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Abstract

Computational models can offer mechanistic insight into cognition and therefore have the
potential to transform our understanding of psychiatric disorders and their treatment. For
translational efforts to be successful, it is imperative that computational measures capture
individual characteristics reliably. To date, this issue has received little consideration. Here we
examine the reliability of reinforcement learning and economic models derived from two
commonly used tasks. Healthy individuals (N=50) completed a restless four-armed bandit and a
calibrated gambling task twice, two weeks apart. Reward and punishment learning rates from
the reinforcement learning model showed good reliability and reward and punishment
sensitivity from the same model had fair reliability; while risk aversion and loss aversion
parameters from a prospect theory model exhibited good and excellent reliability, respectively.
Both models were further able to predict future behaviour above chance within individuals.
This prediction was better when based on participants’ own model parameters than other
participants’ parameter estimates. These results suggest that reinforcement learning, and
particularly prospect theory parameters, as derived from a restless four-armed bandit and a
calibrated gambling task, can be measured reliably to assess learning and decision-making
mechanisms, and that these processes may represent relatively distinct computational profiles
across individuals. Overall, these findings indicate the translational potential of clinically-

relevant computational parameters for precision psychiatry.

Keywords: Computational psychiatry, Reliability, Decision-making, Reinforcement Learning,

Prospect Theory, Gambling
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Introduction

Cognitive and neural processes are increasingly conceptualized in computational terms
(Palminteri et al., 2017). Generative computational models offer the advantage of examining
behaviourally unobservable, but important, latent processes that drive behaviour and can be
closely linked to neurobiology (Huys et al., 2016; Montague et al., 2004). As such, they provide
a mathematically precise framework for specifying hypotheses about the cognitive processes
that generate behaviour. These features make modelling a powerful tool to provide
mechanistic accounts into (a)typical behaviours, including those associated with psychiatric

symptoms.

The increasing adoption of computational approaches in cognitive neuroscience inspired the
emerging discipline of computational psychiatry, which aims to better understand mental
illness through computational methods with the ultimate goal of transforming such knowledge
into new personalised treatment strategies (Adams et al., 2016; Browning et al., 2020; Huys,
2018; Huys et al., 2016; Huys et al., 2011; Maia & Frank, 2011; Montague et al., 2012; Patzelt et
al., 2018; Paulus et al., 2016; Paulus & Thompson, 2019; Teufel & Fletcher, 2016; Wang &
Krystal, 2014; Wiecki et al., 2015). For such translational endeavours to be successful, however,
it is vital that computational measures capture individual characteristics reliably (Browning et
al., 2020; Paulus et al., 2016). Specifically, the reliability of measures set an upper limit for
detecting both relationships with other measures, e.g., symptoms, and the effect of
interventions in e.g., randomized controlled trials, which may otherwise be obscured by poor

test-retest reliability.
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One area of computational modelling that has received particular attention is the reward and
punishment processes underlying decision-making (Maia, 2009). In particular, two classes of
computational models, respectively originating from computer science and behavioural
economics, have been influential in characterizing the cognitive mechanisms underlying
decision-making: reinforcement learning (RL) and prospect theory (PT) (Dayan & Niv, 2008;
Kahneman & Tversky, 1979; Maia, 2009; Niv, 2009; Schonberg et al., 2011; Sutton & Barto,
2018; Tversky & Kahneman, 1992). RL models describe how agents learn from rewards and
punishments through trial-and-error (Sutton & Barto, 2018). Within the field of computational
psychiatry, this set of models has perhaps been the most influential. For example, reward and
punishment sensitivity (reflecting subjective valuation of the outcomes) and learning rate
(reflecting how quickly individuals learn from better- or worse-than-expected outcomes) have
been associated with distinct symptomatology and neural signals (Daw & Doya, 2006; Huys et
al., 2021; Maia & Frank, 2011; Niv, 2009). A commonly-used RL task is the multi-armed
“bandit”, in which individuals choose between multiple slot machines with fluctuating,
unknown probabilities of reward and punishment, with the goal of maximizing earnings (Daw et
al., 2006; Seymour et al., 2012; Speekenbrink & Konstantinidis, 2015; Yi et al., 2009).
Participants must decide on each trial whether to persist with the previously sampled slot
machine or explore others which may yield better outcomes. The mechanisms thought to
underlie these decisions can be captured effectively by RL models (Aylward et al., 2019; Daw et

al., 2006).
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PT models, on the other hand, describe the cognitive processes driving decision-making biases
under known risks, and have been extremely influential in understanding economic decision-
making (Kahneman & Tversky, 1979; Ruggeri et al., 2020; Schonberg et al., 2011; Sokol-Hessner
& Rutledge, 2019; Tversky & Kahneman, 1992). These processes are often examined by asking
participants to choose between a guaranteed outcome (e.g., £0 gain) and a 50% gamble with
two possible outcomes (e.g., £30 gain or £10 loss). It is commonly observed that humans tend
to prefer a sure payment over a risky payment with equivalent or higher expected value. For
example, you may prefer an investment with a fixed return over one with a potentially higher
but uncertain return. PT proposes that these observations can be accounted for by two
different processes: 1) risk aversion — the preference for certain over uncertain gains, and 2)
loss aversion — weighting losses more heavily than gains. Risk and loss aversion vary across
individuals, and these differences have been associated with various psychiatric states, such as
greater risk aversion in anxiety, increased loss aversion in obsessive-compulsive disorder and
associations between loss aversion and suicidality (Baek et al., 2017; Brown et al., 2013;
Charpentier et al., 2017; Charpentier et al., 2016; Hadlaczky et al., 2018; Hartley & Phelps,
2012; Klaus et al., 2020; Sip et al., 2017; Stauffer et al., 2014; Tobler et al., 2009; Tremeau et al.,
2008). Importantly, computational modelling has allowed researchers to dissociate risk and loss

aversion and their contribution to symptoms (Charpentier et al., 2017).

Parameters from RL and PT models show promise in generating insights into the mechanisms
underlying psychiatric symptoms. However, as of yet, the psychometric properties of

computational parameters have received limited attention (Ahn & Busemeyer, 2016; Browning
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et al., 2020; Nair et al., 2020; Paulus et al., 2016). Model-agnostic measures derived from
reward processing tasks (e.g., percent correct) often have modest or poor reliability (Bland et
al., 2016; Enkavi et al., 2019; Plichta et al., 2012). The few studies that have examined the
reliability of PT and RL parameters based on gambling and various reward-processing tasks have
reported either poor-to-good reliability (Chung et al., 2017; Glockner & Pachur, 2012;
Scheibehenne & Pachur, 2015) or poor reliability (Moutoussis et al., 2018; Shahar et al., 2019).
However, recent studies have shown that higher reliability of RL processes can be achieved
using hierarchical estimation (Brown et al 2020; Waltmann et al., 2022). Computational
cognitive models are however often context-specific (Eckstein et al., 2022), and importantly, no
studies to date have reported the reliability of decision-making processes derived from a bandit
task with fluctuating (“restless”) reward and punishment probabilities (Daw et al., 2006) or an
individually calibrated gambling task (Charpentier et al., 2017), despite these showing promise

in computational psychiatry studies (e.g., Aylward et al., 2019; Charpentier et al., 2017).

A complementary perspective to understanding the reliability of computational cognitive
models can be obtained through prediction. Generative models offer a substantial advantage in
that they can both explain and predict behaviour. Unlike model-agnostic measures,
computational parameters fit to one dataset should be able to predict future behaviour in the
same individual. In other words, computational models can additionally be assessed by their
ability to forecast future behaviour, equivalent to out-of-sample validation. This type of
validation assesses model generalizability and is often referred to as predictive accuracy

(Busemeyer & Wang, 2000; Glockner & Pachur, 2012; Scheibehenne & Pachur, 2015), but it has
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rarely been used as a metric of reliability. The aim of the current study was to assess the
reliability of model-agnostic and computational parameters derived from two widely-used
decision-making tasks (a restless four-armed bandit and a calibrated gambling task) using
standard measures of stability and reliability (respectively, practice effects and intraclass

correlations; ICCs) and additionally out-of-sample predictive accuracy for model parameters.


https://doi.org/10.1101/2021.06.30.450026
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.30.450026; this version posted September 2, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

10

11

12

13

14

15

16

17

18

19

20

21

available under aCC-BY 4.0 International license.

Methods and Materials

Participants

Fifty-four healthy participants were recruited from the UCL Institute of Cognitive Neuroscience
Subject Database. Four participants were excluded for failing to complete the second session
(final N=50: 32 females [64%]; age range=19-38; mean age=25.16, SD+5.48 years; mean
education=17.38, SD=13.24 years). Participants reported no current or past psychiatric or
neurological disorder, cannabis use in the past 31 days, alcohol consumption in the past 24
hours, or any other recreational drug use in the week prior to participation. Participants
provided written informed consent and were compensated at the end of their second session
with a flat rate of £30 and a bonus of up to £20 based on task winnings. The study was
approved by the UCL Psychology and Language Sciences Research Ethics Committee (Project ID

Number: fMRI/2013/005) and was performed in accordance with the Declaration of Helsinki.

Sample size was determined by an a priori power analysis in G*Power (Faul et al., 2007). The
power analysis was based on the smallest effect size of interest, r=0.4, since reliability below
this threshold is conventionally considered poor (Fleiss, 2011). Detecting an effect size of this

magnitude, at the one-tailed 0.05 alpha level with 90% power, requires 47 participants.

Study procedure and tasks

Participants completed a battery of computerized tasks, including a restless four-armed bandit

(Daw et al., 2006; Seymour et al., 2012) and an individually calibrated gambling task
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(Charpentier et al., 2017) over two sessions (mean test-retest interval = 13.96 days, SD=0.20).
On each trial in the bandit task, participants chose one out of four bandits and received one out
of four possible outcomes: reward, punishment, neither reward nor punishment or both
reward and punishment (200 trials total). Win and loss probabilities fluctuated independently
over time and between boxes (Figure 1a-b; Supplemental Materials). In the gambling task,
participants chose between a 50-50 gamble and a sure option without receiving feedback. Trials
were classified as either mixed (50% chance to win or lose money gamble, or a sure option of 0
points) or gain-only (50% chance to win or receive nothing gamble, or a variable sure gain;
Figure 1c; Supplemental Materials). An initial training phase (50 mixed and 40 gain-only trials)
was used to create individually calibrated offers (centred on indifference points) in a second
phase (64 mixed and 56 gain-only trials). Calibration failed for one participant resulting in N=49

participants for this task. Both tasks lasted around 15 minutes.
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2 Figure 1. Four-armed bandit and gambling task. Example trial of the four-armed bandit task (a). On each trial,

3 participants chose one out of four bandits and received one out of four possible outcomes: reward (green token),
4 punishment (red token), neither reward nor punishment (empty box) or both reward and punishment (red and

5 green token). An example of the win and loss probabilities fluctuating independently over time within one of the

6 boxes (b). On each gambling task trial, participants chose between a 50-50 gamble and a sure (guaranteed amount
7 of points) option (c). Trials were either mixed gambles (50-50 chance of winning or losing points or sure option of 0

8 points) or gain-only trials (50-50 chance of winning or receiving nothing or sure gain).
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Data analysis
Data were processed in Matlab (R2019b) and analysed in SPSS (v25, IBM Corp, Armonk, NY) and
R (v. 4.2.1). Computational modelling was performed with the hBayesDM package for R (v.

3.6.0; https://github.com/CCS-Lab/hBayesDM) (Ahn et al., 2017), which uses hierarchical

Bayesian modelling in Stan (v.2.21.2). For all analyses, p<0.05 (two-tailed) was considered
statistically significant. Cohen’s d, (within-subject) effect sizes are reported for practice effects

(Lakens, 2013).

Model-agnostic task analyses

Model-agnostic measures for the bandit task included the mean probability of repeating a
choice after win-only, loss-only and no outcomes (‘neither’). A repeated-measures analysis of
variance (ANOVA) was conducted with the within-subjects factors outcome (win, loss, neither)

and session (session 1, session 2) to assess basic behaviour and practice effects.

Model-agnostic measures for the gambling task included the mean probability of gambling on
mixed and gain-only trials. It was predicted that gambling would be higher on mixed trials,
which was assessed using a repeated-measures ANOVA with within-subjects factors gamble

(mixed, gain-only) and session (session 1, session 2).

As a sensitivity analysis, bandit and gamble model-agnostic measures were additionally derived

from trial-by-trial mixed-effects logistic regressions for each session since previous studies have

11
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suggested that hierarchically predicted values improve reliability (Brown et al 2020; Waltmann

et al., 2022). Further details on all model-agnostic measures are in Supplemental Materials.

Computational modelling

The bandit task data was fit with seven different RL models previously described in detail
(Aylward et al., 2019) Supplemental Materials). Three PT models were fit to the gambling task
(Ahn et al., 2017; Charpentier et al., 2017; Kahneman & Tversky, 1979; Sokol-Hessner et al.,
2009). Modelling was conducted on the second phase of the gambling task (i.e., on individually
calibrated trials). The models were fit for each session separately, using separate hierarchical
priors (group-level parameters), as this has shown to provide more accurate fits (Valton et al.,
2020), and we wished to avoid artificially inflating reliability estimates. We also estimated
model fits under a single hierarchical prior (session 1 and session 2 data together) as a
sensitivity analysis (Supplemental Materials). Model comparison was performed with leave-
one-out information criterion (LOOIC) where the winning model was the one with the lowest
LOOIC. Several model validation checks were completed for the winning models, including
examination of MCMC convergences, parameter recovery and recapitulation of real data (Daw,

2011; Kruschke, 2015; Wilson & Collins, 2019; Supplemental Materials; Figure S1-S8).

Reliability analysis
Test-retest reliability was assessed with ICCs (ratios of intra-individual to inter-individual
variability (Koo & Li, 2016; McGraw & Wong, 1996)), with values of <0.40 interpreted as poor,

0.4-0.6 as fair, 0.6-0.75 as good, and >0.75 as excellent reliability (Fleiss, 2011). A two-way

12
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mixed-effects model based on single-measures and absolute-agreement ICC was used (fixed
effect: testing time-interval, random effect: subject), equivalent to ICC(A,1) (McGraw & Wong,

1996).

We also estimated reliability directly within models as this has recently shown to increase
estimates by accounting for the uncertainty of measures (Brown et al 2020; Haines et al., 2020;
Waltmann et al., 2022). For model-agnostic measures, this was achieved by estimating a single
mixed-effects logistic regression with random intercepts and slopes, accounting data for both
sessions jointly by including session as a second-level grouping factor with subjects nested
within session (Brown et al 2020; Waltmann et al., 2022). This allows extracting variance
components from the logistic regression to calculate a one-way random-effects, absolute-
agreement, single-measure ICC: ICC(1) in the McGraw and Wong (1996) convention. This was
calculated for all bandit and gamble model-agnostic measures. For computational parameters,
model-calculated Pearson’s r correlations were estimated between parameters from session 1
and 2 by fitting all the data from both sessions together and embedding a correlation matrix
between sessions in the winning RL and PT models (Haines et al., 2020; Pike et al., 2022). This is

different to the single-prior model, which does not include an embedded correlation matrix.

Posterior predictive performance

To assess to what extent an individual’s future behaviour can be predicted using a generative
model fit to their own task performance two weeks earlier, we calculated the probability of

participants’ choices on each trial (i.e., the softmax output), given their session 2 data and

13
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model parameter estimates from session 1. Probabilities were averaged across trials for each

individual.

Since hierarchical parameter estimation produces ‘shrinkage’, effectively pulling parameter
estimates from different individuals closer to each other (which improves estimation accuracy),
it is possible that future performance may also be predicted above-chance using other
participants’ parameter estimates from session 1 (e.g., participant A’s parameter estimates
from session 1 predicting participant B’s session 2 choices). We therefore assessed whether
using an individual’s model parameter estimates from session 1 predicted the same individual’s
choices on session 2 better than using all other subjects’” model parameter estimates. To
construct the latter measure, for each subject, we predicted trial-by-trial choices on session 2
based on parameter estimates from every other participant’s session 1 model, and averaged
the probabilities across all participants. Additionally, we compared subjects’ own S1 parameters
in predicting S2 behaviour to the mean S1 model parameter priors in predicting future

behaviour.

Data accessibility

All script code and data are available on OSF at https://osf.io/n7czx/.

14
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Results

Four-armed bandit task: model-agnostic results

Basic behaviour and practice effects

As expected, there was a main effect of outcome type on behaviour (F(2,98=117.39, p<0.001,
nf,=0.71; Figure 2a). The probability to repeat a choice was significantly greater after wins
compared with both losses and outcomes on which neither wins nor losses occurred, and
greater after neither compared with losses (all p<0.001). There was no significant main effect of
testing session (F1,49=0.01, p=0.91, n§<0.001), but there was a significant outcome-by-session
interaction (F(2,98=3.12, p=0.049, n§=0.06), reflecting slightly increased repeated choices after
wins and decreased repeated choices after losses. However, the difference in the tendency to
repeat a choice between session 1 and session 2 did not reach significance following any of the
outcome types (loss: ta9)=1.45, p=0.15, d,=0.21; win: t(49)=0.87, p=0.39, d,=0.12; neither:

t(49)=0.54, p=0.59, d,=0.08), and therefore we do not interpret this result further.

Test-retest reliability

The model-agnostic measures exhibited fair-to-good reliability (Figure 2b; Table 1), which did
not improve substantially when examined in separate trial-by-trial mixed logistic regressions
(Table S1). However, reliability did increase, particularly for p(stay) after win and loss when

estimated as part of a joint mixed-effects logistic regression (Table 1).
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Four-armed bandit task: modelling results

Model comparison indicated that the winning (most parsimonious) model was the five-
parameter ‘Bandit4arm_lapse’ (nomenclature from the hBayesDM package) model, with
reward and punishment learning rate parameters, reward and punishment sensitivity
parameters and a lapse parameter (final parameter captures random responding; Table S2),
consistent with previous reports (Aylward et al., 2019). Three individuals were excluded due to
difficulties in obtaining mean parameter estimates, as multiple peaks were evident in the
posterior distribution of at least one parameter (Figure S2). The Bandit4arm_lapse model was
therefore re-fit without these participants. Excluding these participants did not affect test-

retest reliability inference.
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Practice effects

On session 2 there were significant increases in the reward sensitivity (t(a6=3.00, p=0.004,
d,=0.44) and lapse parameters (t(6=8.88, p<0.001, d,=1.29), but not on any of the other
parameters (reward learning rate: t)=1.28, p=0.21, d,=0.19; punishment learning rate:
tae)=1.74, p=0.09, d,=0.25; punishment sensitivity: t6=1.28, p=0.21, d,=0.19; Figure 3a).
However, there were no significant practice effects when the data was fit under a single

hierarchical prior (Table S3).

Test-retest reliability

All estimated Bandit4arm_lapse model parameters, except the lapse parameter, demonstrated
fair-to-good reliability (Figure 3b; Table 1), which did not substantially change when parameters
were estimated under a single hierarchical prior (Table S3). However, examining the correlation
between parameters as estimated within a generative model showed good-to-excellent

reliability, improving reliability across all but the lapse parameter (Table 1).
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Model-agnostic p(stay) measures (N=50)

ICC(A,1)

ICC(1)

Pearson’sr

Summary statistics (Figure 2)

Win 0.46 (0.21-0.65)  0.46 (0.21-0.65) 0.46 (0.20-0.65)
Loss 0.54 (0.32-0.71)  0.54(0.31-0.71) 0.55 (0.32-0.72)
Neither 0.66 (0.48-0.79)  0.67 (0.48-0.80) 0.67 (0.48-0.80)
Hierarchical logistic regression (embedded reliability)

Win 0.63

Loss 0.63

Neither 0.71

Reinforcement learning model (N=47) ICC(A,1) ICC(1) Pearson’s r

Model estimated separately per session (Figure 3)

Reward learning rate
Punishment learning rate
Reward sensitivity
Punishment sensitivity
Lapse

0.60 (0.38-0.75)
0.63 (0.42-0.77)
0.52 (0.26-0.70)
0.45 (0.20-0.65)
0.01 (-0.08-0.14)

Model estimated across sessions with embedded reliability

Reward learning rate
Punishment learning rate
Reward sensitivity
Punishment sensitivity
Lapse

0.60 (0.38-0.75)
0.62 (0.41-0.77)
0.50 (0.25-0.69)
0.45 (0.19-0.65)

-0.43 (-0.64- -0.17)

0.60 (0.38-0.76)
0.64 (0.43-0.78)
0.56 (0.33-0.73)
0.46 (0.19-0.66)
0.05 (-0.24-0.33)

0.71 (0.53-0.84)
0.85 (0.69-0.95)
0.68 (0.48-0.84)
0.64 (0.37-0.85)

-0.01 (-0.65-0.68)

Table 1: Reliability of model-agnostic and computational measures of the four-armed bandit task.
All measures but the lapse parameter are significant at p<0.05. Brackets represent the 95% confidence

interval.

Posterior predictive performance

(t(a6)=1.04, p=0.30; Figure 4c).

Parameter estimates from session 1 predicted task performance on session 2 substantially
better than chance (mean = 42%, chance = 25% accuracy; t(6=9.10, p<0.001; Figure 4a),

indicating that the model could predict future choices by using a generative model fit to the

their own future choices was significantly better than when that prediction was based on the

there was no significant difference between using an individual’s own session 1 parameter

estimates compared with the session 1 mean prior parameter in predicting future behaviour

same participants’ data two weeks earlier. Using an individual’s parameter estimates to predict

average of the other participants’ session 1 estimates (t(6=3.20, p=0.003; Figure 4b). However,
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Gambling task: model-agnostic results

Basic behaviour and practice effects
As expected, propensity to gamble was significantly higher on mixed gambles (F(1, 48=13.71,
p=0.001, 77,2)=0.22). There were no significant main (F1, 48=0.76, p=0.40, n§=0.02) or interaction

(F, 48=1.07, p=0.31, n§=0.02) effects of session on the propensity to gamble (session
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differences: probability to gamble on mixed trials t(8=0.23, p=0.82, d,=0.03; probability to

gamble on gain-only trials ts)=1.51, p=0.14, d,=0.22; Figure 5a).

Test-retest reliability

Model-agnostic measures on the gambling task exhibited fair-to-good reliability (Figure 5b;
Table 2) and did not change substantially when examined hierarchically in separate mixed
logistic regression (Table S4). Calculating reliability within a joint mixed logistic regression

numerically improved the reliability of the gambling model-agnostic measures (Table 2).
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Figure 5: Basic behaviour, practice effects, and test-retest reliability of model-agnostic measures on the
gambling task. Boxplots show the probability to gamble based on the trial type in session 1 and 2, with no
significant session effects (a). Scatter plots of the model-agnostic measures over session 1 and 2 (b). Lightly shaded

regions in Figure 5a represent within-subjects standard error of the mean (SEM). *p<0.001.

Gambling task: modelling results

The winning model was the PT model (‘ra_prospect’ in the hBayesDM package) with loss
aversion, risk aversion and inverse temperature parameters (last parameter represents choice

consistency; Table S5), consistent with previous reports (Charpentier et al., 2017). A loss
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aversion parameter above 1 represents overweighting of losses to gains, while a risk aversion
parameter less than 1 indicates aversion to risk. Neither test-retest nor practice effects were

substantially altered when the model was fit under a single hierarchical prior (Table S6).

Practice effects
There were significant session effects on all PT model parameters (on session 2: decreased loss
aversion: tag)=2.17, p=0.04, d,=0.31; decreased risk aversion: t(ss=4.04, p<0.001, d,=0.58;

increased inverse temperature: tzs=3.07, p=0.004, d,=0.44; Figure 6a).

Test-retest reliability
All estimated parameters demonstrated good-to-excellent reliability (Figure 6b; Table 2), and
showed excellent reliability when estimating a correlation matrix embedded within the model

(Table 2).
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standard error of the mean. *p<0.05.
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Model-agnostic p(gamble) measures ICC(A,1)

ICC(1)

Pearson’sr

Summary statistics (Figure 5)

Mixed trials 0.63 (0.43-0.78)
Gain-only trials 0.59 (0.38-0.75)
Hierarchical logistic regression (embedded reliability)

0.63 (0.43-0.78)
0.59 (0.38-0.75)

0.63 (0.42-0.77)
0.60 (0.39-0.76)

Mixed trials 0.73
Gain-only trials 0.72
Reinforcement learning model ICC(A,1) ICC(1) Pearson’s r

Model estimated separately per session (Figure 6)

Loss aversion 0.68 (0.50-0.81)
Risk aversion 0.78 (0.55-0.89)
Inverse Temperature 0.80 (0.64-0.89)
Model estimated across sessions with embedded reliability
Loss aversion

Risk aversion

Inverse Temperature

0.68 (0.50-0.81)
0.78 (0.64-0.87)
0.80 (0.67-0.88)

0.72 (0.55-0.83)
0.83 (0.71-0.90)
0.84 (0.74-0.91)

0.87 (0.77-0.94)
0.90 (0.83-0.95)
0.91 (0.85-0.96)

Table 2: Reliability of model-agnostic and computational measures of the gambling task.
All measures are significant at p<0.05. Brackets represent the 95% confidence interval.

Posterior predictive performance

PT model parameters from session 1 predicted future choices at session 2 significantly above
chance (mean = 68%, chance = 50% accuracy; tuas)= 12.08, p<0.001; Figure 7a). Predicting future
performance at session 2 was significantly higher when based on participants’ own parameter
estimates from session 1 compared with model parameter estimates of other participants from
session 1 (t(28=8.38, p<0.001; Figure 7b). This was also true when comparing between
participants’ own session 1 parameter estimates with the mean session 1 prior for parameters

(t(48=6.28, p<0.001; Figure 7c).
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Discussion

Reliability has garnered increased attention in recent years, with worryingly low reliability
across conventional measures from cognitive tasks and functional neuroimaging (Elliott et al.,
2020; Enkavi et al., 2019; Noble et al., 2019; Nord et al., 2017; Rodebaugh et al., 2016).
However, few attempts have been made to examine the reliability of computational cognitive
measures. Here we assessed the psychometric properties of computational models derived
from a restless four-armed bandit and a calibrated gambling task. Overall, most parameters
reflecting RL and decision-making processes exhibited adequate reliability and predicted future
performance well. These results provide promise for their use in clinical settings. However, this
conclusion depends on the specific parameters assessed in each task, highlighting the

complexities of translating tasks to the clinic.

Four-armed bandit RL model reliability

Reward and punishment learning rates from the bandit task demonstrated good reliability
while reward and punishment sensitivity showed fair reliability, suggesting that this task may be
more suitable for assessing learning rates than sensitivity. Elevated punishment learning rates
(faster learning in the face of negative outcomes) and lapse values have been associated with
greater mood and anxiety symptoms, representing potential measurable mechanistic treatment
targets (Aylward et al., 2019). However, the present study suggests that the lapse parameter,
which exhibited poor reliability as assessed by the bandit task, may not be a suitable target.
This parameter measures responding not captured by the model (including goal-directed and

random exploration), and the sources of this ‘noise’ might differ across sessions. It is therefore
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perhaps unsurprising that this parameter was unreliable. Crucially, the lapse parameter showed
poor recoverability, which places an upper limit on its potential reliability. Some of this poor
recoverability may be explained by limited lapse variation, especially in session 1 (Figure S3).
The distribution of the group-level standard deviation lapse parameter was biased towards
smaller values here such that the lapse parameter did not vary greatly between individuals
(Figure S5). This suggests that the lapse parameter could be replaced with a constant and

inference on this parameter is not advised.

Although no prior studies have specifically investigated ICC properties of the current RL model,
one previous study found similarly poor reliability of the lapse parameter across six months in a
go/no-go RL model in adolescents (Moutoussis et al., 2018). In contrast to our results, this study
also reported poor reliability of both reward and punishment learning rates. These differences
may arise for a multitude of reason, such as using different tasks (an orthogonalised go/no-go
task versus a restless bandit task), testing time-windows (six months versus two weeks),
populations (adolescents versus adults), or models. It is not possible to delineate these
diverging results without systematically comparing these factors in one study. Importantly,
however, we provide evidence that it is possible to achieve at least moderate reliability for

some canonical RL parameters.

Interestingly, the model-agnostic outcome measures of the bandit task exhibited similar
reliability to the computational measures. Model-agnostic measures of cognitive tasks have

often been reported to exhibit poor-to-moderate reliability (Enkavi et al., 2019; Hedge et al.,
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2018; Plichta et al., 2012; Rodebaugh et al., 2016). It has been argued that this may be due to
their inability to capture the generative process underlying task performance (Huys et al., 2021;
Price et al., 2019). Our results suggest that it should not be assumed that computational
parameters will always provide greater reliability than non-computational ones. However, the
model-agnostic outcome measures are only a proxy of the processes the bandit task assesses,
as it is difficult to compute model-agnostic equivalents of some parameters, such as
reward/punishment sensitivity. Indeed, models make explicit and falsifiable predictions of the
components driving behaviour, which can be refined and used to simulate artificial data to
generate new predictions. Thus, computational modelling is a more rigorous and preferable
method for assessing behaviour than model-agnostic measures, which unlike computational

methods, lack the mechanistic insights into the underlying processes generating behaviour.

Gambling PT model reliability

While reliability of parameters ranged from poor-to-good in the bandit task, parameters from
the gambling task showed good-to-excellent test-retest reliability. These were also higher than
the reliability of the model-agnostic measures, suggesting that computational models may offer
advantages in psychometric properties here. In particular, the risk aversion parameter, which
has previously been associated with anxiety (Charpentier et al., 2017), exhibited excellent
reliability (ICC=0.78), providing promise for use in clinical research. These results show higher
reliability than previous studies (loss aversion r=0.25-0.61, risk aversion r=0.50-0.60, inverse
temperature r=0.30-0.60 [Chung et al., 2017; Glockner & Pachur, 2012; Scheibehenne & Pachur,

2015]). These studies all used different estimation procedures, including hierarchical Bayesian,
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and employed both longer and shorter testing time-windows than the current study, suggesting
that these factors may not fully explain the differences. It is possible that our results instead
stem from different PT model specifications, as well as different task designs. Indeed, a strength
of the gambling task is that we calibrated offers to each individual’s indifference point
(Charpentier et al., 2017). A similar approach of dynamically updating parameter values to each
individual during task performance has previously been suggested as a solution to unreliable
cognitive tasks (Palminteri & Chevallier, 2018). This may allow for removing any potential state
influences across participants to extract more trait-like measures of the variables of interest

(here risk/loss aversion).

Predictive accuracy

We also examined how well the models predicted future task performance, which provides
complementary perspective on reliability, unique to computationally-informed measures.
Notably, for the PT model participants’ own parameter estimates from the first session were
better at predicting their future performance compared with using parameter estimates from
all other participants and from model priors. Individuals’ own RL parameters only provided an
advantage in predicting future performance when compared with other’s parameter estimates
but not model priors. It is likely that the RL model did not perform as well on this metric as the
PT model because the RL model does not provide as close a fit to behaviour, potentially due to
some participants performing at chance level. Overall, this indicates that individuals may also
reliably differ in the cognitive mechanisms underlying their decisions, and offers reassurance

that hierarchical estimation procedures are suitable for inter-individual inferences (Brown et
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al., 2020; Daw, 2011; Scheibehenne & Pachur, 2015). In other words, individuals show relatively
unique computational decision-making profiles, particularly in the PT model. This is consistent
with two previous studies using a different PT model and gambling task (Glockner & Pachur,

2012; Scheibehenne & Pachur, 2015).

Implications

The RL parameters showed relatively modest reliability, suggesting that these processes are
more vulnerable to state influences than PT parameters. A consequence of this is that larger
sample sizes may be required to examine effects, as effect sizes would be expected to be lower,
relative to PT tasks (Fleiss, 2011). Interpreting the marked difference in reliability between the
PT and RL models is not straightforward, as these models measure complementary aspects of
cognition. The bandit task is a learning paradigm that requires constant updating of optimal
choices. It is possible that in the first session individuals had not yet stabilized on a cognitive
strategy and were still learning the task structure, as indicated by lower evidence of the winning
model in session 1 compared with session 2 (Table S2). It would be interesting to explore if an
initial baseline session, would improve test-retest reliability. It should be noted that we found
substantially greater reliability of RL (good-to-excellent) and PT (excellent) parameters when
estimated within the generative model. These provide an upper theoretical reliability bound of
a parameter and are mainly relevant for within-subjects applications (if changes are modelled
within a model). In addition, although previous studies suggest that hierarchically measured
model-agnostic predicted values substantially improve reliability (Brown et al., 2020; Waltmann

et al., 2020), this was not the case in the current study. However, calculating the reliability of
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model-agnostic measures directly from a joint logistic regression improved model-agnostic

reliabilities but measures remained in the range of good reliability.

Limitations

A potential limitation of our study is the sample tested, as the reliability of tasks in healthy
individuals may differ from that in clinical groups. Similarly, our results only speak to reliability
over two weeks. Thus, it is possible that longer time periods may produce lower reliability,
which should be assessed in future studies. Reliability over two weeks is particularly informative
for interventional studies such as randomised controlled trials (e.g., for rapid-acting
antidepressants or for early markers of response for traditional antidepressants/
psychotherapies). This time-window is also in line with other reliability studies aiming to
establish reliability of measures for e.g., individual differences (e.g., Hedge et al., 2018; Nord et
al., 2017), based on the assumption that measures should remain relatively stable over a short

time-period.

Conclusion

In summary, we show that commonly-used computational parameters derived from an RL
‘restless’ bandit task and a calibrated gambling task exhibit fair-to-excellent reliability.
Specifically, learning rates showed good reliability and sensitivity parameters showed fair
reliability from the RL model, while loss aversion had good reliability and risk aversion and
inverse temperature displayed excellent reliability from the PT model. These models can

further be used to predict future behaviour in the same individuals, especially PT model
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parameters, indicating that the decision-making processes assessed in these tasks represent
relatively consistent and unique characteristics of an individual. These findings take us one step

closer to translating computational measures of behaviour into clinical application.
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