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Abstract

Single-cell RNA-sequencing (scRNA-seq) has become a powerful tool to reveal the complex
biological diversity and heterogeneity among cell populations. However, the technical noise
and bias of the technology still have negative impacts on the downstream analysis. Here, we
present a self-supervised Contrastive LEArning framework for scRNA-seq (CLEAR) profile
representation and the downstream analysis. CLEAR overcomes the heterogeneity of the
experimental data with a specifically designed representation learning task and thus can handle
batch effects and dropout events. In the task, the deep learning model learns to pull together
the representations of similar cells while pushing apart distinct cells, without manual labeling.
It achieves superior performance on a broad range of fundamental tasks, including clustering,
visualization, dropout correction, batch effect removal, and pseudo-time inference. The
proposed method successfully identifies and illustrates inflammatory-related mechanisms in a
COVID-19 disease study with 43,695 single cells from peripheral blood mononuclear cells.
Further experiments to process a million-scale single-cell dataset demonstrate the scalability
of CLEAR. This scalable method generates effective scRNA-seq data representation while
eliminating technical noise, and it will serve as a general computational framework for single-

cell data analysis.
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Introduction

Single-cell RNA sequencing (scRNA-seq) has been a powerful tool for measuring the transcriptome-
wide gene expression in individual cells and understanding the heterogeneity among cell populations"
2. It has been facilitating researchers to investigate several critical biomedical topics, such as cancer®
and autoimmunity*. Despite its promises, the unique properties of the sScRNA-seq data, such as extreme
sparsity and high variability>, have posed a number of computational challenges to researchers®’. To
analyze the data, among all the steps’, the key processing is to obtain a reliable low-dimension
representation for each cell, which can preserve the biological signature of the cell for downstream
analysis while eliminating technical noise®°.

The existing commonly used methods to perform the above processing are based on different backbone
algorithms and assumptions. The earliest methods utilize the traditional dimension reduction algorithms,
such as Principal Component Analysis (PCA), followed by k-means or hierarchical clustering to group

cellg> 10-15

. Although these methods are widely used, their assumption, that is, the complex single-cell
transcriptomics can be accurately mapped onto a low-dimensional space by a generalized linear model,
may not be necessarily justified®. Considering the complexity of the data, researchers have developed
multiple kernel-based spectral clustering methods to learn more robust similarity matrices for cells'® 17,
However, the time and space complexity of such methods impede the broad applications of the methods>.
In contrast, the graph-based methods enjoy high speed and scalability'* !> '8 1° But such methods are
hyper-parameter sensitive. The choice of k for the widely used k-nearest-neighbors graph affects the
size and number of final clusters’. Because of the model capacity and scalability of deep learning
methods, almost all the recently developed methods are based on antoencoder® ®-2°> (AE) or variational

autoencoder® 2%?7 (VAE), which can also incorporate the biostatistical models?-%°

seamlessly. However,
as AE and VAE methods are unsupervised learning methods, it is very difficult to control and decide
what the deep learning models will learn, although some very recent studies try to impose constraints
and our prior knowledge about the problem onto the low-dimensional space® ?’. Researchers have also
tried to utilize manual labeling as supervision for training the models, accompanied by transfer

learning”? or meta-learning®®, but such methods encounter scalability issues and have strong

assumptions on the homogeneity of different datasets, making them less popular than the above methods.
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As discussed above, almost all the existing methods are based on unsupervised learning’, regardless of
the specific algorithm. Without accessible supervision, for the deep learning-based methods, it is hard
to guide the training process of the model and explain why a particular transformation is learned,
although the model may work well. To promote the scRNA-seq data analysis, we indeed have some
specific requirements for the model. For example, the functionally similar cells should be close in the
transformed space, while distinct cells should be distant’; the model should overcome the batch effect
and map the cells of the same type but from different experiments into the same region®. Unsupervised
learning methods may have difficulty in incorporating these requirements explicitly. Here, we propose
a novel method, CLEAR, for integrative single-cell RNA-seq data analysis, based on a new machine
learning scenario, self-supervised learning, which can model all the above requirements explicitly.
More specifically, we design our method based on self-supervised contrastive learning?!, where we
construct the training labels from the unlabeled data. For the gene expression profile of each cell, we
distort the data slightly by adding noise to the raw data, which mimics the technical noise in the
biological experiments. During training, we force the model to produce similar low-dimension
representations for the raw data and the corresponding distorted profile (positive pairs). Meanwhile, we
train the model to output distant representations for cells of different types (negative pairs). Intuitively,
the deep learning model learns to pull together the representations of similar cells while pushing apart
different cells, only utilizing labels constructed from the data without manual labeling.

Based on self-supervised contrastive learning, CLEAR achieves superior performance on a broad range
of fundamental tasks for single-cell RNA-seq data analysis, including clustering, visualization, dropout
correction, batch effect removal, and pseudo-time inference. As for clustering, CLEAR can outperform
the popular tools and recently proposed tools on diverse datasets from different organisms. Applied on
a dataset from a COVID-19 disease study with 43,695 single cells from peripheral blood mononuclear
cells, CLEAR successfully identifies and illustrates inflammatory-related mechanisms. Further
experiments to process a million-scale single-cell dataset demonstrate the scalability and potential of
CLEAR to handle the emerging large-scale cell atlases. With the capability of generating effective
scRNA-seq data representation while eliminating technical noise, the proposed method can serve as a

general computational framework for single-cell data analysis.
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Results

Overview of CLEAR

Unlike most existing methods, which are based on unsupervised learning to map the single-cell gene
expression profile to the low-dimension space, we develop CLEAR base on self-supervised learning.
That is, although we do not have the golden standard supervised information, such as the cell type, we
train the deep learning model using the supervision constructed from the unlabeled data themselves.
Notice that we can incorporate our prior knowledge about single-cell RNA-seq data, such as noise and
dropout events, into the model training process implicitly and seamlessly when we build the label from
the unlabeled data. More specifically, we design CLEAR based on self-supervised contrastive learning?!.
As shown in Fig. 1, eventually, we also want to train a deep learning encoder to map the gene expression
profile into the low-dimension space. However, in addition to that, we further want the trained model
to force functionally similar cells close in the transformed space while distinct cells being distant. Here,
the model should also be robust to technical noise, such as dropout events. That is, the profiles from the
same cell, no matter with or without dropout events, should be mapped into the same place in the low-
dimension space. Although it is difficult to estimate the noise level of the real dataset, we can add
simulated noise to the data and force the trained to be robust to them. Based on the above idea, we
design CLEAR as shown in Fig. 1. Given the single-cell gene expression profile, we add different
simulated noise, such as Gaussian noise and simulated dropout events, to it (data augmentation),
resulting in distorted profiles (augmented data). The raw profile and the corresponding distorted profiles
from the same cell are positive pairs, while the profiles from different cells are negative pairs. When
training the model, we force the model to produce similar representations for the positive pairs while
distinct for the negative pairs (contrastive learning). Intuitively, we pull together the representations of
functionally close cells in the low-dimension space while pushing apart the embeddings of the
dissimilar ones. CLEAR does not have any assumptions on the data distribution or the encoder
architecture. It can eliminate technical noise and generate effective scRNA-seq data representation,
which is suitable for a range of downstream applications, such as clustering, batch effect correction,

and time-trajectory inference, as discussed below.
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Overall clustering performance

To access how the representation from CLEAR helps to cluster, we evaluate the proposed method,
combined with the k-means clustering algorithm, on ten published datasets with expert-annotated
labels*>38. The label information is only available during testing. We compare our model with several
state-of-the-art methods that are widely used for scRNA-seq data and belong to different categories,
including PCA-based tools (Seurat'’, SC3!!, CIDR!?, SINCERA'"®), graph-based methods (Seurat'®,
scGNN?), deep generative models (scVI®, scDHA?!, scGNN?*, ItClust*?), and transfer learning
approach (ItClust*?). Evaluated on the same datasets with five-fold cross validation, CLEAR achieves
substantially better performance in clustering adjusted Rand index (ARI) score than all the other
methods on most datasets (Fig. 2a, Supplementary Table 6). In particular, on average, CLEAR
improves over the second-best method, scDHA, by 4.56% regarding the score. To evaluate the
performance more comprehensively, we also use other metrics, such as normalized mutual
information(NMI), where the compared methods show similar results. To better understand the
representation produced by each method, we use uniform manifold approximation (UMAP) to project
the internal representations into a two-dimensional space and visualize them. (Fig. 2b, Supp Fig 1-9)
As shown in the figure, CLEAR learns to embed similar cells within the same clusters while separate
dissimilar cells well among different clusters. Compared to the other methods, it produces more similar
clustering results as the ground truth cell annotation. Furthermore, as illustrated in Fig. 2¢, the river plot
of the Hravtin dataset, comparing the CLEAR clustering and expert annotation, suggests that they are
nearly perfectly matched. On the other hand, scDHA tends to under-cluster the dataset, e.g., the
interneurons are mixed up with the Exicitory cell, while Seurat is likely to over-cluster the cells, e.g.,
oligodendrocytes and Excitatory cells are split into many subclusters. Although CLEAR does not access
any human supervision on marker genes, it can recover the ground truth directly for this dataset,
suggesting that the proposed framework can implicitly capture the data's biological features.
Furthermore, to demonstrate the effect of the proposed self-supervised contrastive learning settings, we
perform an ablation study on the data augmentation operations, removing each operation one by one
and recording the performance change. As shown in Supplementary Table 8,10, removing either

augmentation step will lead to the decreased ARI performance of CLEAR, which strongly indicates
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that the introduced noise and instance discrimination task help the model to capture the real cell-cell
relationships. In addition, we further check the influence of using highly variable genes, discovering
that those low variable genes may reduce the signal ratio and harm the model performance, which is
consistent with the previous study®* *. The design and comprehensive results of the ablation studies,

together with the hyper-parameter selection, are detailed in the Supplementary Table 8-12.

CLEAR corrects dropout events and batch effects effectively

Dropout events and batch effects are notorious in scRNA-seq data analysis, which should be handled
properly. We next evaluate the robustness of CLEAR when encountering dropout events. Although it
is impossible to recover the actual gene expression levels and determine how dropouts impact the data,
we simulate the dropout effects by randomly masking non-zero entries into zero with a hypergeometric
distribution. Given the additional artificial dropouts, clustering becomes much more difficult. We test
the eight competing approaches together with CLEAR on the Hravtin dataset, containing 48,266 single
cells with 25,187 genes and thus 1.2 billion read counts. Among these reads, 94.2% of them are zeros.
We set 10%, 30%, 60%, 80% dropout rates for the non-zero entries, respectively, resulting in a masked
dataset with up to 98.8% zeros (Supp Fig. 16). CLEAR achieves the best performance in handling
dropout events in terms of clustering, even when 80% of the non-zero entries are masked, suggesting
that it is robust and has the potential to extract important features in some extreme cases. Although the
performance of scDHA is similar to that of CLEAR when no dropouts are introduced, it becomes worse
when the dropout rate is 80%. (Fig. 2d).

Although several methods have been proposed to correct batch effects, which are undesirable variability
in the scRNA-seq datasets from technical and biological noise, most of them work as separate modules,
focusing on one variable, and thus cannot generalize to the large complex atlas projects. CLEAR,
however, has the potential to model multiple batch effects in an end-to-end fashion. Here, we assess

CLEAR on correcting batch effects. Specifically, we first evaluate CLEAR on a dataset*’

, consisting of
batches with shared cell types and biologically similar but unshared cell types. The goal of the batch

effect removal algorithms is to integrate common cell types while maintaining separation between

highly similar cells in different batches (Methods). As shown in Fig. 3a, CLEAR can separate
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difference cell types while mix up DoubleNeg and pDC cells from different batches. The biological
similarity between CD141 cells and CDI1C cells is also represented on the figure: the distance between
CD141 cell cluster and CD1C cell cluster is closer than the other two clusters. On the other hand, scVI
and SIMLR bring DoubleNeg and pDC cells closer but do not mix the batches well. Seurat can mitigate
the batch effects in DoubleNeg and pDC cells but split CD141 cells into 2 clusters. tCLUST mixed up
all cells, regardless of batch and cell type, suggesting that it could not handle the dataset.

We further quantify the performance of different methods regarding batch effect removal with two
metrics, average silhouette width (ASW) and adjusted rand index(ARI), on six datasets (Datasets). We
further calculate each metric in three aspects: cell type (cARIL, cASW), batch mixing (1 — bARI, 1 —
bASW), and the Harmonic mean of the two (f1_ARI, f1_ASW). As shown in Fig. 3b, CLEAR achieves
the best balance between cell type identification and batch mixing. Futhermore, CLEAR outperforms
all the other baselines under various complex batch effects settings, even though it was not designed to
do so (Supp Fig. 10-15). In particular, on the Tabula Muris Senis cell atlas, which covers the life span
of a mouse and contains many batches, including cells from several mouses with different identities,
ages, genders, and from different chips, CLEAR mixes all the cells of the same type from different

batches while separating distinct cell types well.

Pseudo-time inference

Another thriving topic in single-cell RNA-seq data analysis is pseudo-time inference, also known as
trajectory inference. It aims to infer the ordering of cells along a one-dimensional manifold (pseudo-
time) from the gene expression profiles. Usually, the inferring algorithms will benefit much from better
data representations. Here, we evaluate whether the representation produced by CLEAR can facilitate
the downstream pseudo-time inference. We use the CLEAR embeddeings and the PAGA*! algorithm
to generate the pseudo-time. We compare it with two other popular methods, SCANPY'* and
Monocle3*?, using two mouse embryo development datasets: Yan** and Deng*. We show the cells
ordered by pseudo-time in Fig. 4 . Ideally, the points should fall on the diagonal, indicating the relative
relationship among the cells. The time inferred with CLEAR is strongly correlated with the true

development stages, where Monocle3 mixes the cells from different development stages. We also use
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the R-squared value to quantify the performance. CLEAR achieves the highest value (R? = 0.957),
compared with SCANPY (R? = —0.014) and Monocle3 (R? = 0.884). We further illustrate the cell
embeddings in the 2D space with UMAP, as shown in Fig. 4. The smooth lines indicate the time-
trajectory from different methods. The trajectories inferred by CLEAR follow the development stages
precisely. It starts at the zygote, goes through two cells, four cells, eight cells, and 16 cells, and finally
stops at the blast cells. However, for Monocle3 and SCANPY, there is no clear trajectory among the
cells. The cells in the early stages tend to mix, while cells in the late stages form another big group. The
above experiments suggest that cell embeddings from CLEAR can facilitate the downstream algorithms

in producing better biologically meaningful trajectories.

CLEAR illustrates peripheral immune cells atlas and inflammatory-related mechanisms in
COVID-19.

To demonstrate the application potential of CLEAR on real-world biology research, we apply it to
analyze a newly published COVID-19 dataset** (GEO accession number GSE150728), containing
44721 cells (43695 cells after quality control) collected from six healthy controls and seven COVID-
19 samples. Four of the seven COVID samples are collected from patients with acute respiratory distress
syndrome (ARDS) in clinical (Fig. 5a, Supplementary Table 1). We perform dimensionality reduction
by CLEAR and graph-based clustering, identifying 32 clusters and visualizing them via uniform
manifold approximation and projection (UMAP). We calculate the differential expressed genes (DEGs)
of each cluster to annotate cell types manually. The cell types of monocytes (CD14+ and CD16+), T
cells (CD4+ and CD8+), natural killer (NK) cells, B cells, plasmablasts, conventional dendritic cells
(DCs), plasmacytoid dendritic cells (pDC), stem cell (SC) and eosinophil, neutrophil, platelets, and red
blood cells (RBCs) are identified (Fig. 5bh,d, Supplementary Table 2).

To assess the general atlas of immune responses and perturbation during different COVID-19 statuses,
we quantify the proportions of immune cell subsets in health donors (HDs), moderate (without ARDS),
or severe COVID-19 (with ARDS) individuals (Fig. 5¢). Consistent with previous reports*, several
immune cell subsets vary between healthy donors and COVID-19 samples, and we observe a significant

depletion of NK cells, DC, pDC, and CD16+ monocytes. We also note an elevated frequency of
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plasmablasts, especially in patients with ARDS, which indicates that, together with the published
clinical observations*®, acute COVID-19 response may be associated with a severe humoral immune
response.

Several previous studies have shown that severe COVID-19 has been associated with dysregulated
immune responses, which may be induced by the abnormal activation or suppression of inflammatory
reaction*’*°, To reveal inflammatory-related mechanisms in COVID-19, we perform transcription level
analysis on monocytes in more granularity. We first examine the expression of ‘COVID cytokine storm’
marker genes which encode pro-inflammatory cytokines reported before produced by monocytes,
including ILIB, IL2, IL6, IL10, TNF>" 32, Interestingly, we do not find significant expression of these
pro-inflammatory genes in monocytes (Fig. Se), consistent with recent research with deeper profiling

of immune cells*>#°

, suggesting that COVID-19 may also present an immune suppression status. To
further analyze transcription changes driving monocyte response remodeling in COVID-19, we conduct
differential expression (DE) analysis and cellular pathway analysis by comparing COVID samples to
HDs. Given that the dysregulation of CD14+ monocyte plays a more dominant role in COVID-19
progress>®, we especially investigate the transcription profile changes in CD14+ monocytes. An
increased IFN-stimulated gene (ISG) set and decreased major histocompatibility complex (MHC)
molecules in CD14+ monocyte compared to HDs are observed (Fig. 5f). Scoring the samples with
published MHC-related genes and ISGs respectively also reveal that downregulation of MHC gene
expression and upregulation of ISGs are significant in CD14+ monocytes across all the COVID patients
(Fig. 5g, h). The dominant effect of the IFN response is consistent with the acute viral infection. But
the suppression of MHC molecules may hinder the ability to activate lymphocytes and raise an effective
anti-viral response. We then apply Gene Ontology (GO) analysis, combined with GSEA, to study the
biological pathway changes in CD14+ monocytes with different COVID statuses. Significant ISG
upregulation in CD14+ monocyte in moderate samples is also reflected in the pathway analysis, such
as Type I interferon response (Fig. 5i), which may indicate a more active interferon level in moderate

COVID patients and have the potential to become a clinical blood test marker to monitor COVID

progress. Interestingly, we also find a secretion pathway and myeloid leukocyte activation upregulation

10
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in severe samples (Fig. 5j). This may suggest a dysregulated CD14+ monocytes activation in patients

with ARDS.

CLEAR handles million-scale scRNA-seq datasets

With the unprecedented increase in sequencing scale of the recent scRNA-seq experiment platform, the
ability to process million-scale single-cell sequencing datasets is increasingly essential. However, many
published tools require complicated parameter setting tunning and cause burdens on the users with the
split-merge process>*. This has become a big challenge. The proposed method, CLEAR, is a robust and
scalable framework, which can resolve the problem naturally. It can perform million-level dataset
dimension reduction in parallel while getting rid of the tedious parameter tunning process. To test the
scalability of CLEAR, we apply it on a newly published million-level COVID PBMC scRNA-seq
dataset (GEO accession number GSE158055), which contains around 1.5 million cells from COVID
samples. We use CLEAR with the default parameters to conduct dimension reduction, visualizing the
produced representations of the dataset with UMAP. CLEAR identifies 40 clusters, which are then
annotated manually according to each cluster’s top 100 differential expressed genes (Fig. 6a). Among
them, we find 14 subtypes and then plot selected marker genes for each cell type. Satisfyingly, a
significant expression track of these marker genes is obtained under the higher level (e.g., CD4+ T cells
and CD8+ T cells are combined as T cells) of these subtypes (Fig. 6b). Performing sensitive feature
extraction while eliminating technical noise on the million-scale dataset, CLEAR is an easy-to-use and
well-performed large-scale scRNA-seq data analysis tool, which has the potential to assist the

construction and refinement of cell atlases.

Discussion and Conclusion

scRNA-seq has become a powerful and essential tool in biological research. With the accumulated data
and the emerging cell atlases, the demand for practical computational tools to process and analyze such
data has never been fully satisfied. Based on the current situation, the newly developed tools to process
the single-cell data should, first of all, learn effective representations for the profile while eliminating

the technical noise within the data. Secondly, they should have sufficient scalability to handle the

11
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million-scale unlabeled datasets in the field. Here, we introduce such a framework, CLEAR, based on
self-supervised contrastive learning. By introducing noise during training and forcing the model to pull
together the representation of functionally similar cells while pushing apart dissimilar cells with a
carefully designed task, we managed to train the model to produce effective representations for the
single-cell profile. CLEAR achieves superior performance on a broad range of fundamental tasks,
including clustering, visualization, dropout correction, batch effect removal, and pseudo-time inference.
Furthermore, it scalable enough to handle a million-scale dataset, which suggests its potential to handle
the emerging cell atlases.

In the future, CLEAR can be further developed from both the biological aspect and the machine learning
aspect. Regarding the biological application, obviously, CLEAR is a very flexible framework to
perform data integration, no matter the single-omics, multi-dataset integration (cell atlases
construction), or multi-omics integration (e.g., the integration of scRNA-seq and scATAC-seq data). In
terms of the machine learning technical details, more advanced methods to handle data imbalance and
incorporate prior knowledge, such as partially labeled data, should be developed. We believe that our

framework, CLEAR, will become an alternative approach for single-cell data analysis.
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Methods

Datasets

Below we describe how we obtained and preprocessed each dataset. Notice that, to show the
generalization property of CLEAR, we used various datasets with different sequencing protocols
(Smart-Seq, Smart-Seq2, DropSeq, CEL-Seq?2, efc.), from different tissues, and with diverse data sizes
(from 90 cells to 1.46 million cells). Unless otherwise noted, we obtained the cell type annotation
information of each dataset from the original data paper. For the Hrvatin, Kolodziejczyk, Muraro,
Pollen, and Tabula Muris Senis datasets, to improve the data quality, we filtered out low-quality cells
with fewer than 200 genes and genes expressed in less than three cells.

Yan dataset. The Yan dataset refers to the human preimplantation embryos and embryonic stem cells.
In this dataset, 90 cells were sequenced with the Tang protocol. We downloaded the dataset from
Hemberg Group’s website. We used Scanpy to log-transform the dataset, and then each cell was
normalized to 10,000 read counts. After that, highly variable genes were selected. Finally, we scaled
the dataset to unit variance and zero mean.

Deng dataset. The Deng dataset refers to the mouse preimplantation embryos and embryonic stem cells
of mixed background. 268 cells were sequenced via two protocols, Smart-Seq and Smart-Seq2. We
downloaded the dataset from Hemberg Group’s website and performed a log-normalization
transformation on the RPKM expression values with SCANPY.

Hrvatin dataset. The Hrvatin dataset refers to the mouse primary visual cortex cells under different
simulation conditions, which was downloaded from GEO database (accession number: GSE102827). It
contains 48,266 cells from 6-8 week-old mice, which were sequenced by DropSeq. After low-quality
data filtering, we performed the log transformation, per-cell count normalization, and highly variable
gene selection steps as mentioned above.

Kolodziejczyk dataset. This dataset, which was downloaded from the Hemberg Group’s website,
contains 704 embryonic stem cells. They were sequenced with three batches under SMARTer protocol.
We removed the low-quality data and the spiked-in cells. The top 2,000 most variable genes were

selected for downstream analysis after we normalized each cell to 10,000 read counts.
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Muraro dataset. This dataset, sequenced with the CEL-Seq2 protocol, contains 2126 cells from the
human pancreas. We downloaded the data from the GEO database (accession number GSE85241), and
removed the low-quality data and cells containing a higher number of mitochondrial genes and spike-
in RNAs. The highly variable genes were then selected after log transformation.

Pollen dataset. The dataset, sequenced with the SMARTer protocol, contains 301 cells in the developing
cerebral cortex from 11 populations. We downloaded it from the Hemberg Group’s website, removing
the low-quality data and cells having a higher number of mitochondrial genes and spike-in RNAs. The
highly variable genes were then selected after log transformation.

Tabula Muris Senis dataset. The entire dataset, sequenced with 10X, contains more than 100,000 cells.
It was generated across the lifespan of mice, including 23 tissues and organs, but here we only focus on
four tissues: bladder, mammary gland, limb muscle, and diaphragm. These datasets allow us to examine
the batch effect and cell clustering. After downloading the raw data from
https://figshare.com/projects/Tabula_Muris_Senis/64982, we removed the low-quality data and cells
containing a higher number of mitochondrial genes and spike-in RNAs. Each cell was normalized to
10,000 read counts. The highly variable genes were then selected after log transformation. Finally, we
scaled the dataset to unit variance and zero mean.

Human dendritic cells dataset. It consists of human blood dendritic cell (DC) data from Villani et al >°.
We downloaded the data from https://github.com/JinmiaoChenLab/Batch-effect-removal-
benchmarking/tree/master/Data. The dataset is composed of two batches. Each batch contains three cell
types. Both batches share two cell types (pDC and double negative), while remaining one unshared
biologically similar cell type (CD141 and CD1C, respectively).

COVID PBMC dataset. This dataset (GEO accession number: GSE150728), generated by Wilk et al #,
contains 44,271 cells sequenced with the Seq-Well platform. We have eight peripheral blood samples
from seven SARS-COV-2 patients and six healthy controls. We removed the cells with a higher number
of mitochondrial genes and spike-in RNAs. Each cell was normalized to 10,000 read counts. The highly
variable genes were then selected after log transformation. Finally, we scaled the dataset to unit variance

and zero mean. The cell type information was annotated using marker genes by experts.
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COVID large-scale dataset. This dataset (GEO accession number: GSE158055), generated by Ren et al
%%, contains more than 1.46 million cells generated through 10X Genomics. 171 COVID-19 patients and
25 healthy individuals were enrolled with PBMC, BALF, PFMC, and sputum samples. We removed
the cells containing a higher number of mitochondrial genes and spike-in RNAs. Each cell was
normalized to 10,000 read counts. The highly variable genes were then selected after log transformation.
Finally, we scaled the dataset to unit variance and zero mean. The cell type information was annotated

using marker genes by experts.

The CLEAR framework

The key idea of CLEAR is to learn effective cell representations, considering noise in the data, and to
pull together the representation of functionally similar cells, while pushing apart dissimilar cells. We
achieve the goal with self-supervised contrastive learning. Given the single-cell gene expression profile,
we add different simulated noise, such as Gaussian noise and simulated dropout events, to it (data
augmentation), resulting in distorted profiles (augmented data). The raw profile and the corresponding
distorted profiles from the same cell are positive pairs, while the profiles from different cells are
negative pairs. When training the model, we force the model to produce similar representations for the
positive pairs while distinct for the negative pairs (contrastive learning). More specifically, by
discriminating the positive pairs from a large number of negatives, CLEAR learns a locally smooth
nonlinear mapping function fy that pulls together multiple distortions of a cell in the embedding space
and pushes away the other samples. The locally smooth function is also helpful for the global
embeddings. In the transformed space, cells with similar expression patterns form clusters, which are
likely to be cells of the same cell types. The function fy is parameterized by a deep neural network,
whose parameters can be optimized in an end-to-end manner. The detailed workflows are as below.

1. Data augmentation. We first perform data augmentation to generate training pairs. Each cell will
have two augmented versions, and thus a minibatch of N cells is augmented to 2N cells. This step will
be discussed in detail in Data augmentation.

2. Constructing negative labels with data from multiple minibatches. For data in one minibatch, we can

consider the two data points generated from the same gene expression profile as a positive pair while
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the other combinations as negatives. However, if we only consider the negatives within a minibatch,
the learned mapping function is less likely to be effective for global clustering. To make the locally
smooth function fy have a global effect, we should consider negatives from other minibatches. We
achieve that by maintaining a queue with data from multiple minibatches. When the current minibatch
is enqueued, the oldest minibatch will be dequeued. Within the queue, a specific distorted profile only
has one positive pair match, while all the other profiles are negatives for it. Notice that the conceptual
difference between minibatch and the queue arises from the hardware limitation. If the GPU memory
is large enough and we can feed all the data in one minibatch, we can discard the queue maintenance.

3. Loss function. Let X = {x; € R }2Nbe the queue consisting of a number of gene expression
profiles, where G denotes for the number of genes; N stands for the batch size; M stands for the number
of batches stored in the queue. In one batch, N samples are augmented into 2N samples. Consequently,
the queue consisting of M minibatches contains 2MN augmented samples. x;, denotes for the k-th
(distorted) gene expression profile in the queue. For a pair of positive samples x; and x; (derived from
one original sample), the other 2MN — 2 samples are treated as negatives. To distinguish the positive

pair from the negatives, we use the following pairwise contrastive InfoNCE loss:

()

.
ilﬂ,lk;:i e (xi'Tk)

(1)

Li,j = —lOg

Note that L; ; is asymmetrical. Suppose we put all the pairs in an order, such that 2i — 1 and 2i denote

for the paired augmentations, then the summed-up loss is:

N
1
L = WZ(LZL'—I,ZL' + Li2i-1)- (2)
l:

4. Momentum update. As suggested by He et al. ¥, a rapidly changing encoder network will reduce the
representations’ consistency, resulting in poor performance. To deal with the problem, we utilize two
encoders, a slow-evolving key encoder fi and a fast-evolving query encoder f, . Denoting the
parameters of f; as 6, and those of f; as 6, we update the query encoder by the normal back-

propagation. However, for the key encoder, we update it with momentum:

O < mby + (1 —m)b,. 3)
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Here m € [0,1) is a momentum coefficient. The momentum update makes the encoder network evolve
smoothly.

5. Inference. After we train the model, the query encoder network f; is the final productive network,
which outputs the representation of a single cell gene expression profile. After obtaining the
representations of all the cells in a dataset, we cluster the cells with the common clustering algorithms
(e.g., k-means algorithm, Louvain algorithm, and Leiden algorithm). Finally, cell types are assigned to

the discovered clusters based on the differential expression genes in the cluster.

Data augmentation

Data augmentation is critical to the success of self-supervised contrastive learning. We use the
following ways of data augmentation, considering noise during real experiments. Note that the
augmentations are performed in a specific order (as shown below). Not all the steps will be certainly
conducted, with each step having a probability of being chosen or dropped.

1. Random mask. We randomly replace some gene expression values with zero in the profile of the
target cell. The mask percentage is 0.2, while the probability of executing the step is 0.5. Notice that
this synthetic noise is similar to the dropout events in the single-cell sequencing experiments.

2. Gaussian noise. We randomly replace some gene expression values in the target cell profile with
numbers drawn from a predefined Gaussian distribution. The noise percentage is 0.8. The mean of
Gaussian distribution is 0, while the standard deviation is 0.2. The probability of executing this step is
0.5.

3. Random swap. For a gene expression profile, we randomly choose an even number of gene
expression values and construct pairs from the subset, then swapping the gene expression values inside
each pair. The total percentage that performs swapping is 0.1. The probability of execution is 0.5.

4. Crossover with another cell. We randomly choose another cell in the dataset as the crossover source
and then select some genes from the target gene expression profile, swapping the gene expression value
between the two cells. 25% of the gene expression data in one cell will be exchanged with the other
cell. The probability of executing this step is 0.5. This exchanging step will not influence the next batch

or the next training epoch.
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5. Crossover with many cells. We randomly choose several cells in the dataset as the crossover source
and some genes from the target gene expression profile, swap the expression values between the source
cell and the target cells. 25% of the gene expression data in the cell will be exchanged with the selected
cells. The probability of execution is 0.5. This step would not influence the next batch or the next

training epoch.

Architecture and hyperparameters

The encoder neural network in CLEAR consists of two fully connected layers. The query encoder and
the key encoder share the same architecture. The first layer has 1024 nodes, while the second layer has
128 nodes. The ReLU function, defined as ReLU(x) = max(0,x), is used as the nonlinear activation
function after the linear transformation. We use Adam optimizer with the learning rate as 1 and the
cosine learning schedule. We train the paired neural networks for 200 epochs. Temperature, 7, in the
CLEAR’s objective function, is set to be 0.2. The momentum coefficient m is 0.999. The hyper-

parameters are determined using grid search with cross-validation.

Performance evaluation

To evaluate the standard clustering performance of the proposed method, we use the adjusted Rand
index (ARI) and Normalized Mutual Information (NMI). On the other hand, to benchmark different
methods’ performance on batch effect removal, we utilize ARI and Average Silhouette Width (ASW).
In addition, we also used cell ARI (cARI) and batch ARI (bARI), as well as cell ASW (cASW) and
batch ASW (bASW). Their definitions are as follows. Note that, during evaluation, we use the default
parameters for all the criteria. More quantitative measurement also shown in Supplementary Method
3.

ARI measures the similarity between two partitions by comparing all the pairs of the samples adjusted

by random permutation.

RI — E[RI]
ARI =

" max(RI) — E[RI] )

Where Rand index (RI) is defined as
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a+b

RI =
Gy

(5)

Where a is the number of pairs that are correctly labelled in the same set of the two partitions, and b is
the number of pairs that are correctly labelled but not in the same set of the two partitions. C? is the
total number of pairs. E[RI] is the expected RI from a random model. ARI ranges from -1 to 1. A value
close to 0 suggests random labeling, while close to 1 means the nearly perfect cell type purity. To
evaluate batch effect removal, we also calculate three specific kinds of ARI, cell ARI (cARI) and batch
ARI (bARI), and the Harmonic mean of the two f1_ARI. A higher cARI corresponds to higher cell type
purity, while a bARI close to zero suggests superior batch effects removal.

NMI measures the amount of information obtained about one partition through observing the other
partition, ignoring the permutations:

250
NMI = T + 2T ©®

Where Y is the class labels, and C is the cluster label. H(.) is the entropy, and I(Y; C) measures the
mutual information between Y and C.
ASW measures the relative distance between inter-clusters and intra-clusters. The Silhouette width (SW)

is defined as:

b—a

Where a is the mean distance between a sample and all the inter-cluster points, while b is the mean
distance between a sample and all the other points in the next nearest cluster. The ASW is defined as
the average of all the cells’ Silhouette width within the entire dataset. The range of ASW is [—1,1],
where 1 suggests the best clustering result and -1 suggests the worst clustering result. To evaluate batch
effect removal, we calculate three kinds of ASW, cell ASW (cASW), batch ASW (bASW), and the
Harmonic mean of the two f1_ASW. A higher cASW suggests better cell type purity, while a lower

bASW suggests better batch mixing.

Software comparison and settings
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To evaluate the performance of CLEAR compared with other methods, we select the below several
software packages for comparison. All the evaluation codes and input data follow the instruction and
tutorials provided by each package (Code Availability).

For baseline clustering, we compare CLEAR with R-based tools including Seurat, SC3, CIDR,
SINCERA, scDHA, and SIMLR, and Python-based packages, such as ItClust, scVI, and scGNN. The
details of the software we used are: (i) Seurat version 4.0.1 from CRAN. The parameters are set as the
default value provided by the tutorial. (i) SC3 version 1.2 from Bioconductor. The key parameter,
svm_num_cells, which means the number of randomly selected training cells to be used for SVM
prediction, is set as 5000. All other parameters follow the SC3 function instruction. (iii) CIDR version
0.1.5 from Github (https://github.com/VCCRI/CIDR). We set all the parameters as default following
the README file on Github. (iv) SINCERA from Github (https://github.com/xu-lab/SINCERA). The
parameters follow the pipeline of the demonstrations listed on their Github. (v) scDHA from Github
(https://github.com/duct317/scDHA). Parameters and data input format are set following the running
example. We also utilize its built-in function to generate 2d visualization of the representations. (vi)
ItClust from Github (https://github.com/jianhuupenn/ItClust), running with the default parameters. For
the sake of simplicity and convenience, we set the required source dataset in the code as “baron-human”
across all the experiments. (vii) SIMLR version 1.18.0 from Bioconductor, running with the default
parameters. We select the small-scale version of code because the large-scale version cannot run in our
environment. (viii) scVI from Github (https://github.com/YosefLab/scvi-tools). We use K-means for
clustering based on the embeddings generated from the trained VAE. (ix) scGNN version 1.0.2 from
Github (https://github.com/juexinwang/scGNN). We run the GPU version and set the hyper-parameters
following their example. We include LTMG inferring in preprocessing with the corresponding given
option of the code. All the hyper-parameters are set following the tutorial.

For the dropout clustering experiment, we create a dropout_sampling function for random sampling.
Random seeds are set to ensure each sampling is unique. Software parameters are the same as the
baseline clustering experiment.

Seurat, SC3, CIDR, and SINCERA are run on the PC with Intel(R) Core i7-8750H CPU, Window 10

operation system, 32GB physical memory. The virtual memory limitation of our working environment
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is set as 100GB RAM, R version 4.0.3. We run scDHA, SIMLR, ItClust, scVI, and scGNN on a
workstation with Intel(R) Xeon(R) CPU E5-2667 v4, CentOS Linux release 7.7.1908 operation system,

Nvidia TITAN X GPU, 503GB physical memory.

Case study of the COVID dataset

We first apply CLEAR on the published COVID PBMC scRNA-seq dataset, the parameters of CLEAR
are set as in the Architecture and hyperparameters. Based on the 128 features generated by CLEAR,
we run Seurat (V 4.0.1) with the parameter Resolution = 1.2 to cluster all the cells, by which 32
clusters are identified. The cell type of each cluster is annotated by the top differentially expressed
genes found by the FindAllMarkers function. The statistical method is Wilcoxon Rank-Sum Test, and
the LogFC threshold = 0.25. All the gene expression level plots are generated by the FeaturePlot
function with the default parameters. To conduct different expression gene (DEG) analysis, we use the
Wilcoxon Rank-Sum Test to search for the DEGs between each pair of monocytes obtained from the
three groups (i.e., the health donors (HDs), moderate and severe (ARDS) groups). We put
LogFC threshold = 0.25 and show negative (downregulated) genes as well. We obtain two groups of
DEGs for each monocyte subtype and show the result in the Supplementary material (Supplementary
Table 4-5). Given that gene expression score can be calculated by the AddModuleScore function, we
use the function to calculate ISG score and MHC score for monocytes with the pre-determined
interferon-stimulated gene set and MHC-related gene set (Supplementary Table 6). The significant
test is also the Wilcoxon test in Fig 5. g and h. Finally, we use the DEGs we got before to perform Gene
Ontology (GO) analysis for each COVID stage and run GSEA analysis on the GO results. All the

parameters are set as default during GO and GSEA analysis.

Data Availability
We used 10 datasets for evaluating the performance of clustering and dropouts, one dataset for

benchmarking the batch effects removal. Two COVID-PBMC dataset for case study. The
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details information and the links to the publicly available sources of the 13 datasets can be

found in the Method part.

Code Availability

An open-source implementation of CLEAR is available at GitHub:

https://github.com/ml4bio/CLEAR, under the MIT license.
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Fig. 1 | Overview of the proposed framework, CLEAR. The proposed method is based on self-supervised
contrastive learning. For the gene expression profile of each cell, we distort the data slightly by adding
noise to the raw data, which mimics the technical noise in the biological experiments. When training
the deep encoder model, we force the model to produce similar low-dimension representations for the
raw data and the corresponding distorted profile while distant representations for cells of different types.
Intuitively, the deep learning model learns to pull together the representations of similar cells while
pushing apart different cells. By considering noise during training, CLEAR can produce effective
representations while eliminating technical noise for the scRNA-seq profiles. Such representations have
a broad range of applications, including clustering and classification, dropout event and batch effect
correction, pseudo-time inference. CLEAR is also scalable to million-scale datasets without any
overhead.
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of different methods against different artificial dropout percentages in terms of ARI.
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points should fall on the diagonal. Right figure: UMAP visualization of time trajectory inferred from CLEAR. b
CLEAR’s performance on the pseudo-time inference for the Deng dataset. ¢,d Monocle3’s performance on the
pseudo-time inference for the Yan and Deng dataset. e,f SCANPY’s performance on the pseudo-time inference
for the Yan and Deng dataset.

29


https://doi.org/10.1101/2021.07.26.453730
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.26.453730; this version posted July 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

c
CO14+ Monocyte
> ] ®Beel
: CD4+ T cel Status
SR coutat ® NK -] =m0
@ Heaalthy Donor (HD) £ CD&+ T cell z
'i‘ @ Plasmablast g Moderate
Moderate ’? s ° ckgés. Monocyte & W Severe (ARDS)
® Severe (ARDS) ¥ S it
T4 Momoym e @
e Wi @ SC & Eosinophil
v ® pOC
o PN o Mo
= <
= =
E 5
4
UMAPY &
d 2 = 2
o=-vzZorca 588 z:E32 583548
5:*»95052:::;.2 m3g =
£333%32 gﬂ_seewigg;‘;‘i;"““ e
s0C EEE EEE: b+ __~~“‘
SC & Eosinophi N Sy N N N S ) ) ) A SN A A . *» B
CD14+ Monocyle
pc FEFFFEF FrErFE - ——*—:>>)—-*——— ! CD16+ Monacyle
Neutrophil — e P.—_ ._F - e e | oy
5| | ==
Platelet FEFEE —~——-———v—}—:>>~— FrEEE EL
RBC = F - - ok | R S B K B B = rrreraa
Plasmablast =+ el el FEFEFEFFFRFFRF 18 L6 o TNF
8cell O ] .—.-»’y._.___ ___”.}..__
CD16+ Monocyte | g ) R S ;<»b___ ____H.w_.._—__
CD14+ Monocyte { = = —.—————.——--H—H»—.-———
NK ] }p b Lol L b b L.L.L | | g
COB¢ T cel }» > He- F-FFFFFFFFRFRFFRFFEFRF {3
s low Her
CD4+ T cell — e e FFHHFFFFFERERFRFRE I Y S S
f g I Moderate
e Treatment o Treatment . o005
o —_— .
HLA-E W Moderate 00005 '§ &
1 Sereve (ARDS) s : |k e
HLA-C g ' N S a
HLA-DMB ] & ” =<
HLA-DMA -1 H 75,*\\‘9"
é

I-

HLA-DRA
HLA-DRB1

HLA-DPA1

CO14+ Monocyte MHC Score

Ranked List Met

§ HLA-DPB1
HLA-DQB1
HLA-DRBS

H Moderate S ARDS! 2
D Voderate  Severe (ARD; oA SRy T

j:,G,’,s h J  severe (ARDS)
‘\ IFIT3 —e é .
IFITM2 g N é
IFide g 0 ‘.5:
. i 5
IFITM3 E §
1 HD Moderate  Severe (ARDS) _q,mmo‘“ww.
2
3
4 Fig. 5 | Peripheral immune cells atlas and inflammatory-related mechanisms in COVID-19 revealed by
5 CLEAR. a,b UMAP visualization of the COVID-19 cell atlas (a) colored by COVID status and (b) colored by 13 cell
6 type clusters (n=43695 cells). ¢ Bar plot showing the relative percentage of different cell types comparing three
7 COVID-19 statuses (HDs, Moderate status, and Severe status). d Stacked violin plot overview of the top-important
8 marker genes expression for each cell type. e UMAP visualization of the key pro-inflammatory cytokines expression
9 in both CD14+ and CD16+ monocytes. f Heatmap of IFN-stimulated genes and MHC-related genes in CD14+
10 monocyte. g,h Boxplots showing the mean (g) MHC-related score and (h) ISG score in CD14+ monocyte colored
11 by different COVID statuses (HDs--blue, Moderate--Oranger and Severe (ARDS)--Red). i,j Gene set enrichment
12 analysis (GSEA) of differential expressed gene (LogFC > 0.25) sets between (i) moderate CD14+ monocyte and
13 healthy donor CD14+ monocyte and (j) severe CD14+ monocyte and healthy donor CD14+ monocyte. Red
14 represents upregulated GO biological pathway, and blue represents downregulated GO biological pathway.
15
16

30


https://doi.org/10.1101/2021.07.26.453730
http://creativecommons.org/licenses/by-nc-nd/4.0/

NoOoUubhWN -

(0]

10

11

12

13

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.26.453730; this version posted July 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

® Bell (C1)
® CD4+ Tcell (C2)
® CD16+ Monacyte (C3)
® CD14+ Monacyte (C4)
® CD8+ T cell (C5)
NK cell (C6)
® Neutrophi (C7)
@ Plasmablast (C8)
® DC(C9)
Marginal zone B cell (C10)
Platelet (C11)
 Fibrobiast (C12)
Epithelial cells (C13)
® pDC (C14)

UMAP2

UMAP1

b

Epithelial

C13

®C12 . e - c00

Platelet
NK | = ce ce cc0

c11 o ° . N

®C14
y CO o .
Myeloid cells e C7
® C4

e C3 LA . LE X

000

® C5 @ oeo 0
T cells
e C2 L ICEERER
c10

e C1

B cells e

e Cgjeee )
Yy

Sarato, > SR DT A © > 2020 NTD Db N @ Do DA
SIS ST G TN G r s

Percent Expressed
©0 25 50 @75

Average Expression

012
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