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Abstract

Summary: Bacteriophages that have integrated their genomes into bacterial chromosomes,
termed prophages, are widespread across bacteria. Prophages are key components of bacte-
rial genomes, with their integration often contributing novel, beneficial, characteristics to the
infected host. Likewise, their induction—through the production and release of progeny virions
into the surrounding environment—can have considerable ramifications on bacterial communi-
ties. Yet, not all prophages can excise following integration, due to genetic degradation by their
host bacterium. Here, we present hafeZ, a tool able to identify ‘active’ prophages (i.e. those un-
dergoing induction) within bacterial genomes through genomic read mapping. We demonstrate
its use by applying hafeZ to publicly available sequencing data from bacterial genomes known to
contain active prophages and show that hafeZ can accurately identify their presence and location
in the host chromosomes.

Availability and Implementation: hafeZ is implemented in Python 3.7 and freely available
under an open-source GPL-3.0 license from https://github.com/Chrisjrt/hafeZ. Bugs and issues
may be reported by submitting them via the hafeZ github issues page.

Contact: [cturkington@ucmerced.edu or chrisjrtl@gmail.com

1 Introduction

Bacteriophages, viruses that infect bacteria, are heavily involved in many aspects of bacterial
physiology and evolution. Temperate bacteriophages in particular, are tightly interwoven into
bacterial biology through their ability to integrate their DNA into their host’'s chromosome via
the lysogenic cycle of bacteriophage replication (Howard-Varona et al., [2017). When integrated,
bacteriophages are called prophages and can contribute fitness changes to their hosts through
expanding the hosts’ genetic repertoire (e.g. by providing toxin or antibiotic resistance genes); or
by altering the expression of existing bacterial genes (e.g. by integrating directly into a bacterial
gene and causing its disruption) (Ofir and Sorek, [2018).

However, prophages not only influence bacterial biology when integrated into the genome,
they also influence bacterial behaviour through their induction. Here, prophages excise from
the chromosome and begin virion production via the lytic cycle of bacteriophage replication—a
process that is often fatal for the host bacterium. Through induction to the lytic cycle, temperate
bacteriophages have been associated with major changes in the densities of both lysogenised
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and non-lysogenised bacterial populations, alterations in bacterial biofilm formation levels, and
changes in bacteria-host interactions in host-associated systems (Keen and Dantas 2018).

Given their importance, numerous computational tools have been developed in recent years
to identify integrated bacteriophages within bacterial genomes. To date though, most prophage
identification tools are unable to determine whether an identified prophage can be induced and
no tool utilises prophage induction as a parameter for their detection. This is particularly im-
portant because prophages are subject to decay in their host (usually by the accumulation of
transposases), wherein some prophages will lose their ability to excise and produce viral parti-
cles, leaving them as dormant regions of the bacterial genome (Bobay et al. 2014). Here we
present hafeZ a tool that identifies active prophages (i.e. those undergoing induction) in bacte-
rial genomes by examining the mapping of genome sequencing data to an assembly for signs of
prophage induction. The workflow of hafeZ is described below and a summarised overview can
be found in figure S1.

2 Description

2.1 Inputs

hafeZ requires three main inputs from the user: (1) a complete/contiguous genome assembly
in FASTA format; (2) a set of reads for the given genome in FASTQ format; and (3) the path to
the folder containing the Prokaryotic Virus Orthologous Groups (pVOGs; Grazziotin et al., |2017)
database that is downloaded during the initial setup of hafeZ.

2.2 Read mapping and region of interest identification

hafeZ begins by examining the number and size of contigs in an assembly and removing small
contigs (default = < 10,000 bp). Contigs passing this filter are then indexed and the reads are
mapped to the contigs using minimap2 (Li, [2018), with mapping results converted to coverage
depths using samtools (Li et al., 2009) and mosdepth (Pedersen and Quinlan, 2018). Coverage
values are then smoothed using a Savitzky-Golay filter via the ‘savgol filter’ function of SciPy
(Virtanen et al., [2020) to reduce instances of short lapses in coverage depth in otherwise heavily
covered regions.

Once coverage values have been collected and smoothed, the modified Z-score of coverage
per base across the length of the genome are then calculated using the equation of Iglewicz and
Hoaglin, |1993;

0.675(xi—X)
Mi= —————— (1)
MAD
Where M; is the modified Z-score of a base’s coverage, x; is the coverage of that base, X is the
median of all coverage values, and MAD is the median absolute deviation. MAD is the median of
absolute deviations about the median for all per-base coverage values and is calculated as:

MAD = mediani{|x;— X|} (2)

The modified Z-score values are then used to identify regions within the genome with higher
than expected coverage via numpy (Harris et al.,[2020). Regions are called if they pass thresholds
for minimum modified Z-score (default = 3.5) and region width (default = 4,000 bp). Regions
passing these filters within a close vicinity of each other are then merged to create a ‘region of
interest’ (ROI; figure S2).

To identify a potential deletion event, the reads mapping within each ROI, and those map-
ping within 15,000 bp either side of it, are extracted using pysam (https://github.com/pysam-
developers/pysam). For ROIs located centrally in a contig (defined as any ROI > 15,000 bp from
either end of a contig) reads are examined for the presence of at least one read pair where read
partners map a distance of roughly the length of the ROI from each other. This would indicate
that their sequenced fragment includes a case where the prophage has excised, as the read pair
exists closer than would be expected for the assembly (figure S3-A). If no distant reads are found,
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the ROI is dropped from further analysis. For ROIls passing this threshold and ROIs located near
the end of a contig, the reads are then searched for any soft clipped reads (reads where only part
of a read maps to a given location; figure S3-B). For each ROI, assembly positions where at least
10 reads have been soft clipped are collected. Then, all combinations of these locations that
occur on opposite sides of the ROI center are collated. The collated combinations then serve as
the basis for putative prophage start and end locations for each ROI to then be further filtered.

2.3 Region of interest filtering

Each combination of start-end locations are then filtered by examining the modified Z-scores in
and around those locations. If a prophage induction event had occurred, it would be expected
that the region between the start and end positions would have a median modified Z-score value
greater than the Z-score threshold, while in the regions preceding the start and proceeding the
end locations the median modified Z-scores should be below the Z-score threshold as these
should be bacterial chromosome regions. Therefore, hafeZ first removes any ROI start and end
location combinations where this is not the case. For ROls located at the start/end of a contig, only
the region between the ROI start/end and the sides not near contig ends are used in filtering. The
best combinations of each soft clipping location passing the Z-score filter are retained (default
= best 50), using the sum of start/end soft clipped read count as the scoring metric (higher =
better).

As plasmids would pass all filters to this point, hafeZ then examines any ROI start/end com-
binations near the ends of a contig for indications that the contig is circular (i.e. reads mapping
from the end of a contig to the start and vice versa). If true, these ROIs are then flagged as
circular but are carried forward as they may also be extra-chromosomal prophages.

To further filter ROl start/end combinations, hafeZ then maps the clipped portion of soft clipped
reads for all non-circular ROIs and examines their mapping location. Here, hafeZ examines if the
clipped portion of the read maps near the position of where the reads on the opposing side of the
ROI were clipped (figure S3-C). This step adds additional stringency to hafeZ but can be disabled
by using the ‘-N/--no_extra’ option.

The single best start/end combination for each ROI is then collected, with the best start/end
combination being that with the highest sum of soft clipped reads at the start/end plus the num-
ber of clipped sections from these mapping near the opposing position.

2.4 Sequence analysis

After ROI coordinates have been determined, genes are then predicted using Pyrodigal
(https://github.com/althonos/pyrodigal), a cythonised version of Prodigal (Hyatt et al.,[2010), and
the sequences of the predicted open reading frames (ORFs) are then extracted. ROIs contain-
ing less than a minimum number of ORFs (default = 6) are then removed, with the peptide
sequences encoded by each gene of the surviving ROIs then compared to the pVOGs database
using hmmscan (HMMER v3.3.1; |http://hmmer.org). ROIs are retained if the proportion of ORFs in
the ROI showing similarity to a pVOGs hidden Markov model (HMM) profile passes a user-defined
threshold (default = 0.1 i.e. 10% of ORFs). The att sites for each of ROI are then determined by
extracting the region £100 bp either side of the ROI start/end locations and examining them for
homology using BLASTn (Camacho et al. 2009) with the settings ‘-evalue 10000 -task blastn-
short’. The putative att sites with the lowest e-values and a length > 11 bp are then output as
the potential att sites for each ROI.

2.5 Output

hafeZ generates all outputs in the path provided by the user. If an ROI passes all filters, six main
outputs are produced: (1) a multi-FASTA file containing the DNA sequence of each ROI identified;
(2) a fasta file for each ROI containing the DNA sequences of all ORFs; (3) a fasta file for each ROI
containing the amino acid sequences of all ORFs; (4) a tab-separated file containing details of
ORFs hit by the pVOGs comparisons; (5) a tab-separated summary file containing key information
on all identified putative prophage regions; and (6) a figure showing Z-score distributions for each
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contig found to contain a ROI with the location of the ROI highlighted (e.g. figure S4). If no ROIs
are found, or no ROIs pass the filtering process, only an empty tab-separated summary file will
be output.

2.6 Example usage

In their work, Zind et al.,|2021|used a combination of comparing the coverage mapping between
induced vs non-induced samples and read examination on 14 bacterial isolates to identify 10
active prophages. To illustrate the ability of hafeZ to identify active prophages from bacterial
sequencing data, we applied hafeZ to this sequencing data-set (European Nucleotide Archive
project No. PRJEB39818) using default settings and the corresponding publicly available refer-
ence assemblies as mapping targets for each read-set (table S1). We found that overall hafeZ
was able to identify all 10 prophages in the data-set with no deviation in predicted start/end lo-
cations compared to those of Zind et al., 2021 However, as hafeZ analyses individual samples
for the presence of prophages and the Zind data-set contains triplicate induced and non-induced
samples that were compared to identify their prophages in their work, the presence or absence of
each of these prophages was dependant on the sample. hafeZ did identify one element not men-
tioned by Ziind, corresponding to a plasmid in Salmonella enterica serovar Typhimurium LT2P22,
This plasmid was flagged as circular in all cases though, and thus can be easily identified as
such. A table summarising the presence/absence and positional differences for each expected
prophage can be found in table S2, while the combined outputs of hafeZ for all samples can be
found in table S3.

3 Conclusion

We show that hafeZ is highly accurate at detecting active prophages in bacterial genomes and
that it is able to identify prophages in a diverse range of samples and organisms. We believe
hafeZ is an ideal tool to be used in addition to current integration-focused prophage identification
tools to give highly accurate prophage positions, describe the activity of prophages identified by
other tools, and, through its novel use of induction as an identification metric, could potentially
identify novel viruses that would be missed by existing prophage detection algorithms.
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Figure S2: lllustration of how active prophages can be detected from read mapping coverages. A.
When reads (blue bars) are mapped to an assembly (grey bar), if a prophage (pink region) exists
within the genome that has been induced, a higher frequency of reads mapping to the region
of the genome containing the prophage would be expected as copies of the viral DNA should be
being produced. B. By converting the per base coverage of the read mapping results to mod-
ified Z-score values we can detect regions with higher levels of coverage than the surrounding
chromosome (red highlighted region) that may indicate prophage induction.
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Figure S3: lllustration of how read mapping is used to identify putative active prophages by hafezZ
following ROI identification. (A) hafeZ examines reads mapping within an ROl and those mapping
within 15,000 bp either side of it for distantly mapping reads. Such reads would indicate that the
DNA fragment (red bar) sequenced by a pair of reads (blue ends) contains a deletion compared to
the DNA sequence of the genome assembly (dark grey bar) being mapped to. (B) hafeZ inspects
the reads mapping within an ROI for the presence of soft-clipped reads, reads where only part of
a read maps to the assembly at a given location (blue regions at dotted line = mapped region,
brown = clipped region). If a sufficient number of these occur at a consistent bp position (dotted
line) this position is then taken as either the start/end of the ROI. (C) By default hafeZ then re-
maps the regions soft clipped by the initial read mapping step to determine if these reads map at

the opposing end of the ROI. This would indicate that the read has sequenced the deleted region
where the prophage has excised from.
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Table S1: List and pairings of genome assemblies and reads examined for each sample in this
study.

Table S2: Comparisons of the expected positions for the 10 prophages identified by Zund et al.
2021 and the hafeZ identifications for each sample. Note - The assembly used by Zund et al.,
for YL58 could not be found in public databases. Therefore, although the table shows that a new
prophage was identified and the expected prophage in YL58 was not identified, we used BLAST
to compare the Zind prophage sequence to the assembly used here and found that the Zind
prophage mapped to the exact start and end positions identified by hafeZ.

Table S3: Table containing the combined output of all summary tables produced for each sample’s
hafeZ run.
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