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Abstract 41 

Modules in brain connectomes are essential to balancing the functional segregation and integration 42 

crucial to brain operation. Connectomes are the set of structural or functional connections between 43 

each pair of brain regions. Non-invasive methodologies, Electroencephalography (EEG) and 44 

Magnetoencephalography (MEG), have been used to identify modules in connectomes of phase-45 

synchronization, but have been compromised by spurious phase-synchronization due to EEG 46 

volume conduction or MEG field spread. In this study, we used invasive, intracerebral recordings 47 

with stereo-electroencephalography (SEEG, N = 67), to identify modules in connectomes of phase-48 

synchronization. To do this, we used submillimetre localization of SEEG contacts and closest-49 

white-matter referencing, to generate group-level connectomes of phase-synchronization minimally 50 

affected by volume conduction. Then, we employed community detection methods together with a 51 

novel consensus clustering approach, to identify modules in connectomes of phase-synchronization. 52 

The connectomes of phase-synchronization possessed significant modular organization at multiple 53 

spatial scales, from 3−320 Hz. These identified modules were highly similar within 54 

neurophysiologically meaningful frequency bands. Modules up to the high-gamma frequency band 55 

comprised only anatomically contiguous regions, unlike modules identified with functional 56 

Magnetic Resonance Imaging (fMRI). Strikingly, the identified modules comprised cortical regions 57 

involved in shared repertoires of cognitive functions including vision, language and attention. These 58 

results demonstrate the viability of combining SEEG with advanced methods, to identify modules 59 

in connectomes of phase-synchronization. The modules correspond to brain systems with specific 60 

functional roles in perceptual, cognitive, and motor processing. 61 
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Highlights 74 

• SEEG recordings from large cohort used to generate connectomes of phase-synchronization 75 

• Connectomes of phase-synchronization possess modules at multiple spatial scales 76 

• Modules are highly similar within neurophysiologically meaningful frequency bands 77 

• Modules comprise anatomically contiguous regions up to high gamma frequencies 78 

• Modules comprise functionally related regions, suggesting their behavioural relevance 79 

 80 
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1. Introduction 100 

Structural and functional connectomes obtained from resting-state functional Magnetic Resonance 101 

Imaging (fMRI) possess a modular organization (Meunier et al. (2009), Power et al. (2011), Doucet 102 

et al. (2011)). Connectomes are the set of connections between each pair of brain regions. Modules 103 

are sets of regions with strong connections within modules and weaker connections between them. 104 

Modules identified in resting-state fMRI comprise regions that have also been observed to be 105 

concurrently active during task processing, and have been found to delineate functional systems for 106 

executive, attentional, sensory, and motor processing (Beckmann et al. (2005), Smith et al. (2009), 107 

Yeo et al. (2011)). The anatomical structure of resting-state modules in fMRI connectomes has been 108 

found to be reproducible and similarly observable with different approaches such as community 109 

detection (Valencia et al. (2009), Power et al. (2011)) and clustering (Benjaminsson et al. (2010), 110 

Yeo et al. (2011), Lee et al. (2012)). Moreover, the balance between segregated information 111 

processing in modules (Wig (2017)) and integrated information processing via inter-modular 112 

connections, is essential to brain functioning (Tononi et al. (1994), Tononi et al. (1998), Deco et al. 113 

(2015)).  114 

The relationship of fMRI functional connectivity to underlying electrophysiological connectivity is 115 

complex and not attributable to any single form of neuronal activity or coupling (Kucyi et al. (2018)). 116 

Electrophysiological measurements of macro-scale neuronal activity with Magneto- (MEG) and 117 

Electroencephalography (EEG) reveal band-limited neuronal oscillations in multiple frequencies, 118 

whose inter-regional coupling is observable as synchronization between oscillation phases and 119 

correlations between oscillation amplitude envelopes (Palva et al. (2005), Fell & Axmacher (2011), 120 

Brookes et al. (2011), Palva & Palva (2012), Engel et al. (2013)). Amplitude correlations reflect, e.g., 121 

co-modulation in neuronal excitability (Vanhatalo et al. (2004), Schroeder & Lakatos (2009), Engel 122 

et al. (2013)) while phase-synchronization implies spike-time relationships of neuronal activity and 123 

may regulate inter-regional neuronal communication (Fries (2015), Bastos (2015)). Large-scale 124 

networks of phase-synchronization are proposed to support the coordination, regulation, and 125 

integration of neuronal processing in cognitive functions, both in frequencies up to 130 Hz (Varela 126 

(2001), Palva et al. (2005), Uhlhaas et al. (2010), Kitzbichler et al. (2011), Palva & Palva (2012)), 127 

and in frequencies higher than 130 Hz, i.e. high-frequency oscillations (HFO) (Arnulfo et al. (2020)).  128 

In light of such putative mechanistic roles for phase synchronization in cognitive functions, a modular 129 

architecture and inter-modular coupling in connectomes of phase-synchronization during resting-130 

state, would establish a baseline to support corresponding demands for functional segregation and 131 
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integration during cognitive operations (Smith et al. (2009), Spadone et al. (2015)). A single MEG 132 

study investigated modules in connectomes of phase-synchronization and amplitude correlation using 133 

source-reconstructed resting-state data (Zhigalov et al. (2017)). Both connectomes of amplitude 134 

correlation and phase-synchronization comprised distinct modules in frontal regions, sensori-motor 135 

regions and occipital regions, particularly in the alpha (8 – 14 Hz) and beta (14 – 30 Hz) frequency 136 

bands. However, identifying modules in MEG/EEG connectomes is hindered by errors in estimating 137 

the connectome, including false positive connections due to linear mixing from MEG field spread or 138 

EEG volume conduction (Palva & Palva (2012), Palva et. al (2018)) or false negatives due to linear-139 

mixing insensitive measures that ignore also true near-zero-lag phase-synchronization (Vinck et al. 140 

(2011), Brookes et al. (2012), Palva & Palva (2012)). Low-resolution cortical parcellations that 141 

eliminate spurious connections due to linear mixing (Vidaurre et al. (2018)) may be too coarse to 142 

identify fine-grained cortical network structures such as modules.   143 

In this study, we pooled resting-state stereo-EEG (SEEG) recordings data from a large cohort (N = 144 

67) to accurately estimate connectomes of phase-synchronization. In contrast to the centimetre-scale, 145 

macro-scale insight yielded by MEG, SEEG provides a millimetre range, meso-scale measurement 146 

of human cortical local field potentials (LFPs) (Parvizi & Kastner (2018), Zhigalov et al. (2015), 147 

Zhigalov et al. (2017)). We combined submillimetre-accurate anatomical localization of SEEG 148 

electrode contacts (Narrizano et al. (2017), Arnulfo et al. (2015b)) with a state-of-the-art scheme of 149 

referencing each gray-matter contact to its closest white-matter contact (Arnulfo et al. (2015a)), to 150 

yield phase-undistorted and polarity-correct measurements of local cortical activity. Crucially, this 151 

enabled estimating a high proportion of connections in the connectome while adequately controlling 152 

for volume conduction so that near zero-lag phase-synchronization was also measurable (Arnulfo et 153 

al. (2015a)). Finally, we used community detection with a novel consensus clustering approach to 154 

identify modules in connectomes of phase-synchronization while accounting for missing connections. 155 

We found that connectomes of phase synchronization indeed exhibited modular organization at 156 

multiple spatial scales, throughout the studied range of frequencies from 3 to 320 Hz. These 157 

modules were highly similar within neurophysiologically meaningful frequency bands and 158 

comprised anatomically contiguous regions up to the high-gamma frequency band (80-113 Hz). 159 

Strikingly, the modules comprised cortical regions exhibiting shared involvement in specific 160 

cognitive functions such as vision, language and attention, suggesting that these modules 161 

correspond to brain systems with functional roles in perceptual, cognitive and motor processing.  162 

 163 
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2. Materials & Methods 164 

 2.1 Analysis pipeline to identify modules in connectomes of phase-synchronization 165 

We combined pre-surgical SEEG recordings from epileptic patients with state-of-the-art methods, to 166 

identify modules in connectomes of phase-synchronization. Concretely, we recorded resting-state 167 

LFP data from each patient using a common reference in white matter, distant from the putative 168 

epileptogenic zone. We re-referenced the LFP activity of each grey-matter SEEG contact to its closest 169 

white-matter contact, which we have demonstrated to preserve undistorted phase reconstruction while 170 

minimising volume conduction (Arnulfo et al. (2015a)). We filtered the recorded LFP data using 18 171 

narrow-band Finite Impulse Response (FIR) filters (Figure 1A) from 2.5 Hz up to 350 Hz with line-172 

 

Figure 1. Modules in connectomes of phase-synchronization estimated by pooling data across 

subjects. A. Band-pass filtered data (centre frequency=14 Hz) for example group of subjects. B. Subject-

level matrices of phase-synchronization between SEEG contacts, for example group of subjects. C. Group-

level matrix of phase-synchronization between brain regions. Matrix ordered to show left- (bottom left), 

right- (top right) and inter-hemispheric connections (top left and bottom right) respectively. Non-estimable 

connections are gray. D. Group-level matrix of phase-synchronization between right-hemispheric regions. 

E. Sorted group-level matrix of phase-synchronization between right-hemispheric regions, sorting done 

from results of community detection to identify modules. F. Colour-coded modules for lateral (top) and 

medial (bottom) inflated view representation of right hemisphere.  
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noise suppressed using band-stop filters at 50Hz and harmonics.  Next, we estimated the strength of 173 

phase synchronization between every pair of SEEG contacts, for each frequency, using Phase 174 

Locking Value (PLV) (Figure 1B). We assigned cortical SEEG contacts to brain regions using an 175 

automated submillimeter-accurate electrode localization procedure involving CT-MRI co-176 

localization (Arnulfo et al. (2015b)). We then estimated group-level connectomes by averaging for 177 

each region-pair, the corresponding contact-contact PLVs across subjects (Figure 1C). We analyzed 178 

the left and right hemispheres separately (Figure 1D) and identified modules with Louvain 179 

community detection (Blondel et al. (2008)) combined with consensus clustering (Williams et al. 180 

(2019)) (Figure 1E). Finally, we visualised the identified modules on anatomical brain surfaces 181 

(Figure 1F).  182 

2.2 Data acquisition 183 

We recorded SEEG data from 67 participants affected by drug-resistant focal epilepsy and 184 

undergoing pre-surgical clinical assessment. For each participant, we inserted 17 ± 3 (mean ± SD) 185 

SEEG shafts into the brain, with anatomical positions varying by surgical requirements. Each shaft 186 

had between 8 and 15 platinum-iridium contacts, each contact being 2 mm long and 0.8 mm thick, 187 

with inter-contact distance of 1.5 mm (DIXI medical, Besancon, France). We acquired 10 minutes 188 

eyes-closed resting-state activity from each participant, via a 192-channel SEEG amplifier system 189 

(Nihon Kohden Neurofax-110) at a sampling frequency of 1 kHz. We obtained written informed 190 

consent from participants prior to recordings. We obtained ethics approval for the study from 191 

Niguarda <Ca9 Granda= Hospital, Milan, and we performed the study according to WMA Declaration 192 

of Helsinki – Ethical Principles for Medical Research Involving Human Subjects. 193 

 2.3 Pre-processing 194 

We performed re-referencing, filtering and artefact removal of the SEEG data, before estimating the 195 

connectome of phase-synchronization. We originally recorded data from all contacts with a 196 

monopolar referencing scheme. We subsequently re-referenced activity from each gray-matter 197 

contact to the nearest white matter contact as identified by GMPI (gray matter proximity index). We 198 

have previously demonstrated the utility of this referencing scheme in studying phase 199 

synchronization, since phase relationships between contacts are well preserved (Arnulfo et al. 200 

(2015a)). We only analysed activity from gray-matter contacts after re-referencing. We filtered 201 

activity from each gray-matter contact using FIR filters (equiripples 1% of maximal band-pass 202 

ripples) into 18 frequency bands, with center frequencies (��) ranging from 3 to 320 Hz (excluding 203 

50 Hz line-noise and harmonics). We used center frequencies of 3 Hz, 4 Hz, 5 Hz, 7 Hz, 10 Hz, 14 204 
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Hz, 20 Hz, 28 Hz, 40 Hz, 57 Hz, 80 Hz, 113 Hz, 135 Hz, 160 Hz, 190 Hz, 226 Hz, 269 Hz and 320 205 

Hz. We used a relative bandwidth approach for filter banks such that pass band (þ�) and stop band 206 

(þ�) were defined 0.5 × �� and 2 × ��, respectively for low and high-pass filters. Before estimating 207 

phase synchronization, we excluded selected windows of data due to artefactual epileptic activity. 208 

Specifically, we discarded 500 ms wide windows containing Inter-Ictal Epileptic (IIE) events. We 209 

defined IIE as at least 10 % of SEEG contacts narrow-band time series demonstrating abnormal, 210 

concurrent sharp peaks in more than half the 18 frequencies. To identify such periods, we searched 211 

for <spiky= periods in amplitude envelopes of each SEEG contact. We tagged a 500 ms window as 212 

<spiky= if any of its samples were 5 standard deviations higher than mean amplitude of the contact. 213 

2.4 Connectome estimation 214 

We pooled estimates of phase-synchronization between SEEG contacts to obtain the group-level 215 

connectome of phase-synchronization. We measured phase synchronization between SEEG contacts 216 

with Phase Locking Value (PLV) (Lachaux et al. 1999): 217 

��ý = 1� |∑ ��(�1(�)2�2(�))�
�=1 | 218 

where �1(ÿ) and �2(ÿ) are instantaneous phases from a pair of SEEG contacts at sample ÿ, with � 219 

being the total number of samples. To estimate the connectome of phase synchronization at the group-220 

level, we first selected a brain atlas for dividing the brain into a number of regions. We used the 148-221 

region Destrieux brain parcellation (Destrieux et al. (2010)). We determined phase synchronization 222 

between a pair of brain regions by averaging PLV over all subjects, for all contact-pairs traversing 223 

that pair of brain regions. We localised each SEEG contact to brain regions using the automated 224 

procedure we validated in Arnulfo et al. (2015b). Once we estimated the connectome, we retained 225 

the estimated strengths of only the top 20 percentile of connections, setting all others to 0. 226 

Since we did not have complete recording coverage of the brain with SEEG, we had insufficient 227 

data to estimate phase synchronization between all region-pairs. In all, we obtained estimates for 228 

47.2% of all region-pairs. A high proportion of inter-hemispheric connections were not estimable 229 

since SEEG contacts are typically concentrated in a single hemisphere for a given subject. 230 

We excluded selected contact-pairs from the connectome estimation due to potential artefacts. 231 

Concretely, we excluded contact-pairs with epileptogenic contacts. Further, we excluded contact-232 
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pairs whose respective SEEG contacts were less than 20 mm apart and those with the same white-233 

matter reference, both to reduce the effect of volume conduction.  234 

2.5 Analysing the connectome of phase synchronization 235 

2.5.1 Identifying modules in connectomes of phase synchronization 236 

We used Louvain community detection (Reichardt & Bornholdt (2006), Blondel et al. (2008), 237 

Ronhovde & Nussinov (2009), Sun et al. (2008)) combined with consensus clustering (Lancichinetti 238 

& Fortunato (2012)) to identify modules in the connectome of phase-synchronization. We used the 239 

implementation of the Louvain method in Brain Connectivity Toolbox (Rubinov & Sporns (2010)). 240 

We applied the Louvain method to left and right hemispheric regions separately, since the low number 241 

of inter-hemispheric connections might confound the identification of modules. To identify modules 242 

while accounting for missing values in the group-level connectome matrix, we first generated 5000 243 

variants of the connectome wherein we replaced each missing value with a randomly selected existing 244 

value. We applied Louvain community detection to identify modules on each of these 5000 complete 245 

matrices. We identified modules at a range of spatial scales by setting the γ input parameter of the 246 

Louvain method from 0.8 to 5, in intervals of 0.1. For each γ value, we combined the module 247 

assignments of the 5000 connectome variants to obtain a consensus module assignment. We 248 

performed this step by first generating matrix representations of each module assignment, with 249 

number of matrix rows and columns being the number of regions. We set each element in the matrix 250 

to 1 or 0 depending respectively on whether that pair of regions were in the same module or not. We 251 

then obtained a consensus matrix by averaging the 5000 matrix representations, and obtained a 252 

consensus module assignment by applying the Louvain method to this consensus matrix. We have 253 

demonstrated this consensus clustering approach is superior to other approaches to identify modules 254 

in incomplete human brain networks (Williams et al. (2019)). We applied this procedure to identify 255 

modules at each frequency, for left and right hemispheres separately.  256 

2.5.2. Determining statistical significance of modular organization 257 

We determined statistical significance of modular organization by comparing modularity of 258 

connectomes against modularity of randomized versions of the connectome. Modularity is the extent 259 

to which the connectome divides into non-overlapping modules. We first estimated modularity of the 260 

connectome for γ values (spatial scales) from 0.8 to 5 when identifying modules, using the same 261 

procedure described in Section 2.5.1. Modularity is returned as an output of Louvain community 262 

detection. We used 100 connectome variants for the consensus clustering step. At each γ value, we 263 
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then z-scored the estimated modularity against a null distribution of 100 modularity values obtained 264 

by identifying modules on randomly rewired (without replacement) versions of the original 265 

connectome, where we performed rewiring the same way for each connectome variant in the 266 

consensus clustering step. We estimated z-scored modularity for each frequency, for left and right 267 

hemispheres separately. We then converted the z-scores to p-values assuming a Gaussian distribution, 268 

and used False Discovery Rate (FDR) thresholding (Benjamini & Hochberg (1995)) to correct for 269 

multiple comparisons, to assess modular organization for every combination of γ and frequency. We 270 

considered FDR-corrected p < 0.05 to indicate statistically significant modular organization. 271 

2.5.3 Determining statistical significance of percentage of stable regions  272 

We determined stability of module assignment for each brain region by the extent to which module 273 

affiliations in bootstrapped versions of the original connectome matched those in the original 274 

connectome. We constructed 100 bootstrapped connectomes with the same procedure used for the 275 

original connectome, but from a set of 67 subjects randomly resampled (with replacement) from the 276 

original cohort. We estimated the stability of module assignment of a region as the average 277 

correspondence in its module affiliation, with module affiliations of the same region across the 100 278 

bootstrapped connectomes. We specified the module affiliation vector of a region to contain 819 for 279 

regions in the same module and 809 for regions in different modules. We estimated the correspondence 280 

between two module affiliation vectors by the total number of common 819s and 809s as a proportion 281 

of the number of regions. Values close to 1 reflected stable assignment of a region to its module. We 282 

estimated the percentage of regions whose module assignments were stable, where regions were 283 

considered to have stable module assignment if their stability was higher than the 95-percentile value 284 

of the null distribution of stability values. We generated the null distribution of stability values for 285 

each region, by estimating average correspondence between its module affiliation vector and 100 286 

randomly resampled (without replacement) module affiliation vectors of the same region, for each of 287 

the bootstrapped connectomes. We estimated the percentage of stable regions for each combination 288 

of spatial scales or γ values (from 0.8 to 5) and frequencies, for both left and right hemispheres. We 289 

determined the statistical significance of the percentage of stable regions, by z-scoring it against the 290 

percentage of regions assigned as stable by chance. We then converted the z-scores to p-values 291 

assuming a Gaussian distribution, and used False Discovery Rate (FDR) thresholding to correct for 292 

multiple comparisons due to testing across every combination of γ and frequency. We considered 293 

FDR-corrected p < 0.05 to indicate statistically significant percentage of stable regions. 294 

 295 
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2.5.4. Grouping frequencies by similarity of modules 296 

We used multi-slice community detection (Mucha et al. (2010)) to identify groups of frequencies 297 

with similar modules, simultaneously for both left and right hemispheres. First, we generated matrices 298 

of similarity between modules at each pair of frequencies, separately for left and right hemispheres. 299 

We generated matrix representations of modules at each frequency with number of rows and columns 300 

equal to the number of brain regions, each element being set to 1 or 0 depending respectively on 301 

whether the corresponding pair of brain regions were in the same module or not. We measured 302 

similarity between modules using partition similarity (Ben-Hur et al. (2002)): 303 

�� = +ý1, ý2,√+ý1, ý1,+ý2, ý2, 304 

where +ýþ, ýÿ, = ∑ �ÿ,Ā(þ)�ÿ,Ā(ÿ)ÿ,Ā , i.e. the dot product between matrix representations of the modules for 305 

frequencies þ and ÿ. We obtained matrices of partition similarity for each γ value (spatial scale) from 306 

0.8 to 5 and combined them via a weighted average, where we specified the weights as the number 307 

of frequencies for which modular organization was statistically significant at each γ. 308 

We entered these left and right hemispheric matrices of module similarity into a multi-slice 309 

community detection procedure, to identify groups of frequencies with similar modules for both 310 

hemispheres. This method has two input parameters, γmultislice and ω. γmultislice influences the number 311 

of identified groups of frequencies while ω controls the dependence between the identified groups of 312 

left and right hemispheres. To select values for these parameters, we first estimated modularity values 313 

for each combination of γmultislice = 1 – 1.5 (intervals of 0.05) and ω = 0.1 – 1 (intervals of 0.1). Then, 314 

we generated a null distribution of modularity values by applying the method to identically randomly 315 

resampled (without replacement) left and right hemispheric matrices of module similarity. We z-316 

scored the original modularity values against the null distribution, and converted them to p-values 317 

assuming a Gaussian distribution. Finally, we inspected frequency groups for selected combinations 318 

of γmultislice and ω with FDR-thresholded p < 0.05. 319 

2.5.5 Identifying modules across multiple frequencies or spatial scales 320 

We used a consensus clustering approach (Section 2.5.1) to identify a single set of modules across a 321 

group of frequencies. Concretely, we first averaged matrix representations of modules at individual 322 

frequencies and applied Louvain method to identify modules in this averaged matrix. Matrix 323 

representations have number of rows and columns equal to the number of brain regions, each element 324 

in the matrix is 1 or 0 depending respectively on whether the corresponding pair of regions are in the 325 
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same module or not. We obtained the consensus modules across all investigated frequencies and 326 

spatial scales by first generating matrix representations of modules at each individual frequency and 327 

spatial scale, for left and right hemispheres separately. Then, we applied multi-slice community 328 

detection (γmultislice = 1.6, ω = 1) to identify eight bilaterally symmetric modules, which represented 329 

sets of regions assigned to the same module across frequencies and spatial scales. 330 

2.6 Inferring whether regions in a module are functionally related. 331 

We combined Neurosynth meta-analyses decoding (Yarkoni et al. (2011)) with comparison to 332 

surrogate modules, to assign putative functional roles to each module. We used Neurosynth decoding 333 

to find terms related to perception, cognition and behaviour selectively associated to the centroid co-334 

ordinates of each brain region, based on a large database of fMRI studies. Then, we aggregated the 335 

terms associated to each region in a module and compared the occurrence frequencies of these terms 336 

to those of equally sized surrogate modules, which comprised anatomically proximal regions and 337 

were constrained to be bilaterally symmetric. Hence, we determined terms that were common to 338 

regions in a module, even after accounting for the anatomical proximity of its regions. We z-scored 339 

the occurrence frequency of each term in a module against corresponding frequencies of the surrogate 340 

modules. We converted these z-scores to p-values assuming a Gaussian distribution and FDR-341 

thresholded at p < 0.05, to reveal those terms selectively associated to each module. 342 

We inferred the putative functional role of each module by the set of terms it was selectively 343 

associated to. We also performed a post-hoc analysis to verify the functional specificity of each 344 

module. To do this, we generated an 8 × 8 8confusion matrix9 of percentages of selectively associated 345 

terms of each module distributed across the eight cognitive functions assigned to the modules. High 346 

values along the diagonal would reflect high functional specificity, i.e. that the terms of each module 347 

were largely confined to a single cognitive function. We compared these percentages against the 348 

percentages of all terms related to a module, not just those selectively associated to each module. We 349 

expected these sets of all terms of each module to be distributed across diverse cognitive functions. 350 

2.7 Assessing robustness of results 351 

We assessed robustness of results, to changes in the SEEG contact-pairs used to generate the 352 

connectomes, changes in the algorithm used to identify modules, and the influence of amplitudes of 353 

activity from brain regions on estimating modules. First, we identified and compared modules 354 

identified from split connectomes at γ = 2, each of the split connectomes being generated by 355 

combining different sets of SEEG contact-pairs. To generate a split connectome, we estimated 356 
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strength of each connection from a randomly selected sample of half the SEEG contact-pairs used to 357 

estimate strength of each estimated connection in the original connectome. We estimated the same 358 

connection in the other split connectome with the other half of SEEG contact-pairs used to estimate 359 

strength of that connection in the original connectome. Next, we compared the original modules 360 

obtained with Louvain community detection at γ = 2, against modules obtained with Infomap 361 

community detection (Rosvall & Bergstrom (2008)). Network density influences the number of 362 

modules with Infomap - we set the network density to 10% since this value yielded interpretable 363 

modules in previous work (Williams et al. (2019)). Finally, we investigated if identifying modules is 364 

confounded by amplitude of oscillations from individual nodes in a network. To do this, we compared 365 

modules of 20 subject-level networks of phase synchronization before and after removing amplitude-366 

related differences in functional connection strengths, at γ = 2. We removed amplitude-related 367 

differences by relating the strengths of each functional connection to average amplitude of 368 

corresponding node-pairs via linear regression, and recovering the residuals. We compared modules 369 

identified before and after removing amplitude-related differences with partition similarity. 370 

3. Results 371 

In this study, we pooled SEEG recordings from a large cohort to estimate connectomes of phase-372 

synchronization at multiple frequencies, and applied Louvain community detection together with 373 

consensus clustering to identify modules in these connectomes. We used permutation-based and 374 

bootstrap-based tests to determine the range of spatial scales with significant modular organization. 375 

Further, we used multi-slice community detection to determine groups of frequencies with highly 376 

similar modules. Finally, we extended meta-analysis-based decoding of single brain regions to 377 

determine if regions within each module were involved in the same cognitive functions. 378 

3.1 Whole-brain coverage achieved by broad spatial sampling of SEEG contacts  379 

We assessed coverage of SEEG contacts across participants, to determine their sampling of brain 380 

regions and inter-regional connections. We quantified sampling of brain regions and inter-regional 381 

connections by the percentage of brain regions and region-pairs in Destrieux brain atlas (Destrieux et 382 

al. (2010)) containing at least one SEEG contact or contact-pair, respectively. We also estimated 383 

number of SEEG contacts in each of the Yeo functional systems (Yeo et al. (2011)). Our cohort 384 

sampled with at least one SEEG contact, 97% of brain regions (143 of 148) in the Destrieux brain 385 

atlas (Figure 2A). The SEEG contacts were sampled more densely on the right (N = 45 ± 38, mean ±  386 
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standard deviation, range 0-123, contacts per subject) than the left (32 ± 41, 0-128, contacts per 387 

subject) hemisphere. This yielded a coverage of 68% of left-hemispheric, 80% of right-hemispheric 388 

connections and 20% of inter-hemispheric connections (Figure 1B). Further, the SEEG contacts 389 

densely sampled each of the 7 Yeo functional systems (Figure 1C, D). Hence, we achieved whole-390 

brain coverage due to the broad sampling of SEEG contacts across participants. 391 

 

Figure 2. Whole-brain coverage achieved by placement of SEEG contacts. A. Number of 

SEEG contacts in each brain region for left (dark blue) and right (dark red) hemispheres, from 

lateral (top) and medial (bottom) views. B.  Coverage of left-hemispheric (dark blue), right-

hemispheric (dark red) and inter-hemispheric (gray) connections for a range of minimum 

number of SEEG contact-pairs. C. 7 Yeo systems from lateral (top) and medial (bottom) views. 

VIS = Visual, SM = Sensori-motor, DA = Dorsal Attention, VA = Ventral Attention, Lim = 

Limbic, FP = Fronto-parietal and Def = Default Mode. D. Number of SEEG contacts in each 

of 7 Yeo systems, for left (dark blue) and right (dark red) hemispheres. 
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3.2 Connectomes of phase-synchronization possess modules at multiple spatial scales 392 

Statistical significance of the identified modules would suggest that these modules operate as 393 

functional systems within the connectome. Hence, we determined the statistical significance of the 394 

identified modules and further, if they were statistically significant at a single spatial scale or at 395 

multiple spatial scales. Networks with modules at multiple spatial scales have qualitatively different 396 

dynamics to networks with modules at a single spatial scale, for e.g. having characteristic time scales 397 

and temporal evolution of synchronization (Arenas et al. (2006)). We used Louvain community 398 

detection with a range of the γ parameter from 0.8 to 5 to identify modules at multiple spatial scales. 399 

The numbers of modules varied from 1 to 18 across the range of spatial scales and frequencies (Figure 400 

3A). We used bootstrap- and permutation-based methods to assess statistical significance of the 401 

identified modules.  The permutation method operated on the entire connectome while the bootstrap 402 

method operated on individual regions, hence the permutation method is a more conservative test of 403 

modular organization. In the bootstrap method, we determined if the percentage of brain regions 404 

consistently assigned to the same module across bootstrapped versions (N = 100) of the original 405 

connectome, was more than would be expected by chance. In the permutation method, we assessed 406 

if modularity of the original connectome was higher than modularity of ensembles of randomized 407 

versions of the connectome (N = 100). Modularity is the extent to which the connectome divides into 408 

non-overlapping modules. We observed that across a wide range of spatial scales and frequencies, 409 

12.2–100% cortical regions had stable module assignments, yielding statistically significant 410 

percentages of stable regions at multiple spatial scales (p < 0.05, FDR-corrected, bootstrap test) 411 

(Figure 3B). Further, the connectomes had statistically significant modular organization (p < 0.05, 412 

FDR-corrected, permutation test) at multiple spatial scales throughout the studied frequency range 413 

(Figure 3C). Connectomes in beta frequency band (14-20 Hz) exhibited the widest range of spatial 414 

scales for which modules were statistically significant. The statistical significance of the modules 415 

suggests that they operate as functional systems within the connectome, and their existence at 416 

multiple spatial scales influences the nature of dynamics from the connectome, for e.g. characterised 417 

by a range of temporal scales. 418 

For a given frequency, we displayed modules on projections of the cortical surface (Figure 3D). At a 419 

representative frequency of 14 Hz, modules comprised superior-frontal, inferior-frontal, temporal, 420 

parietal and occipital regions at a coarse spatial scale (γ = 1.8). The module of temporal regions split 421 

into modules of superior and inferior-temporal regions at finer spatial scales (γ = 2.6) (Figure 3E). 422 

 423 
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 424 

 

Figure 3. Connectomes of phase-synchronization are modular at multiple spatial scales.  

A. Number of identified left and right hemisphere modules, for each combination of spatial 

scale and frequency. B. Percentage of left and right hemisphere regions with stable module 

assignments, for each combination of spatial scale and frequency. C. Modularity measure for 

left and right hemisphere, for each combination of spatial scale and frequency. Modularity 

values below statistical significance are gray.  D. Translation of colours for each brain region 

from an inflated-brain (top) to a flat-brain representation (bottom). Colour of each region is a 

function of distance and angle from the centre of the flat-brain, such that neighbouring regions 

are coloured similarly. E. Colour-coded modules for right hemisphere at 14 Hz on flat-brain 

representation, at six spatial scales (γ = 1 to 5). Module colours reflect anatomical location of 

their constituent regions, since they are obtained from the mean angles and distances from 

centre of these regions. Regions with unstable module assignments are gray. 
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3.3 Modules in connectomes of phase synchronization group into neurophysiologically 425 

meaningful frequency bands 426 

We determined if the identified modules group into statistically distinct sets of frequencies. To do 427 

this, we generated matrices of similarity between modules for every pair of frequencies, and applied 428 

multi-slice community detection (Mucha et al. (2010)) to identify bilaterally symmetric frequency 429 

bands within which modules were highly similar (Figure 4). We found multiple statistically 430 

significant (p < 0.05, FDR-corrected, permutation test, N = 100) groupings of between two and 431 

thirteen frequency bands. For further analysis, we used the groupings into three frequency bands and 432 

six frequency bands, though we note that other equally valid groupings could be used. The statistically 433 

significant grouping into three frequency bands (γ = 1.1, ω = 0.2 – 1) comprised sets of adjacent 434 

frequencies, 3–14 Hz, 20–113 Hz and 135–320 Hz (Figure 4, dashed red line boxes). Similarly, the 435 

statistically significant grouping into six frequency bands (γ = 1.25, ω = 0.2 – 1) comprised sets of 436 

adjacent frequencies, 3–4 Hz, 5–10 Hz, 14–20 Hz, 28–57 Hz, 80–113 Hz and 135–320 Hz (Figure 4, 437 

solid black line boxes). Notably, the grouping into six sets of frequencies yielded frequency bands 438 

that are close to neurophysiologically meaningful frequency bands observed in prior literature, i.e. 439 

delta (3-4 Hz), theta/alpha (5-10 Hz), beta (14-20 Hz), low gamma (28-57 Hz), high gamma (80-113  440 

 

Figure 4. Modules in connectomes of phase-synchronization group into neurophysiologically 

meaningful frequency bands. Matrices of similarity between modules in connectomes of phase-

synchronization for every pair of frequencies, for left and right hemispheres. Statistically significant 

grouping for both hemispheres into three frequency bands (dashed red outline), i.e. 3-14 Hz, 20-113 

Hz and 135-320 Hz and six frequency bands (black outline), i.e. 3-4 Hz, 5-10 Hz, 14-20 Hz, 28-57 Hz, 

80-113 Hz and 135-320 Hz, are shown. 
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Hz) and high-frequency oscillations (135-320 Hz) respectively (Lopes da Silva (2011), Arnulfo et al. 441 

(2020)). Thus, the identified modules group into statistically distinct sets of adjacent frequencies, 442 

which map to neurophysiologically meaningful frequency bands. 443 

3.4 Modules in connectomes of phase synchronization comprise anatomically contiguous 444 

regions 445 

Module-like structures identified in resting-state fMRI, such as the default mode, fronto-parietal, 446 

ventral- and dorsal-attention systems include anatomically non-contiguous regions (van den Heuvel 447 

& Pol (2010)). We investigated if modules in connectomes of phase-synchronization similarly 448 

comprised anatomically non-contiguous regions for the statistically significant grouping into three 449 

and six frequency bands, at different spatial scales (Figure 5). For the grouping into three frequency 450 

bands (3–14 Hz, 20–113 Hz and 135–320 Hz), we in fact found the modules comprised only 451 

anatomically contiguous regions for the 3–14 Hz and 20–113 Hz frequency bands, where the modules 452 

respectively comprised frontal, temporal and parietal regions at a coarse spatial scale (γ = 1). At finer 453 

spatial scales (γ = 2, 3), the module of temporal regions split into separate modules of superior-454 

temporal and inferior-temporal regions. The module of frontal regions also split into separate modules 455 

of superior-frontal and inferior-frontal regions. Similarly, modules of the six frequency bands (3–4 456 

Hz, 5–10 Hz, 14–20 Hz, 28–57 Hz, 80–113 Hz and 135–320 Hz) comprised anatomically contiguous 457 

regions up to 113 Hz (Figures S1-2). However, in contrast to modules for the 3–14 Hz and 20–113 458 

Hz frequency bands, and corresponding bands in the grouping into six frequency bands, the modules 459 

in the 135–320 Hz frequency band included anatomically non-contiguous regions (Figure 5) (Arnulfo 460 

et al. (2020)). Hence, unlike with resting-state fMRI, modules in connectomes of phase-461 

synchronization up to high-gamma frequencies comprised anatomically contiguous regions. 462 

Please find module assignments for left and right hemispheres, at a number of spatial scales (γ = 1, 463 

2, 3, 4), in our shared open dataset (Williams et al. (2021)).  464 

 465 

 466 

 467 

 468 

 469 
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 470 

 471 

 

Figure 5. Modules in connectomes of phase-synchronization up to high-gamma frequencies 

comprise anatomically contiguous regions. Flat-brain representations of modules in connectomes of 

phase-synchronization for 3-14 Hz, 20-113 Hz and 135-320 Hz, at four spatial scales (γ = 1 to 4). Black 

lines on each flat-brain show outlines of consensus modules, i.e. sets of regions assigned to the same 

module across frequencies and spatial scales.  
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3.5 Modules in connectomes of phase synchronization comprise functionally related 472 

regions 473 

Module-like structures identified in fMRI comprise regions that are concurrently active in tasks 474 

relating to specific sensory, motor, or cognitive domains, such as visual, sensorimotor, attentional, 475 

and executive control processing (Smith et al. (2009), Power et al. (2011)). Hence, we investigated if 476 

modules in connectomes of phase-synchronization also comprised regions that are concurrently 477 

active in tasks relating to specific cognitive domains. For this purpose, we used eight consensus 478 

modules that represented sets of regions assigned to the same module across frequencies and spatial 479 

scales. In the absence of a-priori knowledge on number of consensus modules, we set the number as 480 

eight to fall within the range of seven to ten reported for their putative fMRI counterparts (Beckmann 481 

et al. (2005), Damoiseaux et al. (2006), Yeo et al. (2011), Power et al. (2011)). The eight consensus 482 

modules comprised anatomically contiguous regions and included regions in the superior-frontal 483 

(bright green), inferior-frontal (pale green), insula (olive), superior-temporal (brown), inferior-484 

temporal (dark pink), parietal (light blue), lateral-occipital (dark purple), and medial-occipital (light 485 

purple) cortical areas (Figure 6A). Module colours reflect anatomical location of their constituent 486 

regions. The consensus modules predominantly resembled modules at the lower frequencies (14-40 487 

Hz) and intermediate spatial scales (γ = 1.5–2.5) (Figure S3). 488 

We first used the Neurosynth meta-analyses-based decoding tool (Yarkoni et al. (2011)) to find terms 489 

related to perception, cognition and behaviour, selectively associated with each brain region in the 490 

Destrieux brain atlas, where we identified each region by its centroid coordinates. These terms were 491 

both sensitively and specifically associated to fMRI activation in the corresponding brain regions, 492 

according to a large database of fMRI studies. We then identified terms selectively associated with 493 

each module by finding terms that occurred more frequently (p < 0.05, FDR-corrected, permutation 494 

test, N = 74) across the regions in a module, compared to equally sized surrogate modules of 495 

anatomically contiguous regions. This effectively tested the hypotheses that regions comprising a 496 

module serve shared functional roles, even after accounting for their anatomical proximity. 497 

The terms for the superior-frontal module related to attention and executive function while the terms 498 

for the inferior-frontal module related to affective processing and social cognition (Figure 6A).   The 499 

terms for the parietal module related to sensori-motor, sensory and motor processing. In addition, the 500 

terms for the modules in the occipital lobe, the medial-occipital and lateral-occipital modules, related 501 

to visual processing and the terms for the superior-temporal module related to language and auditory 502 

processing. Finally, the terms for the inferior-temporal module related to memory function and the  503 
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terms for the insula module related to somatosensory processing. The results suggest that, similarly 504 

to modules in resting-state fMRI, the modules in connectomes of phase-synchronizaton comprised 505 

regions with shared functional roles in task-related processing. The putative functional roles of these 506 

modules, inferred from their sets of terms, were in good agreement with overarching functions of 507 

their constituent regions (Gazzaniga et al. (2009)).  508 

Figure 6. Modules in connectomes of phase-synchronization comprise functionally related 
regions. A. Terms and putative functional roles specific to each of the eight consensus modules 
displayed in centre. Sizes of words are proportional to their frequency of occurrence. sF=superior 
Frontal, iF=inferior Frontal, Ins=Insula, sT=superior Temporal, iT=inferior Temporal, lO=lateral 
Occipital, mO=medial Occipital, P=Parietal. B. Percentages of terms specific to each module 
(row) assigned to each of eight cognitive functions (left) and percentages of all terms related to 
each module (row) assigned to the same cognitive functions (right). 
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Please find the set of terms selectively associated to each of the consensus modules, in our shared 509 

open dataset (Williams et al. (2021)). 510 

We sought further verification of the functional specificity of modules, i.e. that they are specialised 511 

to support particular cognitive functions rather than support diverse cognitive functions. To verify 512 

this, we determined the percentage of selectively associated terms for each module that could be 513 

categorised under every module9s assigned functional role. We compared this against the percentage 514 

of all terms for each module, i.e. before FDR-thresholding, that could be categorised under every 515 

module9s assigned cognitive function. Functional specificity of modules would be reflected by high 516 

percentages of selectively associated terms for each module being assigned to their assigned cognitive 517 

function, but the set of all terms for each modules being distributed across diverse cognitive functions. 518 

As expected, we found high percentages of selectively associated terms for each module were 519 

categorised within the cognitive function assigned to them (Figure 6B, left), but the set of all terms 520 

for each module were distributed across diverse cognitive functions (Figure 6B, right). These results 521 

further verify the functional specificity of the identified modules. 522 

3.6 Robustness of results 523 

We evaluated the robustness of the identified modules to the specific SEEG electrode-contact pairs 524 

used to generate the connectomes. To do this, we generated two split connectomes from the original 525 

connectome and compared the modules identified from each. Modules identified from the split 526 

connectomes were highly similar to each other (Figure S4). Hence, the identified modules were robust 527 

to the particular SEEG contact-pairs used to generate the connectomes.  528 

We further evaluated the robustness of the identified modules to the particular algorithm used for 529 

community detection. To do this, we identified modules with Infomap community detection (Rosvall 530 

& Bergstrom (2008)) and compared these to the modules we had identified with Louvain community 531 

detection. Modules identified by both these methods were highly similar up to high-gamma (113 Hz) 532 

(Figure S5). Hence, the identified modules were robust to the particular algorithm used up to high-533 

gamma frequencies but were algorithm-specific for high-frequency oscillations (135–320 Hz).     534 

Finally, we investigated if identifying the modules is confounded by the amplitudes of oscillations of 535 

individual nodes of the network. We compared modules identified from 20 subject-level networks of 536 

phase synchronization, across frequencies, before and after removing amplitude-related differences 537 

in strengths of functional connections. The identified modules were highly similar before and after 538 
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correcting for amplitude-related differences, across all subjects and frequencies (Figure S6). Hence, 539 

the identified modules are not confounded by oscillation amplitudes of individual network nodes. 540 

4. Discussion 541 

Modules in the fMRI connectome comprise distinct sets of connected regions for sensory, motor and 542 

cognitive processing (Valencia et al. (2009), Benjaminsson et al. (2010), Yeo at al. (2011), Power et 543 

al. (2011), Lee et al. (2012)). In this study, we investigated whether connectomes of phase-544 

synchronization between fast neuronal oscillations possess modular organization akin to that 545 

observed in fMRI connectomes. We used intracerebral SEEG data from 67 subjects to generate 546 

connectomes of phase-synchronization between meso-scale cortical oscillations, negligibly affected 547 

by volume conduction. We found that connectomes of phase-synchronization possessed modular 548 

organization at multiple spatial scales, at all studied frequencies. The modules were anatomically 549 

similar within neurophysiologically meaningful frequency bands, i.e. delta (3-4 Hz), theta/alpha (5-550 

10 Hz), beta (14-20 Hz), gamma (28-57 Hz), high-gamma (80-113 Hz) and high frequency oscillation 551 

(135-320 Hz) bands. In contrast to the modules identified in fMRI, we found that modules up to high-552 

gamma frequency band (80-113 Hz) comprised only anatomically contiguous regions. Importantly, 553 

modules comprised brain regions with significantly shared functional roles in e.g. attentional and 554 

executive function, language and memory.  555 

SEEG recordings can be used to identify modules in connectomes of phase-synchronization 556 

Despite the millimeter scale anatomical specificity and high signal-to-noise ratio (SNR) offered by 557 

intra-cranial EEG methods like Electrocorticography and SEEG (Parvizi & Kastner (2018)), their 558 

sparse spatial coverage and artefacts due to epileptogenic activity have militated against their use to 559 

identify modules in connectomes of phase-synchronization. Our results demonstrate the viability of 560 

combining SEEG recordings with state-of-the-art methods to identify modules in connectomes of 561 

phase-synchronization. We counteracted sparse SEEG coverage by pooling data from 67 subjects and 562 

addressed epileptogenic artefacts by removing SEEG contacts and data segments potentially 563 

containing epileptic artefactual activity. Further, we used automated procedures to overcome the 564 

problem of assigning SEEG contacts to brain regions and used closest-white-matter referencing to 565 

minimise volume conduction, to accurately estimate connectomes of phase-synchronization. Finally, 566 

we combined consensus clustering with community detection to identify modules in the connectomes, 567 

despite the presence of missing connections. A recent MEG study (Zhigalov et al. (2017)) used a 568 

similar procedure with a smaller cohort (N = 27) to estimate the connectome of phase-569 

synchronization, but did not identify modules in these due to the high proportion of missing 570 
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connections. A recent Electrocorticography (ECoG) study (Kucyi et al. (2018)) measured amplitude 571 

correlations between a number of brain regions, but lacked the spatial coverage to estimate the 572 

connectome or modules in the connectome. Hence, our study is the first to our knowledge to harness 573 

the high SNR and fine anatomical specificity of intra-cranial EEG to study the modular organization 574 

of the connectome of phase-synchronization. 575 

SEEG reveals novel modules in connectomes of phase-synchronization  576 

Some of the distinct modules we identified with SEEG have not previously been observed with non-577 

invasive methods. We identified modules comprising superior frontal regions, inferior frontal 578 

regions, superior temporal regions, inferior temporal regions, parietal regions, insula, lateral occipital 579 

regions and medial occipital regions. A recent MEG study (Zhigalov et al. (2017)) also reported the 580 

presence of modules in occipital, parietal and frontal regions. Another recent MEG study (Vidaurre 581 

et al. (2018)) used Hidden-Markov modelling to identify spatially localised <functional states=, 582 

including those comprising occipital, parietal and frontal regions. The <functional states=, were short-583 

lived patterns of inter-regional coherence and hence, constituted module-like structures. However, 584 

the modules we identified in superior frontal, inferior frontal, superior temporal, inferior temporal 585 

and insula regions are novel to this study. These novel modules might be observed due to the 586 

sensitivity of interaction measures, e.g. Phase Locking Value, to near-zero-lag phase-synchronization 587 

when used with SEEG. MEG field spread or EEG volume conduction produce high amounts of 588 

spurious phase-synchronization when these measures are applied to MEG or EEG data.  589 

Similar to the modules we identified with SEEG, modules comprising occipital regions, parietal 590 

regions and temporal regions have been identified in resting-state fMRI (Benjaminsson et al. (2010), 591 

Yeo et al. (2011), Power et al. (2011)). However, we also identified novel modules comprising 592 

regions in the superior frontal, inferior frontal and insula regions. Further, we identified separate 593 

modules of superior temporal and inferior temporal regions compared to a single module of temporal 594 

regions reported in fMRI, and separate modules of medial occipital and lateral occipital regions 595 

compared to a single module of occipital regions reported in fMRI. Each of these modules comprised 596 

anatomically contiguous regions in contrast to, for e.g., attentional or default-mode brain systems 597 

identified with fMRI, which include regions distributed across frontal, parietal, and temporal lobes 598 

(Benjaminsson et al. (2010), Yeo et al. (2011), Power et al. (2011)). Hence, SEEG furnishes novel 599 

modules or sets of regions functionally interacting during resting-state. 600 

 601 
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Modules at multiple spatial scales consistent with hierarchical organization 602 

Our study is the first to report modular organization at multiple spatial scales in connectomes of 603 

phase-synchronization. The module of frontal regions identified at a coarse spatial scale splits into 604 

modules of superior frontal regions and inferior frontal regions at a finer spatial scale. Similarly, the 605 

module of temporal regions identified at a coarse spatial scale splits into modules of superior temporal 606 

regions and inferior temporal regions at a finer spatial scale. This recursive occurrence of sub-607 

modules within modules is consistent with hierarchical modular organization, and has been observed 608 

in resting-state fMRI (Meunier et al. (2009)) but not with electrophysiological methods. However, a 609 

stricter assessment of hierarchical modular organization requires simultaneously identifying modules 610 

at multiple spatial scales. Separately identifying modules at multiple spatial scales, as in the current 611 

study, make it difficult to rigorously assess hierarchical modular organization due to the very high 612 

number of possible permutations when matching modules across spatial scales.  613 

Functional specificity of identified modules suggests their behavioural relevance 614 

We used information from an independent database of fMRI studies to infer the functional role of 615 

each module. Regions in different modules had shared involvement in cognitive functions of attention 616 

and executive function, affective processing and social cognition, somatosensory processing, 617 

language and auditory processing, memory function, visual processing, advanced visual processing 618 

and sensori-motor processing respectively. The demonstrated functional specificity of these modules 619 

suggests that they operate as distinct brain systems. In line with proposed frameworks on brain 620 

function (Tononi et al. (1994), Tononi et al. (1998), Balduzzi & Tononi (2008), Lord et al. (2017), 621 

Shine et al. (2018)) strong connections within modules might support segregated information 622 

processing (Chan et al. (2014)), while weak connections between modules might support integrated 623 

information processing (Deco et al. (2015), Westphal et al. (2017)).  624 

We speculate that the identified modules impose a functional architecture of the connectome during 625 

resting-state, which is reorganized to meet task-related demands for segregation and integration. 626 

Recent frameworks propose that cognitive function is implemented by integration between modules 627 

present in the baseline period (Wig (2017)). Some fMRI studies have found evidence to support 628 

this, in the form of associations between cognitive performance and task-related functional 629 

reorganization of the brain to facilitate interaction between modules operating at baseline (Spadone 630 

et al. (2015), Shine et al. (2016), Cohen & D9Esposito (2016)). While many MEG/EEG studies 631 

have found task-related phase synchronization in for e.g. studies of attention (Lobier et al. (2018)), 632 

somatosensory processing (Hirvonen et al. (2018)) and working memory (Kitzbichler et al. (2011)), 633 
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there are no studies investigating task-related phase synchronization as reorganization of the 634 

functional architecture imposed by modules during resting-state. Future studies could describe task-635 

related phase-synchronization with reference to the natural framework provided by the identified 636 

modules in connectomes of phase-synchronization during resting-state. 637 

5. Conclusion 638 

In this study, we combined resting-state SEEG recordings with state-of-the-art methods to 639 

accurately identify modules in connectomes of phase-synchronization. We found the modules to 640 

predominantly comprise anatomically contiguous regions, unlike modules identified in resting-state 641 

fMRI. Importantly, each of the modules comprised regions with shared involvement in specific 642 

cognitive functions. Hence, these modules might represent distinct brain systems with particular 643 

roles in perceptual, cognitive and motor processing. 644 
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Supplementary figures 821 

 822 

Figure S1. Modules in connectomes of phase-synchronization for 3-4 Hz, 5-10 Hz and 14-20 823 

Hz comprise anatomically contiguous regions. Flat-brain representations of modules in 824 

connectomes of phase-synchronization for 3-4 Hz, 5-10 Hz and 14-20 Hz, at four spatial scales (Ɣ 825 

= 1 to 4). Black lines on each flat-brain show outlines of consensus modules, i.e. sets of regions 826 

assigned to the same module across frequencies and spatial scales. 827 

 828 

 829 
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 830 

Figure S2. Modules in connectomes of phase-synchronization for 28-57 Hz, 80-113 Hz but not 831 

135-320 Hz comprise anatomically contiguous regions. Flat-brain representations of modules in 832 

connectomes of phase-synchronization for 28-57 Hz, 80-113 Hz and 135-320 Hz, at four spatial 833 

scales (Ɣ = 1 to 4). Black lines on each flat-brain show outlines of consensus modules, i.e. sets of 834 

regions assigned to the same module across frequencies and spatial scales. 835 
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 840 

Figure S3. Consensus modules resemble modules at lower frequencies and intermediate 841 

spatial scales. Similarity between consensus modules and modules at each combination of spatial 842 

scale and frequency, for both left and right hemispheres. 843 
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 858 

Figure S4. Modules in split connectomes of phase-synchronization are highly similar. Flat-859 

brain representations of modules in two split connectomes of phase-synchronization (top and 860 

bottom rows) for 3-14 Hz, 20-113 Hz and 135-320 Hz, at a single spatial scale (Ɣ = 2). Black lines 861 

on each flat-brain show outlines of consensus modules, i.e. sets of regions assigned to the same 862 

module across frequencies and spatial scales. 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 

 887 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.24.449415doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449415
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

 888 
 889 

Figure S5. Modules in connectomes of phase-synchronization similar for Louvain and 890 

Infomap community detection, up to high gamma frequency band. Flat-brain representations of 891 

modules in connectomes of phase-synchronization estimated with Louvain (top row) and Infomap 892 

(bottom row) community detection, for 3-14 Hz, 20-113 Hz and 135-320 Hz, at a single spatial 893 

scale (Ɣ = 2). Black lines on each flat-brain show outlines of consensus modules, i.e. sets of regions 894 

assigned to the same module across frequencies and spatial scales.  895 
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 908 

Figure S6. Amplitude of activity does not confound identification of modules. Similarity 909 

between modules identified on subject-level networks of phase-synchronization before and after 910 

removing amplitude confound.  911 
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