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Abstract 1 

Single-cell RNA-sequencing (scRNA-seq) has become a powerful tool to reveal the complex 2 

biological diversity and heterogeneity among cell populations. However, the technical noise 3 

and bias of the technology still have negative impacts on the downstream analysis. Here, we 4 

present a self-supervised Contrastive LEArning framework for scRNA-seq (CLEAR) profile 5 

representation and the downstream analysis. CLEAR overcomes the heterogeneity of the 6 

experimental data with a specifically designed representation learning task and thus can handle 7 

batch effects and dropout events. In the task, the deep learning model learns to pull together 8 

the representations of similar cells while pushing apart distinct cells, without manual labeling. 9 

It achieves superior performance on a broad range of fundamental tasks, including clustering, 10 

visualization, dropout correction, batch effect removal, and pseudo-time inference. The 11 

proposed method successfully identifies and illustrates inflammatory-related mechanisms in a 12 

COVID-19 disease study with 43,695 single cells from peripheral blood mononuclear cells. 13 

Further experiments to process a million-scale single-cell dataset demonstrate the scalability 14 

of CLEAR. This scalable method generates effective scRNA-seq data representation while 15 

eliminating technical noise, and it will serve as a general computational framework for single-16 

cell data analysis.  17 
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Introduction 1 

Single-cell RNA sequencing (scRNA-seq) has been a powerful tool for measuring the transcriptome-2 

wide gene expression in individual cells and understanding the heterogeneity among cell populations1, 3 

2. It has been facilitating researchers to investigate several critical biomedical topics, such as cancer3 4 

and autoimmunity4. Despite its promises, the unique properties of the scRNA-seq data, such as extreme 5 

sparsity and high variability5, have posed a number of computational challenges to researchers6, 7. To 6 

analyze the data, among all the steps7, the key processing is to obtain a reliable low-dimension 7 

representation for each cell, which can preserve the biological signature of the cell for downstream 8 

analysis while eliminating technical noise8, 9.  9 

The existing commonly used methods to perform the above processing are based on different backbone 10 

algorithms and assumptions. The earliest methods utilize the traditional dimension reduction algorithms, 11 

such as Principal Component Analysis (PCA), followed by k-means or hierarchical clustering to group 12 

cells5, 10-15. Although these methods are widely used, their assumption, that is, the complex single-cell 13 

transcriptomics can be accurately mapped onto a low-dimensional space by a generalized linear model, 14 

may not be necessarily justified8. Considering the complexity of the data, researchers have developed 15 

multiple kernel-based spectral clustering methods to learn more robust similarity matrices for cells16, 17. 16 

However, the time and space complexity of such methods impede the broad applications of the methods5. 17 

In contrast, the graph-based methods enjoy high speed and scalability14, 15, 18, 19. But such methods are 18 

hyper-parameter sensitive. The choice of k for the widely used k-nearest-neighbors graph affects the 19 

size and number of final clusters7. Because of the model capacity and scalability of deep learning 20 

methods, almost all the recently developed methods are based on antoencoder5, 9, 20-25 (AE) or variational 21 

autoencoder8, 26, 27 (VAE), which can also incorporate the biostatistical models28, 29 seamlessly. However, 22 

as AE and VAE methods are unsupervised learning methods, it is very difficult to control and decide 23 

what the deep learning models will learn, although some very recent studies try to impose constraints 24 

and our prior knowledge about the problem onto the low-dimensional space5, 27. Researchers have also 25 

tried to utilize manual labeling as supervision for training the models, accompanied by transfer 26 

learning22 or meta-learning30, but such methods encounter scalability issues and have strong 27 

assumptions on the homogeneity of different datasets, making them less popular than the above methods. 28 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.26.453730doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453730
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

As discussed above, almost all the existing methods are based on unsupervised learning7, regardless of 1 

the specific algorithm. Without accessible supervision, for the deep learning-based methods, it is hard 2 

to guide the training process of the model and explain why a particular transformation is learned, 3 

although the model may work well. To promote the scRNA-seq data analysis, we indeed have some 4 

specific requirements for the model. For example, the functionally similar cells should be close in the 5 

transformed space, while distinct cells should be distant7; the model should overcome the batch effect 6 

and map the cells of the same type but from different experiments into the same region8. Unsupervised 7 

learning methods may have difficulty in incorporating these requirements explicitly. Here, we propose 8 

a novel method, CLEAR, for integrative single-cell RNA-seq data analysis, based on a new machine 9 

learning scenario, self-supervised learning, which can model all the above requirements explicitly. 10 

More specifically, we design our method based on self-supervised contrastive learning31, where we 11 

construct the training labels from the unlabeled data. For the gene expression profile of each cell, we 12 

distort the data slightly by adding noise to the raw data, which mimics the technical noise in the 13 

biological experiments. During training, we force the model to produce similar low-dimension 14 

representations for the raw data and the corresponding distorted profile (positive pairs). Meanwhile, we 15 

train the model to output distant representations for cells of different types (negative pairs). Intuitively, 16 

the deep learning model learns to pull together the representations of similar cells while pushing apart 17 

different cells, only utilizing labels constructed from the data without manual labeling. 18 

Based on self-supervised contrastive learning, CLEAR achieves superior performance on a broad range 19 

of fundamental tasks for single-cell RNA-seq data analysis, including clustering, visualization, dropout 20 

correction, batch effect removal, and pseudo-time inference. As for clustering, CLEAR can outperform 21 

the popular tools and recently proposed tools on diverse datasets from different organisms. Applied on 22 

a dataset from a COVID-19 disease study with 43,695 single cells from peripheral blood mononuclear 23 

cells, CLEAR successfully identifies and illustrates inflammatory-related mechanisms. Further 24 

experiments to process a million-scale single-cell dataset demonstrate the scalability and potential of 25 

CLEAR to handle the emerging large-scale cell atlases. With the capability of generating effective 26 

scRNA-seq data representation while eliminating technical noise, the proposed method can serve as a 27 

general computational framework for single-cell data analysis. 28 
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Results 1 

Overview of CLEAR  2 

Unlike most existing methods, which are based on unsupervised learning to map the single-cell gene 3 

expression profile to the low-dimension space, we develop CLEAR base on self-supervised learning. 4 

That is, although we do not have the golden standard supervised information, such as the cell type, we 5 

train the deep learning model using the supervision constructed from the unlabeled data themselves. 6 

Notice that we can incorporate our prior knowledge about single-cell RNA-seq data, such as noise and 7 

dropout events, into the model training process implicitly and seamlessly when we build the label from 8 

the unlabeled data. More specifically, we design CLEAR based on self-supervised contrastive learning31. 9 

As shown in Fig. 1, eventually, we also want to train a deep learning encoder to map the gene expression 10 

profile into the low-dimension space. However, in addition to that, we further want the trained model 11 

to force functionally similar cells close in the transformed space while distinct cells being distant. Here, 12 

the model should also be robust to technical noise, such as dropout events. That is, the profiles from the 13 

same cell, no matter with or without dropout events, should be mapped into the same place in the low-14 

dimension space. Although it is difficult to estimate the noise level of the real dataset, we can add 15 

simulated noise to the data and force the trained to be robust to them. Based on the above idea, we 16 

design CLEAR as shown in Fig. 1. Given the single-cell gene expression profile, we add different 17 

simulated noise, such as Gaussian noise and simulated dropout events, to it (data augmentation), 18 

resulting in distorted profiles (augmented data). The raw profile and the corresponding distorted profiles 19 

from the same cell are positive pairs, while the profiles from different cells are negative pairs. When 20 

training the model, we force the model to produce similar representations for the positive pairs while 21 

distinct for the negative pairs (contrastive learning). Intuitively, we pull together the representations of 22 

functionally close cells in the low-dimension space while pushing apart the embeddings of the 23 

dissimilar ones. CLEAR does not have any assumptions on the data distribution or the encoder 24 

architecture. It can eliminate technical noise and generate effective scRNA-seq data representation, 25 

which is suitable for a range of downstream applications, such as clustering, batch effect correction, 26 

and time-trajectory inference, as discussed below. 27 

 28 
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 6 

Overall clustering performance 1 

To access how the representation from CLEAR helps to cluster, we evaluate the proposed method, 2 

combined with the ý -means clustering algorithm, on ten published datasets with expert-annotated 3 

labels32-38. The label information is only available during testing. We compare our model with several 4 

state-of-the-art methods that are widely used for scRNA-seq data and belong to different categories, 5 

including PCA-based tools (Seurat10, SC311, CIDR12, SINCERA13), graph-based methods (Seurat18, 6 

scGNN24), deep generative models (scVI8, scDHA21, scGNN24, ItClust22), and transfer learning 7 

approach (ItClust22). Evaluated on the same datasets with five-fold cross validation, CLEAR achieves 8 

substantially better performance in clustering adjusted Rand index (ARI) score than all the other 9 

methods on most datasets (Fig. 2a, Supplementary Table 6). In particular, on average, CLEAR 10 

improves over the second-best method, scDHA, by 4.56% regarding the score. To evaluate the 11 

performance more comprehensively, we also use other metrics, such as normalized mutual 12 

information(NMI), where the compared methods show similar results. To better understand the 13 

representation produced by each method, we use uniform manifold approximation (UMAP) to project 14 

the internal representations into a two-dimensional space and visualize them. (Fig. 2b, Supp Fig 1-9) 15 

As shown in the figure, CLEAR learns to embed similar cells within the same clusters while separate 16 

dissimilar cells well among different clusters. Compared to the other methods, it produces more similar 17 

clustering results as the ground truth cell annotation. Furthermore, as illustrated in Fig. 2c, the river plot 18 

of the Hravtin dataset, comparing the CLEAR clustering and expert annotation, suggests that they are 19 

nearly perfectly matched. On the other hand, scDHA tends to under-cluster the dataset, e.g., the 20 

interneurons are mixed up with the Exicitory cell, while Seurat is likely to over-cluster the cells, e.g., 21 

oligodendrocytes and Excitatory cells are split into many subclusters. Although CLEAR does not access 22 

any human supervision on marker genes, it can recover the ground truth directly for this dataset,  23 

suggesting that  the proposed framework can implicitly capture the data's biological features.  24 

Furthermore, to demonstrate the effect of the proposed self-supervised contrastive learning settings, we 25 

perform an ablation study on the data augmentation operations, removing each operation one by one 26 

and recording the performance change. As shown in Supplementary Table 8,10, removing either 27 

augmentation step will lead to the decreased ARI performance of CLEAR, which strongly indicates 28 
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 7 

that the introduced noise and instance discrimination task help the model to capture the real cell-cell 1 

relationships. In addition, we further check the influence of using highly variable genes, discovering 2 

that those low variable genes may reduce the signal ratio and harm the model performance, which is 3 

consistent with the previous study24, 39. The design and comprehensive results of the ablation studies, 4 

together with the hyper-parameter selection, are detailed in the Supplementary Table 8-12. 5 

 6 

CLEAR corrects dropout events and batch effects effectively 7 

Dropout events and batch effects are notorious in scRNA-seq data analysis, which should be handled 8 

properly. We next evaluate the robustness of CLEAR when encountering dropout events. Although it 9 

is impossible to recover the actual gene expression levels and determine how dropouts impact the data, 10 

we simulate the dropout effects by randomly masking non-zero entries into zero with a hypergeometric 11 

distribution. Given the additional artificial dropouts, clustering becomes much more difficult. We test 12 

the eight competing approaches together with CLEAR on the Hravtin dataset,  containing 48,266 single 13 

cells with 25,187 genes and thus 1.2 billion read counts. Among these reads, 94.2% of them are zeros. 14 

We set 10%, 30%, 60%, 80% dropout rates for the non-zero entries, respectively, resulting in a masked 15 

dataset with up to 98.8% zeros (Supp Fig. 16). CLEAR achieves the best performance in handling 16 

dropout events in terms of clustering, even when 80% of the non-zero entries are masked, suggesting 17 

that it is robust and has the potential to extract important features in some extreme cases. Although the 18 

performance of scDHA is similar to that of CLEAR when no dropouts are introduced, it becomes worse 19 

when the dropout rate is 80%. (Fig. 2d).  20 

Although several methods have been proposed to correct batch effects, which are undesirable variability 21 

in the scRNA-seq datasets from technical and biological noise, most of them work as separate modules, 22 

focusing on one variable, and thus cannot generalize to the large complex atlas projects. CLEAR, 23 

however, has the potential to model multiple batch effects in an end-to-end fashion. Here, we assess 24 

CLEAR on correcting batch effects. Specifically, we first evaluate CLEAR on a dataset40, consisting of 25 

batches with shared cell types and biologically similar but unshared cell types. The goal of the batch 26 

effect removal algorithms is to integrate common cell types while maintaining separation between 27 

highly similar cells in different batches (Methods). As shown in Fig. 3a, CLEAR can separate 28 
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 8 

difference cell types while mix up DoubleNeg and pDC cells from different batches. The biological 1 

similarity between CD141 cells and CD1C cells is also represented on the figure: the distance between 2 

CD141 cell cluster and CD1C cell cluster is closer than the other two clusters. On the other hand, scVI 3 

and SIMLR bring DoubleNeg and pDC cells closer but do not mix the batches well. Seurat can mitigate 4 

the batch effects in DoubleNeg and pDC cells but split CD141 cells into 2 clusters. ItCLUST mixed up 5 

all cells, regardless of batch and cell type, suggesting that it could not handle the dataset. 6 

We further quantify the performance of different methods regarding batch effect removal with two 7 

metrics, average silhouette width (ASW) and adjusted rand index(ARI), on six datasets (Datasets). We 8 

further calculate each metric in three aspects: cell type (cARI, cASW), batch mixing (1 2 Ā�ýā, 1 29 Ā�þÿ), and the Harmonic mean of the two (f1_ARI, f1_ASW).  As shown in Fig. 3b, CLEAR achieves 10 

the best balance between cell type identification and batch mixing. Futhermore, CLEAR outperforms 11 

all the other baselines under various complex batch effects settings, even though it was not designed to 12 

do so (Supp Fig. 10-15). In particular, on the Tabula Muris Senis cell atlas, which covers the life span 13 

of a mouse and contains many batches, including cells from several mouses with different identities, 14 

ages, genders, and from different chips, CLEAR mixes all the cells of the same type from different 15 

batches while separating distinct cell types well.  16 

   17 

Pseudo-time inference 18 

Another thriving topic in single-cell RNA-seq data analysis is pseudo-time inference, also known as 19 

trajectory inference. It aims to infer the ordering of cells along a one-dimensional manifold (pseudo-20 

time) from the gene expression profiles. Usually, the inferring algorithms will benefit much from better 21 

data representations. Here, we evaluate whether the representation produced by CLEAR can facilitate 22 

the downstream pseudo-time inference. We use the CLEAR embeddeings and the PAGA41 algorithm 23 

to generate the pseudo-time. We compare it with two other popular methods, SCANPY14 and 24 

Monocle342, using two mouse embryo development datasets: Yan33 and Deng32. We show the cells 25 

ordered by pseudo-time in Fig. 4 . Ideally, the points should fall on the diagonal, indicating the relative 26 

relationship among the cells. The time inferred with CLEAR is strongly correlated with the true 27 

development stages, where Monocle3 mixes the cells from different development stages. We also use 28 
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 9 

the R-squared value to quantify the performance. CLEAR achieves the highest value (R2 = 0.957), 1 

compared with SCANPY (R2 = 20.014) and Monocle3 (R2 = 0.884). We further illustrate the cell 2 

embeddings in the 2D space with UMAP, as shown in Fig. 4. The smooth lines indicate the time-3 

trajectory from different methods. The trajectories inferred by CLEAR follow the development stages 4 

precisely. It starts at the zygote, goes through two cells, four cells, eight cells, and 16 cells, and finally 5 

stops at the blast cells. However, for Monocle3 and SCANPY,  there is no clear trajectory among the 6 

cells. The cells in the early stages tend to mix, while cells in the late stages form another big group. The 7 

above experiments suggest that cell embeddings from CLEAR can facilitate the downstream algorithms 8 

in producing better biologically meaningful trajectories. 9 

 10 

CLEAR illustrates peripheral immune cells atlas and inflammatory-related mechanisms in 11 

COVID-19. 12 

To demonstrate the application potential of CLEAR on real-world biology research, we apply it to 13 

analyze a newly published COVID-19 dataset43 (GEO accession number GSE150728), containing 14 

44721 cells (43695 cells after quality control) collected from six healthy controls and seven COVID-15 

19 samples. Four of the seven COVID samples are collected from patients with acute respiratory distress 16 

syndrome (ARDS) in clinical (Fig. 5a, Supplementary Table 1). We perform dimensionality reduction 17 

by CLEAR and graph-based clustering, identifying 32 clusters and visualizing them via uniform 18 

manifold approximation and projection (UMAP). We calculate the differential expressed genes (DEGs) 19 

of each cluster to annotate cell types manually. The cell types of monocytes (CD14+ and CD16+), T 20 

cells (CD4+ and CD8+), natural killer (NK) cells, B cells, plasmablasts, conventional dendritic cells 21 

(DCs), plasmacytoid dendritic cells (pDC), stem cell (SC) and eosinophil, neutrophil, platelets, and red 22 

blood cells (RBCs) are identified (Fig. 5b,d, Supplementary Table 2). 23 

To assess the general atlas of immune responses and perturbation during different COVID-19 statuses, 24 

we quantify the proportions of immune cell subsets in health donors (HDs), moderate (without ARDS), 25 

or severe COVID-19 (with ARDS) individuals  (Fig. 5c). Consistent with previous reports43-45, several 26 

immune cell subsets vary between healthy donors and COVID-19 samples, and we observe a significant 27 

depletion of NK cells, DC, pDC, and CD16+ monocytes. We also note an elevated frequency of 28 
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plasmablasts, especially in patients with ARDS, which indicates that, together with the published 1 

clinical observations46, acute COVID-19 response may be associated with a severe humoral immune 2 

response.  3 

Several previous studies have shown that severe COVID-19 has been associated with dysregulated 4 

immune responses, which may be induced by the abnormal activation or suppression of inflammatory 5 

reaction47-50. To reveal inflammatory-related mechanisms in COVID-19, we perform transcription level 6 

analysis on monocytes in more granularity. We first examine the expression of 8COVID cytokine storm9 7 

marker genes which encode pro-inflammatory cytokines reported before produced by monocytes, 8 

including IL1B, IL2, IL6, IL10, TNF51, 52. Interestingly, we do not find significant expression of these 9 

pro-inflammatory genes in monocytes (Fig. 5e), consistent with recent research with deeper profiling 10 

of immune cells43, 49 , suggesting that COVID-19 may also present an immune suppression status. To 11 

further analyze transcription changes driving monocyte response remodeling in COVID-19, we conduct 12 

differential expression (DE) analysis and cellular pathway analysis by comparing COVID samples to 13 

HDs. Given that the dysregulation of CD14+ monocyte plays a more dominant role in COVID-19 14 

progress53, we especially investigate the transcription profile changes in CD14+ monocytes. An 15 

increased IFN-stimulated gene (ISG) set and decreased major histocompatibility complex (MHC) 16 

molecules in CD14+ monocyte compared to HDs are observed (Fig. 5f). Scoring the samples with 17 

published MHC-related genes and ISGs respectively also reveal that downregulation of MHC gene 18 

expression and upregulation of ISGs are significant in CD14+ monocytes across all the COVID patients 19 

(Fig. 5g, h). The dominant effect of the IFN response is consistent with the acute viral infection. But 20 

the suppression of MHC molecules may hinder the ability to activate lymphocytes and raise an effective 21 

anti-viral response. We then apply Gene Ontology (GO) analysis, combined with GSEA, to study the 22 

biological pathway changes in CD14+ monocytes with different COVID statuses. Significant ISG 23 

upregulation in CD14+ monocyte in moderate samples is also reflected in the pathway analysis, such 24 

as Type I interferon response (Fig. 5i), which may indicate a more active interferon level in moderate 25 

COVID patients and have the potential to become a clinical blood test marker to monitor COVID 26 

progress. Interestingly, we also find a secretion pathway and myeloid leukocyte activation upregulation 27 
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in severe samples (Fig. 5j). This may suggest a dysregulated CD14+ monocytes activation in patients 1 

with ARDS. 2 

 3 

CLEAR handles million-scale scRNA-seq datasets 4 

With the unprecedented increase in sequencing scale of the recent scRNA-seq experiment platform, the 5 

ability to process million-scale single-cell sequencing datasets is increasingly essential. However, many 6 

published tools require complicated parameter setting tunning and cause burdens on the users with the 7 

split-merge process54. This has become a big challenge. The proposed method, CLEAR, is a robust and 8 

scalable framework, which can resolve the problem naturally. It can perform million-level dataset 9 

dimension reduction in parallel while getting rid of the tedious parameter tunning process. To test the 10 

scalability of CLEAR, we apply it on a newly published million-level COVID PBMC scRNA-seq 11 

dataset (GEO accession number GSE158055), which contains around 1.5 million cells from COVID 12 

samples. We use CLEAR with the default parameters to conduct dimension reduction, visualizing the 13 

produced representations of the dataset with UMAP. CLEAR identifies 40 clusters, which are then 14 

annotated manually according to each cluster9s top 100 differential expressed genes (Fig. 6a). Among 15 

them, we find 14 subtypes and then plot selected marker genes for each cell type. Satisfyingly, a 16 

significant expression track of these marker genes is obtained under the higher level (e.g., CD4+ T cells 17 

and CD8+ T cells are combined as T cells) of these subtypes (Fig. 6b). Performing sensitive feature 18 

extraction while eliminating technical noise on the million-scale dataset, CLEAR is an easy-to-use and 19 

well-performed large-scale scRNA-seq data analysis tool, which has the potential to assist the 20 

construction and refinement of cell atlases. 21 

 22 

Discussion and Conclusion 23 

scRNA-seq has become a powerful and essential tool in biological research. With the accumulated data 24 

and the emerging cell atlases, the demand for practical computational tools to process and analyze such 25 

data has never been fully satisfied. Based on the current situation, the newly developed tools to process 26 

the single-cell data should, first of all, learn effective representations for the profile while eliminating 27 

the technical noise within the data. Secondly, they should have sufficient scalability to handle the 28 
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million-scale unlabeled datasets in the field. Here, we introduce such a framework, CLEAR, based on 1 

self-supervised contrastive learning. By introducing noise during training and forcing the model to pull 2 

together the representation of functionally similar cells while pushing apart dissimilar cells with a 3 

carefully designed task, we managed to train the model to produce effective representations for the 4 

single-cell profile.  CLEAR achieves superior performance on a broad range of fundamental tasks, 5 

including clustering, visualization, dropout correction, batch effect removal, and pseudo-time inference. 6 

Furthermore, it scalable enough to handle a million-scale dataset, which suggests its potential to handle 7 

the emerging cell atlases.  8 

In the future, CLEAR can be further developed from both the biological aspect and the machine learning 9 

aspect. Regarding the biological application, obviously, CLEAR is a very flexible framework to 10 

perform data integration, no matter the single-omics, multi-dataset integration (cell atlases 11 

construction), or multi-omics integration (e.g., the integration of scRNA-seq and scATAC-seq data). In 12 

terms of the machine learning technical details, more advanced methods to handle data imbalance and 13 

incorporate prior knowledge, such as partially labeled data, should be developed. We believe that our 14 

framework, CLEAR, will become an alternative approach for single-cell data analysis. 15 

16 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.26.453730doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453730
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Methods 1 

Datasets 2 

Below we describe how we obtained and preprocessed each dataset. Notice that, to show the 3 

generalization property of CLEAR, we used various datasets with different sequencing protocols 4 

(Smart-Seq, Smart-Seq2, DropSeq, CEL-Seq2, etc.), from different tissues, and with diverse data sizes 5 

(from 90 cells to 1.46 million cells). Unless otherwise noted, we obtained the cell type annotation 6 

information of each dataset from the original data paper. For the Hrvatin, Kolodziejczyk, Muraro, 7 

Pollen, and Tabula Muris Senis datasets, to improve the data quality, we filtered out low-quality cells 8 

with fewer than 200 genes and genes expressed in less than three cells. 9 

Yan dataset. The Yan dataset refers to the human preimplantation embryos and embryonic stem cells. 10 

In this dataset, 90 cells were sequenced with the Tang protocol. We downloaded the dataset from 11 

Hemberg Group9s website. We used Scanpy to log-transform the dataset, and then each cell was 12 

normalized to 10,000 read counts. After that, highly variable genes were selected. Finally, we scaled 13 

the dataset to unit variance and zero mean. 14 

Deng dataset. The Deng dataset refers to the mouse preimplantation embryos and embryonic stem cells 15 

of mixed background. 268 cells were sequenced via two protocols, Smart-Seq and Smart-Seq2. We 16 

downloaded the dataset from Hemberg Group9s website and performed a log-normalization 17 

transformation on the RPKM expression values with SCANPY. 18 

Hrvatin dataset. The Hrvatin dataset refers to the mouse primary visual cortex cells under different 19 

simulation conditions, which was downloaded from GEO database (accession number: GSE102827). It 20 

contains 48,266 cells from 6-8 week-old mice, which were sequenced by DropSeq. After low-quality 21 

data filtering, we performed the log transformation, per-cell count normalization, and highly variable 22 

gene selection steps as mentioned above.   23 

Kolodziejczyk dataset. This dataset, which was downloaded from the Hemberg Group9s website, 24 

contains 704 embryonic stem cells. They were sequenced with three batches under SMARTer protocol. 25 

We removed the low-quality data and the spiked-in cells. The top 2,000 most variable genes were 26 

selected for downstream analysis after we normalized each cell to 10,000 read counts. 27 
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Muraro dataset. This dataset, sequenced with the CEL-Seq2 protocol, contains 2126 cells from the 1 

human pancreas. We downloaded the data from the GEO database (accession number GSE85241), and 2 

removed the low-quality data and cells containing a higher number of mitochondrial genes and spike-3 

in RNAs. The highly variable genes were then selected after log transformation.  4 

Pollen dataset. The dataset, sequenced with the SMARTer protocol, contains 301 cells in the developing 5 

cerebral cortex from 11 populations. We downloaded it from the Hemberg Group9s website, removing 6 

the low-quality data and cells having a higher number of mitochondrial genes and spike-in RNAs. The 7 

highly variable genes were then selected after log transformation. 8 

Tabula Muris Senis dataset. The entire dataset, sequenced with 10X, contains more than 100,000 cells. 9 

It was generated across the lifespan of mice, including 23 tissues and organs, but here we only focus on 10 

four tissues: bladder, mammary gland, limb muscle, and diaphragm. These datasets allow us to examine 11 

the batch effect and cell clustering. After downloading the raw data from 12 

https://figshare.com/projects/Tabula_Muris_Senis/64982, we removed the low-quality data and cells 13 

containing a higher number of mitochondrial genes and spike-in RNAs. Each cell was normalized to 14 

10,000 read counts. The highly variable genes were then selected after log transformation. Finally, we 15 

scaled the dataset to unit variance and zero mean. 16 

Human dendritic cells dataset. It consists of human blood dendritic cell (DC) data from Villani et al 55. 17 

We downloaded the data from https://github.com/JinmiaoChenLab/Batch-effect-removal-18 

benchmarking/tree/master/Data. The dataset is composed of two batches. Each batch contains three cell 19 

types. Both batches share two cell types (pDC and double negative), while remaining one unshared 20 

biologically similar cell type (CD141 and CD1C, respectively). 21 

COVID PBMC dataset. This dataset (GEO accession number: GSE150728), generated by Wilk et al 43, 22 

contains 44,271 cells sequenced with the Seq-Well platform. We have eight peripheral blood samples 23 

from seven SARS-COV-2 patients and six healthy controls. We removed the cells with a higher number 24 

of mitochondrial genes and spike-in RNAs. Each cell was normalized to 10,000 read counts. The highly 25 

variable genes were then selected after log transformation. Finally, we scaled the dataset to unit variance 26 

and zero mean. The cell type information was annotated using marker genes by experts.  27 
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COVID large-scale dataset. This dataset (GEO accession number: GSE158055), generated by Ren et al 1 

56, contains more than 1.46 million cells generated through 10X Genomics. 171 COVID-19 patients and 2 

25 healthy individuals were enrolled with PBMC, BALF, PFMC, and sputum samples. We removed 3 

the cells containing a higher number of mitochondrial genes and spike-in RNAs. Each cell was 4 

normalized to 10,000 read counts. The highly variable genes were then selected after log transformation. 5 

Finally, we scaled the dataset to unit variance and zero mean. The cell type information was annotated 6 

using marker genes by experts.  7 

 8 

The CLEAR framework 9 

The key idea of CLEAR is to learn effective cell representations, considering noise in the data,  and to 10 

pull together the representation of functionally similar cells, while pushing apart dissimilar cells. We 11 

achieve the goal with self-supervised contrastive learning. Given the single-cell gene expression profile, 12 

we add different simulated noise, such as Gaussian noise and simulated dropout events, to it (data 13 

augmentation), resulting in distorted profiles (augmented data). The raw profile and the corresponding 14 

distorted profiles from the same cell are positive pairs, while the profiles from different cells are 15 

negative pairs. When training the model, we force the model to produce similar representations for the 16 

positive pairs while distinct for the negative pairs (contrastive learning). More specifically, by 17 

discriminating the positive pairs from a large number of negatives, CLEAR learns a locally smooth 18 

nonlinear mapping function ÿ� that pulls together multiple distortions of a cell in the embedding space 19 

and pushes away the other samples. The locally smooth function is also helpful for the global 20 

embeddings. In the transformed space, cells with similar expression patterns form clusters, which are 21 

likely to be cells of the same cell types. The function ÿ� is parameterized by a deep neural network, 22 

whose parameters can be optimized in an end-to-end manner. The detailed workflows are as below. 23 

1. Data augmentation. We first perform data augmentation to generate training pairs. Each cell will 24 

have two augmented versions, and thus a minibatch of ā cells is augmented to 2ā cells. This step will 25 

be discussed in detail in Data augmentation. 26 

2. Constructing negative labels with data from multiple minibatches. For data in one minibatch, we can 27 

consider the two data points generated from the same gene expression profile as a positive pair while 28 
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the other combinations as negatives. However, if we only consider the negatives within a minibatch, 1 

the learned mapping function is less likely to be effective for global clustering. To make the locally 2 

smooth function ÿ� have a global effect, we should consider negatives from other minibatches. We 3 

achieve that by maintaining a queue with data from multiple minibatches. When the current minibatch 4 

is enqueued, the oldest minibatch will be dequeued. Within the queue, a specific distorted profile only 5 

has one positive pair match, while all the other profiles are negatives for it. Notice that the conceptual 6 

difference between minibatch and the queue arises from the hardware limitation. If the GPU memory 7 

is large enough and we can feed all the data in one minibatch, we can discard the queue maintenance. 8 

3. Loss function. Let Ā = {�ā ∈ ý�}ā=12ýþ be the queue consisting of a number of gene expression 9 

profiles, where ÿ denotes for the number of genes; ā stands for the batch size; Ā stands for the number 10 

of batches stored in the queue. In one batch, ā samples are augmented into 2ā samples. Consequently, 11 

the queue consisting of Ā  minibatches contains 2Āā  augmented samples. �ā  denotes for the ý -th 12 

(distorted) gene expression profile in the queue. For a pair of positive samples �ÿ and �Ā  (derived from 13 

one original sample), the other 2Āā 2 2 samples are treated as negatives. To distinguish the positive 14 

pair from the negatives, we use the following pairwise contrastive InfoNCE loss: 15 

ÿÿ,Ā = 2þāĀ �(�ÿ∙�Ā� )∑ �(�ÿ∙�ā� )2ýþā=1,ā≠ÿ . (1)16 

Note that ÿÿ,Ā is asymmetrical. Suppose we put all the pairs in an order, such that 2ÿ 2 1 and 2ÿ denote 17 

for the paired augmentations, then the summed-up loss is: 18 

ℒ =  12ā ∑(ÿ2ÿ21,2ÿ + ÿ2ÿ,2ÿ21)þ
ÿ=1 . (2) 19 

4. Momentum update. As suggested by He et al. 57, a rapidly changing encoder network will reduce the 20 

representations9 consistency, resulting in poor performance. To deal with the problem, we utilize two 21 

encoders, a slow-evolving key encoder ÿā  and a fast-evolving query encoder  ÿ� . Denoting the 22 

parameters of ÿ�  as ��  and those of ÿā  as �ā , we update the query encoder by the normal back-23 

propagation. However, for the key encoder, we update it with momentum: 24 �ā  ← ÿ�ā + (1 2 ÿ)�� . (3) 25 
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Here ÿ ∈ [0,1) is a momentum coefficient. The momentum update makes the encoder network evolve 1 

smoothly. 2 

5. Inference. After we train the model, the query encoder network ÿ�  is the final productive network, 3 

which outputs the representation of a single cell gene expression profile. After obtaining the 4 

representations of all the cells in a dataset, we cluster the cells with the common clustering algorithms 5 

(e.g., k-means algorithm, Louvain algorithm, and Leiden algorithm). Finally, cell types are assigned to 6 

the discovered clusters based on the differential expression genes in the cluster. 7 

 8 

Data augmentation 9 

Data augmentation is critical to the success of self-supervised contrastive learning. We use the 10 

following ways of data augmentation, considering noise during real experiments. Note that the 11 

augmentations are performed in a specific order (as shown below). Not all the steps will be certainly 12 

conducted, with each step having a probability of being chosen or dropped.  13 

1. Random mask. We randomly replace some gene expression values with zero in the profile of the 14 

target cell. The mask percentage is 0.2, while the probability of executing the step is 0.5. Notice that 15 

this synthetic noise is similar to the dropout events in the single-cell sequencing experiments. 16 

2. Gaussian noise. We randomly replace some gene expression values in the target cell profile with 17 

numbers drawn from a predefined Gaussian distribution. The noise percentage is 0.8. The mean of 18 

Gaussian distribution is 0, while the standard deviation is 0.2. The probability of executing this step is 19 

0.5. 20 

3. Random swap. For a gene expression profile, we randomly choose an even number of gene 21 

expression values and construct pairs from the subset, then swapping the gene expression values inside 22 

each pair. The total percentage that performs swapping is 0.1. The probability of execution is 0.5. 23 

4. Crossover with another cell. We randomly choose another cell in the dataset as the crossover source 24 

and then select some genes from the target gene expression profile, swapping the gene expression value 25 

between the two cells. 25% of the gene expression data in one cell will be exchanged with the other 26 

cell. The probability of executing this step is 0.5. This exchanging step will not influence the next batch 27 

or the next training epoch. 28 
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5. Crossover with many cells. We randomly choose several cells in the dataset as the crossover source 1 

and some genes from the target gene expression profile, swap the expression values between the source 2 

cell and the target cells. 25% of the gene expression data in the cell will be exchanged with the selected 3 

cells. The probability of execution is 0.5. This step would not influence the next batch or the next 4 

training epoch. 5 

 6 

Architecture and hyperparameters 7 

The encoder neural network in CLEAR consists of two fully connected layers. The query encoder and 8 

the key encoder share the same architecture. The first layer has 1024 nodes, while the second layer has 9 

128 nodes. The ýþÿ� function, defined as ýþÿ�(�)  =  ÿÿ�(0, �), is used as the nonlinear activation 10 

function after the linear transformation. We use Adam optimizer with the learning rate as 1 and the 11 

cosine learning schedule. We train the paired neural networks for 200 epochs. Temperature, �, in the 12 

CLEAR9s objective function, is set to be 0.2. The momentum coefficient ÿ  is 0.999. The hyper-13 

parameters are determined using grid search with cross-validation.  14 

 15 

Performance evaluation 16 

To evaluate the standard clustering performance of the proposed method, we use the adjusted Rand 17 

index (ARI) and Normalized Mutual Information (NMI). On the other hand, to benchmark different 18 

methods9 performance on batch effect removal, we utilize ARI and Average Silhouette Width (ASW). 19 

In addition, we also used cell ARI (cARI) and batch ARI (bARI), as well as cell ASW (cASW) and 20 

batch ASW (bASW). Their definitions are as follows. Note that, during evaluation, we use the default 21 

parameters for all the criteria. More quantitative measurement also shown in Supplementary Method 22 

3. 23 

ARI measures the similarity between two partitions by comparing all the pairs of the samples adjusted 24 

by random permutation.  25 

�ýā = ýā 2 ý[ýā]ÿÿ�(ýā) 2 ý[ýā] . (4) 26 

Where Rand index (RI) is defined as  27 
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ýā =  ÿ + Ā��2 . (5) 1 

Where ÿ is the number of pairs that are correctly labelled in the same set of the two partitions, and Ā is 2 

the number of pairs that are correctly labelled but not in the same set of the two partitions. ��2 is the 3 

total number of pairs. ý[ýā] is the expected ýā from a random model. ARI ranges from -1 to 1. A value 4 

close to 0 suggests random labeling, while close to 1 means the nearly perfect cell type purity. To 5 

evaluate batch effect removal, we also calculate three specific kinds of ARI, cell ARI (cARI) and batch 6 

ARI (bARI), and the Harmonic mean of the two f1_ARI. A higher cARI corresponds to higher cell type 7 

purity, while a bARI close to zero suggests superior batch effects removal. 8 

NMI measures the amount of information obtained about one partition through observing the other 9 

partition, ignoring the permutations: 10 

āĀā = 2ā(ā; �)[Ā(ā) + Ā(�)] . (6) 11 

Where ā is the class labels, and � is the cluster label. Ā(. ) is the entropy, and ā(ā; �) measures the 12 

mutual information between ā and �. 13 

ASW measures the relative distance between inter-clusters and intra-clusters. The Silhouette width (SW) 14 

is defined as: 15 

þÿ =  Ā 2 ÿmax(ÿ, Ā) . (7) 16 

Where ÿ is the mean distance between a sample and all the inter-cluster points, while Ā is the mean 17 

distance between a sample and all the other points in the next nearest cluster. The ASW is defined as 18 

the average of all the cells9 Silhouette width within the entire dataset. The range of ASW is [21,1], 19 

where 1 suggests the best clustering result and -1 suggests the worst clustering result. To evaluate batch 20 

effect removal, we calculate three kinds of ASW, cell ASW (cASW), batch ASW (bASW), and the 21 

Harmonic mean of the two f1_ASW. A higher cASW suggests better cell type purity, while a lower 22 

bASW suggests better batch mixing. 23 

 24 

Software comparison and settings 25 
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To evaluate the performance of CLEAR compared with other methods, we select the below several 1 

software packages for comparison. All the evaluation codes and input data follow the instruction and 2 

tutorials provided by each package (Code Availability). 3 

For baseline clustering, we compare CLEAR with R-based tools including Seurat, SC3, CIDR, 4 

SINCERA, scDHA, and SIMLR, and Python-based packages, such as ItClust, scVI, and scGNN. The 5 

details of the software we used are: (i) Seurat version 4.0.1 from CRAN. The parameters are set as the 6 

default value provided by the tutorial. (ii) SC3 version 1.2 from Bioconductor. The key parameter, 7 

svm_num_cells, which means the number of randomly selected training cells to be used for SVM 8 

prediction, is set as 5000. All other parameters follow the SC3 function instruction. (iii) CIDR version 9 

0.1.5 from Github (https://github.com/VCCRI/CIDR). We set all the parameters as default following 10 

the README file on Github. (iv) SINCERA from Github (https://github.com/xu-lab/SINCERA). The 11 

parameters follow the pipeline of the demonstrations listed on their Github. (v) scDHA from Github 12 

(https://github.com/duct317/scDHA). Parameters and data input format are set following the running 13 

example. We also utilize its built-in function to generate 2d visualization of the representations. (vi) 14 

ItClust from Github (https://github.com/jianhuupenn/ItClust), running with the default parameters. For 15 

the sake of simplicity and convenience, we set the required source dataset in the code as <baron-human= 16 

across all the experiments. (vii) SIMLR version 1.18.0 from Bioconductor, running with the default 17 

parameters. We select the small-scale version of code because the large-scale version cannot run in our 18 

environment. (viii) scVI from Github (https://github.com/YosefLab/scvi-tools). We use K-means for 19 

clustering based on the embeddings generated from the trained VAE. (ix) scGNN version 1.0.2 from 20 

Github (https://github.com/juexinwang/scGNN). We run the GPU version and set the hyper-parameters 21 

following their example. We include LTMG inferring in preprocessing with the corresponding given 22 

option of the code. All the hyper-parameters are set following the tutorial. 23 

For the dropout clustering experiment, we create a dropout_sampling function for random sampling. 24 

Random seeds are set to ensure each sampling is unique. Software parameters are the same as the 25 

baseline clustering experiment.  26 

Seurat, SC3, CIDR, and SINCERA are run on the PC with Intel(R) Core i7-8750H CPU, Window 10 27 

operation system, 32GB physical memory. The virtual memory limitation of our working environment 28 
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is set as 100GB RAM, R version 4.0.3. We run scDHA, SIMLR, ItClust, scVI, and scGNN on a 1 

workstation with Intel(R) Xeon(R) CPU E5-2667 v4, CentOS Linux release 7.7.1908 operation system, 2 

Nvidia TITAN X GPU, 503GB physical memory. 3 

 4 

Case study of the COVID dataset 5 

We first apply CLEAR on the published COVID PBMC scRNA-seq dataset, the parameters of CLEAR 6 

are set as in the Architecture and hyperparameters. Based on the 128 features generated by CLEAR, 7 

we run Seurat (V 4.0.1) with the parameter ýþĀāþĂāÿāĀ = 1.2 to cluster all the cells, by which 32 8 

clusters are identified. The cell type of each cluster is annotated by the top differentially expressed 9 

genes found by the FindAllMarkers function. The statistical method is Wilcoxon Rank-Sum Test, and 10 

the ÿāĀþ� ā/ÿþĀ/āþý = 0.25. All the gene expression level plots are generated by the FeaturePlot 11 

function with the default parameters. To conduct different expression gene (DEG) analysis, we use the 12 

Wilcoxon Rank-Sum Test to search for the DEGs between each pair of monocytes obtained from the 13 

three groups (i.e., the health donors (HDs), moderate and severe (ARDS) groups). We put 14 ÿāĀþ� ā/ÿþĀ/āþý = 0.25 and show negative (downregulated) genes as well. We obtain two groups of 15 

DEGs for each monocyte subtype and show the result in the Supplementary material (Supplementary 16 

Table 4-5). Given that gene expression score can be calculated by the AddModuleScore function, we 17 

use the function to calculate ISG score and MHC score for monocytes with the pre-determined 18 

interferon-stimulated gene set and MHC-related gene set (Supplementary Table 6). The significant 19 

test is also the Wilcoxon test in Fig 5. g and h. Finally, we use the DEGs we got before to perform Gene 20 

Ontology (GO) analysis for each COVID stage and run GSEA analysis on the GO results. All the 21 

parameters are set as default during GO and GSEA analysis. 22 

 23 

Data Availability  24 

We used 10 datasets for evaluating the performance of clustering and dropouts, one dataset for 25 

benchmarking the batch effects removal. Two COVID-PBMC dataset for case study. The 26 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.26.453730doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453730
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

details information and the links to the publicly available sources of the 13 datasets can be 1 

found in the Method part. 2 

Code Availability 3 

An open-source implementation of CLEAR is available at GitHub: 4 

https://github.com/ml4bio/CLEAR, under the MIT license. 5 
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 1 
Fig. 1 | Overview of the proposed framework, CLEAR. The proposed method is based on self-supervised 2 
contrastive learning. For the gene expression profile of each cell, we distort the data slightly by adding 3 
noise to the raw data, which mimics the technical noise in the biological experiments. When training 4 
the deep encoder model, we force the model to produce similar low-dimension representations for the 5 
raw data and the corresponding distorted profile while distant representations for cells of different types. 6 
Intuitively, the deep learning model learns to pull together the representations of similar cells while 7 
pushing apart different cells. By considering noise during training, CLEAR can produce effective 8 
representations while eliminating technical noise for the scRNA-seq profiles. Such representations have 9 
a broad range of applications, including clustering and classification, dropout event and batch effect 10 
correction, pseudo-time inference. CLEAR is also scalable to million-scale datasets without any 11 
overhead. 12 

13 
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 1 
Fig. 2 | The representation from CLEAR benefits clustering and dropout event correction. a Clustering 2 
performance comparison of different methods on diverse datasets. On average, CLEAR improves over the second-3 
best method, scDHA, by 4.56%, regarding ARI. b UMAP visualization of representations produced by CLEAR, 4 
scDHA, and Seruat on the Hrvatin dataset. c River plots of the Hrvatin dataset. CLEAR clustering matches almost 5 
perfectly with the expert annotation, without over-clustering or under-clustering. d Clustering performance change 6 
of different methods against different artificial dropout percentages in terms of ARI.   7 
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 1 
 2 
Fig. 3 | CLEAR corrects batch effects effectively. a Upper panel: UMAP visualization showing different methods’ 3 
performance on integrating DoubleNeg and pDC cells from two batches. Bottom panel: UMAP visualization 4 
showing different methods’ performance on separating four cell types. Notice that CLEAR’s representations also 5 
preserve the biological similarity between CD141 cells and CD1C cells. b The quantitative performance of different 6 
methods on batch effect removal, measured by adjusted rand index(ARI) and average silhouette width (ASW). 7 
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 1 
Fig. 4 | CLEAR is helpful for pseudo-time inference. a CLEAR’s performance on the pseudo-time inference for 2 
the Yan dataset. Left figure: Cells from the Yan dataset ordered by pseudo-time inferred from CLEAR. Ideally, the 3 
points should fall on the diagonal. Right figure: UMAP visualization of time trajectory inferred from CLEAR. b 4 
CLEAR’s performance on the pseudo-time inference for the Deng dataset. c,d Monocle3’s performance on the 5 
pseudo-time inference for the Yan and Deng dataset. e,f SCANPY’s performance on the pseudo-time inference 6 
for the Yan and Deng dataset.  7 
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 1 
 2 
 3 
Fig. 5 | Peripheral immune cells atlas and inflammatory-related mechanisms in COVID-19 revealed by 4 
CLEAR. a,b UMAP visualization of the COVID-19 cell atlas (a) colored by COVID status and (b) colored by 13 cell 5 
type clusters (n=43695 cells). c Bar plot showing the relative percentage of different cell types comparing three 6 
COVID-19 statuses (HDs, Moderate status, and Severe status). d Stacked violin plot overview of the top-important 7 
marker genes expression for each cell type. e UMAP visualization of the key pro-inflammatory cytokines expression 8 
in both CD14+ and CD16+ monocytes. f Heatmap of IFN-stimulated genes and MHC-related genes in CD14+ 9 
monocyte. g,h Boxplots showing the mean (g) MHC-related score and (h) ISG score in CD14+ monocyte colored 10 
by different COVID statuses (HDs--blue, Moderate--Oranger and Severe (ARDS)--Red). i,j Gene set enrichment 11 
analysis (GSEA) of differential expressed gene (LogFC > 0.25) sets between (i) moderate CD14+ monocyte and 12 
healthy donor CD14+ monocyte and (j) severe CD14+ monocyte and healthy donor CD14+ monocyte. Red 13 
represents upregulated GO biological pathway, and blue represents downregulated GO biological pathway.  14 
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 1 
 2 
Fig. 6 | COVID-19 PBMC cell atlas based on million-scale scRNA-seq dataset. a UMAP embedding of 3 
peripheral blood mononuclear cells (PBMCs) from all samples (n=1.46 million cells) colored by manually-added 4 
cell types. b Dot plot showing percent expression and average expression of the selected marker genes for each 5 
cell type. 6 
 7 

 8 

 9 

 10 

 11 

 12 

 13 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.26.453730doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453730
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Self-supervised contrastive learning for integrative single cell RNA-seq data analysis

