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Abstract
Sustained attention and working memory are central cognitive processes that vary
between individuals, fluctuate over time, and have consequences for life and health
outcomes. Here we characterize the functional brain architecture of these abilities in 9—
11-year-old children using models based on functional magnetic resonance imaging
functional connectivity. Using data from the Adolescent Brain Cognitive Development
(ABCD) Study, we asked whether connectome-based models built to predict sustained
attention and working memory in adults generalize to capture inter- and intra-individual
differences in sustained attention and working memory performance in youth. Results
revealed that a predefined connectome-based model of sustained attention predicted
children’s performance on the 0-back task, an attentionally taxing low-working-memory-
load task. A predefined connectome-based model of working memory, on the other
hand, also predicted performance on the 2-back task, an attentionally taxing high-
working-memory-load task. The sustained attention model’s predictive power was
comparable to that achieved when predicting adults’ 0-back performance and by a
connectome-based model of cognition defined in the ABCD sample itself. Finally, the
working memory model predicted children’s recognition memory for n-back task stimuli.
Together these results demonstrate that connectome-based models of sustained
attention and working memory generalize to youth, reflecting the functional architecture
of these processes in the developing brain.
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Introduction
Maintaining focus over time and information in working memory—related but separable
functions (Gazzaley, & Nobre, 2012; Hollingworth, & Maxcey-Richard, 2013; Xu, et al.,
2014; Brissenden, & Somers, 2019; LaBar et al., 1999)—are foundational cognitive
processes critical for successfully performing everyday activities across the lifespan. In
addition to being integral to everyday life, these cognitive processes vary greatly across
individuals (Rosenberg et al., 2017; Fortenbaugh et al., 2015; Luck et al., 2013) and
fluctuate over time within the same person (Adam & deBettencourt, 2019). These inter-
and intra-individual differences are particularly important to study in development
because of their consequences for life-long achievements. For example, research in
children and adolescents has suggested that attention is more predictive of later
academic achievement than more general problem behaviors (e.g., aggression and
non-compliance) and interpersonal skills (Barriga et al., 2002; Hinshaw, 1992; Rabiner,
et al., 2016).

Network neuroscience proposes that cognitive and attentional processes are emergent
properties of interactions between brain regions (Bassett & Sporns, 2017). The success
of recent work predicting behavior based on functional magnetic resonance imaging
(fMRI) functional connectivity (i.e., the correlation between synchronous BOLD activity
among pairs of brain regions) supports the tenability of this position (Yamashita et al.,
2018; Smith et al., 2015; Rosenberg et al., 2016a, Rosenberg et al., 2020; Song et al.,
2021). In other words, this work suggests that the degree to which activity is
coordinated across large-scale brain networks may better characterize cognitive
processes than the magnitude of activity in single regions in isolation (Smith et al.,
2013).

Despite the popularity of connectome-based predictive modeling of behavior, cross-
dataset and cross-population testing is rare. In other words, brain-based predictive
models defined in one dataset are rarely validated in other samples, and even less so in
other participant populations (e.g., different ages or diagnoses, see Woo et al., 2017).
Hence, existing “publication preregistered” brain markers are currently underutilized and
underscrutinized, which obscures both their potential and limitations. Testing the
generalizability of connectivity-based models across ages can inform the degree to
which adults and children share common network predictors of cognition and delineate
models’ predictive boundaries. Cross-age model validation may also provide insight into
how networks underlying cognitive and attentional processes change with development.
This approach can complement existing work that has revealed, for example, changes
in the coupling of structural and functional connectivity profiles that may support
improvements in working memory and executive abilities in adolescence (Baum et al.,
2020). Additionally, validating models of different cognitive processes (e.g., sustained
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attention and working memory) to evaluate their unique contributions to predicting
behavior can determine if distinctions between the models are behaviorally relevant,
and whether those distinctions generalize to different stages of development.

To address these gaps, we utilized previously developed neuromarkers in the form of
large-scale functional networks defined to predict sustained attention (Rosenberg et al.,
2016b) and working memory (Avery et al., 2020) in adults. We applied these
connectome-based models to data from the Adolescent Brain Cognitive DevelopmentSV
(ABCD) Study to predict individual differences and block-to-block changes in sustained
attention and working memory task performance in youth. In addition, to characterize
relationships between sustained attention, working memory, and long-term memory, we
asked whether these same models not only predicted ongoing task performance, but
also predict subsequent recognition memory for task stimuli. Successful model
generalization would suggest that the functional networks underlying sustained attention
and working memory overlap between children and adults. Furthermore, a dissociation
such that the neuromarker of sustained attention captures sustained attention
performance whereas the neuromarker of working memory captures working memory
performance would provide evidence that separable networks support these processes
in development.

Results
Overview. We performed four studies using behavioral and fMRI data from the ABCD
Study® (9-11 years old; Studies 1, 2, and 4) and the Human Connectome Project (HCP)
samples (21-36+ years old; Study 3).

In Study 1, we asked whether the degree to which children expressed functional
connectivity markers of sustained attention (Rosenberg et al., 2016b) and working
memory (Avery et al., 2020) previously defined in adult data during an in-scanner n-
back task predicted their task performance (Figure 1). We hypothesized that the
sustained attention connectome-based predictive model would predict 0-back task
performance because this low-working-memory-load task is essentially a target
detection task similar to a continuous performance task (CPT) traditionally used to
assess sustained attention (e.g., Robertson et al., 1997). The sustained attention
network may or may not predict 2-back task performance: Although working memory
and attention fluctuate in tandem in adults (deBettencourt et al., 2018), sustained
attention is not sufficient for successful 2-back task performance. We hypothesized that
the working memory connectome-based predictive model, on the other hand, would
predict 2-back performance, and that model predictions would be more closely related
to 2-back than to 0-back performance because successful 2-back (but not 0-back)
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performance requires the continuous maintenance and updating of items in working
memory.

In Study 2, we asked whether these same adult network models captured changes in
sustained attention and working memory over time in children—that is, whether block-
to-block changes in network strength predicted block-to-block changes in n-back task
accuracy (Figure 1, right panel). Again, we tested for specificity, asking whether the
sustained attention and working memory networks better predicted sustained attention
(0-back) and working memory (2-back) performance fluctuations, respectively. We also
asked if network fluctuations were coupled with—or independent of—n-back task
stimulus types (i.e., images of faces with positive, negative, and neutral expressions
and scenes).

In Study 3, we benchmarked the performance of the predefined adult network models
in two ways to assess the effects of cross-dataset, cross-task, and cross-age
generalization on models’ predictive power. First, we compared the predictive power of
the sustained attention network for youth n-back accuracy to a theoretical maximum of
its predictive power for the n-back task by applying to the adult HCP dataset. Second,
we compared the predictive power of the adult-defined sustained attention and working
memory connectome-based models to the predictive power of a connectome-based
model trained in the ABCD Study sample itself.

Finally, in Study 4, we asked: Does the degree to which an individual shows a
functional connectivity signature of better sustained attention or working memory only
affect concurrent task performance, or does it also impact later cognitive processes,
such as long-term memory? To investigate this question, we evaluated the
consequences of sustained attention and working memory network expression for long-
term memory by testing whether network strength during the n-back task predicted post-
scan recognition memory for task stimuli.
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Figure 1. Overview of Studies 1 and 2. First, we constructed block-wise functional
connectivity by correlating blood-oxygen-level-dependent (BOLD) signal time-series
from all pairs of functional parcels (left). For each participant, we calculated whole-brain
functional connectivity (FC) patterns from fMRI data collected during the eight 0-back
and eight 2-back tasks blocks. That is, we calculated up to 16 FC matrices per
individual: one using data from each 25-sec (30-31 volumes) n-back block separately.
Each of the two predefined predictive network masks were then applied to each of these
matrices to generate block-specific working memory or sustained attention network
strength scores (middle). Each child’s mean network strength during 0-back and 2-back
blocks was compared to their mean accuracy in 0-back and 2-back blocks (Study 1) or
their mean out-of-scanner recognition memory for n-back stimuli (Study 4). In Study 2,
block-to-block changes in network strength were compared to corresponding block-to-
block changes in 0-back and 2-back accuracy within-subjects.

Study 1. Predicting sustained attention and working memory across participants.
Do functional network models defined to predict sustained attention and working
memory in adulthood generalize to a large, heterogeneous developmental sample to
predict individual differences in these abilities? To test this possibility, we applied
existing connectome-based models of sustained attention and working memory to
functional connectivity observed during 9-11-year-olds’ performance of two n-back task
conditions.

1.1. Predictive network anatomy. The sustained attention network mask (Figure 2)
was defined to predict sustained attention function using data collected from 25 adults
who performed a gradual-onset continuous performance task (gradCPT; Esterman et


https://doi.org/10.1101/2021.08.01.454530
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.01.454530; this version posted August 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

al., 2013) during fMRI (Rosenberg et al., 2016b). Sustained attentional abilities were
operationalized as participants’ sensitivity (d’) on the gradCPT. The same functional
networks that predicted performance in the initial training sample—a “high-attention”
network whose strength predicted higher d’ scores and a “low-attention” network whose
strength predicted lower d’ scores—have generalized to independent datasets to predict
performance on other attention tasks from data observed during rest and task
performance. These include a stop-signal task (Rosenberg et al., 2016a), Attention
Network Task (Rosenberg et al., 2018), Stroop task (Fountain-Zaragoza et al., 2019),
and Sustained Attention to Response Task (Wu et al., 2019).

The sustained attention networks do not rely on canonical brain networks, such as the
default mode and frontoparietal networks, to predict sustained attention. Instead, the
high- and low-attention networks comprise 757 and 630 functional connections, or
edges, respectively (out of 35,778 total), and span distributed cortical, subcortical, and
cerebellar regions. In general, functional connections between motor cortex, occipital
lobes, and cerebellum predict better sustained attention whereas functional connections
between temporal and parietal regions, within the temporal lobe, and within the
cerebellum predict worse attention. Computationally lesioning the high- and low-
attention networks by removing connections from specific brain networks does not
significantly reduce predictive model performance (Rosenberg, 2016), suggesting that
the sustained attention connectome-based predictive model does not rely on individual
canonical networks to achieve significant prediction.

The working memory network mask (Figure 2; Avery et al., 2020) was defined to
predict 2-back task accuracy from data observed during 10-min n-back task fMRI runs
(both 0-back and 2-back blocks) in the Human Connectome Project dataset (N = 502
from the S900 release). Like the sustained attention networks, the working memory
networks were defined using connectome-based predictive modeling (Finn et al., 2015;
Shen et al., 2017). Briefly, in this approach, a “high-working-memory” network whose
strength predicted higher 2-back accuracy and a “low-working-memory” network whose
strength predicted lower 2-back accuracy were identified by correlating all edges
(defined with the 268-node whole-brain Shen atlas; Shen et al., 2013) with 2-back
accuracy across the HCP sample and retaining the edges significantly related to
performance (p < .01). The resulting network model predicted unseen 2-back accuracy
scores in HCP sample (r= .36, p <.001) in an internal cross-validation analysis, and
generalized to predict individual differences in a composite of visual and verbal memory
task performance (r= .37, p <.001) from resting-state fMRI in an independent sample
of 157 older adults, 109 of whom were memory-impaired (Avery et al., 2020).

The working memory networks comprise a distributed set of edges (1,674 edges in the
high-working-memory network and 1,203 edges in the low-working-memory network)
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including frontoparietal, subcortical-cerebellar, motor, and insular edges. Additionally,
default mode network (DMN) connections are included in the working memory
networks, with the DMN and DMN-associated regions (including limbic, prefrontal,
parietal, and temporal cortices) overrepresented in the high-working-memory network
relative to the low-working-memory network (Avery et al., 2020).

1.2. Relationship between sustained attention and working memory networks. \We
hypothesized that the sustained attention and working memory network masks capture
related but distinct aspects of cognitive function. Prior to predicting behavioral
performance in the ABCD sample, we assessed this hypothesis by (7) comparing the
anatomy of the sustained attention and working memory network masks, and (2)
comparing the strength of the sustained attention and working memory networks across
participants in the ABCD sample.

First, we found that although the sustained attention and working memory networks
both include edges representing coordinated activity across distributed brain regions,
they show little overlap. 37 edges are common to both the high-attention and high-
working-memory networks (1.5% of combined edges in high-attention and high-working-
memory networks, hypergeometric p = .351; see Methods), and 33 edges are common
to the low-attention and low-working-memory networks (1.8% of combined edges,
hypergeometric p = .005). Most of these common edges involved prefrontal (32%),
motor (21%), and temporal (16%) regions in the high-attention and high-working-
memory networks; and cerebellar (45%), occipital (18%), and parietal (18%) regions in
the low-attention and low-working-memory networks. There is no significant overlap
between the high-attention and low-working-memory networks (19 edges, .9%, p = .89)
or the low-attention and high-working-memory networks (12 edges, .5%, p = .99). At the
macroscale region level, the sustained attention networks are more dominated by
cerebellar, temporal and occipital connections whereas the working memory networks
include more prefrontal connections (Figure 2).
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Figure 2. Sustained attention and working memory network masks and their
differences. The circle plots (connectograms) show sustained attention and working
memory networks on the Shen-268 parcels grouped into 20 anatomical regions (10 per
hemisphere). The networks positively related to the behavior are shown on the top row
and the networks negatively related to the behavior are shown in the bottom row. The
matrix plots show the percentage of edges belonging to each macroscale region in
working memory connectogram minus the percentage of edges belonging to each
macroscale region in sustained attention connectogram. Differences in networks
predicting better attention and working memory are shown in the top matrix plot;
differences in networks predicting worse attention and working memory are shown in
the bottom matrix plot.

Anatomical differences between the sustained attention and working memory networks,
however, do not guarantee that their strength does not covary together across
participants. That is, the degree to which an individual expresses the networks may not
be independent. As such, we correlated sustained attention and working memory
network strength during the 0-back and 2-back tasks in the ABCD sample (see
Methods). Briefly, in the 0-back task, children were instructed to detect a target image,
shown in the beginning of the block, among a series of images by pressing index versus
middle finger on the response box. In the 2-back task, children saw a series of images
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and determined if the image in each trial matched that of two trials prior to it or not,
again by pressing middle versus index finger. In each block, images from one of four
categories: faces with positive, negative, and neutral expressions and scenes were
used in the task.

Results revealed that sustained attention and working memory network strength values
were positively correlated across children during the 0-back task (r = .16, pagj < .001),
but negatively correlated during the 2-back task (r=—.11, pagi < .001; black scatterplots
in Figure 3). Taken together, the anatomical overlap and network strength correlation
analyses suggest that the sustained attention and working memory masks are
separable functional networks in children and thus likely do not reflect a monolithic
cognitive process.
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Figure 3. Correlations between predictive networks strength values across the

participants in the 2-back task and 0-back tasks. Task-congruent relationships are

shown in black scatterplots.
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1.3. Neuromarkers differentially predict sustained attention and working memory
abilities. After confirming that the sustained attention and working memory networks
are separable in children, we asked whether they generalize to specifically predict these
abilities in children. To answer this question, we related sustained attention and working
memory network strength values to task performance during 0-back and 2-back task
blocks across participants. Again, we predicted that the sustained attention model would
capture 0-back performance whereas the working memory model would capture 2-back
performance.

Supporting our hypothesis, we found that strength of the adult-defined sustained
attention network predicted 0-back performance (r= .19, padj < .001) and strength of the
adult-defined working memory network predicted 2-back performance (r = .13, padj <
.001) in youth. This external validation demonstrates cross-dataset and cross-age
generalizability of the sustained attention and working memory connectome-based
predictive models (Figure 4) and suggests that the functional connectivity features that
predict individual differences in sustained attentional and working memory abilities in
adults are present and predictive in 9—11-year-olds.
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Figure 4. Correlations between sustained attention (left, orange) and working memory
(right, blue) network strength and children’s 0-back (top) and 2-back (bottom) task
performance.
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To assess model specificity, we compared the predictive power of the sustained
attention and working memory networks for 0-back and 2-back accuracy. Sustained
attention network strength was not significantly related to 2-back accuracy (r=-.04, p =
.11). This correlation was significantly weaker than the correlation between working
memory network strength and 2-back accuracy (William'’s t [test of difference between
two dependent correlations sharing one variable] = -4.65, p < .001). Thus, the working
memory network was a better predictor of performance on the high-working-memory
load 2-back task than the sustained attention network. We did not observe this
dissociation for the 0-back task accuracy. Instead, working memory network strength
predicted 0-back accuracy (r = .15, padgj < .001), and this correlation was numerically but
not significantly lower than the correlation between sustained attention network strength
and 0-back accuracy (William’s t =-1.27, p = .20).

Strength in the sustained attention and working memory networks was correlated
across children (r= .16, p <.001 during 0-back; r=—-.11, p <.001 during 2-back; Figure
3), and performance in 0-back and 2-back tasks are typically correlated across
individuals (r=.62, p <.001 in the current sample of 1,545 children). Thus, it is
important to further assess the unique contributions of the sustained attention and
working memory networks to 0-back and 2-back task performance. To this end, we
included both sustained attention and working memory network strength in a regression
model to predict either 0-back or 2-back accuracy (Table 1). The regression also
included age, sex, and remaining head motion (after exclusion, see Methods) as
covariates, as well as random intercepts for data collection sites. Echoing the
correlation results, sustained attention network strength predicted 0-back accuracy
better than chance (B = 0.16, p <.001) and better than it predicted 2-back performance
(b < .001 based on bootstrapped distribution of the difference between 8 coefficients). In
contrast, working memory network strength predicted 0-back and 2-back accuracy
above chance but equally well (3 = 0.11 and 0.10, respectively; p values < .001).
Therefore, we found partial support for the specificity of the models, such that the
sustained attention network predicts 0-back accuracy better than it predicts 2-back
accuracy, whereas the working memory network predicts both 0-back and 2-back
accuracy.

Two factors may contribute to the lack of specificity of the working memory
connecotme-based model. First, the 0-back task does require memory for the target
image introduced at the start of each 0-back block, and thus is a low-load rather than a
no-load task. Second, the working memory model was originally defined to predict
individual differences in 2-back task performance from adult connectomes comprised of
both 0-back and 2-back fMRI data in the HCP sample (Avery et al., 2020), potentially
increasing its sensitivity to n-back task performance overall. Future work assessing the
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sustained attention and working memory models’ generalizability to different datasets
and behavioral measures will further inform their sensitivity and specificity.

0-back Accuracy 2-back Accuracy
Predictors Beta Cl t p Beta Cl t p
(Intercept) 0.04 [-0.07, 0.12] 0.67 0.513 0.13 [0.02, 0.24] 2.36 0.026
Age 0.14  [0.09,0.19] 556 <0.001 0.15 [0.11,0.20] 6.21 <0.001
Female -0.08 [-0.18, 0.02] -1.65 0.099 -0.25 [-0.34,-0.15] -5.03 <0.001
Motion -0.04  [-0.09, 0.01] -1.59 0.112 -0.13 [-0.18,-0.08] -5.28 <0.001

Sustained Attention 0.16 [0.11, 0.21] 6.35 <0.001 -0.04 [-0.09,0.00] -1.77 0.078

Working Memory 0.11 [0.06, 0.16] 4.19 <0.001 0.10 [0.05, 0.15] 3.89 <0.001

Random Effects

(Site)

ICC 0.0Ssite 0.03site
Observations 1545 1545
Marginal R?/

Conditional R 0.074/0.102 0.079/0.105

Table 1. Individual differences in sustained attention and working memory network
strength are differentially related to individual differences in children’s 0-back (left) and
2-back (right) performance, respectively. “Motion” is mean frame-to-frame displacement
during 0-back (left) or 2-back (right) blocks. “Sustained Attention” and “Working
Memory” are mean sustained attention network strength and mean working memory
network strength during 0-back (left) or 2-back (right) blocks. Marginal and conditional
R? statistics estimate fixed-effects R? and total (i.e., fixed + random effects) R?,
respectively, based on Nakagawa et al. (2017).

Study 2. Tracking changes in sustained attention and working memory over time.
Do the adult-defined connectome-based models of sustained attention and working
memory—which generalized to predict individual differences in these abilities in
children—also vary with children’s performance fluctuations? To test whether changes
in sustained attention and working memory network strength over time reflect changes
in behavior, we first examined relationships between block-to-block fluctuations in
network strength and block-to-block fluctuations task performance within-participants.
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We then investigated whether changes in network strength and behavior were driven by
stimulus types or were more spontaneous.

2.1. Neuromarkers differentially track performance fluctuations. Mixed-effects
block-level regressions with random intercepts for participants (Table 2) showed that
block-by-block changes in sustained attention network strength tracked block-to-block
fluctuations in 0-back accuracy (B = .07, p <.001) and block-to-block fluctuations in
working memory network strength tracked block-by-block 2-back accuracy (B = .04, p <
.001). These results were consistent with our predictions in Study 1. Again
demonstrating partial specificity, sustained attention network strength did not
significantly track 2-back accuracy ( = —-.01, p = .015) whereas working memory
network strength did track 0-back accuracy (8 = .05, p < .001).

The observed relationships between functional network strength and task accuracy are
above and beyond the variance in block-by-block n-back accuracy explained by
stimulus type (i.e., positive vs. neutral faces, negative vs. neutral faces, and places vs.
neutral faces) and potential practice effects (i.e., run 2 vs. run 1) because these
potential sources of variance are included as covariates in the regression model.
Despite the numerically small effect sizes, it is noteworthy that the sustained attention
and working memory network models—developed in completely independent datasets
to predict individual differences in adults—track block-level fluctuations in 0-back and 2-
back accuracy in children.

0-back Accuracy 2-back Accuracy
Predictors Beta Cl t p Beta Cl t p
(Intercept) 0.07 [0.02,0.12] 2.93 0.003 0.03 [-0.01,0.08] 1.37 0.172
Block Motion -0.03 [-0.05, -0.01] -3.06 0.002 -0.02 [-0.04,-0.00] -2.26 0.024

Block Type:

Negative Face  -0.13 [-0.18,-0.09] -5.74 <0.001 -0.00 [-0.05,0.04] -0.16 0.876

Positive Face ~ 0.01  [-0.03,0.06] 0.64 0.522 -0.03 [-0.07,0.02] -1.16 0.245
Place 022 [-0.26,-0.17] -9.51 <0.001 | -0.36 [-0.40,-0.31] -15.60 <0.001
Run 2 - Run 1 0.02 [-0.02,0.05] 0.80 0.424 0.15 [0.11,0.18] 7.75 <0.001

Sustained Attention 0.07 [0.05, 0.09] 7.37 <0.001 -0.01 [-0.03,0.00] -1.46 0.145

Working Memory 0.05 [0.03, 0.07] 5.56 <0.001 0.04 [0.02, 0.06] 3.83 <0.001
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Random Effects

(Subject)
ICC 0.40subs 0.39subs
Observations
17 17
(blocks) 9176 o1re
H 2
Marginal R*/ 0.019/ 0.412 0.030/0.411

Conditional R?

Table 2. Block-by-block changes in sustained attention and working memory networks
strength values are differentially related to block level 0-back and 2-back performance in
children, respectively. “Sustained Attention” and “Working Memory” are block-level
sustained attention network strength and block-level working memory network strength
during 0-back (left) or 2-back (right) blocks.

2.2. Stimulus type does not explain within-subject relationships between network
strength and behavior. The strength of the sustained attention and working memory
networks is related to sustained attention and working memory performance within-
subject even when adjusting for stimulus type. To what degree are fluctuations in
behavior and functional connectivity driven by internal factors (e.g., fluctuations in
intrinsic cognitive and attentional states) versus external factors (such as the
characteristics of the task itself)? In other words, is the within-subject variance in n-back
performance captured by the connectivity models driven by task design or endogenous
sources? To answer this question, we examined the relationship of the n-back stimulus
types with changes in task accuracy and changes in the sustained attention and
working memory network strength. When applicable, we then conducted mediation
analyses to assess the extent to which changes in networks strength mediated the
effects of stimulus type on block-wise task accuracy.

We first tested whether 0-back accuracy differed as a function of stimulus type (neutral
face, positive face, negative face, place). Five of the six pairwise contrasts were
significant, such that 0-back accuracy was higher for neutral vs. negative faces, neutral
faces vs. places, positive vs. negative faces, positive faces vs. places, and negative
faces vs. places (all pagi < .001; Tukey’s T test). Next, we calculated pairwise differences
in sustained attention network strength during 0-back blocks with different stimulus
types. One pairwise difference was significant, such that sustained attention network
strength during place blocks was higher than sustained attention network strength
during negative face blocks (padj = .026). This demonstrates that the within-subject
relationship between sustained attention network strength and 0-back accuracy cannot
be driven by stimulus type because the only stimulus-driven associations between
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within-subject changes in sustained attention network strength and 0-back accuracy
(places vs. negative faces) are in opposite directions (Figure 5, left column).

In the 2-back task, there were three significant pairwise differences in accuracy: better
performance in neutral face vs. place, positive face vs. place, and negative face vs.
place blocks (all pagj < .001). Only one pairwise difference in working memory network
strength was significant, such that strength was higher during neutral face than place
blocks (padj =.005; Figure 5, right column).

Because both 2-back accuracy and working memory network strength were higher
during neutral face than place blocks, we conducted a mediation analysis to test
whether the relationship between stimulus type (neutral face vs. place) and 2-back
accuracy was mediated by changes in working memory network strength. Results
demonstrate that changes in working memory network strength partially mediated the
effect of stimulus type on block-wise 2-back accuracy (significant differences between
total effect ¢ and direct effect ¢’ in the mediation; c-c’ = .004, p = .004; Supplementary
Figure S4). The proportion of mediated effect was modest (about 1% of the total effect).

Together these findings suggest that changes in sustained attention and working
memory network strength are driven to a greater degree by intrinsic fluctuations than
stimulus characteristics, and that within-subject associations between network strength
and task accuracy are, to a large extent, independent of stimulus type in this task.
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Figure 5. Task accuracy (top) and network strength (bottom) as a function of stimulus
types. Red dash indicates median, and * indicates padj < .05 for pairwise comparisons.

Study 3. Benchmarking the predictive power of the sustained attention and
working memory network models. Although the sustained attention and working
memory network models successfully generalized to predict inter- and intra-individual
differences in n-back task performance in the ABCD sample, effect sizes were modest.
In Study 3, we benchmarked these effect sizes in two ways. First, we asked how close
the predictive power of the sustained attention model in Studies 1 and 2 came to a
theoretical maximum for the 0-back and 2-back tasks by applying the same model to
data from the high-quality adult HCP sample. (We could not fairly perform this analysis
with the working memory model because it was defined using HCP data.) Second, we
asked how close the predictive power of the sustained attention and working memory
models came to a model of general cognitive ability trained in the ABCD sample itself.
We did not train separate ABCD-specific sustained attention and working memory
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network models because the ABCD task battery does not include an out-of-scanner
sustained attention measure.

3.1. Predicting n-back accuracy in adults. Compared to the original studies in which
these networks were identified, both the sustained attention (Rosenberg et al., 2016b)
and working memory (Avery et al., 2020) models show lower predictive power in the
current study than they did in adults. This could arise for a number of reasons, including
differences in scan sites and parameters, differences in the to-be-predicted behavioral
task, and differences in participant population (adults vs. children).

We used HCP data to assess the degree to which the first two categories of
differences—scan site and parameters and task differences—impacted the predictive
power of the sustained attention model. To do so, we replicated the analyses in Studies
1 and 2 with n-back task HCP data and compared model performance to that achieved
in the ABCD dataset. A result that the model predicted adults’ 0-back accuracy better
than it predicted children’s would suggest that adult-defined models do not well-capture
the functional networks underlying sustained attention performance at age 9—11 and/or
that predictive power was lower in the ABCD sample because of data quality. On the
other hand, a result that the model did not predict adults’ 0-back accuracy better than it
predicted children’s would suggest that adult-defined models do capture the functional
networks underlying sustained attention at age 9—11. In this case, predictive power may
have been lower in the ABCD sample (than in other adult datasets; e.g., Rosenberg et
al., 2020) because of site- or scanner-related differences or differences in the to-be-
predicted behavioral measure of sustained attention (gradCPT d'in Rosenberg et al.,
2016b and 2020 vs. 0-back accuracy in the ABCD and HCP samples).

HCP analyses included behavioral and fMRI data from 754 adults (405 female, 22-25
years old: 174, 26-30 years old: 321, 31-35 years old: 249, and 36+ years old: 10; see
Methods). We applied the sustained attention network mask to functional connectivity
patterns calculated during 0-back and 2-back blocks of the n-back task, and related
network strength to task performance both across and within subjects. (Again we did not
apply the working memory network mask to HCP data because it was previously
defined in this sample; Avery et al., 2020.)

Demonstrating cross-dataset validity—and replicating the pattern of results observed in
the ABCD sample—the sustained attention network predicted individual differences in
0-back accuracy (r=.17, p <.001) but not 2-back accuracy (r= .07, p = .07;
Supplementary Figure S2), with the former correlation being significantly larger than
the latter (Steiger’s Z [test for the difference between two dependent correlations with
different variables] = 2.29, p = .02). Results were consistent after adjusting for age, sex,
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and remaining head motion covariates (see Supplementary Table 1), and the 3
coefficient was significantly larger for O-back than 2-back accuracy (B = .16 vs. .07; p =
.034 from a bootstrap test). Mixed-effects regressions showed that, within-subject,
block-by-block changes in sustained attention network strength tracked block-by-block
changes in 0-back accuracy (B = .08, p <.001; Supplementary Table 2). Thus, like in
the ABCD sample, the sustained attention network generalized to a novel sample of
adults to predict 0-back, but not 2-back, task performance.

Notably, the predictive power of the sustained attention network was numerically similar
for children’s and adults’ 0-back task performance (between-subjects: ABCD r = .19,
HCP r=.17; within-subjects: ABCD 3 = .07, HCP 3 = .08). This suggests that the
sustained attention network model captures children’s 0-back (i.e., sustained attention)
performance just as well as it captures adults’.

It is possible that different subcomponents of the sustained attention connectome-based
predictive model predict task performance in adults and youth. To investigate this
possibility, we "computationally lesioned" edges with at least one node in each of ten
macroscale brain regions from the sustained attention model. We compared the effects
of computational lesioning on the prediction of 0-back accuracy in the HCP and ABCD
samples by comparing the AR? in lesioned vs. the full sustained attention network
strength models. We found that lesioning the prefrontal and temporal lobes decreased
prediction power more in adults than it did in children (p = .015 for the prefrontal and p =
.007 for the temporal lobe based on bootstrap distribution of AR? values). Lesioning the
subcortex, on the other hand, decreased prediction power more in children than it did in
adults (p = .009). Therefore, the full sustained attention network generalized equally well
to adults and youth, though features within this network may contribute differentially to
prediction at different ages.

3.2. Building a development-specific connectome-based predictive model. The
sustained attention model generalized as well to children as it did to adults. How does
the predictive power of this model for youth sustained attention—and the predictive
power of the working memory model for youth working memory—compare to that of a
development-specific connectome-based model of cognition?

To ask how close the predictive power of the sustained attention and working memory
models came to that of a model of general cognitive ability trained in the ABCD sample
itself, we defined a new connectome-based model—the cognitive composite network
model—using leave-one-site-out cross-validation in the ABCD Study dataset (see
Methods). The cognitive composite network model was defined to predict children’s
average performance on five out-of-scanner NIH Toolbox tasks (i.e., their “cognitive
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composite” score; see Methods) because NIH Toolbox data were collected outside the
scanner and the cognitive composite score was similarly correlated with 0-back
accuracy (r=.31, p<.001) and 2-back accuracy (r= .33, p <.001). Thus, it was fair to
use the cognitive composite network model to benchmark the predictive power of both
the sustained attention networks and working memory network models. (In other words,
a model built to predict cognitive composite scores would not be biased at the outset to
better predict 0-back or 2-back accuracy.)

Demonstrating its utility for this analysis, the cognitive composite model successfully
predicted cognitive composite scores in left-out ABCD Study sites (r=.295, p <.001
across all sites; see Supplementary Figures S3 and S4). The cognitive composite
network (averaged over all the site-wise models and binarized at a threshold of 0.5)
included edges spanning widespread cortical and subcortical-cerebellar areas (Figure
6).

Cognitive composite network strength during 0-back task performance predicted 0-back
accuracy (r=.23; p <.001) and strength during 2-back task performance predicted 2-
back accuracy (r=.32, p <.001) in children from left-out sites (Figure 6;
Supplementary Table 4). The cognitive composite model significantly outperformed the
adult working memory model for predicting 2-back accuracy (B = .27 vs. B =.10, p<
.001 from bootstrapping). Remarkably, however, the sustained attention model’s
prediction of 0-back accuracy was comparable with that of this ABCD-specific cognitive
composite model (B = .16 versus 3 =.19, p =.242, N.S.). Furthermore, including both
sustained attention and cognitive composite network strength values in a regression
model to predict 0-back accuracy results in comparable B coefficients for each (.18 and
.21, respectively; Supplementary Table 5).

Finally, intra-individual differences analyses revealed that block-to-block changes in the
strength of the cognitive composite network tracked block-by-block changes in both 0-
back and 2-back accuracy (Supplementary Table 5). Echoing the block-by-block
results observed with the adult-defined network models in Study 2 (Table 2; sustained
attention network tracking 0-back accuracy: = .07; working memory network tracking
2-back accuracy: B = .05), the effects were significant but subtle (sustained attention
network tracking 0-back accuracy: B = .05; working memory network tracking 2-back
accuracy: 3 = .08).

Together Studies 3.1 and 3.2 demonstrate that the sustained attention model captures
youth’s individual differences and fluctuations in attention just as well as it captures
adults’—and it is no worse at predicting attention in youth than is a development-
specific model of cognition defined in the ABCD dataset itself. Furthermore, the working
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memory model captures general aspects of attention and memory in youth, and is
outperformed by a development-specific model of cognition, potentially suggesting less
consistency in the functional architecture of working memory vs. sustained attention
from age 9-11 to young adulthood.
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Figure 6. Left: The child cognitive composite network averaged over all the site
iterations (binarized at a 0.5 threshold). Right: Cognitive composite network strength in
0-back and 2-back task blocks predict 0-back accuracy and 2-back accuracy across the
ABCD sample, respectively.

Study 4. Working memory network strength predicts subsequent memory. Are
sustained attention and working memory model predictions limited to ongoing task
performance, or are they informative about future cognitive processes as well? Do youth
with functional connectivity signatures of stronger sustained attention and/or working
memory function during memory encoding show better later visual recognition memory?
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To investigate these questions, we measured the relationship between recognition
memory performance for n-back task stimuli to individual differences in networks
strength values during the n-back task.

Recognition memory was assessed after scanning sessions. The n-back recognition
memory test included 48 “old” stimuli (which has been presented during the n-back
task) and 48 “new” stimuli (which has not been presented), with 12 images each of
happy, fearful, and neutral faces as well as places. Participants were asked to rate each
picture as either “old” or “new.” Memory performance was measured as the
discrimination index (d’) based on all stimuli. Recognition memory d’ was related to
strength in the sustained attention and working memory networks averaged across all
blocks (i.e., both 0-back and 2-back blocks). Results revealed that strength in the
working memory (r= .12, pag < .001), but not the sustained attention (r= .01, p = .55),
network predicted subsequent recognition memory (Figure 7).
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Figure 7. Working memory network strength, but not sustained attention network
strength, was significantly correlated with children’s subsequent memory task
performance.

Unsurprisingly, in-scanner n-back performance was correlated with subsequent

recognition memory performance across participants (r=.31, p <.001). Nevertheless,
the relationship between working memory network strength and subsequent recognition
memory remained significant even when in-scanner n-back performance accuracy was
included in the regression model as a predictor ( = 0.04, p = .025; Table 3) along with

1 The correlation of recognition memory d’ with 0-back and 2-back accuracy separately is r=.26 and r=
.30, respectively.
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the age, sex, and residual head motion. Thus, the variance in recognition memory
performance captured by the working memory network is not fully accounted for by in-
scanner task performance. This result highlights the unique contribution of the
connectivity-based measures to long-term memory predictions.

Recognition Memory d’

Predictors Beta Cl t p
(Intercept) 0.73 [0.67,0.79]  23.31 <0.001
Age 0.06 [0.03, 0.09] 3.87 <0.001
Female -0.02  [-0.08, 0.04] -.065 0.514
Motion -0.01  [-0.02, 0.04] 0.74 0.459

n-back Accuracy 0.18 [0.14, 0.21] 10.62 <0.001
Working Memory 0.04 [0.00, 0.07] 2.24 0.025

Sustained Attention -0.02  [-0.05, 0.01] -1.34 0.179

Random Effects

(Site)
ICC 0.02site
Observations
(subjects) 190
H 2
Marginal R/ 0.104 /0.120

Conditional R?

Table 3. Working memory network strength during in-scanner n-back task performance
is related to subsequent recognition memory for n-back task stimuli after adjusting for
nuisance variables and even n-back performance itself.

Discussion
Connectome-based models of sustained attention and working memory—previously
defined in independent samples of adults—generalized to capture inter- and intra-
individual differences in sustained attention and working memory in children ages 9-11.
Specifically, the sustained attention connectome-based predictive model predicted
children’s 0-back task performance just as well it predicted adults’, and just as well as a
development-specific model of cognitive abilities. The working memory model, on the
other hand, predicted children’s 0-back and 2-back (i.e., low- and high-working memory
load) task performance, although not as well as the development-specific model of
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cognitive abilities. These results suggest that distinct functional brain networks predict
sustained attention and working memory in the developing brain. Furthermore, working
memory network strength during the n-back predicted subsequent memory for the items
in the recognition memory task performed later outside the scanner. This result
demonstrates that, in addition to predicting ongoing working task performance, working
memory network expression predicts future long-term memory.

The current work signifies three benefits of individualized predictive modeling with
fMRI—and, in particular, of validating predictive markers in multiple independent
datasets. First, training and testing brain-based predictive models allows us to
investigate specific versus general brain markers of cognitive processes by conducting
single- or double-dissociation analyses predicting individual differences in different
aspects of cognition. This can inform the extent to which different processes relate to
common or distinct functional network. For example, sustained attention and working
memory are highly related processes as they covary together in individual ability
(Unsworth & Robison, 2020; Adam et al., 2015), and attention lapses lead to worse
working memory performance (deBettencourt et al. 2018). Additionally, the ability to
control attention has been proposed to play a major role in complex working memory
tasks (Barrett, Tugade, & Engle, 2004; Kane, Bleckley, Conway, & Engle,

2001). However, our results suggest that networks involved in sustaining attention are
not sufficient to predict differences in working memory (i.e., 2-back) performance across
participants, despite predicting attentional (i.e., 0-back) performance in the same
participants.

Second, we can ask whether the same networks that predict individual differences in
behavior capture intra-individual change. Recent work has begun to suggest that
fluctuations in large-scale functional brain networks index variance in sustained
attention function (Rosenberg et al., 2020) and stimulus-unrelated thought (Kucyi et al.,
2021) within individuals. In the current study, we demonstrate that block-by-block
changes in sustained attention network strength generalized to tracked block-to-block
fluctuations in 0-back accuracy of children, and block-to-block fluctuations in working
memory network strength tracked block-by-block 2-back accuracy, above and beyond
stimulus types and practice effects. This is remarkable given the relatively few volumes
of data per block (30-31 TRs) and blocks per run. We also explored the source of
changes in predictive network strength by investigating whether network fluctuations
were more driven by (a) an individual’s cognitive/attentional state fluctuations or (b)
properties of the task stimuli that they saw (i.e., the category of n-back task images).
We found that associations between network and n-back performance fluctuations are
largely independent of the effects of stimulus type on performance. With further
longitudinal data, it will be possible to directly model intra-individual changes in
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functional connectivity patterns that covary with performance, thus assessing the
similarities and differences in trait-like versus state indicators of sustained attention and
working memory processes in functional connectivity space.

Third, applying predictive models to predict differences in behavior both between and
within individuals allows us to assess how brain systems underlying different cognitive
processes change (or remain consistent) across different time scales, from one
moment, hour, and even year to the next. Although the adult-defined neuromarkers of
sustained attention and working memory both generalized to predict 9-11-year-olds’
behavior, they differed in their comparative fit to youth versus adults. This may reflect
differential developmental effects for each of the two cognitive constructs.

For working memory, the network’s predictive power in the ABCD sample was smaller
than it was in the external validation sample of older adults in the Avery et al., 2020
study (ABCD r = .14; older adults r= .36 [Avery et al., 2020]). Second, it was also
smaller than the predictive power of the ABCD-defined cognitive composite network
model (correlations with individual differences in 2-back accuracy: working memory
network r = .14; cognitive composite network r=.32). These two comparisons converge
to suggest the possibility of developmental changes in the functional architecture of
working memory during adolescence into adulthood. Interestingly, there is a relatively
large and significant overlap between the child-defined cognitive composite network and
the adult-defined working memory network both for edges positively related to behavior
(11.6% overlap of combined edges, hypergeometric p <.001), and edges negatively
related to behavior (10.7% overlap of combined edges, p < .001). This overlap may
reflect a common subnetwork underlying general cognitive ability in youth and working
memory in adulthood.

For sustained attention, however, the cross-development results paint a different
picture. The performance of the sustained attention network in predicting 0-back
performance was similar for youth and adults (r=.19 and .17, respectively). Although
this may reflect similarity in the functional architecture of sustained attention in these
two age groups, it could arise from better “ground truth” prediction in adulthood
disadvantaged by the relatively low variance in their 0-back accuracy (HCP SD = .081
vs. ABCD SD = .126). Making this explanation unlikely, however, the child cognitive
composite network did not significantly outperform the sustained attention network in
predicting 0-back accuracy (r= .23 vs. .19, respectively) despite the identical variance in
behavioral performance (i.e., both predictions are in ABCD sample). This makes the
difference in variance between adults and children a less tenable explanation for
similarities in prediction and instead indicates that the sustained attention network is as
informative about the functional architecture of sustained attention in youth as it is in
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adulthood. The result suggests consistency in this architecture from preadolescence to
adulthood. Additionally, the relationship between children’s sustained attention network
strength and 0-back accuracy was unchanged when adjusting for the strength of the
cognitive composite network, again pointing to its unique and specific relation to
sustained attention even in youth.

Although the sustained attention network model generalized equally well to youth and
adult 0-back performance, the particular contributions of different anatomical regions
involved in the network differed between the two populations. That is, lesioning
prefrontal, temporal and subcortical regions from the networks affected predictive power
differently for youth and adults. This may be related to the fact that sustained attention
function does improve well into adulthood (Fortenbaugh et al., 2015), and in these
samples 0-back performance was indeed higher in the HCP than the ABCD data (mean
accuracy = .93 vs. .87, t(2130.6) = 14.3, p < .001). Therefore, it may be the case that
the neural markers of individual differences in sustained attention are present and
predictive by late childhood, but the way they are utilized to maintain focus on tasks
may change through adolescence. Taking together these and the working memory
results discussed earlier, we found differential developmental effects for each of the two
cognitive constructs, pointing to less consistency in the functional architecture of
working memory than that of sustained attention from age 9-11 to young adulthood.

There are some limitations to this work. First, we rely on 0-back and 2-back
performance to index sustained attention and working memory rather than more
traditional tasks like a CPT and visual change detection task, as these more traditional
paradigms are not included in the ABCD Study. Future work characterizing the
generalizability of connectivity-based models to other tasks of attention and memory
can further inform their predictive boundaries. Second, the within-participant fluctuation
effects in Study 2 are statistically significant yet modest, and the across-participant
effects in Studies 1 and 4 are small to medium. Although the current approach
demonstrates the statistical significance and theoretical implications of conservative
external model validation analyses, further work is needed to determine the practical
significance and potential translational utility of these and other brain-based predictive
models. Third, in Study 4, we did not have item-level information for the recognition
memory task. Therefore, we could not relate sustained attention and working memory
strength at the moment that an individual encoded a particular image to their later
recognition memory for that image. The fact that we related mean sustained attention
network strength over all blocks to mean subsequent memory for all task images could
explain why we did not find a relationship between sustained attention network strength
and subsequent recognition memory. In contrast, previous behavioral (deBettencourt et
al., 2018) and fMRI (Song et al., 2021) work has demonstrated relationships between
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sustained attention state and subsequent memory. Relating item-level network strength
at encoding to later memory could also address the possibility that better long-term
memory for n-back stimuli is not a consequence of higher working-memory network
strength per se, but rather that long-term memory and working-memory network
strength are related at the trait level.

In conclusion, we found that distinct functional brain networks predict sustained
attention and working memory abilities across youth, as well as changes in attentional
and memory performances over time. Therefore, sustained attention and working
memory are overlapping but distinguishable cognitive constructs in the pre-adolescent
brain, with functional connectivity patterns of working memory changing more over
adolescence and into adulthood than those of sustained attention.

Methods
Data. We analyzed a subset of baseline-year behavioral and fMRI data from the
Adolescent Brain Cognitive Development (ABCD; Release 2.0.1). The total sample in
the dataset is 11,875 children 9-11 years old from 21 sites across the US. We first
excluded the participants who were scanned using Philips scanners (see fMRI data
processing) or those without functional MRI data, resulting in 9,446 participants from 19
sites. After a visual quality check of all structural and functional scans, 4,939 of these
participants had structural and at least one run of n-back task fMRI data that passed our
visual quality check and had corresponding EPrime files containing trial-by-trial n-back
task data. Next, we applied a frame displacement (FD) threshold of FD mean < 0.2 mm
and FD max < 2 mm to remove n-back fMRI runs with excessive head motion, resulting
in 1,839 patrticipants. Finally, we removed n-back runs for which the start time of the
behavioral recording file was unclear with respect to the fMRI data, or if the data were
flagged for “switched box” or “n-back task done outside scanner”, resulting in sample
size of N = 1,548. Additionally, participants from one site with only N = 3 subjects after
prior exclusions were not included in the across-subjects models which include site as a
random intercept factor and also the within-subject analyses for consistency. Therefore,
the final sample size was N = 1545 participants 9-11 years old from 18 sites, mean age
=10.03 years old, 851 female.

In-scanner emotional n-back task. The emotional n-back task in the ABCD dataset
(Casey et al., 2018) includes two runs of eight blocks each with 10 trials in each block.
A picture is shown in every trial and participants are told to make a response on every
trial, indicating whether the picture is a “Match” or “No Match.” In each run, four blocks
are 2-back task for which participants are instructed to respond “match” when the
current stimulus is the same as the one shown two trials back. The other four blocks are
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of the 0-back task for which participants are instructed to respond “match” when the
current stimulus is the same as the target image presented at the beginning of the
block. At the start of each block, a 2.5 s cue indicates the task type (“2-back” or “target=
and a photo of the target stimulus; see Figure 6). A 500 ms colored fixation precedes
each block instruction, to alert the child of a switch in the task condition.

Two blocks of 0-back and two blocks of 2-back contain happy faces (1 in each run),
another two in each task contain fearful faces, another two contain neutral faces, and
another two contain places. There are 24 unique stimuli per type presented in separate
blocks, each trial is 2.5 s (2 s presentation of a stimulus, followed immediately by a

500 ms fixation cross) resulting in 160 total trials in 16 blocks of n-back. Four fixation
blocks (15 s each) also occur in each run after of every other n-back block.

0-back 3
target =

0-back task
(type = Places) + +
MATCH NO MATCH MATCH NO MATCH MATCH NO MATCH
POINTER MIDDLE | POINTER MIDDLE | | POINTER MIDDLE
Instructions ISI Stimulus ISI Stimulus ISI Stimulus
2500 ms 500 ms 2000 ms 500 ms 2000 ms 500 ms 2000 ms
2-back task
" 2-back
(type = Positive + + +
Faces)
MATCH NO MATCH MATCH NO MATCH MATCH NO MATCH
POINTER MIDDLE POINTER MIDDLE POINTER MIDDLE
Instructions ISI Stimulus ISI Stimulus ISI Stimulus
2500 ms 500 ms 2000 ms 500 ms 2000 ms 500 ms 2000 ms

Figure 8. The instruction and first 3 trials in a block of 0-back task (top, example from
Places block type) and 2-back task (bottom, example from Positive Faces block type)
are shown in this figure. The correct choice for each trial is indicated in green text.
Figure adapted from Casey et al., 2018. The real face images are replaced by icons as
per bioRxiv requirements.

Post-scan n-back recognition memory task. We analyzed data from the post-scan n-
back recognition memory task, in which 48 “old stimuli” (previously presented during the
in-scanner emotional n-back task) and 48 new stimuli were presented to participants.
Participants were asked to rate each picture as either “Old” or “New.” Each picture was
presented for 2 s followed immediately by a 1-s fixation cross. The 96 pictures shown
have equal numbers of each stimulus type in the old and new stimulus sets (12 each of
happy, fearful, and neutral facial expressions and places in each set).
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Cognitive composite score. The “cognitive composite” behavioral scores were
measured from each child’s average performance in five out-of-scanner NIH-Toolbox
tasks: the Picture Vocabulary task, Flanker inhibitory control and attention task, Pattern
Comparison processing speed task, Picture sequence memory task, and Oral Reading
recognition task. These tasks were chosen because they capture a wide range of
cognitive processes are the only NIH Toolbox tasks collected in subsequent ABCD data
releases. This makes them (and the cognitive composite score used here) suitable for
future longitudinal tracking of the general cognitive abilities of the children using the
model developed from the current release. The mean of these five measures was used
as the cognitive composite score rather than first principal component (PC) because the
correlation between the mean and the first PC was r = 0.94. Therefore, we used the
mean for a straightforward interpretation.

Functional MRI data processing. Minimally preprocessed functional and structural
scans for ABCD Release 2.0.1 were downloaded for all participants from the National
Institutes of Mental Health data archive. Use of the data was approved by the relevant
University of Chicago Institutional Review Board. Minimal preprocessing included
motion correction, BO distortion correction, gradient warping correction and resampling
to an isotropic space (Hagler, 2019). Participants who were scanned on Philips brand
scanners were excluded because of a known error in the phase encoding direction
while converting from DICOM to NIFTI format. Next a custom modification of the
FMRIPREP pipeline was run on all images. Each participant’s structural T1w scan was
skull-stripped, segmented by tissue type, and then normalized to the MNI152 non-linear
6" generation template: the standard MNI template included with FSL. Functional scans
were then aligned and normalized to the T1w space and then to MNI space and
potential confounds of interest were extracted. Next 36 confounds (Power 2012) were
regressed out of the voxelwise BOLD timeseries including: global mean signal, mean
cerebro-spinal fluid signal, mean white matter signal, the 6 standard affine motion
parameters and their derivatives, squares, and squared derivatives. This was followed
by applying a bandpass filter with a highpass cutoff of .008 Hz and a lowpass cutoff of
.12 Hz via the 3dBandpass command in AFNI. Finally, the cleaned volumetric BOLD
images were spatially averaged into 268 predefined parcels, including cortical,
subcortical, and cerebellar regions, from the whole-brain Shen functional atlas (Shen
2013).

Functional connectivity measures. The stimulus onset and offset times of the first
and last trial in each block of the ABCD n-back task data were extracted from each
participant’s n-back EPrime file (shared in the curated MRI data folders
sourcedata/func/task_events). The node-wise BOLD signal time series during each n-
back block (30 or 31 TRs; TR = 0.8 s; ~25 seconds from the onset of the first stimulus to
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the offset of the last stimulus in each block) were used to create block-wise functional
connectivity matrices (FC matrices) by computing all pairwise Pearson correlations
between the block-wise time series of the 268 Shen parcels. (See Defining n-back
blocks with a temporal lag in the supplement for a replication analysis with different
block onsets and offsets). The positive edge mask (i.e., the functional connections
positively related to behavior) and negative edge mask (i.e., the functional connections
negatively related to behavior) for each of the sustained attention and working memory
pre-defined networks (Figure 2) were then multiplied by the FC matrices. These
network masks are 268*268 trinary matrices determining if a pairwise correlation (edge)
belongs to a certain predictive network with -1 or +1 or not with a 0. These are shown in
Figure 2 and briefly described in the Results sections 1.1 and 1.2. Next, the Fisher’s z-
transformed correlation values in the masked FC matrices were summed (with mask
weight sign) to calculate the corresponding network’s strength in the block for the
participant:

Block-wise network strength = 3295 tanh™*(r; ;) * w; ;
Where 7; ; is the Pearson’s correlation between BOLD timesries of parcels i and j, and
w; ; is the corresponding network mask value of O, 1, or —1.

The block-wise network strengths were averaged over all 0-back blocks or all 2-back
blocks for Study 1’s across-participant analyses and z-scored across participants. For
Study 2, the measures were left at the level of blocks within each participant. In Study 4,
the network strengths were averaged over all blocks (i.e., both 0-back and 2-back) for
across-participant subsequent memory analysis, because the released recognition
memory scores (d’) were from stimuli that could have been encoded during 0-back
and/or 2-back task blocks, and files distinguishing the subsequent memory stimuli
source were not available for this ABCD data release.

Youth cognitive composite network. For consistency, the youth cognitive composite
model was constructed using connectome-based predictive modeling (Shen et al.,
2017), the same approach used to define the adult sustained attention and working
memory network models. To construct the cognitive composite network mask for ABCD
participants from site k, we retained the FC matrices (calculated from the entire n-back
task timeseries) and cognitive composite scores of participants from all sites excluding
k. We correlated the strength of every FC with cognitive composite score across
participants in this training set. The edges positively and negatively correlated with
cognitive composite score (p < .01) defined the masks that were applied to the block-
wise functional connectivity matrices of participants from the left-out site k as described
in the previous section. This analysis included 1536 participants because 9 participants
did not have all five NIH Toolbox measurements).
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Mediation analysis. To perform the mediation analysis described in Results section 2.2
(and supplementary Figure S1), 2-back task performance and working memory network
strength measures were mean-centered within each participant to remove individual
differences and then entered into the mediation model. The model included block type
(Neutral Face versus Place) as the predictor, block-wise 2-back performance as the
dependent variable, block-wise working memory network strength as the mediator, and
block-wise frame displacement during 2-back blocks as a covariate. The mediation was
performed using the mediation package in R with the built-in bootstrapping option for
computing p-values for the coefficients and the mediated effect.

Hypergeometric cumulative distribution function. To assess whether the overlap of
the edges of different predictive networks was statistically significant, we calculated the
probability of the overlap being due to chance using the hypergeometric cumulative
distribution function implemented in MATLAB (www.mathworks.com). The function used
was hygecdf() computed as:

(D)
M
()
Where F is the probability of drawing up to x of a possible K items in N drawings without

replacement from a group of M objects. The p-value for significance of overlap is then
calculated as 1-F.

Removing relatives does not change across-participant results. In our final sample
(n = 1545) there were 82 related children (41 pairs). We repeated the across-participant
analyses after randomly removing from our sample one sibling from each pair (new n =
1504) and found no significant differences in the results (see Supplementary Tables
S6, S7, and S8). We did not repeat the block-to-block change analyses because within-
participant analyses are not affected by across-participant relationships.

Human Connectome Project data: In Study 3, we analyzed data from the Human
Connectome Project (HCP) release S1200, a multi-site consortium that collected MR,
behavioral, and demographic data from 1113 participants. Minimally preprocessed,
open-access n-back fMRI data were downloaded from connectomeDB
(https://db.humanconnectome.org/) via Amazon Web Services. The acquisition
parameters and prepossessing of these data have been described in detail elsewhere
(Glasser et al., 2013). Briefly, preprocessing for task data included gradient nonlinearity
distortion correction, fieldmap distortion correction, realignment, and transformation to a
standard space. In addition, we applied additional preprocessing steps to the minimally
preprocessed task data. This included a high-pass filter of 0.001 Hz via fsImaths
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(Jenkinson et al., 2012), and the application of the ICA-FIX denoising procedure using
the HCPpipelines (https://github.com/Washington-University/HCPpipelines) tool, which
regresses out nuisance noise components effectively, similar to regressing out motion
parameters and tissue type regressors (Parkes et al., 2018). The cleaned volumetric

BOLD images were spatially averaged into 268 predefined parcels (Shen et al., 2013).

32 participants without sync time information files or motion regressor files for both n-
back runs were removed from further analysis. Next, similar to the ABCD dataset, we
applied a frame displacement (FD) threshold of FD mean < 0.2 mm and FD max < 2
mm to remove n-back fMRI runs with excessive head motion, resulting in 881
participants. Finally, we removed participants with any quality control flags from the
HCP quality control process (variable QC_Issue), resulting in a final sample of 754
participants.

Functional connectivity measures for HCP data were computed as described for the
ABCD data. Text files containing the timing information of the n-back trials were used to
extract the beginning and ending of the blocks for each participant (each block ~35 TRs;
TR =0.72 s; ~25 seconds). A functional connectivity matrix for each block was
constructed from the Pearson correlation between the BOLD signal timeseries of pairs
of Shen parcels, and the sustained attention mask was applied to each block-specific
FC matrix. The block-wise sustained attention network strength values were averaged
over all 2-back blocks or all 0-back blocks for Study 3’s across-participant analyses and
z-scored across participants. For Study 3’s within-participant analysis, the measures
were left at the level of blocks.

Data and code availability
All ABCD data are available at https://nda.nih.gov/edit_collection.html?id=2573. The
sustained attention network masks are available at
https://github.com/monicadrosenberg/Rosenberg_ PNAS2020. The working memory
network masks are available per request from the authors of Avery et al. (2020). HCP
data are available at https://db.humanconnectome.org.
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Supplementary Results
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Figure S1. Results of the mediation analyses relating block-by-block performance in the
2-back task to stimulus type, with fluctuations in working memory network strength as a
mediator. The total vs. mediated effects are shown as c and c - ¢, respectively. All

coefficients are adjusted for block-wise motion. Real face image is replaced for bioRxiv.
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Figure S2. Relationship between sustained attention network strength and n-back
accuracy in the adult HCP sample.
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Figure S3. Relationship between cognitive composite network strength and cognitive
composite scores in the ABCD sample in all iterations of leave-one-site out combined.
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Figure S4. Relationship between cognitive composite network strength and cognitive
composite scores in the ABCD sample in each site separately is shown with blue points
on permutation null distributions (violins). The red dash indicates the 95" percentile of
the null distribution values and the number below each violin indicates the number of
participants retained in the study (n) from the corresponding site. Two sites with Philips
scanner data and one site with n = 3 after motion exclusions were not included in the
study analyses (see Methods).
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0-back Accuracy 2-back Accuracy
Predictors Estimates () t-Statistic  p  Estimates CcI -Statistic  p
(Intercept) 007  -0.09-022 0.86 0.390 0.20 0.04-0.35 244 0.015
Age26-30 0.10  -0.09-0.28 1.03 0.304 0.03 -0.16 - 0.21 0.30  0.768
Age31-35 -0.16  -035-0.04 -1.59 0.113 -021  -041--0.02 -2.14 0.033
Age36+ 0.02  -0.60-0.65 0.07 0.941 -0.13  -0.75-0.50 -040 0.691
F -0.11  -025-0.04 -146 0.144 -0.25 -040--0.11 -3.41 0.001
Motion -0.08  -0.15--0.01 -229  0.022 -0.09  -0.16--0.02 -251 0.012

Sustained Attention  0.16 0.09-0.23 451  <0.001 0.07 -0.00-0.14 1.95  0.051

Observations 754 754
RZ/ adjusted R2 0.053/0.046 0.049 /0.041

Table S1. Model predicting individual differences in 0-back and 2-back task accuracy
from sustained attention network strength in the HCP sample.

0-back Accuracy 2-back Accuracy
Predictors Estimates CI t-Statistic  p  Estimates Cl t-Statistic  p
(Intercept) 0.12 -0.02-0.25 1.73 0.083 -0.01  -0.13-0.12  -0.11 0912
RL -0.21  -026--0.17 -9.26 <0.001 -049 -053--045 -2329 <0.001
block FD -1.83  -270--096 413 <0.001 -141 -220--0.63 -3.53 <0.001
Face 0.38 0.32-0.45 1229 <0.001 0.68 0.62-0.73 2376 <0.001
Place 0.31 0.25-0.37 9.83  <0.001 0.64 0.58-0.69 22.62 <0.001
Tools 0.22 0.16 - 0.28 698 <0.001 047 041-052 1634 <0.001
Sustained Attention 0.08 0.06-0.11 636 <0.001 0.0l -0.02 - 0.03 0.59 0.558
Random Effects
o2 0.66 0.54
100 0.30 gyps 0.32 b
Icc 0.31 gups 0.37 gubs
Observations 5412 5412
Marginal R? / Conditional R?  0.046/ 0.344 0.135/0.456

Table S2. Model predicting intra-individual differences in 0-back and 2-back task
accuracy from sustained attention network strength and block type in the HCP sample.
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0-back Accuracy 2-back Accuracy
Predictors Estimates cl t-Statistic  p  Estimates Ccl t-Statistic  p
(Intercept) 0.02 -0.07-0.11 038 0.707 0.12 0.03-0.21 2.67 0.012
Age 0.14  0.09-0.19 575 <0.001 0.13 0.08-0.17 522 <0.001
Female -0.04 -0.14-0.05 -0.89 0374 -023 -032--0.13 475 <0.001
Motion -0.05 -0.10-0.00 -193 0054 -0.12 -0.16--0.07 -4.83 <0.001

Cognitive Composite CPM 0.19 0.14-0.24 7.57 <0.001 0.27 022-031 10.86  <0.001

Random Effects

o2 0.92 0.85

To0 0.0 sjte 0.01 sjte
ICC 0.01 gjte 0.01 gjre
Observations 1545 1545
Marginal R? / Conditional R 0.071/0.083 0.136/0.148

Table S3. Model predicting individual differences in 0-back and 2-back task accuracy
from cognitive composite network strength in the ABCD sample.

0-back Accuracy 2-back Accuracy
Predictors Estimates CI t-Statistic  p  Estimates CI i-Statistic  p
(Intercept) 0.03  -0.06-0.12 0.66 0.522 0.12 0.03-0.21 2.69 0.011
Age 0.12 0.08-0.17 503 <0.001 0.13 0.08-0.17 5.18  <0.001
Female -0.06  -0.15-0.04 -1.14 0255 -023 -032--0.13 -475 <0.001
Motion -0.03  -0.08-0.01 -1.37 0.172 -0.12 -0.16--0.07 -477 <0.001

Cognitive Composite CPM 0.21 0.16 -0.26 8.20 <0.001 0.27 0.22-0.32 10.64 <0.001

Sustained Attention 0.19 0.14-0.23 7.59  <0.001 0.01 -0.03-0.06 0.56 0.573
Random Effects

o2 0.89 0.85

o0 0.01 sjte 0.01 sjte

ICC 0.01 gjie 0.01 gjpe

Observations 1545 1545

Marginal R? / Conditional RZ  0.106/0.117 0.136/0.148

Table S4. Model predicting individual differences in 0-back and 2-back task accuracy
from cognitive composite and sustained attention network strength in the ABCD sample.
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0-back Accuracy 2-back Accuracy
Predictors Estimates cl t-Statistic  p  Estimates CI t-Statistic  p
(Intercept) 0.07 0.02-0.12 2.83 0.005 0.03 -0.02 -0.08 1.23 0.219
Block Motion -0.03  -0.06--0.01 -320 0001 -0.02 -0.04--0.00 -2.11 0.035
Neg Face -0.13  -0.18—--0.09 -580 <0.001 -0.00 -0.05-0.04 -0.13 0.8%9
Pos Face 0.01 -0.03-0.06 047 0.635 -0.03 -0.07-0.02 -1.10 0.269
Place -023  -027--0.18 -999 <0.001 -037 -041--0.32 -16.18 <0.001
Run 2 0.03  -0.01-0.006 1.38 0.167 0.16 0.12-0.20 8.54  <0.001

Cognitive Composite CPM 0.05 0.03-0.07 5.37  <0.001 0.08 0.06 -0.10 8.33 <0.001

Random Effects
o2 0.60 0.59
Too 0.40 gups 0.37 subs
ICC 0.40 gups 0.38 gubs
Observations 9176 9176
Marginal R? / Conditional RZ  0.013/0.411 0.035/0.404

Table S5 Model predicting intra-individual differences in 0-back and 2-back task
accuracy from cognitive composite network strength in the ABCD sample.
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0-back Accuracy 2-back Accuracy
Predictors Estimates (@) t-Statistic  p  Estimates CI t-Statistic  p
(Intercept) -0.00  -0.14-0.13 -0.03 0978 0.10 -0.01 - 0.21 1.76 0.091
Age 0.13 0.08-0.18 523 <0.001 0.14 0.09-10.19 555 <0.001
Female -0.06  -0.16-0.04 -1.19 0236 -022 -032--0.12 -438 <0.001
Motion -0.03 -0.08-0.02 -1.03 0304 -0.13 -0.18--008 -514 <0.001
Working Memory 0.11 0.06-0.16 4.13 <0.001 0.10 0.05-0.15 3.85  <0.001
Sustained Attention 0.15 0.10-0.20 6.10  <0.001 -0.04 -0.09-0.01 -1.72  0.086
Random Effects
o2 0.91 0.91
00 0.05 gjte 0.03 sjte
ICcC 0.06 gjte 0.03 gjte
Observations 1504 1504
Marginal R? / Conditional RZ  0.067/0.119 0.070/0.099

Table S6. Model predicting inter-individual differences in 0-back and 2-back task
accuracy from sustained attention and working memory network strength values in the
ABCD sample with only one of each pair of family members retained randomly (n =
1504). Compare these values to Table 1 in the Results section.
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0-back Accuracy 2-back Accuracy
Predictors Estimates (@) t-Statistic  p  Estimates CI t-Statistic  p
(Intercept) -0.01  -0.13-0.12 -0.09 0.933 0.10 0.01-0.19 2.11 0.044
Age 0.12 0.07-0.17 469 <0.001 0.11 0.06 - 0.16 454  <0.001
Female -0.04  -0.14-0.06 -0.85 03%  -020 -030--0.11 -4.15 <0.001
Motion -0.02  -0.07-0.03 -0.80 0422 -0.12 -0.17--007 -471 <0.001

Cognitive Composite CPM 0.19 0.14-0.24 7.20  <0.001 0.26 0.20-0.31 9.82  <0.001

Sustained Attention 0.18 0.13-0.23 7.20  <0.001 0.01 -0.04 - 0.06 0.29 0.770
Random Effects

o2 0.89 0.86

Too 0.04 gjre 0.01 gjre

ICC 0.05 gjte 0.02 gjte

Observations 1504 1504

Marginal R* / Conditional R> 0.090/0.131 0.121/0.135

Table S7. Model predicting inter-individual differences in 0-back and 2-back task
accuracy from sustained attention and working memory network strengths in the ABCD
sample with only one of each pair of family members retained randomly (n = 1504).
Compare these to Table S4 in the Supplementary Results section.
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Recognition Memory d'

Predictors Estimates CI t-Statistic  p
(Intercept) 074  0.67-0.82 2031 <0.001
Age 0.07 0.04-0.10 427 <0.001
Female -0.03  -0.09-0.04 -0.80 0422
Motion 0.00 -0.03-0.04 0.1 0.832
Acc Z 0.15 0.11-0.18 8.70  <0.001
Working Memory 0.04 0.00-0.07  2.26 0.024
Sustained Attention -0.02  -0.05-0.01 -1.31 0.192

Random Effects
o2 0.35
T00 Site 0.01
ICC gjte 0.03
Observations 1451

Marginal R2 / Conditional R 0.082/0.113

Table S8. Model predicting inter-individual differences in 0-back and 2-back task
accuracy from sustained attention and working memory network strengths in the ABCD
sample with only one of each pair of family members retained randomly (n = 1504).
Compare these to Table 3 in the Results section.

Supplementary analysis: Defining n-back blocks with a temporal lag

In each of the two n-back runs, there were 8 blocks of 0- and 2-back tasks (4 of each,
one per stimulus category). All of the main analyses shown in the Results use block-
wise functional connectivity matrices for which block start and end times were the first
stimulus onset and last stimulus offset times for trials in the block, respectively.
However, the rest period between blocks were not equally distributed for all 8 blocks in
a run, and instead followed the design shown in the Figure S5. As shown in the figure,
there was enough time before the odd blocks (i.e., blocks 1, 3, 5, and 7) for the BOLD
response from the previous n-back block to return to baseline, but this was not the case
for the even blocks (i.e., blocks 2, 4, 6, 8). As such, in a post hoc analysis we calculated
functional connectivity matrices for the even blocks with a 6-s shift (7 or 8 TRs based on
rounding the exact timings for each participant) to allow for further separation of the
BOLD signal from these blocks with their prior blocks. This is shown in Figure S5 red
intervals (compared to blue intervals in the analyses presented in the Results sections).
We then repeated all ABCD analyses using these shifted functional connectivity
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matrices. Results were similar to those reported in the non-shifted analysis, except for
the Study 4 results shown in main text Table 3. Therefore, we report those results with
the time-shifted functional connectivity matrices here. With the time-shifted matrices,
working memory network strength still predicted subsequent recognition memory for n-
back stimuli, although the strength of the association was weaker (r=.093, p < .001 vs.
r=.123 in original analysis) and was no longer significant above and beyond in-scanner
n-back performance (shown in Table S9).

intervals in supplementary FC ——

n-back blocks in one run intervals in original FC ——

25s 25s 255 255 255 255 255 255

time

Figure S5. The time-course of n-back blocks (from the beginning of the first trial’s
stimulus onset to the end of the last trial’s stimulus offset time in the block) in a run in
the ABCD n-back task. While there is only ~3.5-sec interval prior to start of even blocks,
there is an additional 15-sec rest interval after every other block of n-back.
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Recognition Memory d'

Predictors Estimates CI 1-Statistic  p
(Intercept) 0.73 0.66-0.79 2322 <0.001
Age 0.06  0.03-0.09 397 <0.001
Female -0.02  -0.08-0.04 -0.66 0.5I11
Motion 0.01  -0.02-0.04 0.73 0.468
Acc Z 0.18 0.15-0.21 10.85 <0.001
Sustained Attention -0.02  -0.05-0.01 -1.34  0.179
Working Memory 0.03 -0.01-0.06 1.59 0.113

Random Effects
o2 0.35
T00 Site 0.01
ICC gt 0.02
Observations 1489

Marginal R? / Conditional RZ 0.102/0.118

Table S9. Working memory network strength measured in the 6-sec shifted manner
described above is not significantly related to subsequent recognition memory for n-
back task stimuli after adjusting for nuisance variables and n-back performance itself
(compare to Results Table 3).

46


https://doi.org/10.1101/2021.08.01.454530
http://creativecommons.org/licenses/by-nc/4.0/

