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Abstract 

Studying cellular differentiation using single-cell RNA sequencing (scRNA-seq) rapidly expands 

our understanding of cellular development processes. Recently, RNA velocity has created new 

possibilities in studying these cellular differentiation processes, as differentiation dynamics 

can be obtained from measured spliced and unspliced mRNA expression. However, to map 

these differentiation processes to developments within a tissue, the spatial context of the 

tissue should be taken into account, which is not possible with current approaches as they 

start from dissociated cells. We present SIRV (Spatially Inferred RNA Velocity), a method to 

infer spatial differentiation trajectories within the spatial context of a tissue at the single-cell 

resolution. SIRV integrates spatial transcriptomics data with reference scRNA-seq data, to 

enrich the spatially measured genes with spliced and unspliced expressions from the scRNA-

seq data. Next, SIRV calculates RNA velocity vectors for every spatially measured cell and 

maps these vectors to the spatial coordinates within the tissue. We tested SIRV on the 

Developing Mouse Brain Atlas data and obtained biologically relevant spatial differentiation 

trajectories. Additionally, SIRV annotates spatial cells with cellular identities and the region of 

origin which are transferred from the annotated reference scRNA-seq data. Altogether, with 

SIRV, we introduce a new tool to enrich spatial transcriptomics data that can assist in 

understanding how tissues develop.  

1. Introduction 

Single-cell RNA-sequencing (scRNA-seq) enables the study of cellular differentiation dynamics 

at single-cell resolution1. Trajectory inference methods, such as Monocle2, DPT3 and PAGA4, 

aim to define a developmental sequence of gene expression changes in a certain pool of cells. 

This developmental sequence should potentially model a trajectory of the cellular 

differentiation process. However, scRNA-seq only captures a static snapshot of the cellular 

states, which represents a major challenge for trajectory inference methods to correctly 

capture the dynamics of the cellular differentiation process. That challenge is addressed by 

RNA velocity5,6, which estimates the dynamics of cellular differentiation using the expression 
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balance between the unspliced immature and spliced mature mRNA molecules captured by 

scRNA-seq protocols. Typically, for each cell, the RNA velocity is estimated for each gene 

individually, which together, define the new state  of the cell. When calculated over all cells, 

a flow field can be calculated by some averaging of neighboring cells, which can be projected 

in a reduced visualization space. 

To date, the majority of cellular differentiation studies only use dissociated cells from scRNA-

seq. However, this neglects that cells are spatially organized, for example in tissues. Taking 

the spatial context into account can enhance our understanding of cellular differentiation 

processes7. Recent advances in spatial transcriptomics technologies have enabled the study 

of cellular heterogeneity of complex tissues while retaining spatial information, providing 

spatial gene expression patterns and organization of different cell types in the tissue8,9. 

Current protocols can be divided into two main categories: (1) sequencing-based technologies 

that detect and quantify the mRNA in situ, such as 10X Genomics Visium, Slide-seq10,11 and 

ST12; or (2) imaging-based technologies using fluorescence in situ hybridization (FISH), such as 

smFISH13,14, MERFISH15 and seqFISH16,17. 

In principle, it is possible to apply RNA velocity analysis to spatial transcriptomics measured 

using sequencing-based protocols, as the spliced and unspliced expression ratios can be 

directly obtained from the sequencing data11. However, these protocols are still limited in 

spatial resolution measuring tissue spots consisting of a few cells. On the other hand, imaging-

based protocols provide (sub)cellular resolution but lack the spliced and unspliced 

expressions which are necessary to study cellular differentiation using RNA velocity.  

We and others have previously shown that high-resolution imaging-based spatial 

transcriptomics data can be enriched with predicted expression of spatially unmeasured 

genes when integrating with scRNA-seq data measured from the same tissue18–22. Building on 

the same concept, it should be possible to predict the spliced and unspliced expression of 

each spatially measured gene from a reference scRNA-seq dataset. With these imputed values 

RNA velocities can then be calculated for each cell in its spatial context, enriching cellular 

differentiation processes with true spatial coordinates. 

Here, we present SIRV (Spatially Inferred RNA velocity), a method to derive cellular 

differentiation dynamics in a spatial context at the single-cell resolution. SIRV integrates 

spatial transcriptomics and scRNA-seq data in order to predict the spliced and unspliced 

expression of the spatially measured genes. Next it calculates RNA velocity vectors for each 

cell that are then projected onto the two-dimensional spatial coordinates, which are then 

used to derive flow fields by averaging dynamics of spatially neighboring cells. In addition, 

SIRV transfers various label annotations of the scRNA-seq to the spatial transcriptomics data, 

allowing us to richly annotate the spatial data with, for example, cellular identity or region of 

origin. We tested SIRV on a spatial dataset from the Developing Mouse Brain Atlas23 and 

showed that SIRV produced biologically relevant spatial differentiation trajectories. 

Moreover, it accurately predicts the cellular identities and region of origin of the spatial cells. 

Our results show that SIRV is a valuable tool to gain deeper insights into cellular 

differentiation processes spatially.  
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2. Methods 

2.1. SIRV algorithm 

The SIRV algorithm requires two inputs, the spatial transcriptomics data represented by a 

gene expression matrix, and the scRNA-seq data having three expression matrices 

corresponding to the spliced (mature mRNA), unspliced (immature mRNA) and full mRNA 

expression. The scRNA-seq data may also contain relevant metadata like cellular identity 

annotations, tissue/region of origin, etc. Using the set of shared genes between the two 

datasets, SIRV enriches the spatial transcriptomics data with un/spliced expressions as 

predicted from the scRNA-seq. These un/spliced expressions are then used to calculate the 

RNA velocity of each gene for each cell. Additionally, SIRV transfers the metadata from the 

scRNA-seq data to the spatial transcriptomics data. The SIRV algorithm consists of four major 

parts: (i) integration of the spatial transcriptomics and scRNA-seq datasets, (ii) predictions of 

un/spliced expressions, (iii) label/metadata transfer (optional), and (iv) estimation of RNA 

velocities within the spatial context. 

2.1.1. Integration 

The spatial transcriptomics and scRNA-seq dataset are integrated by finding the common 

signal between the two datasets. Building on SpaGE18, the integration step is performed using 

PRECISE to define a common latent space24. In brief, using the set of shared genes across the 

two datasets, we calculate a separate Principal Component Analysis (PCA) for each dataset, 

and then aligns these separate principal components, resulting in principal vectors (PVs). 

These PVs have a one-to-one correspondence between the two datasets, and the highly 

correlated PV-pairs represent the common signal. Finally, both the spatial transcriptomics and 

scRNA-seq datasets are projected onto the PVs of the reference dataset (scRNA-seq in this 

case), producing an integrated and aligned version of both datasets.  

This integration step is performed using the full mRNA expression matrix from the scRNA-seq 

side, together with the expression matrix of the spatial transcriptomics data. Thus, the spliced 

and unspliced expressions are only used in the prediction (following) step.  

2.1.2. Un/spliced expression prediction 

After obtaining the aligned datasets, SIRV enriches the spatially measured genes with spliced 

and unspliced expression predicted from the scRNA-seq dataset. Such prediction is performed 

using a kNN regression18. For each spatial cell 끫殬, we calculate the k-nearest-neighbors from 

the (aligned) scRNA-seq dataset and assign a weight to each neighbor inversely proportional 

to its distance. 

 끫毈끫殬끫殬 = 1 −  
끫殢끫殬끫殢끫殢 (끫殬, 끫殮)∑ 끫殢끫殬끫殢끫殢(끫殬, 끫殮)끫殬 ∈끫殂끫殂(끫殬)  (1) 

 

 끫毈끫殬끫殬 =  
끫毈끫殬끫殬끫殰 − 1

;     끫毈ℎ끫殤끫殤끫殤 � 끫毈끫殬끫殬끫殬 ∈끫殂끫殂(끫殬) = 1 (2) 
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with 끫毈끫殬끫殬 representing the weight between each spatial cell 끫殬 and its 끫殮-th nearest neighbor, 끫殢끫殬끫殢끫殢(끫殬, 끫殮) being the cosine distance between spatial cell 끫殬 and scRNA-seq cell 끫殮 ∈ 끫殂끫殂(끫殬), and 끫殰 equaling the number of nearest-neighbors used. 

For every spatially measured gene 끫殨, the spliced (끫殌끫殬끫殬) and unspliced (끫殐끫殬끫殬) expression are 

predicted by: 

 끫殌끫殬끫殬 =  ∑ 끫毈끫殬끫殬 ∗  끫殌끫殌끫殬끫殬끫殬 ∈끫殂끫殂(끫殬)  and 끫殐끫殬끫殬 =  ∑ 끫毈끫殬끫殬 ∗  끫殐끫殌끫殬끫殬끫殬 ∈끫殂끫殂(끫殬)  (3) 

 

with 끫殌끫殌끫殬끫殬 and 끫殐끫殌끫殬끫殬 representing the spliced and unspliced expression of gene 끫殨 from the 

scRNA-seq dataset, respectively. 

2.1.3. Label (metadata) transfer 

SIRV can annotate the spatial transcriptomics dataset with any relevant labels from the 

scRNA-seq dataset using the same kNN regression scheme as introduced earlier. Taking the 

cell identity annotation as an example: for each cell type 끫殠 in the scRNA-seq annotation, we 

calculate the probability 끫殆끫殬끫殬 that the spatial cell 끫殬 should be assigned to cell type 끫殠 by 

aggregating the weights 끫毈끫殬끫殬 of the nearest neighbors annotated with 끫殠. The transferred cell 

type 끫歬끫殬 for each spatial cell 끫殬 is then selected based on the cell type with highest probability: 

 
끫殆끫殬끫殬 =  � 끫毈끫殬끫殬끫殬 ∈끫殂끫殂(끫殬)끫殬 ∈ 끫殬

 
(4) 

 

 끫歬끫殬 =  끫殜끫殤끫殨끫殴끫殜끫殴끫殬 끫殆끫殬끫殬 (5) 

 

2.1.4. RNA velocity analysis 

After enriching the spatial genes with spliced and unspliced expressions, we applied the RNA 

velocity5 method (implemented in the scvelo6 python package) to study the cellular 

development and differentiation. Following scvelo, first, we calculated the high-dimensional 

RNA velocity vectors for the spatially measured genes (set of genes originally measured in the 

spatial dataset), next we projected and visualized these vectors on the spatial coordinates of 

the cells in order to define directions of cellular differentiation in the spatial context. 

 

2.2. Dataset description 

We used both spatial transcriptomics and scRNA-seq datasets from the Developing Mouse 

Brain Atlas23. Datasets were downloaded from http://mousebrain.org/downloads.html. The 

spatial transcriptomics dataset profiled the expression of 119 genes in an E10.5 mouse 

embryo, measured using the HybISS protocol25. Out of 25 different spatial slices provided by 

the authors, we selected the ’40 µm’ slice as it contains a clear structure of the brain. Cell 

segmentation was not provided with the data, however, we used the voxel version of the data 
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(provided by the authors) which summarizes the spatial gene expression in a 2D grid of 30,000 

pixels.  

The scRNA-seq data profiled a developing mouse brain tissue from E7 to E18. To match the 

HybISS data, we only used E10 and E11 having a total 47,639 cells expressing 31,053 genes. 

Additionally, the scRNA-seq data was annotated with several metadata labels, we focused on 

the labels indicating the region (Forebrain, Midbrain and Hindbrain) and cellular identity. The 

latter was provided at two different resolutions, the ‘Class’ annotation covering 19 major cell 

populations and the fine-grained ‘Subclass’ annotation with 104 subpopulations. 

2.3. Data preprocessing 

For the spatial HybISS dataset, the gene expression of each pixel (pseudo-cell) is the count of 

the spots detected for each gene in that pixel location. To separate tissue from background, 

we filtered out any pseudo-cell with total counts across all genes less than 4. Next, we 

manually segmented only the brain tissue, ending with a total of 4,628 spatial pseudo-cells 

(Supplementary Fig. S1). Next, the HybISS dataset was normalized by dividing the counts 

within each (pseudo-)cell by the total count within that cell, multiplied by a scaling factor 

equal to the median number of counts across cells, and log(x+1) transformed. 

 끫殴끫殬끫殬 =  log�� 끫殴끫殬끫殬∑ 끫殴끫殬끫殬끫殬 ∗ 끫殴끫殠�  + 1� ;     끫毈ℎ끫殤끫殤끫殤  끫殴끫殠 =  median끫殬 (�끫殴끫殬끫殬끫殬 ) (6) 

 

with 끫殴끫殬끫殬 represents the expression of gene 끫殨 in cell 끫殬, ∑ 끫殴끫殬끫殬끫殬  equals the total count in cell 끫殬, 
and 끫殴끫殠 is the median number of counts across cells. 

For the scRNA-seq dataset, after selecting E10 and E11, cells having ‘Class’ annotation of ‘Bad 

cells’ or ‘Undefined’ were filtered out. Additionally, genes annotated as invalid (‘Valid’ = 0) 

were removed. Further, we filtered out genes expressed in less than 10 cells, ending up with 

an expression matrix of 40,733 cells and 16,907 genes. Finally, the dataset was normalized by 

dividing the counts within each cell by the total count within that cell, multiplied by a scaling 

factor of 106, and log(x+1) transformed. 

 끫殴끫殬끫殬 =  log�� 끫殴끫殬끫殬∑ 끫殴끫殬끫殬끫殬 ∗ 106�  + 1� (7) 

 

with 끫殴끫殬끫殬 represents the expression of gene 끫殨 in cell 끫殬, and ∑ 끫殴끫殬끫殬끫殬  equals the total count in cell 끫殬. 
2.4. Implementation details 

The HybISS spatial dataset and the scRNA-seq dataset shared 117 genes used for integration 

and prediction of spliced and unspliced expression. For the integration step we used 50 

principal vectors explaining 62.9% and 62.4% of the variance in the HybISS and scRNA-seq 

datasets, respectively. For the prediction step, we used 끫殰 = 50. For the RNA velocity analysis, 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.26.453774doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453774
http://creativecommons.org/licenses/by-nc/4.0/


we scale the data to zero mean and unit variance features, next we calculate the top 30 

principal components (PCA) to build a neighborhood graph with 30 neighbors. This 

neighborhood graph is used to calculate a UMAP26 embedding of the data and cluster the 

data using Leiden27 graph-based clustering (resolution = 1). Next, we calculate the RNA 

velocity vectors using 30 principal components and 30 neighbors. Finally, we project the high-

dimensional velocity vectors on the UMAP coordinates and the spatial (x,y) coordinates using 

the velocity_embedding and velocity_embedding_stream functions. We used the scanpy28 

python package (version 1.7.0) to perform data preprocessing, PCA, UMAP and Leiden 

clustering. While the scvelo6 python (version 0.2.3) package was used to calculate RNA 

velocities and their projections in the UMAP and the spatial context. 

3. Results 

3.1. SIRV overview 

We developed Spatially Inferred RNA Velocity (SIRV), a method to study cellular 

differentiation in the spatial context using RNA velocity (Fig. 1, Methods). Calculating the RNA 

velocity vectors requires measuring the proportion of mature (spliced) and immature 

(unspliced) mRNA expression. This information is usually missing in the spatial transcriptomics 

data especially for the imaging-based approaches. SIRV combines the spatial transcriptomics 

dataset with a reference scRNA-seq dataset having the spliced and unspliced expression for 

the whole transcriptome. SIRV first integrates both datasets to correct for technical 

differences using domain adaptation method PRECISE24. Next, SIRV predicts the spliced 

(mature) and unspliced (immature) expression for the spatially measured genes from the 

scRNA-seq data using kNN regression. The predicted spliced and unspliced expression can 

then be used to calculate the RNA velocity vectors5,6, and project these vectors on the spatial 

coordinates of the tissue. 

Additionally, SIRV transfers various label annotations from the scRNA-seq to the spatial 

transcriptomics data using the same kNN regression scheme. Considering cell identity labels, 

this label transfer feature offers an automated manner to annotate the spatial dataset. Since 

scRNA-seq captures the whole transcriptome, the transferred annotations represent more 

fine-grained cellular identities as compared the populations derived from the spatial dataset 

alone as this is based on a limited number of measured genes. 

3.2. SIRV produces interesting spatial differentiation trajectories in the developing mouse 

brain 

We applied SIRV on the HybISS spatial dataset from the developing mouse brain (E10.5). First, 

we clustered the HybISS dataset, using Leiden graph-based clustering, into 21 cell clusters 

visualized using UMAP (Fig. 2A). When mapping the cell clusters back to their spatial locations, 

we observed that the clustering agrees with the spatial organization, i.e. the majority of the 

cell clusters are indeed separated in the spatial domain and each cluster is mapped to a 

specific spatial location (Fig. 2B and Supplementary Fig. S2), except for clusters 0, 15, 19 and 

20. Furthermore, cluster 1 is spatially divided into two groups of cells, one in the Midbrain 

and another in the Hindbrain.  
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Next, we integrated the HybISS spatial dataset with a scRNA-seq dataset of the E10 and E11 

development stages of the embryonic mouse brain. Using SIRV, we integrated the two data 

sets and predicted the spliced and unspliced expression for the spatially measured genes. The 

two datasets shared 117 genes which were used for integration and prediction. With the 

predicted un/spliced transcripts for each of the 117 genes, we generated RNA velocity vectors 

for each cell. The RNA velocity analysis shows dynamic flow patterns matching the HybISS 

clusters (Fig. 2C) and reveals differentiation patterns for each of the clusters. For instance, 

cluster 9 differentiates into clusters 7, 8 and 13. Cluster 3 differentiates into clusters 5, 17 and 

part of 14, while the other part of cluster 14 is developed from cluster 13. Cluster 12 

differentiates into cluster 16, while clusters 2 and 10 differentiate towards a common end 

point. Additionally, we observed that clusters 0, 15, 19 and 20 almost have zero magnitude 

velocity vectors. A possible explanation is that these clusters form the boundary of the brain 

(Supplementary Fig. S2) and are not further involved into cellular differentiation at this stage 

of development. 

Next, we projected and visualized the velocity vectors onto the spatial coordinates (Fig. 2D), 

which reveals the developmental dynamics of the cells in their spatial context. For example, 

cluster 9 is roughly located between the Midbrain and the Hindbrain, and the velocity vectors 

branches in 3 directions towards clusters 7, 8 and 13. To obtain a more detailed view of the 

spatial RNA velocities, we visualized the velocity vectors on the cell level (Fig. 3A). Results 

show that the velocity vectors follow consistent spatial paths across the different cell clusters 

and different brain regions. If we consider cluster 9 again, the spatial velocity vectors on the 

cell level shows the same differentiation into 3 branches (Fig. 3B). Furthermore, we can clearly 

observe the differentiation of cluster 12 into 16, and cluster 13 into a part of cluster 14 (Fig. 

3C). Moreover, cluster 2 forms a relatively long path of differentiation through the Hindbrain 

(Fig. 3D), and reaches a common end point together with cluster 10. Additionally, in some 

cases, the spatial organization of the cell clusters can provide more insights to the cellular 

differentiation. When considering cluster 3 in the Forebrain, the spatial velocity vectors 

suggest that cluster 3 differentiates towards cluster 5 and part of 14, however, it does 

indirectly differentiate to cluster 17 through cluster 5 (Fig. 3E). Moreover, from the spatial 

context, we observed that cluster 5 further differentiates to cluster 6. Together, these results 

show the potential of SIRV to define interesting spatial differentiation trajectories that cannot 

be obtained from the scRNA-seq data alone. 

3.3. SIRV correctly transferred label annotation verified by spatial organization 

In addition to the prediction of spliced and unspliced expression, we used SIRV to transfer 

annotation labels from the scRNA-seq dataset to the HybISS spatial dataset. First, we 

transferred the brain region annotation (Forebrain, Midbrain and Hindbrain). In the UMAP 

embedding of the HybISS spatial data, the three brain regions form three different groups 

with some overlap in the middle (Fig. 4A). When visualized in their spatial coordinates, we 

observe that the different brain regions are in agreement with the anatomical structure of 

the brain (Fig. 4B and Supplementary Fig. S1C-D). 

Next, we annotated the HybISS dataset with cell identity labels from the scRNA-seq data, 

which contains two levels of annotation: fine-grained subpopulations (‘Subclass’ annotation) 
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and high-level major populations (‘Class’ annotation). The transferred ‘Subclass’ annotation 

contained 49 subclasses which roughly formed distinct groups in the UMAP embedding of the 

spatial data (Fig. 4C). Spatially, the obtained Subclass labels also showed a well-separated and 

structured spatial organization (Fig. 4D and Supplementary Fig. S4), with many examples 

validating the correct estimation of these labels. For example, cells annotated with identity 

subclasses Forebrain, Midbrain and Hindbrain are spatially localized with the corresponding 

brain region. The Midbrain-hindbrain boundary cells, are correctly located exactly at the 

boundary between these two brain regions (as can be derived from the name). The Cortical 

hem cells indeed localize in the Forebrain as was previously shown by the authors of the 

Developing Mouse Brain data23. The diencephalon cells which are known to be part of the 

Forebrain29 are also located there. Also, we observed a group of Mesenchyme cells covering 

the borders of the whole brain. This group of Mesenchyme cells provides an explanation for 

the overlap between different brain regions shown in the middle of the UMAP in Fig. 4A, as 

these Mesenchyme cells are present at the borders of all three brain regions.  

When transferring the ‘Class’ annotation, we obtained 11 classes which are mainly composed 

of Radial glia cells and Neuroblasts (Supplementary Fig. S3A-B), which are both progenitor 

cells for the development of the nervous system and neurons, respectively30,31. The 

Mesenchyme cells, from the ‘Class’ annotation, form the borders of the different brain 

regions, again in agreement with the ‘Subclass’ annotation. Overall, SIRV shows reliable label 

transfer ability with correct spatial localization of the transferred labels, even at a subclass 

annotation level. 

3.4. RNA velocities interpretation based on transferred cell labels 

Having the transferred cell identity annotations, we aimed at adding biological insights to the 

spatial differentiation trajectories as predicted by SIRV. First, considering the transferred 

‘Subclass’ annotations, we visualized the spatial RNA velocity vectors at the cell level colored 

by the different cell subclasses (Fig. 5A) and zoomed in on the same differentiation examples 

introduced earlier with the cell clusters (Fig. 5B-E). The Midbrain-hindbrain boundary cells 

show the three branched trajectories, shown earlier by cluster 9, and differentiating towards 

Midbrain cells, Dorsal midbrain cells and Dorsal hindbrain cells (Fig. 5B). Comparing the 21 

cell clusters with their ‘Subclass’ annotation indeed shows that cluster 9 mostly maps to the 

Midbrain-hindbrain boundary group (Supplementary Fig. S5B). In the Midbrain, Midbrain 

basal plate cells differentiate into Midbrain floor plate cells (Fig. 5C). In the Hindbrain, Dorsal 

hindbrain cells differentiate towards Hindbrain cells (Fig. 5D). Considering the Forebrain 

region, cells annotated as Forebrain (mostly covering clusters 3, 5 and 11) differentiate into 

Dorsal diencephalon (cluster 17), Cortical hem (cluster 6) and Midbrain basal plate (cluster 

13) (Fig. 5E and Supplementary Fig. S5A). While cluster 0, 15, 19 and 20 are mostly composed 

of Mesenchyme cells forming the borders of the brain (Supplementary Fig. S5A), no 

differentiation was associated with these clusters in agreement with Mesenchyme cells which 

also have almost zero magnitude RNA velocity vectors. 

We repeated the same visualization with the ‘Class’ annotation (Supplementary Fig. S3C). As 

shown, almost all cells with clear RNA velocity vectors (cells undergoing differentiation) are 

either Radial glia or Neuroblasts, which is expected as these two classes are progenitor cells. 
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When comparing the 21 cell clusters with their ‘Class’ annotation (Supplementary Fig. 5B), we 

observe that the majority of the cell clusters are Radial glia cells, and that cluster 1 and 4 

contain more Neuroblasts.  

4. Discussion 

We demonstrated the potential of SIRV to define biologically relevant spatial differentiation 

trajectories. Using SIRV, it is possible to apply RNA velocity analysis on high-resolution 

imaging-based spatial data, as SIRV enriches the spatially measured genes with spliced and 

unspliced expression predicted from scRNA-seq data. 

We tested SIRV on the Developing Mouse Brain data. SIRV identified spatial branching 

differentiation trajectories at the Midbrain-Hindbrain boundary and the Forebrain. SIRV 

found linear trajectories in the Hindbrain and the Midbrain. Additionally, SIRV accurately 

transferred the region label annotation from the scRNA-seq data to the spatial data, and 

correctly located the three brain regions spatially. Also, SIRV successfully transferred the cell 

identity annotation and assigned cell populations to their expected spatial location. 

Since the HybISS spatial dataset was not originally annotated with cellular identities, the 

spatial differentiation trajectories obtained with SIRV could not be easily interpreted using 

the spatial dataset only. Transferring cell annotations with SIRV helped greatly to biologically 

interpret the predicted spatial differentiation trajectories.  

Currently, we only evaluated SIRV using one dataset. In the near future, we aim to test SIRV 

on various datasets to evaluate the robustness of the produced spatial differentiation 

trajectories. The interpretation of the estimated spatial velocity vectors is, however, still 

challenging, i.e. do the differentiation directions only imply that cells differentiate from one 

state to another, or do they also hint that cells do migrate in the tissue during development? 

Concluding, SIRV produces valuable spatial differentiation trajectories for high-resolution 

imaging-based spatial transcriptomics data and opens new possibilities to study cellular 

differentiation processes in their spatial context, which helps understanding the natural tissue 

development.  

Data and code availability 

The implementation of SIRV, processed datasets, as well as the code to reproduce the results, 

are available in the GitHub repository, at https://github.com/tabdelaal/SIRV. The code is 

released under MIT license. 
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Fig. 1 SIRV pipeline. SIRV takes as input a spatial transcriptomics and a reference scRNA-seq datasets. The latter 

contains spliced 끫殌끫殊, unspliced 끫殐끫殊 and full mRNA 끫殖끫殊 expressions for each gene, and possibly label annotations 끫歾끫殜끫歾끫殤끫歾끫殢끫殊 e.g. cellular identity. SIRV integrates the two datasets 끫殖끫殌 and 끫殖끫殊 using domain adaptation producing 

aligned datasets 끫殖끫殌∗ and 끫殖끫殊∗ . Next, SIRV predicts the spatial spliced 끫殌끫殌′  and unspliced 끫殐끫殌′  expressions from the 

scRNA-seq data using kNN regression applied on 끫殖끫殌∗ and 끫殖끫殊∗ . SIRV transfers label annotations from scRNA-seq to 

spatial data (끫歾끫殜끫歾끫殤끫歾끫殢끫殌′ ) using the same kNN regression. The predicted 끫殌끫殌′  and 끫殐끫殌′  expressions are used to calculate 

RNA velocity vectors, projected on the spatial coordinates of the tissue estimating spatial cellular differentiation 

trajectories. 

 

 

Fig. 2 (A) UMAP embedding of the HybISS spatial data colored according to 21 cell clusters obtained using Leiden 

clustering. (B) Spatial map of the HybISS spatial data showing spatial localization of the cell clusters. (C-D) Main 

flow of RNA velocities visualized by velocity streamlines, projected on (C) UMAP embedding and (D) spatial 

coordinated of the HybISS data. 
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Fig. 3 (A) Cell-level RNA velocities projected on the spatial coordinates of the HybISS spatial data, colored 

according to the 21 cell clusters. (B-E) Zoom-in views on interesting spatial differentiation trajectories at (B) 

Midbrain-Hindbrain boundary, (C) part of Midbrain, (D) Hindbrain, and (E) Forebrain. Black arrows show 

branching or linear spatial differentiation directions between cell clusters. 
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Fig. 4 (A,C) UMAP embedding of the HybISS spatial data colored according to (A) ‘Region’ and (C) ‘Subclass’ 

annotations transferred from the scRNA-seq data. (B,D) Spatial map showing the location of each (B) ‘Region’ 

and (D) ‘Subclass’ label in the tissue. 
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Fig. 5 (A) Cell-level RNA velocities projected on the spatial coordinates of the HybISS spatial data, colored 

according to the ‘Subclass’ annotation transferred from the scRNA-seq data. (B-E) Zoom-in views on the same 

spatial differentiation trajectories as in Fig. 3; (B) Midbrain-Hindbrain boundary, (C) part of Midbrain, (D) 

Hindbrain, and (E) Forebrain. Black arrows show branching or linear spatial differentiation directions between 

subclasses. 
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Supplementary Fig. S1 (A) Total count per pixel (pseudo-cell) in the HybISS spatial data separating mouse 

embryonic tissue from background. (B) Selecting only tissue pixels with a cutoff of total count per pixel ≥ 4. (C) 

Manual segmentation of only brain tissue (upper part in B), the three brain regions Hindbrain (red), Midbrain 

(yellow) and Forebrain (green) are highlighted according to D. (D) Figure adapted from G. La Manno et. al23 

illustrating the tissue dissection strategy and highlighting the location of the brain (and different regions in the 

brain) within the mouse embryo.  
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Supplementary Fig. S2 Spatial distribution of the HybISS 21 cell clusters (A) spatial map showing all clusters 

combined, (B) easier visualization of the spatial location of each individual cluster showing one cluster at a time. 
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Supplementary Fig. S3 (A) UMAP embedding of the HybISS spatial data colored according to the ‘Class’ 

annotation transferred from the scRNA-seq data. (B) Spatial map showing the location of each ‘Class’ label in 

the tissue. (C) Cell-level RNA velocities projected on the spatial coordinates of the tissue, colored according to 

the ‘Class’ annotation. 
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Supplementary Fig. S4 Spatial distribution of the ‘Subclass’ annotation transferred from the scRNA-seq data 

(A) spatial map showing all 49 subclasses combined, (B) easier visualization of the spatial location of each 

individual subclass showing one subclass at a time. 
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Supplementary Fig. S5 Contingency matrices comparing the HybISS 21 cell clusters (rows) with their 

corresponding (A) ‘Subclass’ and (B) ‘Class’ annotations transferred from the scRNA-seq data (columns). Each 

row is normalized to sum up to 1. 
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