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 2 

Abstract  1 

Computational models can offer mechanistic insight into cognition and therefore have the 2 

potential to transform our understanding of psychiatric disorders and their treatment. For 3 

translational efforts to be successful, it is imperative that computational measures capture 4 

individual characteristics reliably. To date, this issue has received little consideration. Here we 5 

examine the reliability of reinforcement learning and economic models derived from two 6 

commonly used tasks. Healthy individuals (N=50) completed a restless four-armed bandit and a 7 

calibrated gambling task twice, two weeks apart. Reward and punishment learning rates from 8 

the reinforcement learning model showed good reliability and reward and punishment 9 

sensitivity from the same model had fair reliability; while risk aversion and loss aversion 10 

parameters from a prospect theory model exhibited good and excellent reliability, respectively. 11 

Both models were further able to predict future behaviour above chance within individuals. 12 

This prediction was better when based on participants9 own model parameters than other 13 

participants9 parameter estimates. These results suggest that reinforcement learning, and 14 

particularly prospect theory parameters, as derived from a restless four-armed bandit and a 15 

calibrated gambling task, can be measured reliably to assess learning and decision-making 16 

mechanisms, and that these processes may represent relatively distinct computational profiles 17 

across individuals. Overall, these findings indicate the translational potential of clinically-18 

relevant computational parameters for precision psychiatry. 19 

 20 

Keywords: Computational psychiatry, Reliability, Decision-making, Reinforcement Learning, 21 

Prospect Theory, Gambling  22 
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 3 

Introduction 1 

Cognitive and neural processes are increasingly conceptualized in computational terms 2 

(Palminteri et al., 2017). Generative computational models offer the advantage of examining 3 

behaviourally unobservable, but important, latent processes that drive behaviour and can be 4 

closely linked to neurobiology (Huys et al., 2016; Montague et al., 2004). As such, they provide 5 

a mathematically precise framework for specifying hypotheses about the cognitive processes 6 

that generate behaviour. These features make modelling a powerful tool to provide 7 

mechanistic accounts into (a)typical behaviours, including those associated with psychiatric 8 

symptoms.  9 

 10 

The increasing adoption of computational approaches in cognitive neuroscience inspired the 11 

emerging discipline of computational psychiatry, which aims to better understand mental 12 

illness through computational methods with the ultimate goal of transforming such knowledge 13 

into new personalised treatment strategies (Adams et al., 2016; Browning et al., 2020; Huys, 14 

2018; Huys et al., 2016; Huys et al., 2011; Maia & Frank, 2011; Montague et al., 2012; Patzelt et 15 

al., 2018; Paulus et al., 2016; Paulus & Thompson, 2019; Teufel & Fletcher, 2016; Wang & 16 

Krystal, 2014; Wiecki et al., 2015). For such translational endeavours to be successful, however, 17 

it is vital that computational measures capture individual characteristics reliably (Browning et 18 

al., 2020; Paulus et al., 2016). Specifically, the reliability of measures set an upper limit for 19 

detecting both relationships with other measures, e.g., symptoms, and the effect of 20 

interventions in e.g., randomized controlled trials, which may otherwise be obscured by poor 21 

test-retest reliability. 22 
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 4 

  1 

One area of computational modelling that has received particular attention is the reward and 2 

punishment processes underlying decision-making (Maia, 2009). In particular, two classes of 3 

computational models, respectively originating from computer science and behavioural 4 

economics, have been influential in characterizing the cognitive mechanisms underlying 5 

decision-making: reinforcement learning (RL) and prospect theory (PT) (Dayan & Niv, 2008; 6 

Kahneman & Tversky, 1979; Maia, 2009; Niv, 2009; Schonberg et al., 2011; Sutton & Barto, 7 

2018; Tversky & Kahneman, 1992). RL models describe how agents learn from rewards and 8 

punishments through trial-and-error (Sutton & Barto, 2018). Within the field of computational 9 

psychiatry, this set of models has perhaps been the most influential. For example, reward and 10 

punishment sensitivity (reflecting subjective valuation of the outcomes) and learning rate 11 

(reflecting how quickly individuals learn from better- or worse-than-expected outcomes) have 12 

been associated with distinct symptomatology and neural signals (Daw & Doya, 2006; Huys et 13 

al., 2021; Maia & Frank, 2011; Niv, 2009). A commonly-used RL task is the multi-armed 14 

<bandit=, in which individuals choose between multiple slot machines with fluctuating, 15 

unknown probabilities of reward and punishment, with the goal of maximizing earnings (Daw et 16 

al., 2006; Seymour et al., 2012; Speekenbrink & Konstantinidis, 2015; Yi et al., 2009). 17 

Participants must decide on each trial whether to persist with the previously sampled slot 18 

machine or explore others which may yield better outcomes. The mechanisms thought to 19 

underlie these decisions can be captured effectively by RL models (Aylward et al., 2019; Daw et 20 

al., 2006). 21 

 22 
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 5 

PT models, on the other hand, describe the cognitive processes driving decision-making biases 1 

under known risks, and have been extremely influential in understanding economic decision-2 

making (Kahneman & Tversky, 1979; Ruggeri et al., 2020; Schonberg et al., 2011; Sokol-Hessner 3 

& Rutledge, 2019; Tversky & Kahneman, 1992). These processes are often examined by asking 4 

participants to choose between a guaranteed outcome (e.g., £0 gain) and a 50% gamble with 5 

two possible outcomes (e.g., £30 gain or £10 loss). It is commonly observed that humans tend 6 

to prefer a sure payment over a risky payment with equivalent or higher expected value. For 7 

example, you may prefer an investment with a fixed return over one with a potentially higher 8 

but uncertain return. PT proposes that these observations can be accounted for by two 9 

different processes: 1) risk aversion 3 the preference for certain over uncertain gains, and 2) 10 

loss aversion 3 weighting losses more heavily than gains. Risk and loss aversion vary across 11 

individuals, and these differences have been associated with various psychiatric states, such as 12 

greater risk aversion in anxiety, increased loss aversion in obsessive-compulsive disorder and 13 

associations between loss aversion and suicidality (Baek et al., 2017; Brown et al., 2013; 14 

Charpentier et al., 2017; Charpentier et al., 2016; Hadlaczky et al., 2018; Hartley & Phelps, 15 

2012; Klaus et al., 2020; Sip et al., 2017; Stauffer et al., 2014; Tobler et al., 2009; Tremeau et al., 16 

2008). Importantly, computational modelling has allowed researchers to dissociate risk and loss 17 

aversion and their contribution to symptoms (Charpentier et al., 2017).  18 

 19 

Parameters from RL and PT models show promise in generating insights into the mechanisms 20 

underlying psychiatric symptoms. However, as of yet, the psychometric properties of 21 

computational parameters have received limited attention (Ahn & Busemeyer, 2016; Browning 22 
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 6 

et al., 2020; Nair et al., 2020; Paulus et al., 2016). Model-agnostic measures derived from 1 

reward processing tasks (e.g., percent correct) often have modest or poor reliability (Bland et 2 

al., 2016; Enkavi et al., 2019; Plichta et al., 2012). The few studies that have examined the 3 

reliability of PT and RL parameters based on gambling and various reward-processing tasks have 4 

reported either poor-to-good reliability (Chung et al., 2017; Glockner & Pachur, 2012; 5 

Scheibehenne & Pachur, 2015) or poor reliability (Moutoussis et al., 2018; Shahar et al., 2019). 6 

However, recent studies have shown that higher reliability of RL processes can be achieved 7 

using hierarchical estimation (Brown et al 2020; Waltmann et al., 2022). Computational 8 

cognitive models are however often context-specific (Eckstein et al., 2022), and importantly, no 9 

studies to date have reported the reliability of decision-making processes derived from a bandit 10 

task with fluctuating (<restless=) reward and punishment probabilities (Daw et al., 2006) or an 11 

individually calibrated gambling task (Charpentier et al., 2017), despite these showing promise 12 

in computational psychiatry studies (e.g., Aylward et al., 2019; Charpentier et al., 2017).  13 

 14 

A complementary perspective to understanding the reliability of computational cognitive 15 

models can be obtained through prediction. Generative models offer a substantial advantage in 16 

that they can both explain and predict behaviour. Unlike model-agnostic measures, 17 

computational parameters fit to one dataset should be able to predict future behaviour in the 18 

same individual. In other words, computational models can additionally be assessed by their 19 

ability to forecast future behaviour, equivalent to out-of-sample validation. This type of 20 

validation assesses model generalizability and is often referred to as predictive accuracy 21 

(Busemeyer & Wang, 2000; Glockner & Pachur, 2012; Scheibehenne & Pachur, 2015), but it has 22 
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 7 

rarely been used as a metric of reliability. The aim of the current study was to assess the 1 

reliability of model-agnostic and computational parameters derived from two widely-used 2 

decision-making tasks (a restless four-armed bandit and a calibrated gambling task) using 3 

standard measures of stability and reliability (respectively, practice effects and intraclass 4 

correlations; ICCs) and additionally out-of-sample predictive accuracy for model parameters. 5 

  6 
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 8 

Methods and Materials 1 

Participants 2 

Fifty-four healthy participants were recruited from the UCL Institute of Cognitive Neuroscience 3 

Subject Database. Four participants were excluded for failing to complete the second session 4 

(final N=50: 32 females [64%]; age range=19-38; mean age=25.16, SD±5.48 years; mean 5 

education=17.38, SD=±3.24 years). Participants reported no current or past psychiatric or 6 

neurological disorder, cannabis use in the past 31 days, alcohol consumption in the past 24 7 

hours, or any other recreational drug use in the week prior to participation. Participants 8 

provided written informed consent and were compensated at the end of their second session 9 

with a flat rate of £30 and a bonus of up to £20 based on task winnings. The study was 10 

approved by the UCL Psychology and Language Sciences Research Ethics Committee (Project ID 11 

Number: fMRI/2013/005) and was performed in accordance with the Declaration of Helsinki.  12 

 13 

Sample size was determined by an a priori power analysis in G*Power (Faul et al., 2007). The 14 

power analysis was based on the smallest effect size of interest, r=0.4, since reliability below 15 

this threshold is conventionally considered poor (Fleiss, 2011). Detecting an effect size of this 16 

magnitude, at the one-tailed 0.05 alpha level with 90% power, requires 47 participants. 17 

 18 

Study procedure and tasks 19 

Participants completed a battery of computerized tasks, including a restless four-armed bandit 20 

(Daw et al., 2006; Seymour et al., 2012) and an individually calibrated gambling task 21 
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 9 

(Charpentier et al., 2017) over two sessions (mean test-retest interval = 13.96 days, SD=0.20). 1 

On each trial in the bandit task, participants chose one out of four bandits and received one out 2 

of four possible outcomes: reward, punishment, neither reward nor punishment or both 3 

reward and punishment (200 trials total). Win and loss probabilities fluctuated independently 4 

over time and between boxes (Figure 1a-b; Supplemental Materials). In the gambling task, 5 

participants chose between a 50-50 gamble and a sure option without receiving feedback. Trials 6 

were classified as either mixed (50% chance to win or lose money gamble, or a sure option of 0 7 

points) or gain-only (50% chance to win or receive nothing gamble, or a variable sure gain; 8 

Figure 1c; Supplemental Materials). An initial training phase (50 mixed and 40 gain-only trials) 9 

was used to create individually calibrated offers (centred on indifference points) in a second 10 

phase (64 mixed and 56 gain-only trials). Calibration failed for one participant resulting in N=49 11 

participants for this task. Both tasks lasted around 15 minutes. 12 

 13 
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 1 

Figure 1. Four-armed bandit and gambling task. Example trial of the four-armed bandit task (a). On each trial, 2 

participants chose one out of four bandits and received one out of four possible outcomes: reward (green token), 3 

punishment (red token), neither reward nor punishment (empty box) or both reward and punishment (red and 4 

green token). An example of the win and loss probabilities fluctuating independently over time within one of the 5 

boxes (b). On each gambling task trial, participants chose between a 50-50 gamble and a sure (guaranteed amount 6 

of points) option (c). Trials were either mixed gambles (50-50 chance of winning or losing points or sure option of 0 7 

points) or gain-only trials (50-50 chance of winning or receiving nothing or sure gain). 8 

 9 
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 11 

Data analysis  1 

Data were processed in Matlab (R2019b) and analysed in SPSS (v25, IBM Corp, Armonk, NY) and 2 

R (v. 4.2.1). Computational modelling was performed with the hBayesDM package for R (v. 3 

3.6.0; https://github.com/CCS-Lab/hBayesDM) (Ahn et al., 2017), which uses hierarchical 4 

Bayesian modelling in Stan (v.2.21.2). For all analyses, p<0.05 (two-tailed) was considered 5 

statistically significant. Cohen9s dz (within-subject) effect sizes are reported for practice effects 6 

(Lakens, 2013).  7 

 8 

Model-agnostic task analyses 9 

Model-agnostic measures for the bandit task included the mean probability of repeating a 10 

choice after win-only, loss-only and no outcomes (8neither9). A repeated-measures analysis of 11 

variance (ANOVA) was conducted with the within-subjects factors outcome (win, loss, neither) 12 

and session (session 1, session 2) to assess basic behaviour and practice effects.  13 

 14 

Model-agnostic measures for the gambling task included the mean probability of gambling on 15 

mixed and gain-only trials. It was predicted that gambling would be higher on mixed trials, 16 

which was assessed using a repeated-measures ANOVA with within-subjects factors gamble 17 

(mixed, gain-only) and session (session 1, session 2). 18 

 19 

As a sensitivity analysis, bandit and gamble model-agnostic measures were additionally derived 20 

from trial-by-trial mixed-effects logistic regressions for each session since previous studies have 21 
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 12 

suggested that hierarchically predicted values improve reliability (Brown et al 2020; Waltmann 1 

et al., 2022). Further details on all model-agnostic measures are in Supplemental Materials. 2 

 3 

Computational modelling 4 

The bandit task data was fit with seven different RL models previously described in detail 5 

(Aylward et al., 2019) Supplemental Materials). Three PT models were fit to the gambling task 6 

(Ahn et al., 2017; Charpentier et al., 2017; Kahneman & Tversky, 1979; Sokol-Hessner et al., 7 

2009). Modelling was conducted on the second phase of the gambling task (i.e., on individually 8 

calibrated trials). The models were fit for each session separately, using separate hierarchical 9 

priors (group-level parameters), as this has shown to provide more accurate fits (Valton et al., 10 

2020), and we wished to avoid artificially inflating reliability estimates. We also estimated 11 

model fits under a single hierarchical prior (session 1 and session 2 data together) as a 12 

sensitivity analysis (Supplemental Materials). Model comparison was performed with leave-13 

one-out information criterion (LOOIC) where the winning model was the one with the lowest 14 

LOOIC. Several model validation checks were completed for the winning models, including 15 

examination of MCMC convergences, parameter recovery and recapitulation of real data (Daw, 16 

2011; Kruschke, 2015; Wilson & Collins, 2019; Supplemental Materials; Figure S1-S8). 17 

 18 

Reliability analysis 19 

Test-retest reliability was assessed with ICCs (ratios of intra-individual to inter-individual 20 

variability (Koo & Li, 2016; McGraw & Wong, 1996)), with values of <0.40 interpreted as poor, 21 

0.4-0.6 as fair, 0.6-0.75 as good, and >0.75 as excellent reliability (Fleiss, 2011). A two-way 22 
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mixed-effects model based on single-measures and absolute-agreement ICC was used (fixed 1 

effect: testing time-interval, random effect: subject), equivalent to ICC(A,1) (McGraw & Wong, 2 

1996).  3 

 4 

We also estimated reliability directly within models as this has recently shown to increase 5 

estimates by accounting for the uncertainty of measures (Brown et al 2020; Haines et al., 2020; 6 

Waltmann et al., 2022). For model-agnostic measures, this was achieved by estimating a single 7 

mixed-effects logistic regression with random intercepts and slopes, accounting data for both 8 

sessions jointly by including session as a second-level grouping factor with subjects nested 9 

within session (Brown et al 2020; Waltmann et al., 2022). This allows extracting variance 10 

components from the logistic regression to calculate a one-way random-effects, absolute-11 

agreement, single-measure ICC: ICC(1) in the McGraw and Wong (1996) convention. This was 12 

calculated for all bandit and gamble model-agnostic measures. For computational parameters, 13 

model-calculated Pearson9s r correlations were estimated between parameters from session 1 14 

and 2 by fitting all the data from both sessions together and embedding a correlation matrix 15 

between sessions in the winning RL and PT models (Haines et al., 2020; Pike et al., 2022). This is 16 

different to the single-prior model, which does not include an embedded correlation matrix. 17 

 18 

Posterior predictive performance  19 

To assess to what extent an individual9s future behaviour can be predicted using a generative 20 

model fit to their own task performance two weeks earlier, we calculated the probability of 21 

participants9 choices on each trial (i.e., the softmax output), given their session 2 data and 22 
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model parameter estimates from session 1. Probabilities were averaged across trials for each 1 

individual.  2 

 3 

Since hierarchical parameter estimation produces 8shrinkage9, effectively pulling parameter 4 

estimates from different individuals closer to each other (which improves estimation accuracy), 5 

it is possible that future performance may also be predicted above-chance using other 6 

participants9 parameter estimates from session 1 (e.g., participant A9s parameter estimates 7 

from session 1 predicting participant B9s session 2 choices). We therefore assessed whether 8 

using an individual9s model parameter estimates from session 1 predicted the same individual9s 9 

choices on session 2 better than using all other subjects9 model parameter estimates. To 10 

construct the latter measure, for each subject, we predicted trial-by-trial choices on session 2 11 

based on parameter estimates from every other participant9s session 1 model, and averaged 12 

the probabilities across all participants. Additionally, we compared subjects9 own S1 parameters 13 

in predicting S2 behaviour to the mean S1 model parameter priors in predicting future 14 

behaviour. 15 

 16 

Data accessibility 17 

All script code and data are available on OSF at https://osf.io/n7czx/. 18 

  19 
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Results 1 

Four-armed bandit task: model-agnostic results 2 

Basic behaviour and practice effects  3 

As expected, there was a main effect of outcome type on behaviour (F(2,98)=117.39, p<0.001, 4 

�!
"=0.71; Figure 2a). The probability to repeat a choice was significantly greater after wins 5 

compared with both losses and outcomes on which neither wins nor losses occurred, and 6 

greater after neither compared with losses (all p<0.001). There was no significant main effect of 7 

testing session (F(1, 49)=0.01, p=0.91, �!
"<0.001), but there was a significant outcome-by-session 8 

interaction (F(2,98)=3.12, p=0.049, �!
"=0.06), reflecting slightly increased repeated choices after 9 

wins and decreased repeated choices after losses. However, the difference in the tendency to 10 

repeat a choice between session 1 and session 2 did not reach significance following any of the 11 

outcome types (loss: t(49)=1.45, p=0.15, dz=0.21; win: t(49)=0.87, p=0.39, dz=0.12; neither: 12 

t(49)=0.54, p=0.59, dz=0.08), and therefore we do not interpret this result further.  13 

 14 

Test-retest reliability  15 

The model-agnostic measures exhibited fair-to-good reliability (Figure 2b; Table 1), which did 16 

not improve substantially when examined in separate trial-by-trial mixed logistic regressions 17 

(Table S1). However, reliability did increase, particularly for p(stay) after win and loss when 18 

estimated as part of a joint mixed-effects logistic regression (Table 1).  19 

 20 

 21 

 22 
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 1 

 2 

Figure 2: Basic behaviour, practice effects, and test-retest reliability of model-agnostic measures on the four-3 

armed bandit task. Boxplots of the four-armed bandit task showing probability to stay after a certain outcome in 4 

session 1 and 2 (a). The probability to stay was significantly different after each outcome type (Loss<Neither<Win) 5 

but no clear practice effect was evident. Scatter plots of the model-agnostic measures comparing behaviour on 6 

two testing sessions approximately 2 weeks apart (b). Lightly shaded regions in Figure 2a represent within-subjects 7 

standard error of the mean (SEM). *p<0.001  8 

 9 

Four-armed bandit task: modelling results 10 

Model comparison indicated that the winning (most parsimonious) model was the five-11 

parameter 8Bandit4arm_lapse9 (nomenclature from the hBayesDM package) model, with 12 

reward and punishment learning rate parameters, reward and punishment sensitivity 13 

parameters and a lapse parameter (final parameter captures random responding; Table S2), 14 

consistent with previous reports (Aylward et al., 2019). Three individuals were excluded due to 15 

difficulties in obtaining mean parameter estimates, as multiple peaks were evident in the 16 

posterior distribution of at least one parameter (Figure S2). The Bandit4arm_lapse model was 17 

therefore re-fit without these participants. Excluding these participants did not affect test-18 

retest reliability inference.  19 

*
*
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Line of best-fit
Reference line (ICC=1)



 17 

 1 

Practice effects 2 

On session 2 there were significant increases in the reward sensitivity (t(46)=3.00, p=0.004, 3 

dz=0.44) and lapse parameters (t(46)=8.88, p<0.001, dz=1.29), but not on any of the other 4 

parameters (reward learning rate: t(46)=1.28, p=0.21, dz=0.19; punishment learning rate: 5 

t(46)=1.74, p=0.09, dz=0.25; punishment sensitivity: t(46)=1.28, p=0.21, dz=0.19; Figure 3a). 6 

However, there were no significant practice effects when the data was fit under a single 7 

hierarchical prior (Table S3).  8 

 9 

Test-retest reliability  10 

All estimated Bandit4arm_lapse model parameters, except the lapse parameter, demonstrated 11 

fair-to-good reliability (Figure 3b; Table 1), which did not substantially change when parameters 12 

were estimated under a single hierarchical prior (Table S3). However, examining the correlation 13 

between parameters as estimated within a generative model showed good-to-excellent 14 

reliability, improving reliability across all but the lapse parameter (Table 1).  15 



 18 

 1 

Figure 3: Practice effects and test-retest reliability of the winning reinforcement learning model parameters 2 

derived from the four-armed bandit task. Boxplots show point estimates of the Bandit4arm_lapse model 3 

parameters in session 1 and 2, fit under separate priors (a). Scatter plots of the Bandit4arm_lapse model 4 

parameters over session 1 and 2 are presented (b). SEM: standard error of the mean. *p<0.05.      5 
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 1 

Posterior predictive performance  2 

Parameter estimates from session 1 predicted task performance on session 2 substantially 3 

better than chance (mean = 42%, chance = 25% accuracy; t(46)=9.10, p<0.001; Figure 4a), 4 

indicating that the model could predict future choices by using a generative model fit to the 5 

same participants9 data two weeks earlier. Using an individual9s parameter estimates to predict 6 

their own future choices was significantly better than when that prediction was based on the 7 

average of the other participants9 session 1 estimates (t(46)=3.20, p=0.003; Figure 4b). However, 8 

there was no significant difference between using an individual9s own session 1 parameter 9 

estimates compared with the session 1 mean prior parameter in predicting future behaviour 10 

(t(46)=1.04, p=0.30; Figure 4c).  11 

Model-agnostic p(stay) measures (N=50) ICC(A,1) ICC(1) Pearson9s r 

Summary statistics (Figure 2) 

Win 0.46 (0.21-0.65) 0.46 (0.21-0.65) 0.46 (0.20-0.65) 

Loss 0.54 (0.32-0.71) 0.54 (0.31-0.71) 0.55 (0.32-0.72) 

Neither 0.66 (0.48-0.79) 0.67 (0.48-0.80) 0.67 (0.48-0.80) 

Hierarchical logistic regression (embedded reliability) 

Win  0.63  

Loss  0.63  

Neither  0.71  

Reinforcement learning model (N=47) ICC(A,1) ICC(1) Pearson9s r 

Model estimated separately per session (Figure 3) 

Reward learning rate 0.60 (0.38-0.75) 0.60 (0.38-0.75) 0.60 (0.38-0.76) 

Punishment learning rate 0.63 (0.42-0.77) 0.62 (0.41-0.77) 0.64 (0.43-0.78) 

Reward sensitivity 0.52 (0.26-0.70) 0.50 (0.25-0.69) 0.56 (0.33-0.73) 

Punishment sensitivity 0.45 (0.20-0.65) 0.45 (0.19-0.65) 0.46 (0.19-0.66) 

Lapse 0.01 (-0.08-0.14) -0.43 (-0.64- -0.17) 0.05 (-0.24-0.33) 

Model estimated across sessions with embedded reliability  

Reward learning rate   0.71 (0.53-0.84) 

Punishment learning rate   0.85 (0.69-0.95) 

Reward sensitivity   0.68 (0.48-0.84) 

Punishment sensitivity   0.64 (0.37-0.85) 

Lapse   -0.01 (-0.65-0.68) 

Table 1: Reliability of model-agnostic and computational measures of the four-armed bandit task.  

All measures but the lapse parameter are significant at p<0.05. Brackets represent the 95% confidence 

interval. 
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 2 

 3 

Figure 4: Posterior predictive performance of the winning reinforcement learning model derived from the four-4 

armed bandit task. Boxplots depicting accuracy of bandit4arm_lapse model in predicting choices (a). Model 5 

estimates from session 1 (S1) predicted future session 2 (S2) behaviour above chance (black boxplot). Both S1 and 6 

S2 model estimates also predicted behaviour on the same session significantly above chance (blue and red 7 

boxplots). Predicting future performance (session 2 data) using a participant9s own model parameter estimates 8 

was significantly better than using other participants9 S1 model parameter estimates (b) but not when comparing 9 

against the mean S1 model priors (c). SEM: standard error of the mean. *p<0.01.  10 

 11 

Gambling task: model-agnostic results 12 

Basic behaviour and practice effects 13 

As expected, propensity to gamble was significantly higher on mixed gambles (F(1, 48)=13.71, 14 

p=0.001, �!
"=0.22). There were no significant main (F(1, 48)=0.76, p=0.40, �!
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differences: probability to gamble on mixed trials t(48)=0.23, p=0.82, dz=0.03; probability to 1 

gamble on gain-only trials t(48)=1.51, p=0.14, dz=0.22; Figure 5a).  2 

 3 

Test-retest reliability  4 

Model-agnostic measures on the gambling task exhibited fair-to-good reliability (Figure 5b; 5 

Table 2) and did not change substantially when examined hierarchically in separate mixed 6 

logistic regression (Table S4). Calculating reliability within a joint mixed logistic regression 7 

numerically improved the reliability of the gambling model-agnostic measures (Table 2).  8 

 9 

Figure 5: Basic behaviour, practice effects, and test-retest reliability of model-agnostic measures on the 10 

gambling task. Boxplots show the probability to gamble based on the trial type in session 1 and 2, with no 11 

significant session effects (a). Scatter plots of the model-agnostic measures over session 1 and 2 (b). Lightly shaded 12 

regions in Figure 5a represent within-subjects standard error of the mean (SEM). *p<0.001.      13 
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Gambling task: modelling results 15 

The winning model was the PT model (8ra_prospect9 in the hBayesDM package) with loss 16 

aversion, risk aversion and inverse temperature parameters (last parameter represents choice 17 

consistency; Table S5), consistent with previous reports (Charpentier et al., 2017). A loss 18 
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aversion parameter above 1 represents overweighting of losses to gains, while a risk aversion 1 

parameter less than 1 indicates aversion to risk. Neither test-retest nor practice effects were 2 

substantially altered when the model was fit under a single hierarchical prior (Table S6).  3 

 4 

Practice effects 5 

There were significant session effects on all PT model parameters (on session 2: decreased loss 6 

aversion: t(48)=2.17, p=0.04, dz=0.31; decreased risk aversion: t(48)=4.04, p<0.001, dz=0.58; 7 

increased inverse temperature: t(48)=3.07, p=0.004, dz=0.44; Figure 6a). 8 

 9 

Test-retest reliability  10 

All estimated parameters demonstrated good-to-excellent reliability (Figure 6b; Table 2), and 11 

showed excellent reliability when estimating a correlation matrix embedded within the model 12 

(Table 2). 13 

 14 
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 1 

Figure 6: Practice effects and test-retest reliability of the prospect theory model derived from the gambling task. 2 

Boxplots show point estimates of the prospect theory model parameters in session 1 and 2, fit under separate 3 

priors (a). Scatter plots of the prospect theory model parameters over session 1 and 2 are presented (b). SEM: 4 

standard error of the mean. *p<0.05.      5 
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 1 

Posterior predictive performance  2 

PT model parameters from session 1 predicted future choices at session 2 significantly above 3 

chance (mean = 68%, chance = 50% accuracy; t(48)= 12.08, p<0.001; Figure 7a). Predicting future 4 

performance at session 2 was significantly higher when based on participants9 own parameter 5 

estimates from session 1 compared with model parameter estimates of other participants from 6 

session 1 (t(48)=8.38, p<0.001; Figure 7b). This was also true when comparing between 7 

participants9 own session 1 parameter estimates with the mean session 1 prior for parameters 8 

(t(48)=6.28, p<0.001; Figure 7c).  9 

Model-agnostic p(gamble) measures  ICC(A,1) ICC(1) Pearson9s r 

Summary statistics (Figure 5) 

Mixed trials 0.63 (0.43-0.78) 0.63 (0.43-0.78) 0.63 (0.42-0.77) 

Gain-only trials 0.59 (0.38-0.75) 0.59 (0.38-0.75) 0.60 (0.39-0.76) 

Hierarchical logistic regression (embedded reliability) 

Mixed trials  0.73  

Gain-only trials  0.72  

Reinforcement learning model ICC(A,1) ICC(1) Pearson9s r 

Model estimated separately per session (Figure 6) 

Loss aversion 0.68 (0.50-0.81) 0.68 (0.50-0.81) 0.72 (0.55-0.83) 

Risk aversion 0.78 (0.55-0.89) 0.78 (0.64-0.87) 0.83 (0.71-0.90) 

Inverse Temperature  0.80 (0.64-0.89) 0.80 (0.67-0.88) 0.84 (0.74-0.91) 

Model estimated across sessions with embedded reliability  

Loss aversion   0.87 (0.77-0.94) 

Risk aversion   0.90 (0.83-0.95) 

Inverse Temperature    0.91 (0.85-0.96) 

Table 2: Reliability of model-agnostic and computational measures of the gambling task.  

All measures are significant at p<0.05. Brackets represent the 95% confidence interval. 
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 1 

Figure 7: Posterior predictive performance of the prospect theory model derived from the gambling task. 2 

Boxplots depicting accuracy of prospect theory model in predicting choices (a). Session 1 (S1) model estimates 3 

predicted S1 behaviour significantly above chance (blue boxplot), as did session 2 (S2) model estimates on S2 data 4 

(red boxplot). Importantly, model parameter estimates from S1 predicted task performance from S2 above chance 5 

(black boxplot). Predicting future S2 performance using a participant9s own S1 model parameter estimates was 6 

significantly better than using other participants9 S1 model parameter estimates (b) and mean S1 model priors (c). 7 

SEM: standard error of the mean. *p<0.001.     8 
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Discussion  1 

Reliability has garnered increased attention in recent years, with worryingly low reliability 2 

across conventional measures from cognitive tasks and functional neuroimaging (Elliott et al., 3 

2020; Enkavi et al., 2019; Noble et al., 2019; Nord et al., 2017; Rodebaugh et al., 2016). 4 

However, few attempts have been made to examine the reliability of computational cognitive 5 

measures. Here we assessed the psychometric properties of computational models derived 6 

from a restless four-armed bandit and a calibrated gambling task. Overall, most parameters 7 

reflecting RL and decision-making processes exhibited adequate reliability and predicted future 8 

performance well. These results provide promise for their use in clinical settings. However, this 9 

conclusion depends on the specific parameters assessed in each task, highlighting the 10 

complexities of translating tasks to the clinic.  11 

 12 

Four-armed bandit RL model reliability  13 

Reward and punishment learning rates from the bandit task demonstrated good reliability 14 

while reward and punishment sensitivity showed fair reliability, suggesting that this task may be 15 

more suitable for assessing learning rates than sensitivity. Elevated punishment learning rates 16 

(faster learning in the face of negative outcomes) and lapse values have been associated with 17 

greater mood and anxiety symptoms, representing potential measurable mechanistic treatment 18 

targets (Aylward et al., 2019). However, the present study suggests that the lapse parameter, 19 

which exhibited poor reliability as assessed by the bandit task, may not be a suitable target. 20 

This parameter measures responding not captured by the model (including goal-directed and 21 

random exploration), and the sources of this 8noise9 might differ across sessions. It is therefore 22 
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perhaps unsurprising that this parameter was unreliable. Crucially, the lapse parameter showed 1 

poor recoverability, which places an upper limit on its potential reliability. Some of this poor 2 

recoverability may be explained by limited lapse variation, especially in session 1 (Figure S3). 3 

The distribution of the group-level standard deviation lapse parameter was biased towards 4 

smaller values here such that the lapse parameter did not vary greatly between individuals 5 

(Figure S5). This suggests that the lapse parameter could be replaced with a constant and 6 

inference on this parameter is not advised.  7 

 8 

Although no prior studies have specifically investigated ICC properties of the current RL model, 9 

one previous study found similarly poor reliability of the lapse parameter across six months in a 10 

go/no-go RL model in adolescents (Moutoussis et al., 2018). In contrast to our results, this study 11 

also reported poor reliability of both reward and punishment learning rates. These differences 12 

may arise for a multitude of reason, such as using different tasks (an orthogonalised go/no-go 13 

task versus a restless bandit task), testing time-windows (six months versus two weeks), 14 

populations (adolescents versus adults), or models. It is not possible to delineate these 15 

diverging results without systematically comparing these factors in one study. Importantly, 16 

however, we provide evidence that it is possible to achieve at least moderate reliability for 17 

some canonical RL parameters.  18 

 19 

Interestingly, the model-agnostic outcome measures of the bandit task exhibited similar 20 

reliability to the computational measures. Model-agnostic measures of cognitive tasks have 21 

often been reported to exhibit poor-to-moderate reliability (Enkavi et al., 2019; Hedge et al., 22 
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2018; Plichta et al., 2012; Rodebaugh et al., 2016). It has been argued that this may be due to 1 

their inability to capture the generative process underlying task performance (Huys et al., 2021; 2 

Price et al., 2019). Our results suggest that it should not be assumed that computational 3 

parameters will always provide greater reliability than non-computational ones. However, the 4 

model-agnostic outcome measures are only a proxy of the processes the bandit task assesses, 5 

as it is difficult to compute model-agnostic equivalents of some parameters, such as 6 

reward/punishment sensitivity. Indeed, models make explicit and falsifiable predictions of the 7 

components driving behaviour, which can be refined and used to simulate artificial data to 8 

generate new predictions. Thus, computational modelling is a more rigorous and preferable 9 

method for assessing behaviour than model-agnostic measures, which unlike computational 10 

methods, lack the mechanistic insights into the underlying processes generating behaviour. 11 

 12 

Gambling PT model reliability  13 

While reliability of parameters ranged from poor-to-good in the bandit task, parameters from 14 

the gambling task showed good-to-excellent test-retest reliability. These were also higher than 15 

the reliability of the model-agnostic measures, suggesting that computational models may offer 16 

advantages in psychometric properties here. In particular, the risk aversion parameter, which 17 

has previously been associated with anxiety (Charpentier et al., 2017), exhibited excellent 18 

reliability (ICC=0.78), providing promise for use in clinical research. These results show higher 19 

reliability than previous studies (loss aversion rj0.25-0.61, risk aversion rj0.50-0.60, inverse 20 

temperature rj0.30-0.60 [Chung et al., 2017; Glockner & Pachur, 2012; Scheibehenne & Pachur, 21 

2015]). These studies all used different estimation procedures, including hierarchical Bayesian, 22 
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and employed both longer and shorter testing time-windows than the current study, suggesting 1 

that these factors may not fully explain the differences. It is possible that our results instead 2 

stem from different PT model specifications, as well as different task designs. Indeed, a strength 3 

of the gambling task is that we calibrated offers to each individual9s indifference point 4 

(Charpentier et al., 2017). A similar approach of dynamically updating parameter values to each 5 

individual during task performance has previously been suggested as a solution to unreliable 6 

cognitive tasks (Palminteri & Chevallier, 2018). This may allow for removing any potential state 7 

influences across participants to extract more trait-like measures of the variables of interest 8 

(here risk/loss aversion).  9 

 10 

Predictive accuracy  11 

We also examined how well the models predicted future task performance, which provides 12 

complementary perspective on reliability, unique to computationally-informed measures.  13 

Notably, for the PT model participants9 own parameter estimates from the first session were 14 

better at predicting their future performance compared with using parameter estimates from 15 

all other participants and from model priors. Individuals9 own RL parameters only provided an 16 

advantage in predicting future performance when compared with other9s parameter estimates 17 

but not model priors. It is likely that the RL model did not perform as well on this metric as the 18 

PT model because the RL model does not provide as close a fit to behaviour, potentially due to 19 

some participants performing at chance level. Overall, this indicates that individuals may also 20 

reliably differ in the cognitive mechanisms underlying their decisions, and offers reassurance 21 

that hierarchical estimation procedures are suitable for inter-individual inferences (Brown et 22 
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al., 2020; Daw, 2011; Scheibehenne & Pachur, 2015). In other words, individuals show relatively 1 

unique computational decision-making profiles, particularly in the PT model. This is consistent 2 

with two previous studies using a different PT model and gambling task (Glockner & Pachur, 3 

2012; Scheibehenne & Pachur, 2015).  4 

 5 

Implications 6 

The RL parameters showed relatively modest reliability, suggesting that these processes are 7 

more vulnerable to state influences than PT parameters. A consequence of this is that larger 8 

sample sizes may be required to examine effects, as effect sizes would be expected to be lower, 9 

relative to PT tasks (Fleiss, 2011). Interpreting the marked difference in reliability between the 10 

PT and RL models is not straightforward, as these models measure complementary aspects of 11 

cognition. The bandit task is a learning paradigm that requires constant updating of optimal 12 

choices. It is possible that in the first session individuals had not yet stabilized on a cognitive 13 

strategy and were still learning the task structure, as indicated by lower evidence of the winning 14 

model in session 1 compared with session 2 (Table S2). It would be interesting to explore if an 15 

initial baseline session, would improve test-retest reliability. It should be noted that we found 16 

substantially greater reliability of RL (good-to-excellent) and PT (excellent) parameters when 17 

estimated within the generative model. These provide an upper theoretical reliability bound of 18 

a parameter and are mainly relevant for within-subjects applications (if changes are modelled 19 

within a model). In addition, although previous studies suggest that hierarchically measured 20 

model-agnostic predicted values substantially improve reliability (Brown et al., 2020; Waltmann 21 

et al., 2020), this was not the case in the current study. However, calculating the reliability of 22 



 31 

model-agnostic measures directly from a joint logistic regression improved model-agnostic 1 

reliabilities but measures remained in the range of good reliability. 2 

 3 

Limitations 4 

A potential limitation of our study is the sample tested, as the reliability of tasks in healthy 5 

individuals may differ from that in clinical groups. Similarly, our results only speak to reliability 6 

over two weeks. Thus, it is possible that longer time periods may produce lower reliability, 7 

which should be assessed in future studies. Reliability over two weeks is particularly informative 8 

for interventional studies such as randomised controlled trials (e.g., for rapid-acting 9 

antidepressants or for early markers of response for traditional antidepressants/ 10 

psychotherapies). This time-window is also in line with other reliability studies aiming to 11 

establish reliability of measures for e.g., individual differences (e.g., Hedge et al., 2018; Nord et 12 

al., 2017), based on the assumption that measures should remain relatively stable over a short 13 

time-period.   14 

 15 

Conclusion 16 

In summary, we show that commonly-used computational parameters derived from an RL 17 

8restless9 bandit task and a calibrated gambling task exhibit fair-to-excellent reliability. 18 

Specifically, learning rates showed good reliability and sensitivity parameters showed fair 19 

reliability from the RL model, while loss aversion had good reliability and risk aversion and 20 

inverse temperature displayed excellent reliability from the PT model. These models can 21 

further be used to predict future behaviour in the same individuals, especially PT model 22 
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parameters, indicating that the decision-making processes assessed in these tasks represent 1 

relatively consistent and unique characteristics of an individual. These findings take us one step 2 

closer to translating computational measures of behaviour into clinical application.  3 
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