cdot \epsilon \cdot d$)
417 the relative photon absorption is $E=3.6\text{e-}6$, meaning that the intensity of the light after passing
418 through the membrane with ChR2 is $I_0 \cdot 10^E$ and, consequently, ≈ 4 out of 1 million photons will
419 be absorbed. Because the photon absorption vs. activation ratio of ChR is 0.7 (4), we estimate
420 the quantum efficiency of the system is $2.5 \cdot 10^{-4}\%$. Taken together, given the 4.5×10^6 photons

421 emitted from the Nanolatern, we expect to activate >20 channels during a typical stimulation.
422 Because ChR2-XXL is 200 times more sensitive than ChR2 (19), the real number is likely much
423 higher.

424 How many open channels are necessary to depolarize the neuronal membrane for a given
425 amount in a given time. We consider published values of the resting potential of -50mV for
426 AIB (8) and -30mV for AVA (7) and asked how many charges are necessary to depolarize AVA
427 for 20mV, a hypothetical value to activate voltage gated Ca channels. Note, AIB is not known to
428 express low threshold T-type calcium channels (e.g. cca-1) that would activate at lower membrane
429 potentials (-30mV for NMJ, (8)), whereas AVA expresses both, T-type and L-type voltage gated
430 Ca channels (9). Given an input resistance of 5GOhm, a current of 5pA is necessary to do so.
431 Assuming a specific capacitance of $1\mu F/cm^2$ and a synaptic radius of 500nm, a minimal amount
432 of ≈ 4000 sodium ions would be required to raise the potential of about 20mV. Due to the overlap
433 of sodium entry and potassium exit (during action potential), we consider that 4 times more ions
434 are required (10). With a published conductance of 750fS for ChR2-XXL (19), a single channel
435 would conduct 300000 ions/s at such an electrochemical driving force, taking about 100ms to
436 depolarize the synaptic compartment sufficiently. Because we are using an ultrasensitive ChR,
437 called ChR2-HRDC, with an improved conductance and membrane stability, in principle we would
438 only need one active channel to produce a depolarization of 20mV to elicit secondary responses
439 critical for signal propagation.

440 2 Supplementary Text 2: CRE recombinase expression

441 In a first attempt to overlap expression of *eat-4* and the CRE recombinase, we used the *octr-1*
442 *Ip* promoter, which was described to be expressed in a restricted number of cells in the head
443 (11). After confirming a restricted expression and overlap with ASH (Fig. S9A) of the *octr-1*
444 promoter cloned we tested the response to nose touch of worms coexpressing the floxed *eat-4*
445 allele and *octr-1p::CRE*. Animals failed to respond consistently to nose touch and frequently lost

446 the mTagBFP2 marker in somatic tissue, displaying ubiquitous recombination pattern in all cells,
447 which we attributed to the reported expression in spermatheca and/or germ line.

448 To avoid the spurious recombination in the germline, we performed a split-CRE (12) approach
449 in which we targeted the 3.8kB *sra-6* promoter (23) together with *gpa-13* promoter and the split
450 form of CRE (Fig. S9B). We observed successful reconstitution of the CRE activity in 2-4 cells
451 in 90% of the animals, which correlated with a decrease in nose touch response in animals coex-
452 pressing the floxed *eat-4* allele (Fig. S9B). This confirmed that *eat-4* was effectively excised with
453 the split CRE, without affecting other tissues.

454 We reasoned that splitting the CRE enzyme might result in a recombination efficiency <100%.
455 In order to increase the recombination efficiency in ASH, we surveyed various promoters that
456 exclusively drive expression in glutamatergic neurons involved in nose touch. Since we also use
457 a CRE/lox strategy to obtain AVA-specific ChR2 expression, we looked for promoters with an
458 overlap on ASH and AVA. Recently, Schmitt et al (16) proposed an intersectional strategy using a
459 *gpa-14p::CRE* and a *flp-18p* transgene that generates an AVA restricted transgene expression after
460 recombination. Among other neurons in the head where *gpa-14* is expressed (Fig. S9C), ASH is
461 the only neuron involved in nose touch. We confirmed recombination in ASH with coexpression
462 of an *sra-6p::GCaMP* transgene, that leads to overlap in red and green channel. We then assayed
463 nose touch and found a significant decrease in the reversal rate, similar to the other transgenes
464 tested and what was observed before for ASH ((32), Fig. S9C). We attributed the residual nose
465 touch response to other nociceptive avoidance neurons, e.g. FLP. Indeed, when we deleted *eat-4* in
466 FLP using a *des-2p::CRE* construct, in addition to ASH, we found a strong reduction in the nose
467 touch response (data not shown).

468 3 Supplementary Text 3: Choice of Luciferase and Channel- 469 rhodopsin

470 We reasoned that the spectral overlap between the luciferase emission and ChR2 absorption is
471 critical for the function of the system and thus we only considered a combination of eNL with blue-
472 activated ChR2. However, using red-shifted ChR2 like Chrimson or ChRmine, we anticipate that
473 luciferases like Antares are superior. Even though the common firefly luciferase emits photon that
474 peak at Chrimson absorption, we were unable to observe a large photon production in transgenic
475 animals for firefly luc.

476 We first considered the general ChR2-H134R as photosensitizer, but discarded it due to the low
477 photon current (not shown). We then turned our attention to the high photocurrent ChR2 bearing
478 the mutation C128S;L132C;H134R (7) (hereafter termed ChR2-triple) and generated transgenic
479 animals expressing ChR2-triple in AVA. In young adult animals, we observed a strong response at
480 2.4mW/mm², but a fast habituation to repetitive stimuli. Moreover, older (day 2 onwards), animals
481 lost their ability to respond to blue light, due to neuronal degeneration, visible as loss of AVA. We
482 suspected that a continuous depolarization in presence of ATR led to this effect. We thus generated
483 the double mutant ChR2-HRDC, which we employed in this study for downstream experiments
484 due to its unprecedented ability to repetitively drive behavior in *C elegans* at extreme low light
485 intensities.

486 4 Methods

487 *C. elegans* culture

488 Nematodes were cultivated on NGM plates seeded with *E. coli* OP50 bacteria using standard
489 protocols (17). Unless otherwise stated, age synchronized young adult hermaphrodites, except for
490 experiments related to Fig. 5, were used for the experiments.

491 Molecular biology

492 Unless otherwise specified, all plasmids used for this study were assembled using the Gibson
493 assembly method. Sequences are listed in table S4.

494 4.1 Expression of ChR and jRGECO1a//ChR::YFP and jRGECO1a in AIB

495 Sequence for *npr-9* promoter was obtained from (17). pNMSB34 was constructed by directed mu-
496 tagensis on the universal MosSCI plasmid pNMSB29, which contained
497 *npr-9p::ChRTriple::SL2::jRGECO1::unc-54* 3'UTR with primers specified in Table S5. pNMSB37
498 was constructed inserting YFP from pSX-317 (gift from Shawn Xu, (8)) between ChR2-HRDC
499 and SL2::jRGECO1a by Gibson assembly.

500 4.2 Expression of ChR and jRGECO1a in AVA

501 An intersectional strategy ensured cell-specific expression in AVA. We first introduced a loxP-
502 mTagBFP2-stop-loxP::ChR-SL2-jRGECO1a construct using the universal MosSCI method (19).
503 The universal MosSCI plasmid pNMSB6a was built as follows: mTagBFP2::*tbb-2* 3'UTR, ChR
504 Triple (Bergs et al, 2018) and SL2::jRGECO1a fragments synthesized by TWIST BIOSCIENCES
505 were assembled using a 4-fragment Gibson assembly into pNMSB6 which already contained *flp-18p*
506 and *unc-54* 3'UTR. To facilitate conversion, we co-expressed *gpa-14p::CRE*, effectively turn-
507 ing AVA from blue to red, indicative for a successful jRGECO1a expression.

508 The ChR triple turned out to be toxic for AVA in adult animals (see supplementary text 3).
509 To convert ChR triple to ChR2-HRDC, a CRISPR was performed with crRNAs and a homology-
510 directed repair template as indicated in Table S5. All reagents were purchased from IDT and
511 conditions for injection were: 12.5 μ M each crRNA, 2 μ M crRNA for *dpy-10*, 27 μ M tracrRNA,
512 6 μ M Cas9, 0.5 nM *dpy-10* ssODN and 1.75 nM homology repair template.

513 **4.3 AVA::CRE**

514 For *gpa-14p::CRE*, pNP259 plasmid described in (16) was used. To confirm cell-specificity of
515 the recombination, we established the *gpa-14p::CRE* in the SV2049 strain (gift from Sander v d
516 Heuvel), in which successful recombination can be followed by a BFP-mCherry switch of fluores-
517 cent proteins (30, 31). We consistently found recombination in AVA and also in ASH.

518 **4.4 Expression of calcium sensitive, enhanced Nanolatern (eNL) in ASH,
519 glutamatergic neurons and muscles**

520 eNL250 was synthesized by TWIST BIOSCIENCES using a *C. elegans* codon optimized version
521 of mTurquoise2 and the Ca²⁺ 250 eNL described in (6) and cloned into pMINI-T (Invitrogen). pN-
522 MSB16 (*sra-6p::eNL250::unc-54* 3'UTR) was built replacing the ORF in pNMSB14 (2.0 kb *sra-*
523 *6p::RCaMP1h::unc-54* 3') by NL250 from pMINI-T-eNL250. pNMSB17 (*eat-4p::eNL250::unc-*
524 *54* 3'UTR) was constructed amplifying the *eat-4* promoter (table S4) from genomic DNA, and
525 assembling it in a 3-fragment Gibson assembly reaction with the pMINIT-NL250 and a backbone
526 containing *unc-54* 3'UTR. pNMSB40 was built by replacing the mCherry driven by the *myo-3*
527 promoter in pCFJ104 by eNL250.

528 **4.5 Targeting eNL to pre-synaptic regions in ASH**

529 To build pNMSB26 (*sra-6p::sng-1::NL250::unc-54* 3'UTR) the sequence for *sng-1* was synthe-
530 sized by TWIST BIOSCIENCES and cloned into pMINI-T. A 2-fragment Gibson assembly was
531 performed to introduce the ORF for *sng-1* between the *sra-6* promoter and NL250 in pNMSB16
532 with a flexible linker between them.

533 **4.6 Split CRE expression in ASH**

534 For cell-specific expression of CRE exclusively in ASH, we followed an intersectional strategy
535 that involves a split CRE (12) construct under the control of two promoters that are exclusively co-
536 expressed in ASH. The N-terminal fragment of the split CRE (aa 1-244) construct was synthesized

537 by TWIST BIOSCIENCES flanked by NaeI and EagI restriction sites, and subsequently cloned
538 into a vector containing a *gpa-13* promoter and *unc-54* 3'UTR (pNMSB5). The synthetic C-
539 terminal fragment of the split CRE (aa 245-345) was cloned into a 3.8 kb *sra-6* promoter (23)
540 containing the *unc-54* 3' UTR (pNMSB3) by directed mutagenesis with primers in table S5.

541 **4.7 *octr-1p::CRE***

542 *octr-1p* was amplified from genomic DNA (Table S4) and cloned in pNMSB7 together with the
543 three intron CRE::tbb-2 3'UTR in pDD282 (22). The fragment *octr-1p::CRE::tbb-2* 3'UTR was
544 then moved to the universal MosSCI vector pNMSB28.

545 **4.8 ASH:jRGECO1a**

546 pNMSB72 was constructed by replacing in pNMSB6a the regions corresponding to *fip-18* pro-
547 moter, mTagBFP2 and ChR by the 2.0 kb *sra-6* promoter and the miRFP670 ORF (addgene-
548 plasmid-79987, see table S4).

549 **Transgenesis**

550 Transgenic animals were generated by microinjection of varying amounts of DNA according to
551 standard protocols and the conditions (amount/composition) indicated in table S3. For extrachro-
552 mosomal arrays, plasmid DNA was mixed with DNA ladder to a maximum DNA load of the
553 mix of 100 ng/ μ L. The integration of the extrachromosomal array was performed using UV/TMP
554 method. In brief, late L4 or young adult animals carrying the array were picked onto a NGM plate
555 without OP50. These animals were fed TMP at a final concentration of 50 μ g/mL for 30 minutes.
556 Then, they were UV irradiated for 30 seconds at 4.5mW·cm⁻² (250nm peak wavelength; \approx 130mJ)
557 and expanded for 3-4 weeks before selection. Three independent integrated lines were recovered
558 whenever possible.

559 4.9 Generation of the floxed *eat-4*

560 Floxed *eat-4* allele was generated by CRISPR following the protocol described in (23). In a first
561 editing step, a loxP site was introduced before the first aminoacid using two different crRNAs and
562 a HR-template as indicated in Table S5. In a second step, the loxP site was introduced after the
563 second exon by means of the crRNAs and HR templates indicated in Table S4. All reagents were
564 purchased from IDT. Injection conditions were: 12.5 μ M each crRNA for *eat-4*, 2 μ M crRNA for
565 *dpy-10*, 27 μ M tracrRNA, 6 μ M Cas9, 0.5 nM *dpy-10* ssODN and 1.75 nM *eat-4* homology repair
566 template.

567 4.10 CRE transgenes

568 The recombination efficiency was determined using a CRE reporter strain (30, 31) (gift from
569 Sander v d Heuvel), carrying a transgene with floxed blue fluorescent protein (BFP), followed
570 by mCherry. Successful recombination results in a blue to red color switch in cells with active
571 CRE enzyme. To follow recombination, candidate animals were immobilized on agar pads and
572 imaged on a DragonFly Spinning Disk confocal microscope with 405nm laser excitation (BFP)
573 and 594 nm laser excitation for mCherry.

574 Microfluidic chip device design and operation: Trap'N'Slap

575 All designs were made in AutoCad 2019 and UV printed with a maskless aligner (MLA, Heidel-
576 berg Instruments). The loading chamber and trapping channel geometry was copied directly from
577 Ref (13). The height of the channel was 50 μ m to accommodate day one adults. Three different
578 actuators were designed with 50 μ m height, 50, 100 and 200 μ m width and 15 μ m membrane thick-
579 ness. The wider actuators can be deflected further at the expense of response time. In the ultimate
580 design, the squeezing actuator was set at a width of 200 μ m.

581 4.11 Analytical calculation of diaphragm deflection

582 To characterize actuator deflection as a function of back pressure, we connected the pressure inlet
583 to the OB1 8bar pressure channel (ElveFlow) and increased the back pressure in 50kPa steps while
584 taking images of the inflated diaphragm. Diaphragm deflection was measured in ImageJ.

585 As shown in eq. 1, maximum deflection of an elastic rectangular membrane with module of
586 elasticity of (E), is linearly correlated with pressure P acting on its surface with thickness of (t),
587 width of (w) and height of (h). The coefficient of α empirically depends on edge condition and
588 mechanical properties of the material (25).

$$\delta = \alpha \frac{Ph^2w^3}{t^3 \cdot E} \quad (1)$$

589 The Young's modulus of a Polydimethylsiloxane (PDMS (1:10), (Sylgard 184 by Dow Corn-
590 ing)) membrane with 15 microns thickness is set 1.6 MPa based on studies (13, 26) on thickness-
591 dependent mechanical properties of PDMS membranes. Since applying lower pressure and achiev-
592 ing larger deflection in our chip is ideal, we used 1:15 PDMS mixing ratio. Lower amount of
593 reagent means less molecular binding, which leads to more flexible membrane and higher deflec-
594 tion and the results are shown in Figure S2. The Young's modulus for this mixing ratio is 1.4 MPa.
595 The width and height of the membrane are 200 and 50 microns, respectively. The coefficient of α
596 is set 0.0034 for our actuator's edge condition which is only fixed from the part that is bonded to
597 a cover slip (25).

598 4.12 Finite Element Analysis (FEA)

599 In order to have a prediction that is more accurate we performed numerical simulation based on
600 FEA. In real case, since the hydrostatic pressure applied in the channel also deforms the sidewalls
601 of the actuator, therefore we considered the surrounding walls in the simulation. The actuator is
602 simulated with Ansys workbench (2021 R1). The material is set as a PDMS block as obtained
603 from a 1:15 mixing ratio cured at 85°C for two hours with the specification of Young's modulus
604 of 1.4 MPa and 0.5 Poisson's ratio with tensile strength 2.24 MPa (26). The model is meshed

605 using structured hexahedral grids (Fig. S2) to reduce the mesh size and thus computational cost
606 while maintaining the appropriate grid quality. We conduct mesh independence studies in CFD
607 (computational fluid dynamics) to make sure that the results we get are due to the boundary con-
608 ditions and physics used, not the mesh resolution. Mesh independency is assessed based on total
609 deformation. Average cell size is sequentially reduced until the displacement difference is inde-
610 pendent from the grid size. The obtained results are independent of the mesh size above 127320
611 nodes (not shown). Thus, the cell size corresponding to the case with 127320 nodes is chosen for
612 the numerical investigation. The actuator was studied under three pressure rates (0, 150, and 350
613 kPa). Both results from the Eq. 1 and simulation showed that lower thickness results in steeper
614 slope, which requires lower pressure to apply in the channel to achieve the desire deflection. To
615 optimize the dimensions of the actuator, different width, thickness and height were studied. Since
616 the channel geometry is set by the dimensions of the animals and cannot be changed, thickness
617 and elasticity of the diaphragm are the major design variables permitted. Lower thickness plays an
618 important role to increase the deflection but lower than 10 microns is challenging from fabrication
619 point of view. Measurements confirmed that the length of the channel had a negligible effect on
620 membrane deflection.

621 4.13 Device Fabrication

622 The fabrication of the molds was undertaken in-house as a single layer process using standard SU8
623 soft-lithography techniques (27). The 4-inch wafers were cleaned with Piranha cleaning standard
624 process to remove trace amount of organic contamination and residuals. In brief, we first applied
625 a 5um thick adhesion layer to reduce lift-off of the patterned structure during device fabrication
626 and cured it under direct UV exposure for half an hour. Then SU8-50 was coated on the substrate
627 and baked at 65 and 95 degrees. The design which is created with AutoCAD is converted to
628 the format of MLA software (CleWin). The pattern is printed on the substrate and post baked
629 before developing in SU8 developer for 6 minutes and rinsed with propanol. The mold is ready
630 after hard baking 2 hours on 135 degrees. After fabrication, molds were vapor-phase silanized in

631 chlorotrimethylsilane to prevent adhesion of the PDMS to the substrate. A 15:1 mixture of Sylgard
632 184 prepolymer/curing agent was degassed (\approx 30min in vacuum desicator) and poured onto the
633 silanized molds. After settling, the PDMS/wafer were baked at 85°C for two hours. Devices
634 were then cut using a scalpel, lifted off and punched with a biopsy punch (0.75mm). Coverslips
635 (Menzel Gläser #1.5) were cleaned in a 2-Propanol bath for 10 min and properly rinsed in ddH₂O.
636 PDMS/glass bonding was performed with a 15s plasma activated treatment (Plasma Asher PVA
637 TePla 300) followed by an annealing bonding process of 10 min at 120°C in a hotplate. Quality of
638 the seal was tested manually *in-situ* with a syringe connected to the actuator inlet.

639 **4.14 Animal loading and experimental setup**

640 The procedure of animal insertion into the trapping channel has been described in detail else-
641 where (28). In brief, to load individual in the chip, three to four synchronized day one adult
642 worms (17) were picked from an NGM plate containing OP50 bacteria and transferred to a NGM
643 plate without food to rid themselves from bacteria. Then, these animals were placed in a 15 μ L
644 droplet of physiology buffer (145 mM of NaCl, 2 mM of Ca₂Cl, 1 mM of MgCl₂, 5 mM of KCl,
645 10 mM Hepes and 25 mM of Glucose, with a pH 7.4). Using a stereo dissecting scope at 60x
646 total magnification (Nikon SMZ25), the animals were aspirated into a SC22/15 gauge metal tube
647 (Phymep) connected to a 3 mL syringe (Henke Sass Wolf) with a PE tube (McMaster-Carr) pre-
648 filled with physiology buffer. The loading tube was inserted in the inlet port of the device, while
649 a gentle pressure onto the plunger of the syringe released the animals into the loading chamber.
650 The pillars in the loading chamber act as a sieve and slow down the animals, such that they can
651 be oriented head-first for efficient mechanical stimulation. The animal was positioned such that
652 20 μ m of the nose protruded into the flush channel, ready to accept a mechanical stimulus. If the
653 worm was entering the channel in the wrong direction, the syringe was pulled gently at the same
654 time another syringe connected to the outlet tube was used to apply back pressure to help orient
655 the worm. For the experiments where the furimazine analog corresponding to the hydrolysis of
656 Hikarazine-108 (24) was used, a similar procedure was performed with the exception that the an-

657 imal was preincubated for 10s in a 2 μ l droplet of the cofactor, followed by aspiration in the PE
658 tube filled with physiology buffer.

659 **4.15 Mechanical stimulation and calcium imaging**

660 The animal loaded device was then positioned on a Leica DMi8 and the stimulation channel was
661 connected to a piezo-driven pressure controller (OB1-MK3, Elveflow). With a 10x/0.3 objective
662 lense the animal was positioned within the field of view and then with a 40x/1.1 water immersion
663 lens in place to focus on sensory neuron ASH or interneurons AVA and AIB. The neurons were
664 identified based on the specific expression of jRGECO1a and anatomical location at the posterior
665 pharyngeal bulb. Image acquisition was performed with a Lumencor SpectraX light engine (cyan
666 LED with 470 nm bandpass cleanup for GCaMP and green/yellow LED through a 555 nm band-
667 pass filter for jRGECO1a; 5% transmission corresponding to \approx 0.5mW at the sample plane) and
668 a filtercube containing 570 nm edge dichroic mirror and 515/15nm emission filter and 595/20 nm
669 emitter for GCaMP and jRGECO1a, respectively. Videos were captured with 10 Hz with a Hamam-
670 matsu Orca Flash 4.3 for 10-60 seconds using HCImage. A masterpulse was used to synchronize
671 the camera acquisition with the light exposure. Exposure time was set to 85ms. The camera SMA
672 trigger out was used to synchronize the stimulation protocol setup in ElveFlow sequencer software
673 prior to the imaging routine. The sequence consisted of 100 prestimulus frames, two seconds of a
674 pressure step of 300kPa and 48s poststimulus acquisition.

675 **4.16 Image analysis**

676 Images were preprocessed in ImageJ and then imported into python to extract signal intensity
677 using in-house procedures. In short, the image sequence was cropped to a small area surrounding
678 the cell body of the neuron of interest and a smooth filter was applied. The resulting image stack
679 was analysed with a python script and the signal intensity was extracted based on the calculation
680 of the 10th percentile to measure the background and the 90th percentile to measure the neuron
681 intensity. After background subtraction, signal intensity was normalized to the first 100 frames

682 (before the mechanical stimulus was applied).

683 **Behavioral assays**

684 **4.17 Nose touch assays**

685 Plates for nose touch assays were prepared as follows: 10 mL of NGM were poured to 5.5 cm
686 plates and allow to dry over night at room temperature. The next day, 100 μ L of an overnight
687 OP50 culture diluted 1:1 in LB were spread onto the plates allowed to dry and grown over night
688 at room temperature. Plates were either directly used or stored at 4°C until needed. Worms for the
689 assay were transferred as L4 and assayed the next day as young adults. For the assays, a special
690 picker was used with an eyebrow hair at the tip. The eyebrow hair was placed in front of the
691 worm so that it could freely contact the hair (30, 32). A positive event was counted when, upon
692 the contact of the tip of the nose with the hair, the worm reacted moving backward.

693 **4.18 Animal preparation for optogenetics**

694 Animals were cultivated in the dark at 20°C on NGM with OP50 bacteria with or without all-trans
695 retinal (ATR) (18, 32). Plates containing ATR were prepared by spreading 100 μ L of OP50 culture
696 mixed with ATR (0.1 mM final concentration) onto 3.5 cm plates containing 3.5 mL of NGM.
697 About 16 h before the experiments, L4 worms grown on regular NGM plates were transferred to
698 fresh assay plates. For measurements, worms were illuminated with blue light (467-499 nm) at
699 the specified light intensity, under a 2x objective on a Nikon SMZ25 stereomicroscope. Duration
700 of illumination was defined manually and lasted for 1 s. Every single worm was illuminated 10
701 times with a minimum interstimulus interval of 1 minute. Any observable backward locomotion
702 during or directly after (1 s) a blue light pulse was scored as a response. The incident power of
703 the excitation light was measured with a microscope slide powermeter head (Thorlabs, S170C)
704 attached to PM101A power meter console (Thorlabs).

705 4.19 Animal preparation for rescue experiments

706 About 20-24h before the experiments, L4 worms grown on regular NGM plates were washed off
707 the plates with S-medium complete and finally transferred to 2mL eppendorf tubes containing
708 250 μ L of S-medium complete (33) supplemented with 0.05% Triton and 1% DMSO. 10 μ L of
709 OP50 five times concentrated was added as food supply (with or without ATR). Concentrated
710 solution of the luciferin corresponding to Hikarazine-108 (its O-acetylated form, provided by Yves
711 Janin, Institute Pasteur) was obtained by performing its hydrolysis using a mixture of DMSO
712 and ethanol containing 37% hydrochloric acid (10 eq.) as previously described (24, 41). Where
713 indicated, Hikarazine (24) was added as the substrate for bioluminescence at a final concentration
714 of 0.4 mg/mL. Final ATR concentration was 0.1 mM.

715 Worms were incubated at 20°C for 20-24h in the dark and constant rotation. After that time,
716 the liquid was transferred to plates in the same ATR conditions and worms transferred to fresh
717 plates once the liquid was dry. After 2h recovery on the plates, nose touch test was performed in
718 the dark with a 590nm bandpass filter (Thorlabs) to block the blue component of the white light
719 used in the stereomicroscope.

720 4.20 Statistics of the behavioral assay

Behavioral data is scored as a binary yes/no (1,0) response as a result of a mechanical stimulation. Thus, the obtained data is binomially distributed with a single categorical independent design variable representing the predictor (treated vs non-treated; luminescent vs dark; wild type vs mutant) of the response. We modeled the outcome of each experiment with a general linear model after binary logistic regression such that

$$\text{logit}(p) = \ln \left(\frac{p}{1-p} \right) = \beta_0 + \beta_1 \cdot X_i$$
$$Pr(Y = 1 | X = x_i) = \frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)}$$

721 or which simply says that the probability of getting a yes response for the categorical variable $x_i =$
722 1 (e.g. wild type animals) is an odds ratio. In the above case, β_0 is the value of the transformed

723 outcome variable when the predictor is equal to zero (mutant, non-treated, dark), $\beta_1 x$ describes the
724 increase in odds of finding a positive response for $x_i = 1$. For a continuous independent variable
725 (e.g. light intensity), the odds increase by $\exp(\beta_1)$ for each unit increase in x_1 . We plot the log-
726 odds ratio of obtaining a positive response to a mechanical stimulus in the rescued conditions in
727 Fig. 4 and Fig. S5 with respect to the mutant condition. Significance of the parameters was tested
728 using the Wald chi-squared statistics according to $z^2 = (\hat{\beta}_j / \text{SE}(\hat{\beta}_k))^2$.

729 Similarly, the optogenetic data is a binomially distributed with a single continuous predictor
730 variable, e.g. light intensity. To extrapolate the light response at low intensities beyond the acces-
731 sible experimental parameters, we fitted a generalized linear model to the raw counts of individual
732 responses.

733 Wherever indicated, we resorted to p-value independent statistical comparison by estimating
734 the paired median difference (PMD) between two sample distributions and concluded that a large
735 effect existed if the 95% confidence interval of the median PMD does not overlap with zero. This
736 is indicated as a floating axis in selected comparisons of the data (Fig. 3e, 4H, S1, S5, S6, S7, S8).
737 The PMD distribution was calculated by bootstrapping a sample containing 40 datapoints for at
738 least 100 times. For each bootstrapped sample the difference in μ_1 and μ_2 was calculated.

739 Bioluminescence imaging

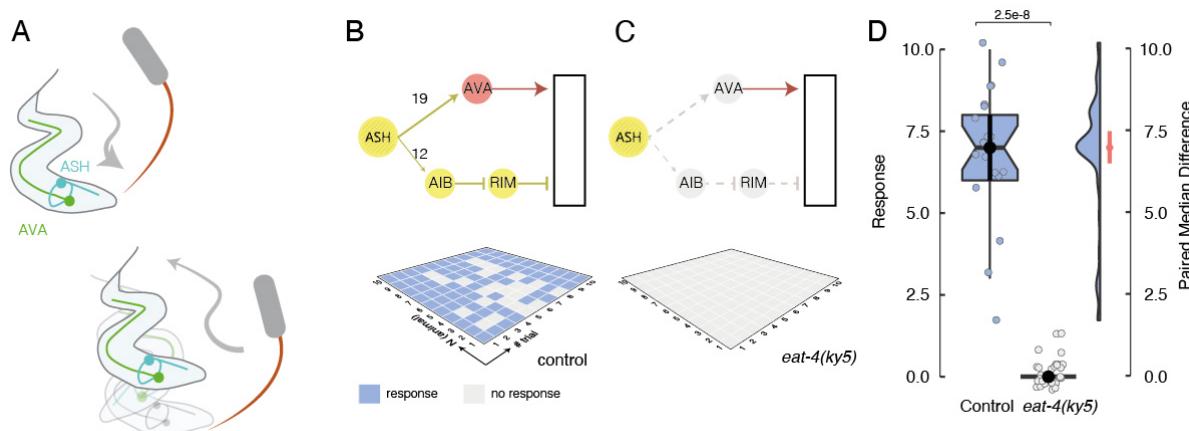
740 Bioluminescence imaging was impossible on a standard compound microscope and we redesigned
741 a compressed optical path to enhance quantum efficiency in extreme lowlight conditions (LoLi).
742 The details are described elsewhere, but in short, a 100mm tube lens (Applied Scientific Imaging)
743 is used to focus light collected by a 40x/1.25 silicon immersion objective (Olympus) directly onto
744 a Hamamatsu Orca-Fusion camera (C14440-20UP) with no additional optical elements in place.
745 Exposure time was adjusted to maximize acquisition frame rate in expense of signal/noise ratio and
746 generally kept below 1s. Images were denoised using convolutional neural networks (34) trained
747 on experimental data (publication in preparation). During training, by iteratively minimizing the

748 loss function through stochastic gradient descent, the network weights were optimized to improve
749 the image reconstruction. The dataset consisted of paired ground truth images and noisy images,
750 and was augmented via random change, spin, and rotation to improve the inference quality and
751 avoid overfitting.

752 To image animals expressing the eNL confined to the body wall muscles, worms were placed
753 onto a 1% agarose pad prepared in a glass slide. Here, worms are able to perform body bend but
754 do not crawl. Animals were then shortly incubated with 20 mM of the FFz cofactor in physiology
755 buffer (25) or Hikarazine-108 (41) and covered by placing a coverslip. Imaging of bending worms
756 was performed for \approx 60s by using a 1s exposure time.

757 4.21 Quantification of luminescence in Microplate reader

758 The relative light units of ASH eNL and *eat-4* eNL strains were measured with a microplate reader
759 via glycerol-mediated chemical stimulation. An average of 100 animals per strain were placed in
760 triplicates in a white flat bottom 96-well plate. Three endpoint measurements were consecutively
761 made per well: baseline luminescence without cofactor addition, basal photon emission after co-
762 factor addition (0.1 mM Hikarazine) and neuronal photon emission after addition of 0.1 mM glyc-
763 erol. Values were subtracted to the baseline and a ratio after and before worms were supplemented
764 with glycerol was calculated. Values are represented as Mean \pm SD.

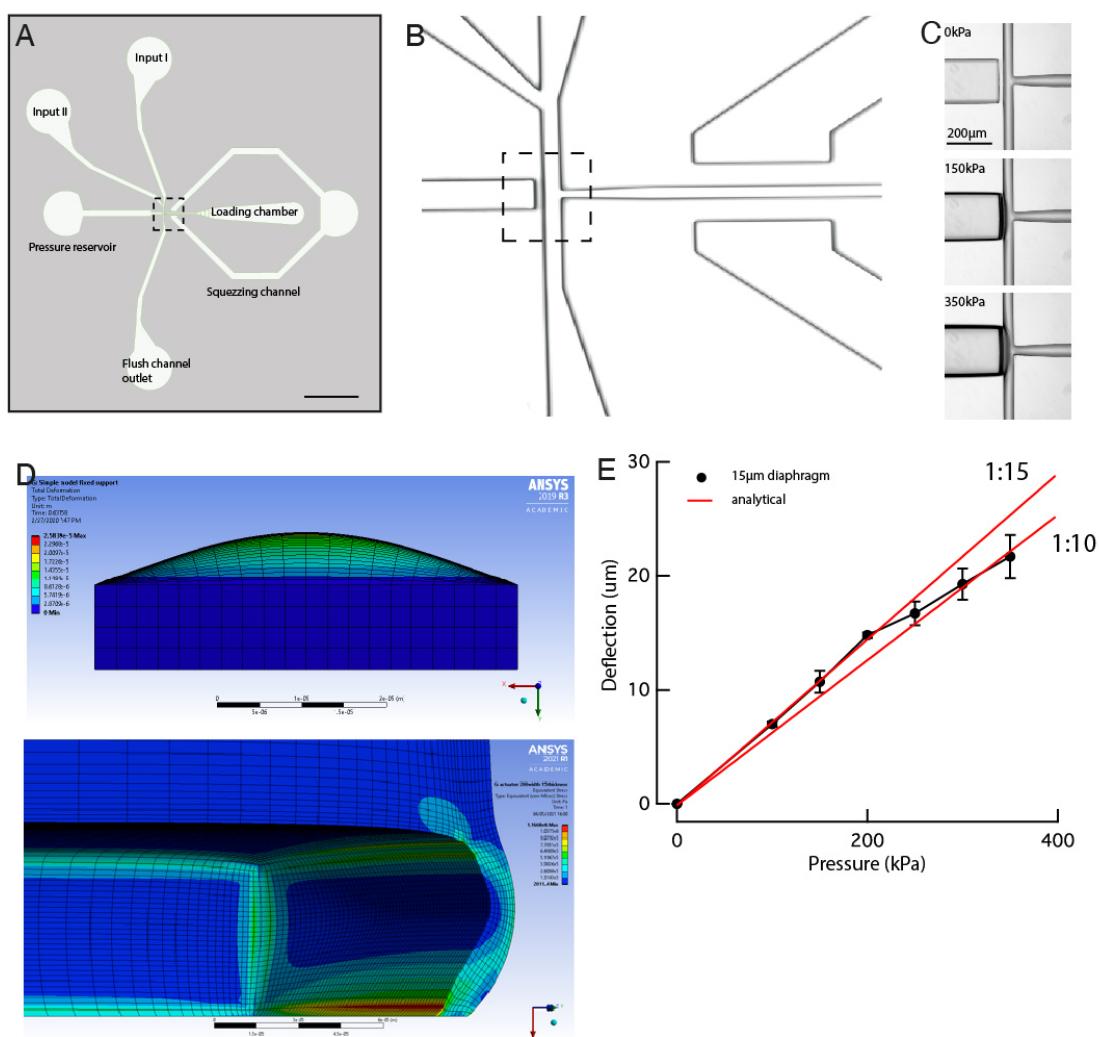

765 Confocal microscopy

766 Fluorescence images were taken using an inverted research microscope (Nikon Eclipse Ti2) equipped
767 with a spinning disk confocal microscope (Andor DragonFly 502, Oxford Instruments) on top of
768 an active isolation table (Newport). A 60x/1.2 NA CFI Plan Apo VC water immersion objective
769 and Andor Sona camera were used. mTagBFP2 was excited using the 405 nm laser, 30% power
770 intensity and transmitted through a 445/46 nm emission filter. Exposure time varied between 30-
771 100 ms, depending on the strain to image. mTurquoise2 was excited using the 445 nm laser, 30%
772 power intensity and transmitted through a 478/37 nm emission filter. Exposure time varied be-

773 tween 100-200 ms depending on the strain imaged. YFP was excited using the 514 nm laser, 20%
774 power intensity and transmitted through a 552/41 nm emission filter. Exposure time was 30 ms.
775 jRGECO1a was excited with 488 and 561 nm lasers, 30% power intensity each and transmitted
776 through a 594/43 nm emission filter. Exposure time varied between 100-200 ms depending on the
777 strain imaged. mCherry was excited with a 561 nm laser, 10% power intensity and transmitted
778 through a 647/63 nm emission filter. Exposure time was 30-100 ms. GCaMP/GCaMP7 were ex-
779 cited with a 488 nm laser, 40-80% power intensity respectively and transmitted through a 521/38
780 nm emission filter. Exposure time was 30-200 ms respectively.

781 5 Supplementary Figures

782 **Figure S1**

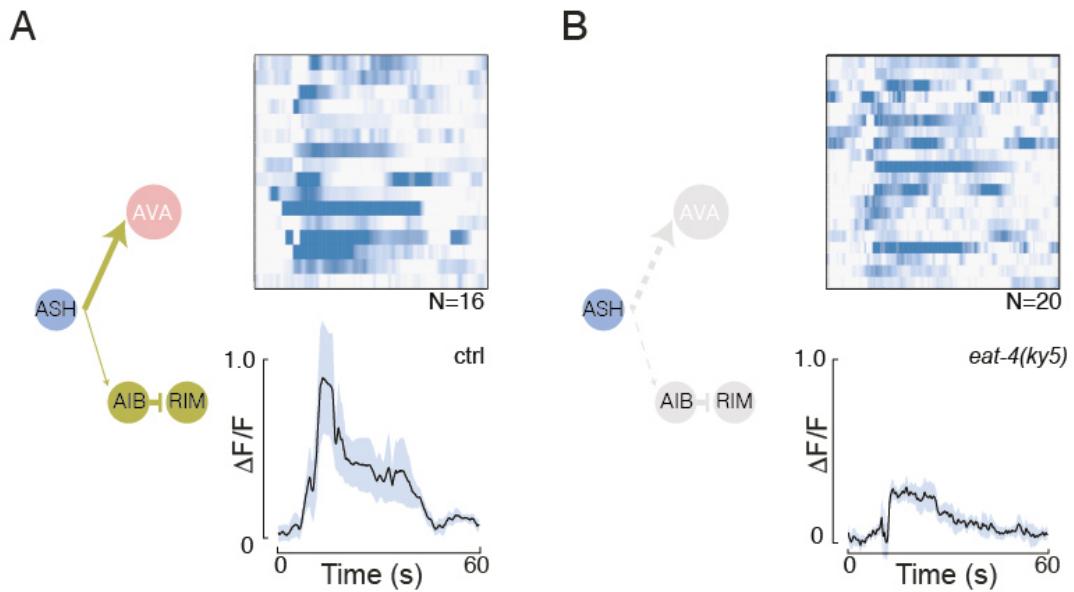


783

784 Nose touch mutants and transgenic

785 **A** Schematic of the behavioral assay. The yes/no response of a single animals is recorded as it
786 navigates into a user-controlled obstacle (eyebrow hair). **B,C** Wiring of the nociceptive avoidance
787 circuit with the representative result of an experiment of 10 trial conducted on 10 animals in (B)
788 wildtype and (C) *eat-4(ky5)* mutants. Circuit nodes colored according to their neurotransmitter
789 (yellow=glutamate; red=acetylcholine; grey=silent). Dashed arrow indicates broken connection
790 in the *eat-4(ky5)* mutation. Grid plots show the yes/no response, color-coded according to its
791 outcome, of individual animals as they navigated into the eyebrow hair. **D** Summary of results of
792 both genotypes with a box plot encompassing 50% around the median and whiskers embracing
793 90% of the data. Floating axis on the right shows the bootstrapped distribution of their paired
794 median difference (right axis), indicating the PMD \pm 95% confidence interval. *p*-value derived
795 from a binary logistic regression, (see Methods).

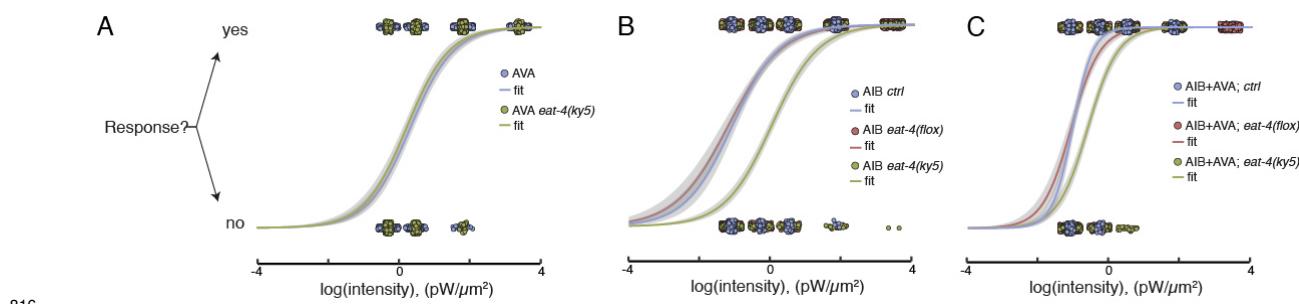
796 **Figure S2**


797

798 **Design and calibration of the Trap and Slap design**

799 **A** Layout of the microfluidic design. Scale bar = 1mm. **B** Photograph of the PDMS device of
800 the dotted area shown in (A). **C** Photographs of the diaphragm deflection with increasing pressure
801 on the channel of the dotted area shown in (B). **D** Finite element simulation of the plate deflec-
802 tion (top panel) showing the parasitic deformation of the bulk PDMS during the deflection. The
803 bottom panel shows the stress contour in the device after inflation with xxx kPa back pressure.
804 **E** Measurement of the 15 μm thick diaphragm deflection with increasing back pressure and the
805 comparison to an analytical plate deflection model for two different PDMS mixing ratios 1:10 and

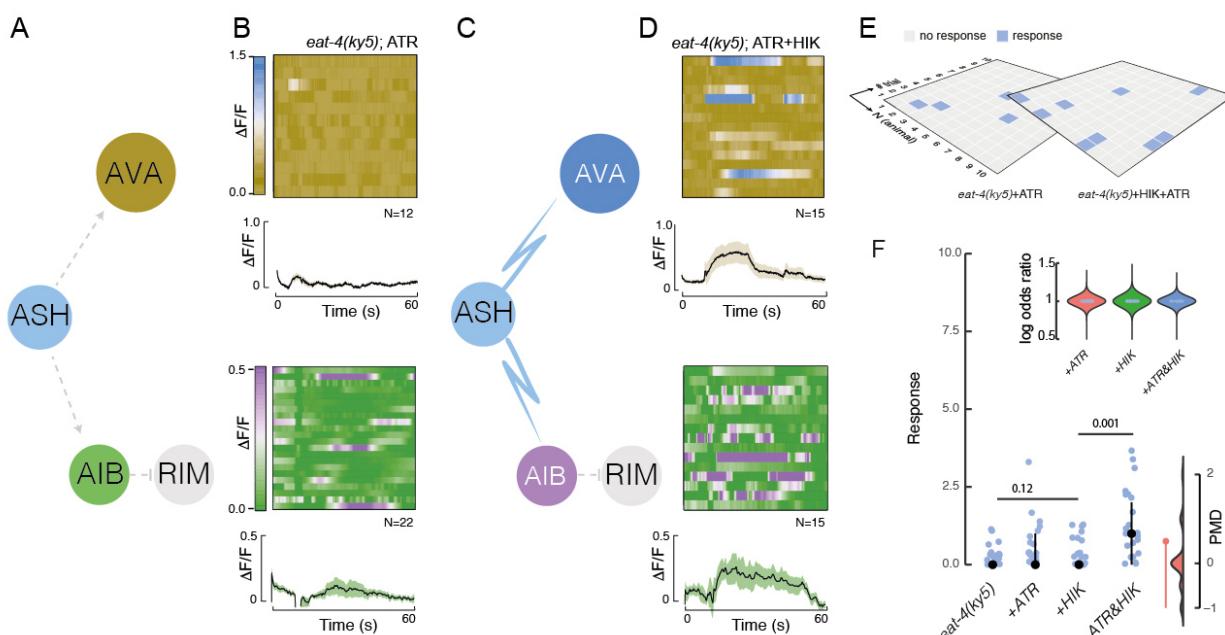
806 1:15 (red).


807 **Figure S3**

808

809 **Mechanosensitivity of ASH does not depend on *eat-4*** **A,B** Schematic of the neuronal circuit with
810 ASH highlighted in blue and glutamatergic edges in yellow and nodes colored corresponding their
811 neurotransmitter usage (red, acetylcholine; yellow, glutamate). Stacked kymographs and average
812 ASH:jRGECO1a fluorescence after pneumo-mechanical nose touch in the Trap'N'Slap device
813 after 10s in (A) control and (B) *eat-4(ky5)* animals. Shaded area indicates SD around the mean
814 (black trace). Broken connections in the *ky5* mutant are indicated as grey dotted lines.

815 **Figure S4**

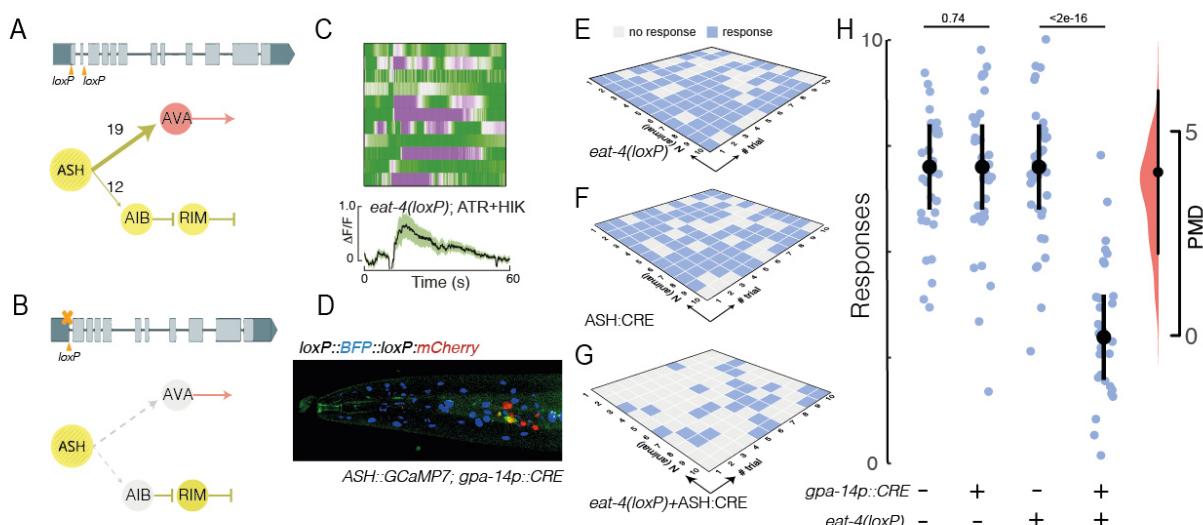


816

817 **Efficiency of ChR2-HRDC to induce reversal behavior through AIB and AVA in the *eat-4* neurotransmitter mutants.**

818 **A,B** Expression of ChR2-HRDC in (A) AVA and (B) AIB as a single copy transgene elicits be-
819 havioral responses independent of *eat-4*. **C** Combined expression of ChR2-HRDC in AVA and
820 AIB elicits behavioral responses to low light and requires *eat-4* for full light sensitivity. Solid
821 line corresponds to a binary logistic regression of the measured response as a function of the light
822 intensity. N=30 animals, each tested 10 times.

824 **Figure S5**

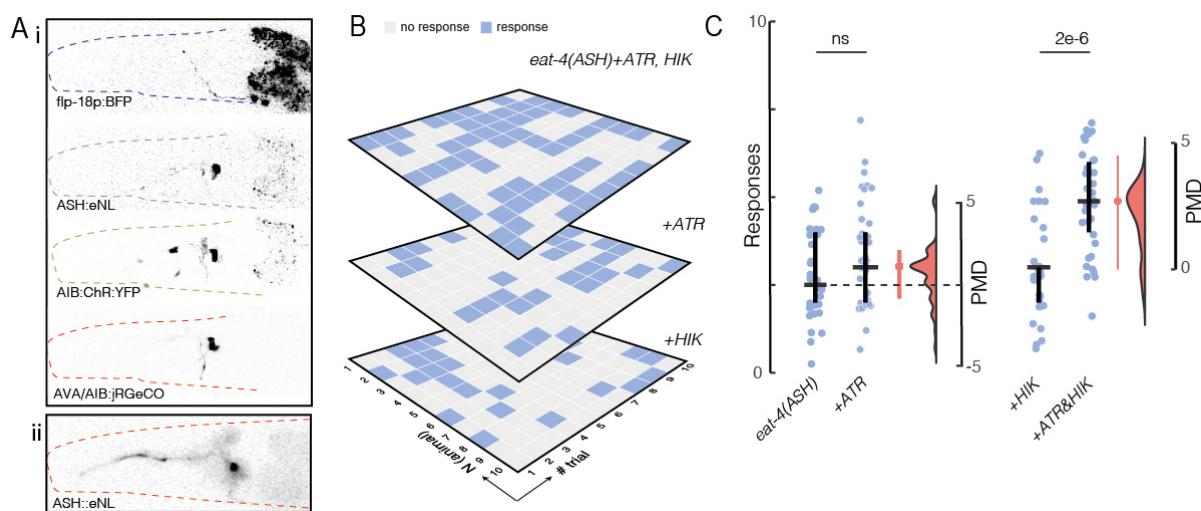


825

826 **PhAST rescues calcium signaling but not behavior in the *eat-4(ky5)* mutation** **A,B** Schematic
 827 of the experimental circuit manipulation. Nodes are colored according to the LUT in (B), grey
 828 dotted edges indicate genetically perturbed synaptic connections in the *eat-4(ky5)* mutation. **Bb)**
 829 Image plot and average jRGECO1a fluorescence after pneumo-mechanical nose touch in the mi-
 830 crofluidic device for AVA (khaki, blue) and AIB (olive, violet) in *eat-4(ky5)* animals expressing
 831 the light pathway in absence of the cofactors. Shaded area indicates SD around the mean (black
 832 trace). The vertical bar indicates the duration of the mechanical stress. **C,D** Schematic of the
 833 circuit with eNL expression in ASH (blue) and light-restored edges shown with blue arrows. (D)
 834 Image plot and average jRGECO1a fluorescence for AVA (khaki, blue) and AIB (olive, violet) for
 835 the same animals as in (B) but in presence of both cofactors. Shaded area indicates SD around
 836 the mean (black trace). **E** Behavioral response of *eat-4(ky5)* animals expressing the light pathway
 837 in presence and absence of all cofactors. **F** Summary of nose touch in *eat-4(ky5)* animals. Black
 838 dot and vertical bars indicate median \pm 95% confidence interval (CI). The p-value was derived
 839 from a Wald chi-squared statistics $z^2 = (\hat{\beta}_j/\text{SE}(\hat{\beta}_k))^2$, comparing the population measure of the

840 response. The floating axis to the right indicates the bootstrapped distribution of the paired median
841 difference (PMD) between HIKarazine single treated animals and double treated animals. Black
842 point indicates median \pm 95%CI. Overlap of the CI with zero indicates low effect size and likely
843 statistically insignificant distributions. Inset shows the log-odds ratio of finding a treated animal
844 responding compared to the untreated mutant control.

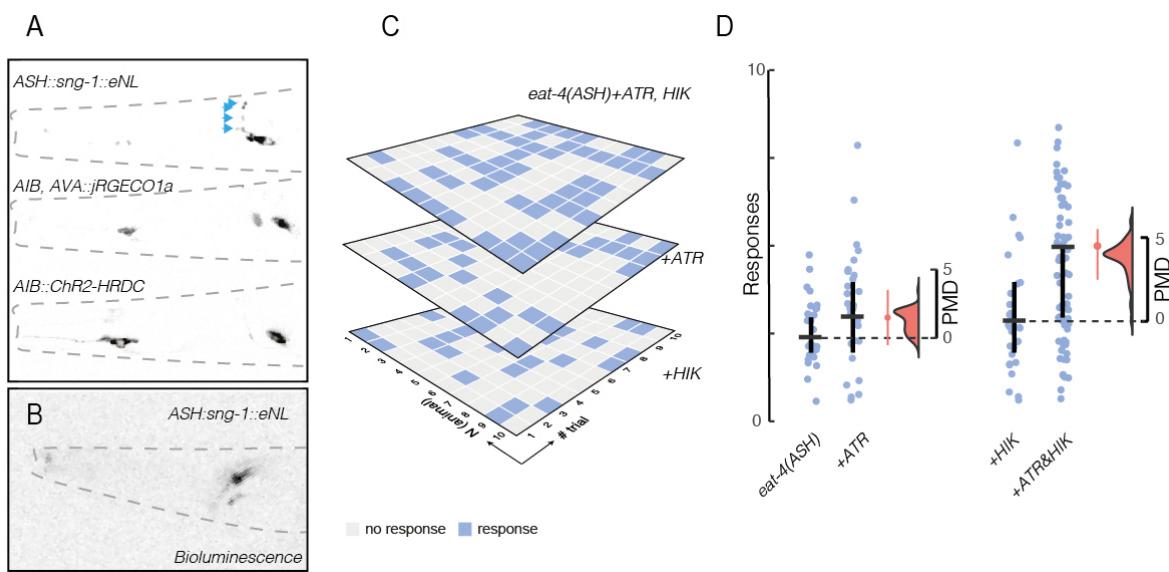
845 **Figure S6**

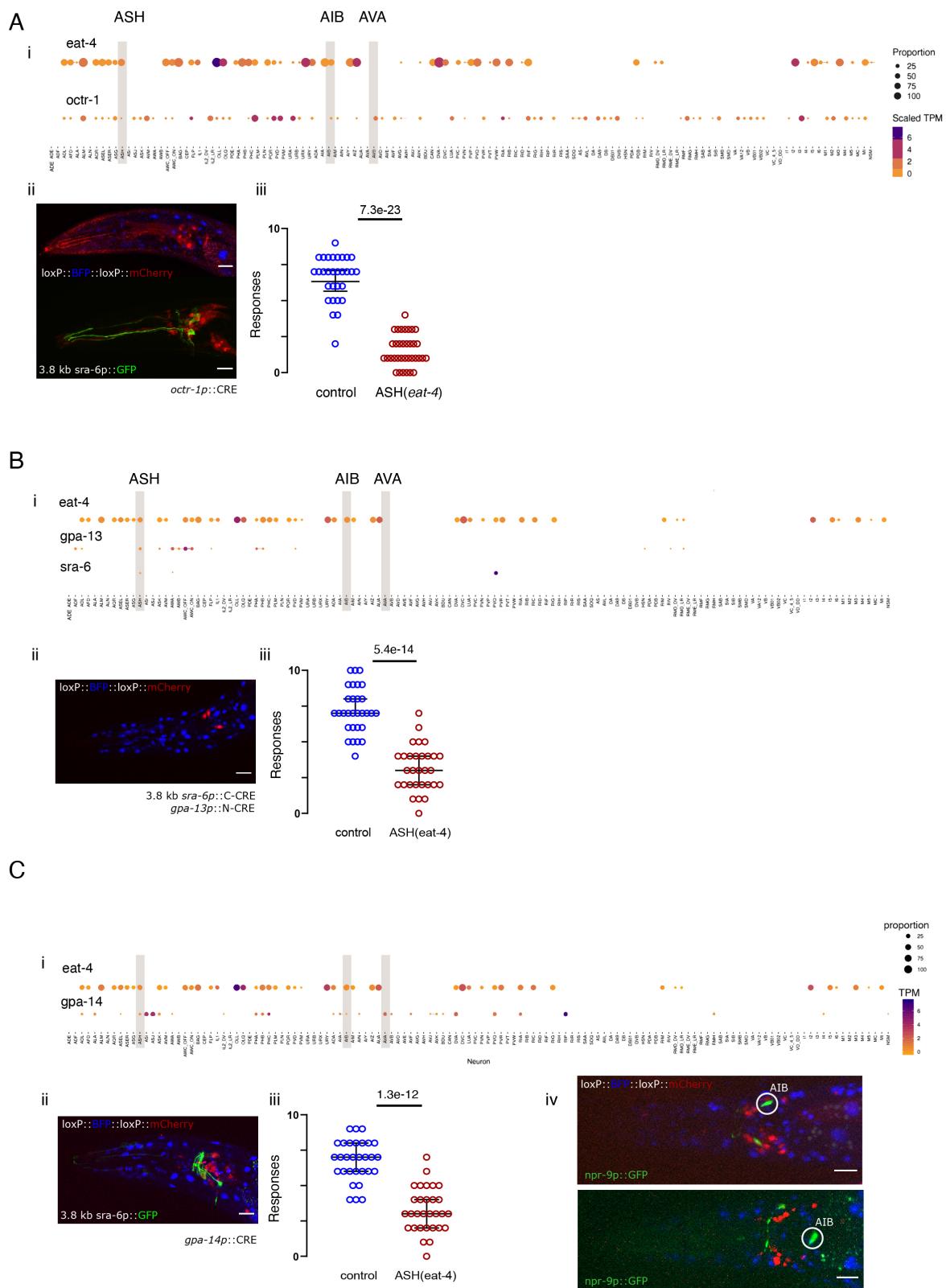


846

847 **ASH-specific loss in glutamatergic signaling causes nose touch deficiency** **A,B** Schematic of
 848 the genetic strategy for ASH-specific ablation of *eat-4* and the location of the two lox sites flank-
 849 ing exons 1 and 2, (A) before and (B) after CRE recombination. The circuit indicates glutamater-
 850 gic (yellow) and cholinergic (red) edges, with numbers of synaptic contacts above the arrow. **C**
 851 Stacked kymographs of individual RGEKO videos and average AIB:jRGEKO1a fluorescence af-
 852 ter pneumo-mechanical nose touch in the microfluidic device in control and *eat-4*(*loxP*) animals
 853 in absence of CRE recombinase. Shaded area indicates SD around the mean (black trace). N=12
 854 recordings. **D** Representative animal showing the split-CRE recombination pattern using a re-
 855 combination reporter with a BFP-mCherry switch for successful recombinations coexpressing an
 856 *sra-6p::GCaMP7* construct to highlight ASH (see also Fig. S9). **E-G** Grid plots showing a rep-
 857 resentative datasets of ten touches to ten animals for (E) *eat-4*(*loxP*) control, (F) *gpa-14p::CRE*
 858 single transgenics and (G) ASH(*eat-4*) loss-of-function animals after *gpa-14p::CRE* expression,
 859 color-coded according to its outcome (blue=positive response, grey=negative response to nose
 860 touch). **H** Summary of the nose touch response for the control and conditional *eat-4* knockout in
 861 ASH. Only for display purposes, a scatter of 10% was applied to each datapoint to avoid overlap.
 862 Circle indicates median, vertical bar indicates 95% confidence interval on the median. Floating

863 axis indicates the paired median difference, derived from bootstrapping 100 independent distribu-
864 tions from the experimental data set. Black circle indicates median \pm 95%CI. Overlap of the CI
865 with zero indicates low effect size and likely statistically insignificant distributions.


866 **Figure S7**


868 **Nose touch response of soluble eNL**

869 **A i)** Fluorescence micrograph of the individual transgenes used to express eNL in ASH and ChR2-
870 HRDC in AIB and AVA. **ii)** Luminescence of the Nanolatern in ASH (compare to Figure 3). **B**
871 Nose touch avoidance response of the conditional *eat-4*(loxP) mutant allele in ASH, coexpressing
872 eNL in ASH and ChR2-HRDC in AIB and AVA supplemented with the cofactors indicated. **C**
873 Summary of the scores for the nose touch experiment on 30 animals in all conditions tested. Only
874 for display purposes, a scatter of 10% was applied to each datapoint to avoid overlap. Horizontal
875 bar indicates median, vertical bar indicates 95% confidence interval on the median. Floating axis
876 indicates the paired median difference, derived from bootstrapping 100 independent distributions
877 from the experimental data set. Red point indicates median \pm 95%CI. Overlap of the CI with zero
878 indicates low effect size and likely statistically insignificant distributions.

879 **Figure S8**

895 **Figure S9**

898 control of the *octr-1* promoter. (i) Expression pattern of *eat-4* and *octr-1* as determined in Ref (37)
899 with overlap highlighted in ASH, AIB and AVA. (ii) CRE-loxP recombination was tested in a color
900 switch strain that expresses nuclear BFP in absence of CRE activity and nuclear mCherry in the
901 cells where CRE is active. Recombination was visible in ASH and two other cells as judged by
902 coexpression with a *sra-6p:GCaMP* transgene known to drive in ASH (23). (iii) Outcome of nose
903 touch assays in worms with the floxed *eat-4* allele and expression of *octr-1p::CRE*. **B** Expression
904 of a split CRE to establish ASH-specific expression (see Methods). (i) Expression pattern of *eat-4*,
905 *gpa-13* and *sra-6* as determined in Ref. (37) with overlap highlighted in ASH, AIB and AVA.
906 (ii) CRE-loxP recombination pattern showing successful BFP>mCherry switch in cells in which
907 the two promotors intersect and thus CRE is activity is reconstituted. (iii) Nose touch response
908 of animals with a floxed *eat-4* allele and expression of the split *sra-6p::C-CRE* and *gpa-13p::N-CRE*. **C** Expression of CRE under the control of the *gpa-14* promoter. (i) Expression pattern of
909 *eat-4* and *gpa-14* as determined in Ref (37) with overlap highlighted in ASH, AIB and AVA. (ii)
910 CRE-loxP recombination was tested in a color switch strain that expresses nuclear BFP in absence
911 of CRE activity and nuclear mCherry in the cells where CRE is active. In addition, coexpression
912 of mCherry with the ASH specific 3.8 kb *sra-6p* driving GFP expression was tested. (iii) Outcome
913 of nose touch assays in worms with the floxed *eat-4* allele and expression of *gpa-14p::CRE*. Scale
914 bar= 15 μ m. p-value corresponding to an unpaired, parametric t-test with 95% confidence interval.
915 Median and 95% confidende interval are depicted in all dot plots. (iv) Representative images of
916 a CRE-activity reporter animal expressing *gpa-14p::CRE* and *npr-9p::GFP* to highlight potential
917 recombination in AIB. As can be seen by the absence of the GFP/mCherry overlap, *gpa-14p::CRE*
918 does not drive recombination in AIB. Two different animals are representative for 8 randomly
919 picked animals.

921 6 Supplementary Videos

922 **Video S1: Nociceptive avoidance behavior.** Representative video of an animal navigating into
923 an obstacle in (A) wildtype and (B) *eat-4(ky5)* background.

924 **Video S2: Pneumatic stimulation of a trapped animal inside the Trap'N'slap device.** Rep-
925 resentative video of a wildtype animal subjected to a 2.5bar stimulus, recorded in brightfield mi-
926 croscopy.

927 **Video S3: Calcium imaging under mechanical stimulation in ASH** Representative video of
928 the fluorescence intensity of (A) control and (B) *eat-4(ky5)* mutant animals expressing jRGECO1a
929 in ASH. Animals were immobilized in the microfluidic device during the presentation of a 2s
930 mechanical stimulus after 10s. Scalebar=30 μ m, framerate=10Hz. Anterior to the left. Same color
931 LUT as in figure 1.

932 **Video S4: Calcium imaging under mechanical stimulation in AVA** Representative video of
933 the fluorescence intensity of (A) control and (B) *eat-4(ky5)* mutant animals expressing jRGECO1a
934 in AVA. Animals were immobilized in the microfluidic device during the presentation of a 2s
935 mechanical stimulus after 10s. Framerate=10Hz. Anterior to the left.

936 **Video S5: Calcium imaging under mechanical stimulation in AIB** Representative video of
937 the fluorescence intensity of (A) control and (B) *eat-4(ky5)* mutant animals expressing jRGECO1a
938 in AIB. Animals were immobilized in the microfluidic device during the presentation of a 2s
939 mechanical stimulus after 10s. Scalebar=40 μ m, framerate=10Hz. Anterior to the left.

940 **Video S6: Optogenetic stimulation of AVA** Representative video of a reversal response to opto-
941 genetic stimulation of an animal expressing ChR2-HRDC in AVA in presence (right) and absence
942 (left) of the photosensitizer all-trans retinal (ATR).

943 **Video S7: Optogenetic stimulation of AIB** Representative video of a reversal response to opto-
944 genetic stimulation of an animal expressing ChR2-HRDC in AIB in presence (right) and absence
945 (left) of the photosensitizer ATR.

946 **Video S8: Crawling animal with calcium sensitive Nanolatern reporting Body wall mus-
947 cle activity** Representative video of a freely crawling animal expressing a calcium sensitive
948 Nanolatern in body wall muscles. Increases in intensity on the concave side of the body bend
949 indicates that the calcium influx increases quantum yield of the Nanolatern probe.

950 **7 Tables**

951 **Table S1: Avoidance behavior to nose touch** Summary of the outcome to nose touch of the
952 different strains used in this study.

953 **Table S2: AVA and AIB Response to blue light** Raw data of the optogenetic experiments
954 conducted in the several strains used.

955 **Table S3: Strains** Summary and characteristics of strains appearing in figures (sheet 1) and
956 other strains used in this study (sheet 2).

957 **Table S4: Plasmid name and DNA sequences** Plasmids (sheet 1) and DNA sequences (sheet
958 2) used in this study.

959 **Table S5: CRISPR and mutagenesis sequences** Compilation of the crRNAs, homology repair
960 templates used in CRISPR/Cas9 edits and primers used for directed mutagenesis.

961 **Supplementary References**

962 1. J. Y. Lin, *Experimental physiology* **96**, 19 (2011).

963 2. K. Suzuki, *et al.*, *Nature Communications* **7**, 1 (2016).

964 3. D. Witvliet, *et al.*, *BioRxiv* pp. 1–26 (2020).

965 4. P. Hegemann, A. Möglich, *Nature Methods* **8**, 39 (2011).

966 5. a. Dawydow, *et al.*, *Proceedings of the National Academy of Sciences* **111**, 13972 (2014).

967 6. B. J. Piggott, J. Liu, Z. Feng, S. A. Wescott, X. S. Xu, *Cell* **147**, 922 (2011).

968 7. J. E. Mellem, P. J. Brockie, D. M. Madsen, A. V. Maricq, *Nature neuroscience* **11**, 865 (2008).

969 8. Katherine Steger, B. B. Shtonda, C. Thacker, T. P. Snutch, L. Avery, *J Exp Biol* **208**, 2191
970 (2005).

971 9. C. Frøkjær-Jensen, *et al.*, *Journal of Neurobiology* **66**, 1125 (2006).

972 10. Y. Yu, A. P. Hill, D. A. McCormick, *PLoS Computational Biology* **8** (2012).

973 11. J. Sun, V. Singh, R. Kajino-Sakamoto, A. Aballay, *Science* **332**, 729 (2011).

974 12. M. Rajaei, D. W. Ow, *Plant Biotechnology Journal* **15**, 1420 (2017).

975 13. E. R. Troemel, J. H. Chou, N. D. Dwyer, H. A. Colbert, C. I. Bargmann, *Cell* **83**, 207 (1995).

976 14. C. Schmitt, C. Schultheis, S. J. Husson, J. F. Liewald, A. Gottschalk, *PLoS ONE* **7**, e43164
977 (2012).

978 15. J. M. Kaplan, H. R. Horvitz, *Proceedings of the National Academy of Sciences of the United
979 States of America* **90**, 2227 (1993).

980 16. A. Bergs, *et al.*, *PLoS ONE* **13**, 1 (2018).

981 17. M. Porta-de-la Riva, L. Fontrodona, A. Villanueva, J. Cerón, *Journal of Visualized Experi-
982 ments* p. e4019 (2012).

983 18. W. G. Bendena, *et al.*, *Proceedings of the National Academy of Sciences of the United States*
984 *of America* **105**, 1339 (2008).

985 19. C. Frøkjær-Jensen, *et al.*, *Nature methods* **11**, 529 (2014).

986 20. S. Ruijtenberg, S. Van Den Heuvel, *Cell* **162**, 300 (2015).

987 21. R. Das, *et al.*, *bioRxiv* (2021).

988 22. D. J. Dickinson, A. M. Pani, J. K. Heppert, C. D. Higgins, *Genetics* pp. 1–33 (2015).

989 23. a. Paix, *et al.*, *Genetics* **198**, 1347 (2014).

990 24. A. L. Nekimken, *et al.*, *Lab Chip* **17**, 1116 (2017).

991 25. S. J. Lee, J. C.-Y. Chan, K. J. Maung, E. Rezler, N. Sundararajan, *Journal of Micromechanics*
992 *and Microengineering* **17**, 843 (2007).

993 26. I. D. Johnston, D. K. McCluskey, C. K. L. Tan, M. C. Tracey, *Journal of Micromechanics and*
994 *Microengineering* **24**, 035017 (2014).

995 27. Y. Xia, G. M. Whitesides, *Annual Review of Materials Science* **28**, 153 (1998).

996 28. H. Fehlauer, *et al.*, *Journal of Visualized Experiments* **2018**, 1 (2018).

997 29. E. P. Coutant, *et al.*, *Chemistry - A European Journal* **26**, 948 (2020).

998 30. S. L. Geffeney, *et al.*, *Neuron* **71**, 845 (2011).

999 31. G. Nagel, *et al.*, *Current Biology* **15**, 2279 (2005).

1000 32. M. Krieg, A. R. Dunn, M. B. Goodman, *Nature Cell Biology* **16**, 224 (2014).

1001 33. T. Stiernagle, *WormBook : the online review of C. elegans biology* pp. 1–11 (2006).

1002 34. M. Weigert, *et al.*, *Nature Methods* **15**, 1090 (2018).

1003 35. Y. Su, *et al.*, *Nature Methods* **17**, 852 (2020).

1004 36. E. P. Coutant, *et al.*, *Organic and Biomolecular Chemistry* **17**, 3709 (2019).

1005 37. S. R. Taylor, *et al.*, *Cell* **184**, 1 (2021).