

Modules in connectomes of phase-synchronization comprise anatomically contiguous, functionally related regions

4 Williams N^{1,4}, Wang SH^{2,3,4}, Arnulfo G^{2,5}, Nobili L^{6,7,8}, Palva S^{2,9,10}, Palva JM^{2,4,10}

5

6 Affiliations:

1. Helsinki Institute of Information Technology, Department of Computer Science, Aalto University, Finland
2. Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland
3. Doctoral Programme Brain & Mind, University of Helsinki, Finland
4. Department of Neuroscience & Biomedical Engineering, Aalto University, Finland
5. Dept. of Informatics, Bioengineering, Robotics & Systems Engineering, University of Genoa, Italy
6. Claudio Munari Epilepsy Surgery Centre, Niguarda Hospital, Milan, Italy
7. Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's Sciences, University of Genoa, Genoa, Italy
8. Child Neuropsychiatry, IRCCs Gaslini Istituto Giannina Gaslini, Genoa, Italy
9. BioMag laboratory, HUS Medical Imaging Centre, Helsinki, Finland
10. Centre for Cognitive Neuroimaging, Institute of Neuroscience & Psychology, University of Glasgow, United Kingdom

32 Corresponding author:

33 Dr. Nitin Williams

34 Department of Computer Science

35 Aalto University

36 Konemiehentie 2

37 02150, Espoo

38 Helsinki

Tel: +358 (0)44 919 5512

40 Email: nitin.williams@aalto.fi

41 **Abstract**

42 Modules in brain connectomes are essential to balancing the functional segregation and integration
43 crucial to brain operation. Connectomes are the set of structural or functional connections between
44 each pair of brain regions. Non-invasive methodologies, Electroencephalography (EEG) and
45 Magnetoencephalography (MEG), have been used to identify modules in connectomes of phase-
46 synchronization, but have been compromised by spurious phase-synchronization due to EEG
47 volume conduction or MEG field spread. In this study, we used invasive, intracerebral recordings
48 with stereo-electroencephalography (SEEG, $N = 67$), to identify modules in connectomes of phase-
49 synchronization. To do this, we used submillimetre localization of SEEG contacts and closest-
50 white-matter referencing, to generate group-level connectomes of phase-synchronization minimally
51 affected by volume conduction. Then, we employed community detection methods together with a
52 novel consensus clustering approach, to identify modules in connectomes of phase-synchronization.
53 The connectomes of phase-synchronization possessed significant modular organization at multiple
54 spatial scales, from 3–320 Hz. These identified modules were highly similar within
55 neurophysiologically meaningful frequency bands. Modules up to the high-gamma frequency band
56 comprised only anatomically contiguous regions, unlike modules identified with functional
57 Magnetic Resonance Imaging (fMRI). Strikingly, the identified modules comprised cortical regions
58 involved in shared repertoires of cognitive functions including vision, language and attention. These
59 results demonstrate the viability of combining SEEG with advanced methods, to identify modules
60 in connectomes of phase-synchronization. The modules correspond to brain systems with specific
61 functional roles in perceptual, cognitive, and motor processing.

62

63 **Keywords**

64 Functional connectome; Phase-synchronization; Stereo-electroencephalography; Brain network
65 modules; Resting-state; Functional systems

66

67

68

69

70

71

72

73

74 **Highlights**

75 • SEEG recordings from large cohort used to generate connectomes of phase-synchronization
76 • Connectomes of phase-synchronization possess modules at multiple spatial scales
77 • Modules are highly similar within neurophysiologically meaningful frequency bands
78 • Modules comprise anatomically contiguous regions up to high gamma frequencies
79 • Modules comprise functionally related regions, suggesting their behavioural relevance

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100 1. Introduction

101 Structural and functional connectomes obtained from resting-state functional Magnetic Resonance
102 Imaging (fMRI) possess a modular organization (Meunier et al. (2009), Power et al. (2011), Doucet
103 et al. (2011)). Connectomes are the set of connections between each pair of brain regions. Modules
104 are sets of regions with strong connections within modules and weaker connections between them.
105 Modules identified in resting-state fMRI comprise regions that have also been observed to be
106 concurrently active during task processing, and have been found to delineate functional systems for
107 executive, attentional, sensory, and motor processing (Beckmann et al. (2005), Smith et al. (2009),
108 Yeo et al. (2011)). The anatomical structure of resting-state modules in fMRI connectomes has been
109 found to be reproducible and similarly observable with different approaches such as community
110 detection (Valencia et al. (2009), Power et al. (2011)) and clustering (Benjaminsson et al. (2010),
111 Yeo et al. (2011), Lee et al. (2012)). Moreover, the balance between segregated information
112 processing in modules (Wig (2017)) and integrated information processing via inter-modular
113 connections, is essential to brain functioning (Tononi et al. (1994), Tononi et al. (1998), Deco et al.
114 (2015)).

115 The relationship of fMRI functional connectivity to underlying electrophysiological connectivity is
116 complex and not attributable to any single form of neuronal activity or coupling (Kucyi et al. (2018)).
117 Electrophysiological measurements of macro-scale neuronal activity with Magneto- (MEG) and
118 Electroencephalography (EEG) reveal band-limited neuronal oscillations in multiple frequencies,
119 whose inter-regional coupling is observable as synchronization between oscillation phases and
120 correlations between oscillation amplitude envelopes (Palva et al. (2005), Fell & Axmacher (2011),
121 Brookes et al. (2011), Palva & Palva (2012), Engel et al. (2013)). Amplitude correlations reflect, e.g.,
122 co-modulation in neuronal excitability (Vanhatalo et al. (2004), Schroeder & Lakatos (2009), Engel
123 et al. (2013)) while phase-synchronization implies spike-time relationships of neuronal activity and
124 may regulate inter-regional neuronal communication (Fries (2015), Bastos (2015)). Large-scale
125 networks of phase-synchronization are proposed to support the coordination, regulation, and
126 integration of neuronal processing in cognitive functions, both in frequencies up to 130 Hz (Varela
127 (2001), Palva et al. (2005), Uhlhaas et al. (2010), Kitzbichler et al. (2011), Palva & Palva (2012)),
128 and in frequencies higher than 130 Hz, i.e. high-frequency oscillations (HFO) (Arnulfo et al. (2020)).
129 In light of such putative mechanistic roles for phase synchronization in cognitive functions, a modular
130 architecture and inter-modular coupling in connectomes of phase-synchronization during resting-
131 state, would establish a baseline to support corresponding demands for functional segregation and

132 integration during cognitive operations (Smith et al. (2009), Spadone et al. (2015)). A single MEG
133 study investigated modules in connectomes of phase-synchronization and amplitude correlation using
134 source-reconstructed resting-state data (Zhigalov et al. (2017)). Both connectomes of amplitude
135 correlation and phase-synchronization comprised distinct modules in frontal regions, sensori-motor
136 regions and occipital regions, particularly in the alpha (8 – 14 Hz) and beta (14 – 30 Hz) frequency
137 bands. However, identifying modules in MEG/EEG connectomes is hindered by errors in estimating
138 the connectome, including false positive connections due to linear mixing from MEG field spread or
139 EEG volume conduction (Palva & Palva (2012), Palva et. al (2018)) or false negatives due to linear-
140 mixing insensitive measures that ignore also true near-zero-lag phase-synchronization (Vinck et al.
141 (2011), Brookes et al. (2012), Palva & Palva (2012)). Low-resolution cortical parcellations that
142 eliminate spurious connections due to linear mixing (Vidaurre et al. (2018)) may be too coarse to
143 identify fine-grained cortical network structures such as modules.

144 In this study, we pooled resting-state stereo-EEG (SEEG) recordings data from a large cohort ($N =$
145 67) to accurately estimate connectomes of phase-synchronization. In contrast to the centimetre-scale,
146 macro-scale insight yielded by MEG, SEEG provides a millimetre range, meso-scale measurement
147 of human cortical local field potentials (LFPs) (Parvizi & Kastner (2018), Zhigalov et al. (2015),
148 Zhigalov et al. (2017)). We combined submillimetre-accurate anatomical localization of SEEG
149 electrode contacts (Narrizano et al. (2017), Arnulfo et al. (2015b)) with a state-of-the-art scheme of
150 referencing each gray-matter contact to its closest white-matter contact (Arnulfo et al. (2015a)), to
151 yield phase-undistorted and polarity-correct measurements of local cortical activity. Crucially, this
152 enabled estimating a high proportion of connections in the connectome while adequately controlling
153 for volume conduction so that near zero-lag phase-synchronization was also measurable (Arnulfo et
154 al. (2015a)). Finally, we used community detection with a novel consensus clustering approach to
155 identify modules in connectomes of phase-synchronization while accounting for missing connections.

156 We found that connectomes of phase synchronization indeed exhibited modular organization at
157 multiple spatial scales, throughout the studied range of frequencies from 3 to 320 Hz. These
158 modules were highly similar within neurophysiologically meaningful frequency bands and
159 comprised anatomically contiguous regions up to the high-gamma frequency band (80-113 Hz).
160 Strikingly, the modules comprised cortical regions exhibiting shared involvement in specific
161 cognitive functions such as vision, language and attention, suggesting that these modules
162 correspond to brain systems with functional roles in perceptual, cognitive and motor processing.
163

164 2. Materials & Methods

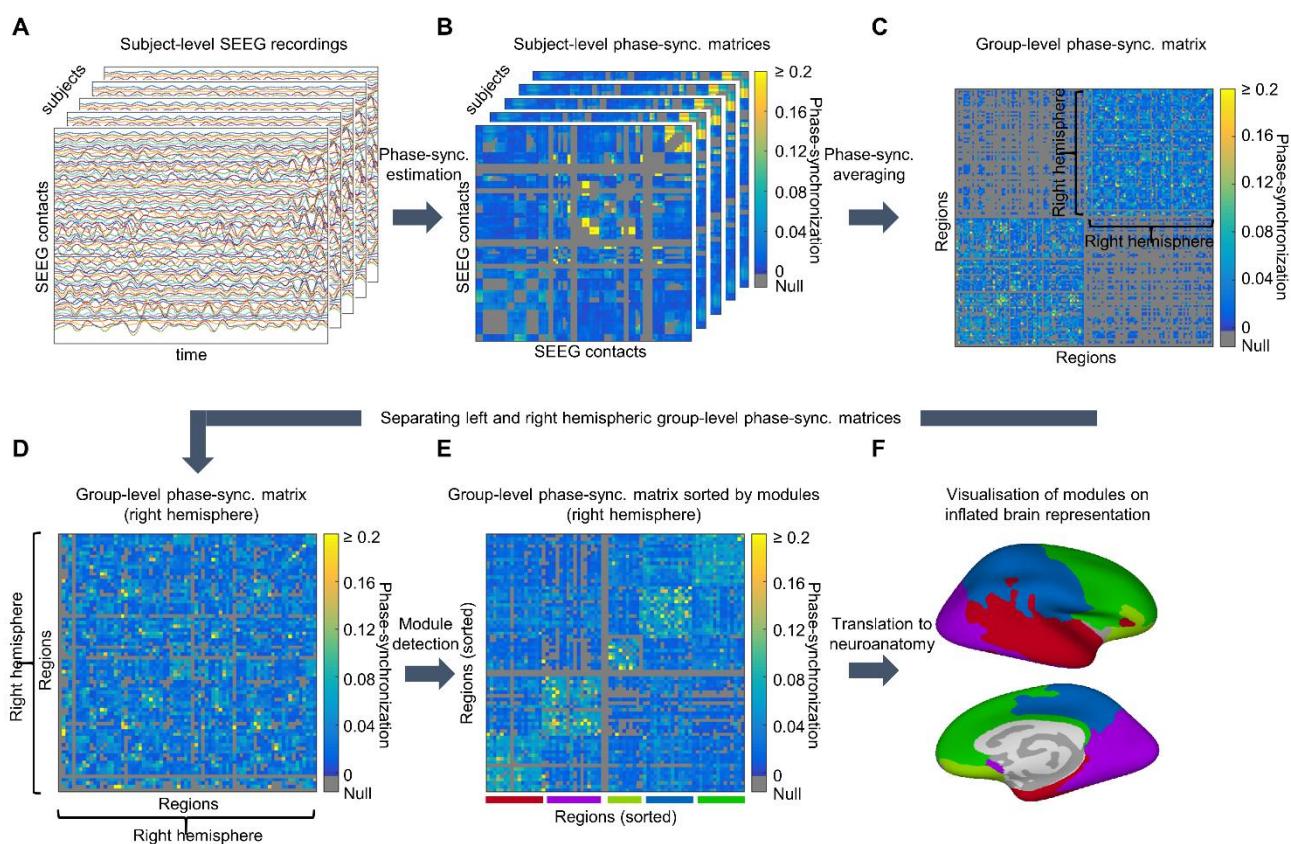


Figure 1. Modules in connectomes of phase-synchronization estimated by pooling data across subjects. **A.** Band-pass filtered data (centre frequency=14 Hz) for example group of subjects. **B.** Subject-level matrices of phase-synchronization between SEEG contacts, for example group of subjects. **C.** Group-level matrix of phase-synchronization between brain regions. Matrix ordered to show left- (bottom left), right- (top right) and inter-hemispheric connections (top left and bottom right) respectively. Non-estimable connections are gray. **D.** Group-level matrix of phase-synchronization between right-hemispheric regions. **E.** Sorted group-level matrix of phase-synchronization between right-hemispheric regions, sorting done from results of community detection to identify modules. **F.** Colour-coded modules for lateral (top) and medial (bottom) inflated view representation of right hemisphere.

165 2.1 Analysis pipeline to identify modules in connectomes of phase-synchronization

166 We combined pre-surgical SEEG recordings from epileptic patients with state-of-the-art methods, to
 167 identify modules in connectomes of phase-synchronization. Concretely, we recorded resting-state
 168 LFP data from each patient using a common reference in white matter, distant from the putative
 169 epileptogenic zone. We re-referenced the LFP activity of each grey-matter SEEG contact to its closest
 170 white-matter contact, which we have demonstrated to preserve undistorted phase reconstruction while
 171 minimising volume conduction (Arnulfo et al. (2015a)). We filtered the recorded LFP data using 18
 172 narrow-band Finite Impulse Response (FIR) filters (Figure 1A) from 2.5 Hz up to 350 Hz with line-

173 noise suppressed using band-stop filters at 50Hz and harmonics. Next, we estimated the strength of
174 phase synchronization between every pair of SEEG contacts, for each frequency, using Phase
175 Locking Value (PLV) (Figure 1B). We assigned cortical SEEG contacts to brain regions using an
176 automated submillimeter-accurate electrode localization procedure involving CT-MRI co-
177 localization (Arnulfo et al. (2015b)). We then estimated group-level connectomes by averaging for
178 each region-pair, the corresponding contact-contact PLVs across subjects (Figure 1C). We analyzed
179 the left and right hemispheres separately (Figure 1D) and identified modules with Louvain
180 community detection (Blondel et al. (2008)) combined with consensus clustering (Williams et al.
181 (2019)) (Figure 1E). Finally, we visualised the identified modules on anatomical brain surfaces
182 (Figure 1F).

183 **2.2 Data acquisition**

184 We recorded SEEG data from 67 participants affected by drug-resistant focal epilepsy and
185 undergoing pre-surgical clinical assessment. For each participant, we inserted 17 ± 3 (mean \pm SD)
186 SEEG shafts into the brain, with anatomical positions varying by surgical requirements. Each shaft
187 had between 8 and 15 platinum-iridium contacts, each contact being 2 mm long and 0.8 mm thick,
188 with inter-contact distance of 1.5 mm (DIXI medical, Besancon, France). We acquired 10 minutes
189 eyes-closed resting-state activity from each participant, via a 192-channel SEEG amplifier system
190 (Nihon Kohden Neurofax-110) at a sampling frequency of 1 kHz. We obtained written informed
191 consent from participants prior to recordings. We obtained ethics approval for the study from
192 Niguarda “Ca’ Granda” Hospital, Milan, and we performed the study according to WMA Declaration
193 of Helsinki – Ethical Principles for Medical Research Involving Human Subjects.

194 **2.3 Pre-processing**

195 We performed re-referencing, filtering and artefact removal of the SEEG data, before estimating the
196 connectome of phase-synchronization. We originally recorded data from all contacts with a
197 monopolar referencing scheme. We subsequently re-referenced activity from each gray-matter
198 contact to the nearest white matter contact as identified by GMPI (gray matter proximity index). We
199 have previously demonstrated the utility of this referencing scheme in studying phase
200 synchronization, since phase relationships between contacts are well preserved (Arnulfo et al.
201 (2015a)). We only analysed activity from gray-matter contacts after re-referencing. We filtered
202 activity from each gray-matter contact using FIR filters (equiripples 1% of maximal band-pass
203 ripples) into 18 frequency bands, with center frequencies (F_c) ranging from 3 to 320 Hz (excluding
204 50 Hz line-noise and harmonics). We used center frequencies of 3 Hz, 4 Hz, 5 Hz, 7 Hz, 10 Hz, 14

205 Hz, 20 Hz, 28 Hz, 40 Hz, 57 Hz, 80 Hz, 113 Hz, 135 Hz, 160 Hz, 190 Hz, 226 Hz, 269 Hz and 320
206 Hz. We used a relative bandwidth approach for filter banks such that pass band (W_p) and stop band
207 (W_s) were defined $0.5 \times F_c$ and $2 \times F_c$, respectively for low and high-pass filters. Before estimating
208 phase synchronization, we excluded selected windows of data due to artefactual epileptic activity.
209 Specifically, we discarded 500 ms wide windows containing Inter-Ictal Epileptic (IIE) events. We
210 defined IIE as at least 10 % of SEEG contacts narrow-band time series demonstrating abnormal,
211 concurrent sharp peaks in more than half the 18 frequencies. To identify such periods, we searched
212 for “spiky” periods in amplitude envelopes of each SEEG contact. We tagged a 500 ms window as
213 “spiky” if any of its samples were 5 standard deviations higher than mean amplitude of the contact.

214 **2.4 Connectome estimation**

215 We pooled estimates of phase-synchronization between SEEG contacts to obtain the group-level
216 connectome of phase-synchronization. We measured phase synchronization between SEEG contacts
217 with Phase Locking Value (PLV) (Lachaux et al. 1999):

$$218 \quad PLV = \frac{1}{N} \left| \sum_{n=1}^N e^{j(\theta_1(n) - \theta_2(n))} \right|$$

219 where $\theta_1(n)$ and $\theta_2(n)$ are instantaneous phases from a pair of SEEG contacts at sample n , with N
220 being the total number of samples. To estimate the connectome of phase synchronization at the group-
221 level, we first selected a brain atlas for dividing the brain into a number of regions. We used the 148-
222 region Destrieux brain parcellation (Destrieux et al. (2010)). We determined phase synchronization
223 between a pair of brain regions by averaging PLV over all subjects, for all contact-pairs traversing
224 that pair of brain regions. We localised each SEEG contact to brain regions using the automated
225 procedure we validated in Arnulfo et al. (2015b). Once we estimated the connectome, we retained
226 the estimated strengths of only the top 20 percentile of connections, setting all others to 0.

227 Since we did not have complete recording coverage of the brain with SEEG, we had insufficient
228 data to estimate phase synchronization between all region-pairs. In all, we obtained estimates for
229 47.2% of all region-pairs. A high proportion of inter-hemispheric connections were not estimable
230 since SEEG contacts are typically concentrated in a single hemisphere for a given subject.

231 We excluded selected contact-pairs from the connectome estimation due to potential artefacts.
232 Concretely, we excluded contact-pairs with epileptogenic contacts. Further, we excluded contact-

233 pairs whose respective SEEG contacts were less than 20 mm apart and those with the same white-
234 matter reference, both to reduce the effect of volume conduction.

235 **2.5 Analysing the connectome of phase synchronization**

236 **2.5.1 Identifying modules in connectomes of phase synchronization**

237 We used Louvain community detection (Reichardt & Bornholdt (2006), Blondel et al. (2008),
238 Ronhovde & Nussinov (2009), Sun et al. (2008)) combined with consensus clustering (Lancichinetti
239 & Fortunato (2012)) to identify modules in the connectome of phase-synchronization. We used the
240 implementation of the Louvain method in Brain Connectivity Toolbox (Rubinov & Sporns (2010)).
241 We applied the Louvain method to left and right hemispheric regions separately, since the low number
242 of inter-hemispheric connections might confound the identification of modules. To identify modules
243 while accounting for missing values in the group-level connectome matrix, we first generated 5000
244 variants of the connectome wherein we replaced each missing value with a randomly selected existing
245 value. We applied Louvain community detection to identify modules on each of these 5000 complete
246 matrices. We identified modules at a range of spatial scales by setting the γ input parameter of the
247 Louvain method from 0.8 to 5, in intervals of 0.1. For each γ value, we combined the module
248 assignments of the 5000 connectome variants to obtain a consensus module assignment. We
249 performed this step by first generating matrix representations of each module assignment, with
250 number of matrix rows and columns being the number of regions. We set each element in the matrix
251 to 1 or 0 depending respectively on whether that pair of regions were in the same module or not. We
252 then obtained a consensus matrix by averaging the 5000 matrix representations, and obtained a
253 consensus module assignment by applying the Louvain method to this consensus matrix. We have
254 demonstrated this consensus clustering approach is superior to other approaches to identify modules
255 in incomplete human brain networks (Williams et al. (2019)). We applied this procedure to identify
256 modules at each frequency, for left and right hemispheres separately.

257 **2.5.2. Determining statistical significance of modular organization**

258 We determined statistical significance of modular organization by comparing modularity of
259 connectomes against modularity of randomized versions of the connectome. Modularity is the extent
260 to which the connectome divides into non-overlapping modules. We first estimated modularity of the
261 connectome for γ values (spatial scales) from 0.8 to 5 when identifying modules, using the same
262 procedure described in Section 2.5.1. Modularity is returned as an output of Louvain community
263 detection. We used 100 connectome variants for the consensus clustering step. At each γ value, we

264 then z -scored the estimated modularity against a null distribution of 100 modularity values obtained
265 by identifying modules on randomly rewired (without replacement) versions of the original
266 connectome, where we performed rewiring the same way for each connectome variant in the
267 consensus clustering step. We estimated z -scored modularity for each frequency, for left and right
268 hemispheres separately. We then converted the z -scores to p -values assuming a Gaussian distribution,
269 and used False Discovery Rate (FDR) thresholding (Benjamini & Hochberg (1995)) to correct for
270 multiple comparisons, to assess modular organization for every combination of γ and frequency. We
271 considered FDR-corrected $p < 0.05$ to indicate statistically significant modular organization.

272 **2.5.3 Determining statistical significance of percentage of stable regions**

273 We determined stability of module assignment for each brain region by the extent to which module
274 affiliations in bootstrapped versions of the original connectome matched those in the original
275 connectome. We constructed 100 bootstrapped connectomes with the same procedure used for the
276 original connectome, but from a set of 67 subjects randomly resampled (with replacement) from the
277 original cohort. We estimated the stability of module assignment of a region as the average
278 correspondence in its module affiliation, with module affiliations of the same region across the 100
279 bootstrapped connectomes. We specified the module affiliation vector of a region to contain '1' for
280 regions in the same module and '0' for regions in different modules. We estimated the correspondence
281 between two module affiliation vectors by the total number of common '1's and '0's as a proportion
282 of the number of regions. Values close to 1 reflected stable assignment of a region to its module. We
283 estimated the percentage of regions whose module assignments were stable, where regions were
284 considered to have stable module assignment if their stability was higher than the 95-percentile value
285 of the null distribution of stability values. We generated the null distribution of stability values for
286 each region, by estimating average correspondence between its module affiliation vector and 100
287 randomly resampled (without replacement) module affiliation vectors of the same region, for each of
288 the bootstrapped connectomes. We estimated the percentage of stable regions for each combination
289 of spatial scales or γ values (from 0.8 to 5) and frequencies, for both left and right hemispheres. We
290 determined the statistical significance of the percentage of stable regions, by z -scoring it against the
291 percentage of regions assigned as stable by chance. We then converted the z -scores to p -values
292 assuming a Gaussian distribution, and used False Discovery Rate (FDR) thresholding to correct for
293 multiple comparisons due to testing across every combination of γ and frequency. We considered
294 FDR-corrected $p < 0.05$ to indicate statistically significant percentage of stable regions.

295

296 **2.5.4. Grouping frequencies by similarity of modules**

297 We used multi-slice community detection (Mucha et al. (2010)) to identify groups of frequencies
298 with similar modules, simultaneously for both left and right hemispheres. First, we generated matrices
299 of similarity between modules at each pair of frequencies, separately for left and right hemispheres.
300 We generated matrix representations of modules at each frequency with number of rows and columns
301 equal to the number of brain regions, each element being set to 1 or 0 depending respectively on
302 whether the corresponding pair of brain regions were in the same module or not. We measured
303 similarity between modules using partition similarity (Ben-Hur et al. (2002)):

304
$$PS = \frac{\langle l1, l2 \rangle}{\sqrt{\langle l1, l1 \rangle \langle l2, l2 \rangle}}$$

305 where $\langle lm, ln \rangle = \sum_{i,j} C_{i,j}^{(m)} C_{i,j}^{(n)}$, i.e. the dot product between matrix representations of the modules for
306 frequencies m and n . We obtained matrices of partition similarity for each γ value (spatial scale) from
307 0.8 to 5 and combined them via a weighted average, where we specified the weights as the number
308 of frequencies for which modular organization was statistically significant at each γ .

309 We entered these left and right hemispheric matrices of module similarity into a multi-slice
310 community detection procedure, to identify groups of frequencies with similar modules for both
311 hemispheres. This method has two input parameters, $\gamma_{\text{multislice}}$ and ω . $\gamma_{\text{multislice}}$ influences the number
312 of identified groups of frequencies while ω controls the dependence between the identified groups of
313 left and right hemispheres. To select values for these parameters, we first estimated modularity values
314 for each combination of $\gamma_{\text{multislice}} = 1 - 1.5$ (intervals of 0.05) and $\omega = 0.1 - 1$ (intervals of 0.1). Then,
315 we generated a null distribution of modularity values by applying the method to identically randomly
316 resampled (without replacement) left and right hemispheric matrices of module similarity. We z -
317 scored the original modularity values against the null distribution, and converted them to p -values
318 assuming a Gaussian distribution. Finally, we inspected frequency groups for selected combinations
319 of $\gamma_{\text{multislice}}$ and ω with FDR-thresholded $p < 0.05$.

320 **2.5.5 Identifying modules across multiple frequencies or spatial scales**

321 We used a consensus clustering approach (Section 2.5.1) to identify a single set of modules across a
322 group of frequencies. Concretely, we first averaged matrix representations of modules at individual
323 frequencies and applied Louvain method to identify modules in this averaged matrix. Matrix
324 representations have number of rows and columns equal to the number of brain regions, each element
325 in the matrix is 1 or 0 depending respectively on whether the corresponding pair of regions are in the

326 same module or not. We obtained the consensus modules across all investigated frequencies and
327 spatial scales by first generating matrix representations of modules at each individual frequency and
328 spatial scale, for left and right hemispheres separately. Then, we applied multi-slice community
329 detection ($\gamma_{\text{multislice}} = 1.6$, $\omega = 1$) to identify eight bilaterally symmetric modules, which represented
330 sets of regions assigned to the same module across frequencies and spatial scales.

331 **2.6 Inferring whether regions in a module are functionally related.**

332 We combined Neurosynth meta-analyses decoding (Yarkoni et al. (2011)) with comparison to
333 surrogate modules, to assign putative functional roles to each module. We used Neurosynth decoding
334 to find terms related to perception, cognition and behaviour selectively associated to the centroid co-
335 ordinates of each brain region, based on a large database of fMRI studies. Then, we aggregated the
336 terms associated to each region in a module and compared the occurrence frequencies of these terms
337 to those of equally sized surrogate modules, which comprised anatomically proximal regions and
338 were constrained to be bilaterally symmetric. Hence, we determined terms that were common to
339 regions in a module, even after accounting for the anatomical proximity of its regions. We z -scored
340 the occurrence frequency of each term in a module against corresponding frequencies of the surrogate
341 modules. We converted these z -scores to p -values assuming a Gaussian distribution and FDR-
342 thresholded at $p < 0.05$, to reveal those terms selectively associated to each module.

343 We inferred the putative functional role of each module by the set of terms it was selectively
344 associated to. We also performed a post-hoc analysis to verify the functional specificity of each
345 module. To do this, we generated an 8×8 ‘confusion matrix’ of percentages of selectively associated
346 terms of each module distributed across the eight cognitive functions assigned to the modules. High
347 values along the diagonal would reflect high functional specificity, *i.e.* that the terms of each module
348 were largely confined to a single cognitive function. We compared these percentages against the
349 percentages of all terms related to a module, not just those selectively associated to each module. We
350 expected these sets of all terms of each module to be distributed across diverse cognitive functions.

351 **2.7 Assessing robustness of results**

352 We assessed robustness of results, to changes in the SEEG contact-pairs used to generate the
353 connectomes, changes in the algorithm used to identify modules, and the influence of amplitudes of
354 activity from brain regions on estimating modules. First, we identified and compared modules
355 identified from split connectomes at $\gamma = 2$, each of the split connectomes being generated by
356 combining different sets of SEEG contact-pairs. To generate a split connectome, we estimated

357 strength of each connection from a randomly selected sample of half the SEEG contact-pairs used to
358 estimate strength of each estimated connection in the original connectome. We estimated the same
359 connection in the other split connectome with the other half of SEEG contact-pairs used to estimate
360 strength of that connection in the original connectome. Next, we compared the original modules
361 obtained with Louvain community detection at $\gamma = 2$, against modules obtained with Infomap
362 community detection (Rosvall & Bergstrom (2008)). Network density influences the number of
363 modules with Infomap - we set the network density to 10% since this value yielded interpretable
364 modules in previous work (Williams et al. (2019)). Finally, we investigated if identifying modules is
365 confounded by amplitude of oscillations from individual nodes in a network. To do this, we compared
366 modules of 20 subject-level networks of phase synchronization before and after removing amplitude-
367 related differences in functional connection strengths, at $\gamma = 2$. We removed amplitude-related
368 differences by relating the strengths of each functional connection to average amplitude of
369 corresponding node-pairs via linear regression, and recovering the residuals. We compared modules
370 identified before and after removing amplitude-related differences with partition similarity.

371 **3. Results**

372 In this study, we pooled SEEG recordings from a large cohort to estimate connectomes of phase-
373 synchronization at multiple frequencies, and applied Louvain community detection together with
374 consensus clustering to identify modules in these connectomes. We used permutation-based and
375 bootstrap-based tests to determine the range of spatial scales with significant modular organization.
376 Further, we used multi-slice community detection to determine groups of frequencies with highly
377 similar modules. Finally, we extended meta-analysis-based decoding of single brain regions to
378 determine if regions within each module were involved in the same cognitive functions.

379 **3.1 Whole-brain coverage achieved by broad spatial sampling of SEEG contacts**

380 We assessed coverage of SEEG contacts across participants, to determine their sampling of brain
381 regions and inter-regional connections. We quantified sampling of brain regions and inter-regional
382 connections by the percentage of brain regions and region-pairs in Destrieux brain atlas (Destrieux et
383 al. (2010)) containing at least one SEEG contact or contact-pair, respectively. We also estimated
384 number of SEEG contacts in each of the Yeo functional systems (Yeo et al. (2011)). Our cohort
385 sampled with at least one SEEG contact, 97% of brain regions (143 of 148) in the Destrieux brain
386 atlas (Figure 2A). The SEEG contacts were sampled more densely on the right ($N = 45 \pm 38$, mean \pm

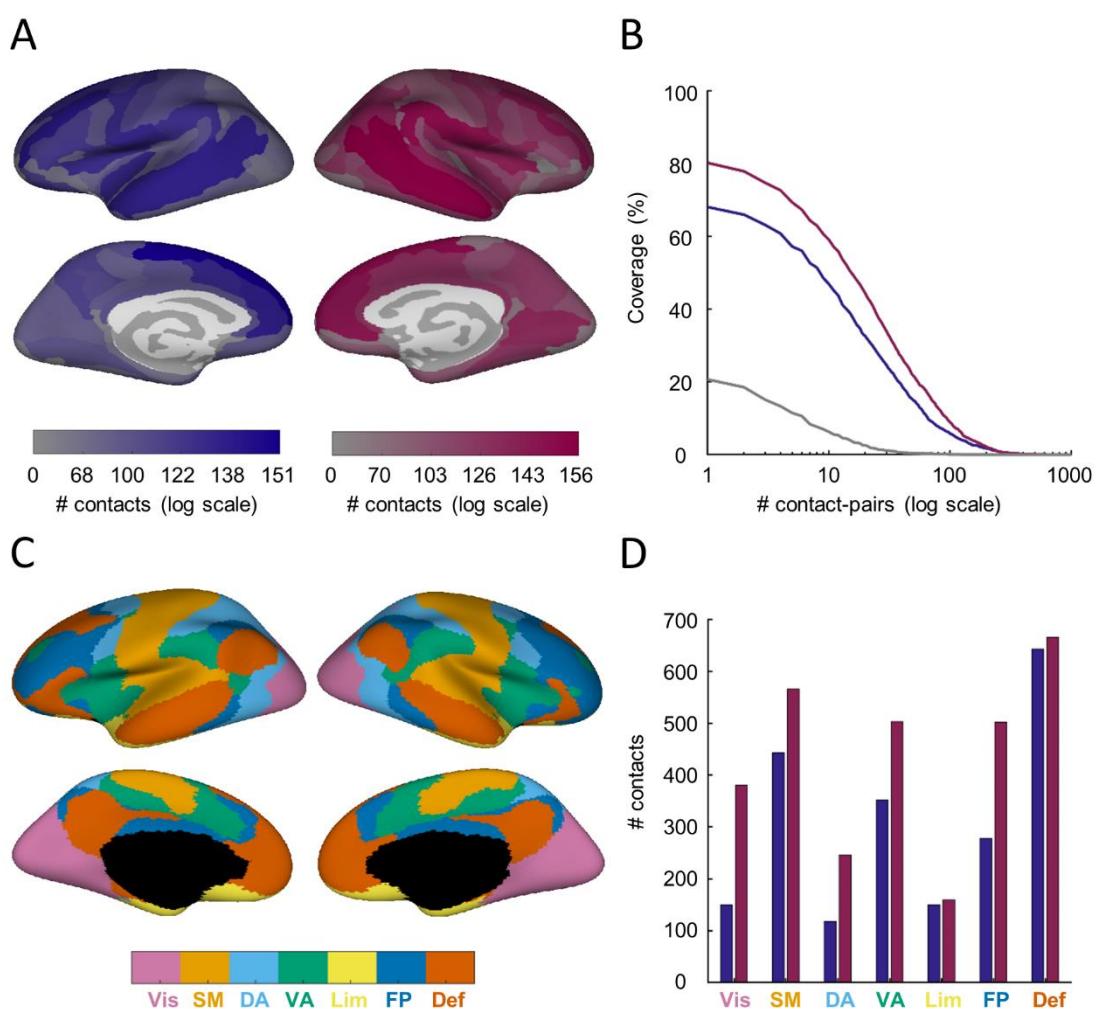


Figure 2. Whole-brain coverage achieved by placement of SEEG contacts. **A.** Number of SEEG contacts in each brain region for left (dark blue) and right (dark red) hemispheres, from lateral (top) and medial (bottom) views. **B.** Coverage of left-hemispheric (dark blue), right-hemispheric (dark red) and inter-hemispheric (gray) connections for a range of minimum number of SEEG contact-pairs. **C.** 7 Yeo systems from lateral (top) and medial (bottom) views. VIS = Visual, SM = Sensori-motor, DA = Dorsal Attention, VA = Ventral Attention, Lim = Limbic, FP = Fronto-parietal and Def = Default Mode. **D.** Number of SEEG contacts in each of 7 Yeo systems, for left (dark blue) and right (dark red) hemispheres.

387 standard deviation, range 0-123, contacts per subject) than the left (32 ± 41 , 0-128, contacts per
388 subject) hemisphere. This yielded a coverage of 68% of left-hemispheric, 80% of right-hemispheric
389 connections and 20% of inter-hemispheric connections (Figure 1B). Further, the SEEG contacts
390 densely sampled each of the 7 Yeo functional systems (Figure 1C, D). Hence, we achieved whole-
391 brain coverage due to the broad sampling of SEEG contacts across participants.

392 **3.2 Connectomes of phase-synchronization possess modules at multiple spatial scales**

393 Statistical significance of the identified modules would suggest that these modules operate as
394 functional systems within the connectome. Hence, we determined the statistical significance of the
395 identified modules and further, if they were statistically significant at a single spatial scale or at
396 multiple spatial scales. Networks with modules at multiple spatial scales have qualitatively different
397 dynamics to networks with modules at a single spatial scale, for *e.g.* having characteristic time scales
398 and temporal evolution of synchronization (Arenas et al. (2006)). We used Louvain community
399 detection with a range of the γ parameter from 0.8 to 5 to identify modules at multiple spatial scales.
400 The numbers of modules varied from 1 to 18 across the range of spatial scales and frequencies (Figure
401 3A). We used bootstrap- and permutation-based methods to assess statistical significance of the
402 identified modules. The permutation method operated on the entire connectome while the bootstrap
403 method operated on individual regions, hence the permutation method is a more conservative test of
404 modular organization. In the bootstrap method, we determined if the percentage of brain regions
405 consistently assigned to the same module across bootstrapped versions ($N = 100$) of the original
406 connectome, was more than would be expected by chance. In the permutation method, we assessed
407 if modularity of the original connectome was higher than modularity of ensembles of randomized
408 versions of the connectome ($N = 100$). Modularity is the extent to which the connectome divides into
409 non-overlapping modules. We observed that across a wide range of spatial scales and frequencies,
410 12.2–100% cortical regions had stable module assignments, yielding statistically significant
411 percentages of stable regions at multiple spatial scales ($p < 0.05$, FDR-corrected, bootstrap test)
412 (Figure 3B). Further, the connectomes had statistically significant modular organization ($p < 0.05$,
413 FDR-corrected, permutation test) at multiple spatial scales throughout the studied frequency range
414 (Figure 3C). Connectomes in beta frequency band (14-20 Hz) exhibited the widest range of spatial
415 scales for which modules were statistically significant. The statistical significance of the modules
416 suggests that they operate as functional systems within the connectome, and their existence at
417 multiple spatial scales influences the nature of dynamics from the connectome, for *e.g.* characterised
418 by a range of temporal scales.

419 For a given frequency, we displayed modules on projections of the cortical surface (Figure 3D). At a
420 representative frequency of 14 Hz, modules comprised superior-frontal, inferior-frontal, temporal,
421 parietal and occipital regions at a coarse spatial scale ($\gamma = 1.8$). The module of temporal regions split
422 into modules of superior and inferior-temporal regions at finer spatial scales ($\gamma = 2.6$) (Figure 3E).

423

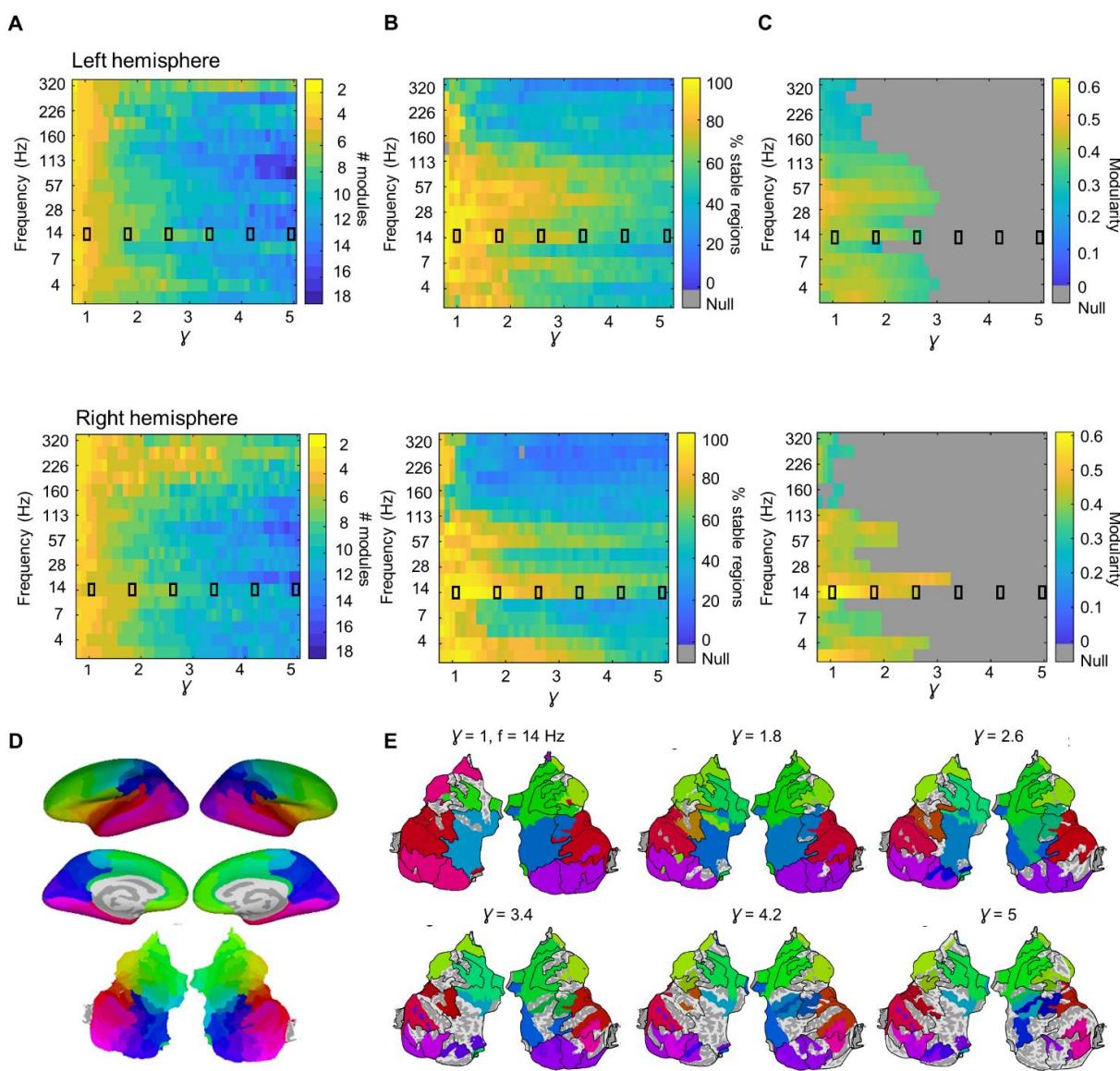


Figure 3. Connectomes of phase-synchronization are modular at multiple spatial scales.

A. Number of identified left and right hemisphere modules, for each combination of spatial scale and frequency. **B.** Percentage of left and right hemisphere regions with stable module assignments, for each combination of spatial scale and frequency. **C.** Modularity measure for left and right hemisphere, for each combination of spatial scale and frequency. Modularity values below statistical significance are gray. **D.** Translation of colours for each brain region from an inflated-brain (top) to a flat-brain representation (bottom). Colour of each region is a function of distance and angle from the centre of the flat-brain, such that neighbouring regions are coloured similarly. **E.** Colour-coded modules for right hemisphere at 14 Hz on flat-brain representation, at six spatial scales ($\gamma = 1$ to 5). Module colours reflect anatomical location of their constituent regions, since they are obtained from the mean angles and distances from centre of these regions. Regions with unstable module assignments are gray.

425 **3.3 Modules in connectomes of phase synchronization group into neurophysiologically**
426 **meaningful frequency bands**

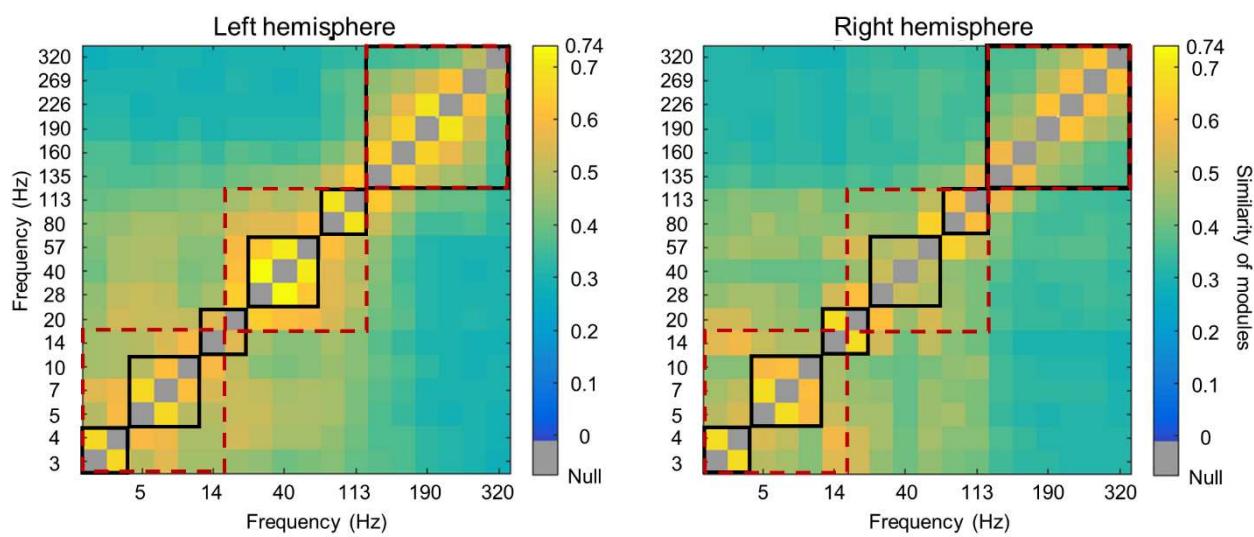


Figure 4. Modules in connectomes of phase-synchronization group into neurophysiologically meaningful frequency bands. Matrices of similarity between modules in connectomes of phase-synchronization for every pair of frequencies, for left and right hemispheres. Statistically significant grouping for both hemispheres into three frequency bands (dashed red outline), *i.e.* 3-14 Hz, 20-113 Hz and 135-320 Hz and six frequency bands (black outline), *i.e.* 3-4 Hz, 5-10 Hz, 14-20 Hz, 28-57 Hz, 80-113 Hz and 135-320 Hz, are shown.

427 We determined if the identified modules group into statistically distinct sets of frequencies. To do
428 this, we generated matrices of similarity between modules for every pair of frequencies, and applied
429 multi-slice community detection (Mucha et al. (2010)) to identify bilaterally symmetric frequency
430 bands within which modules were highly similar (Figure 4). We found multiple statistically
431 significant ($p < 0.05$, FDR-corrected, permutation test, $N = 100$) groupings of between two and
432 thirteen frequency bands. For further analysis, we used the groupings into three frequency bands and
433 six frequency bands, though we note that other equally valid groupings could be used. The statistically
434 significant grouping into three frequency bands ($\gamma = 1.1$, $\omega = 0.2 - 1$) comprised sets of adjacent
435 frequencies, 3–14 Hz, 20–113 Hz and 135–320 Hz (Figure 4, dashed red line boxes). Similarly, the
436 statistically significant grouping into six frequency bands ($\gamma = 1.25$, $\omega = 0.2 - 1$) comprised sets of
437 adjacent frequencies, 3–4 Hz, 5–10 Hz, 14–20 Hz, 28–57 Hz, 80–113 Hz and 135–320 Hz (Figure 4,
438 solid black line boxes). Notably, the grouping into six sets of frequencies yielded frequency bands
439 that are close to neurophysiologically meaningful frequency bands observed in prior literature, *i.e.*
440 delta (3-4 Hz), theta/alpha (5-10 Hz), beta (14-20 Hz), low gamma (28-57 Hz), high gamma (80-113

441 Hz) and high-frequency oscillations (135–320 Hz) respectively (Lopes da Silva (2011), Arnulfo et al.
442 (2020)). Thus, the identified modules group into statistically distinct sets of adjacent frequencies,
443 which map to neurophysiologically meaningful frequency bands.

444 **3.4 Modules in connectomes of phase synchronization comprise anatomically contiguous**
445 **regions**

446 Module-like structures identified in resting-state fMRI, such as the default mode, fronto-parietal,
447 ventral- and dorsal-attention systems include anatomically non-contiguous regions (van den Heuvel
448 & Pol (2010)). We investigated if modules in connectomes of phase-synchronization similarly
449 comprised anatomically non-contiguous regions for the statistically significant grouping into three
450 and six frequency bands, at different spatial scales (Figure 5). For the grouping into three frequency
451 bands (3–14 Hz, 20–113 Hz and 135–320 Hz), we in fact found the modules comprised only
452 anatomically contiguous regions for the 3–14 Hz and 20–113 Hz frequency bands, where the modules
453 respectively comprised frontal, temporal and parietal regions at a coarse spatial scale ($\gamma = 1$). At finer
454 spatial scales ($\gamma = 2, 3$), the module of temporal regions split into separate modules of superior-
455 temporal and inferior-temporal regions. The module of frontal regions also split into separate modules
456 of superior-frontal and inferior-frontal regions. Similarly, modules of the six frequency bands (3–4
457 Hz, 5–10 Hz, 14–20 Hz, 28–57 Hz, 80–113 Hz and 135–320 Hz) comprised anatomically contiguous
458 regions up to 113 Hz (Figures S1-2). However, in contrast to modules for the 3–14 Hz and 20–113
459 Hz frequency bands, and corresponding bands in the grouping into six frequency bands, the modules
460 in the 135–320 Hz frequency band included anatomically non-contiguous regions (Figure 5) (Arnulfo
461 et al. (2020)). Hence, unlike with resting-state fMRI, modules in connectomes of phase-
462 synchronization up to high-gamma frequencies comprised anatomically contiguous regions.

463 Please find module assignments for left and right hemispheres, at a number of spatial scales ($\gamma = 1,$
464 $2, 3, 4$), in our shared open dataset (Williams et al. (2021)).

465

466

467

468

469

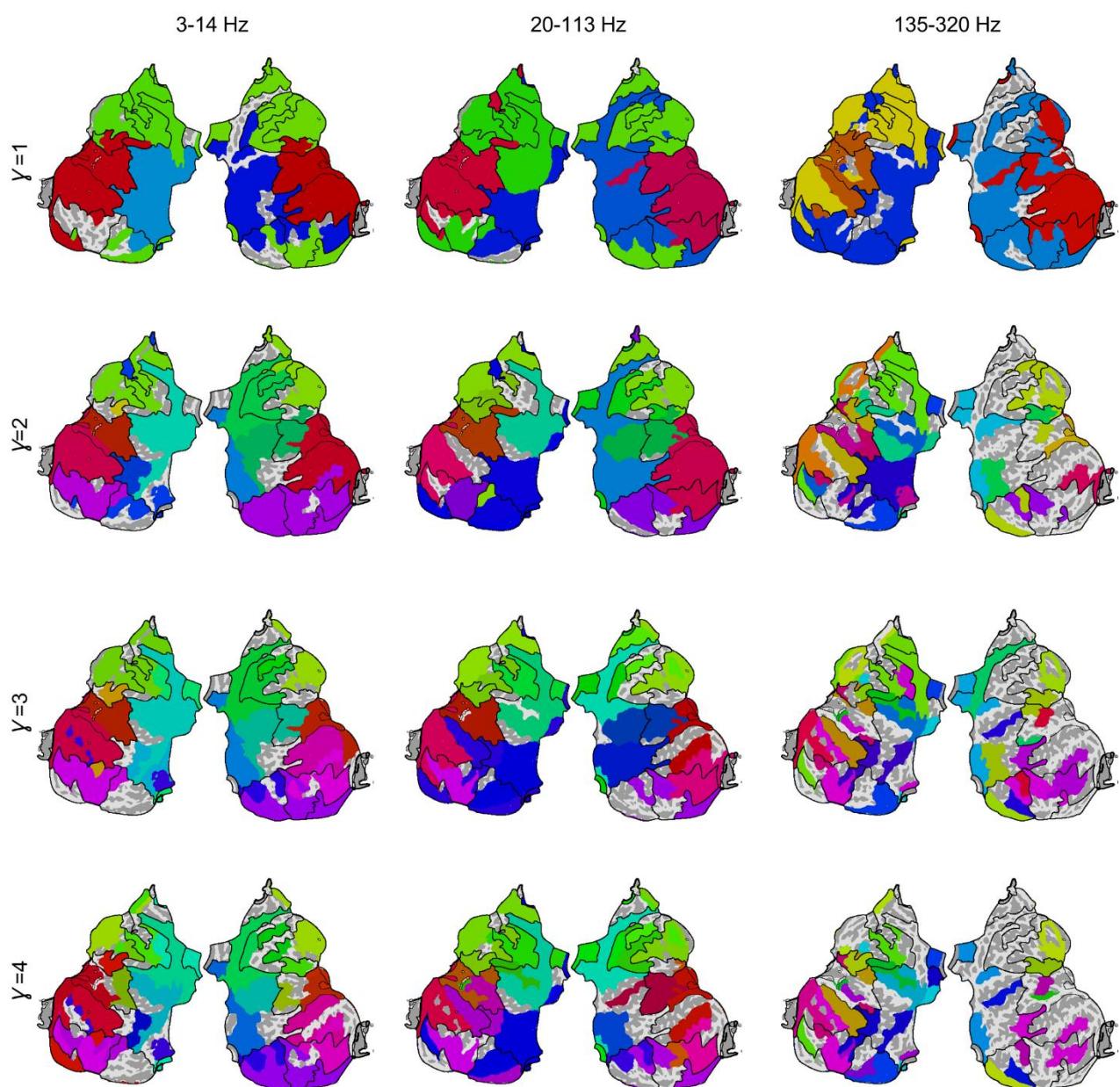


Figure 5. Modules in connectomes of phase-synchronization up to high-gamma frequencies comprise anatomically contiguous regions. Flat-brain representations of modules in connectomes of phase-synchronization for 3-14 Hz, 20-113 Hz and 135-320 Hz, at four spatial scales ($\gamma = 1$ to 4). Black lines on each flat-brain show outlines of consensus modules, *i.e.* sets of regions assigned to the same module across frequencies and spatial scales.

470

471

472 **3.5 Modules in connectomes of phase synchronization comprise functionally related**
473 **regions**

474 Module-like structures identified in fMRI comprise regions that are concurrently active in tasks
475 relating to specific sensory, motor, or cognitive domains, such as visual, sensorimotor, attentional,
476 and executive control processing (Smith et al. (2009), Power et al. (2011)). Hence, we investigated if
477 modules in connectomes of phase-synchronization also comprised regions that are concurrently
478 active in tasks relating to specific cognitive domains. For this purpose, we used eight consensus
479 modules that represented sets of regions assigned to the same module across frequencies and spatial
480 scales. In the absence of *a-priori* knowledge on number of consensus modules, we set the number as
481 eight to fall within the range of seven to ten reported for their putative fMRI counterparts (Beckmann
482 et al. (2005), Damoiseaux et al. (2006), Yeo et al. (2011), Power et al. (2011)). The eight consensus
483 modules comprised anatomically contiguous regions and included regions in the superior-frontal
484 (bright green), inferior-frontal (pale green), insula (olive), superior-temporal (brown), inferior-
485 temporal (dark pink), parietal (light blue), lateral-occipital (dark purple), and medial-occipital (light
486 purple) cortical areas (Figure 6A). Module colours reflect anatomical location of their constituent
487 regions. The consensus modules predominantly resembled modules at the lower frequencies (14-40
488 Hz) and intermediate spatial scales ($\gamma = 1.5-2.5$) (Figure S3).

489 We first used the Neurosynth meta-analyses-based decoding tool (Yarkoni et al. (2011)) to find terms
490 related to perception, cognition and behaviour, selectively associated with each brain region in the
491 Destrieux brain atlas, where we identified each region by its centroid coordinates. These terms were
492 both sensitively and specifically associated to fMRI activation in the corresponding brain regions,
493 according to a large database of fMRI studies. We then identified terms selectively associated with
494 each module by finding terms that occurred more frequently ($p < 0.05$, FDR-corrected, permutation
495 test, $N = 74$) across the regions in a module, compared to equally sized surrogate modules of
496 anatomically contiguous regions. This effectively tested the hypotheses that regions comprising a
497 module serve shared functional roles, even after accounting for their anatomical proximity.

498 The terms for the superior-frontal module related to attention and executive function while the terms
499 for the inferior-frontal module related to affective processing and social cognition (Figure 6A). The
500 terms for the parietal module related to sensori-motor, sensory and motor processing. In addition, the
501 terms for the modules in the occipital lobe, the medial-occipital and lateral-occipital modules, related
502 to visual processing and the terms for the superior-temporal module related to language and auditory
503 processing. Finally, the terms for the inferior-temporal module related to memory function and the

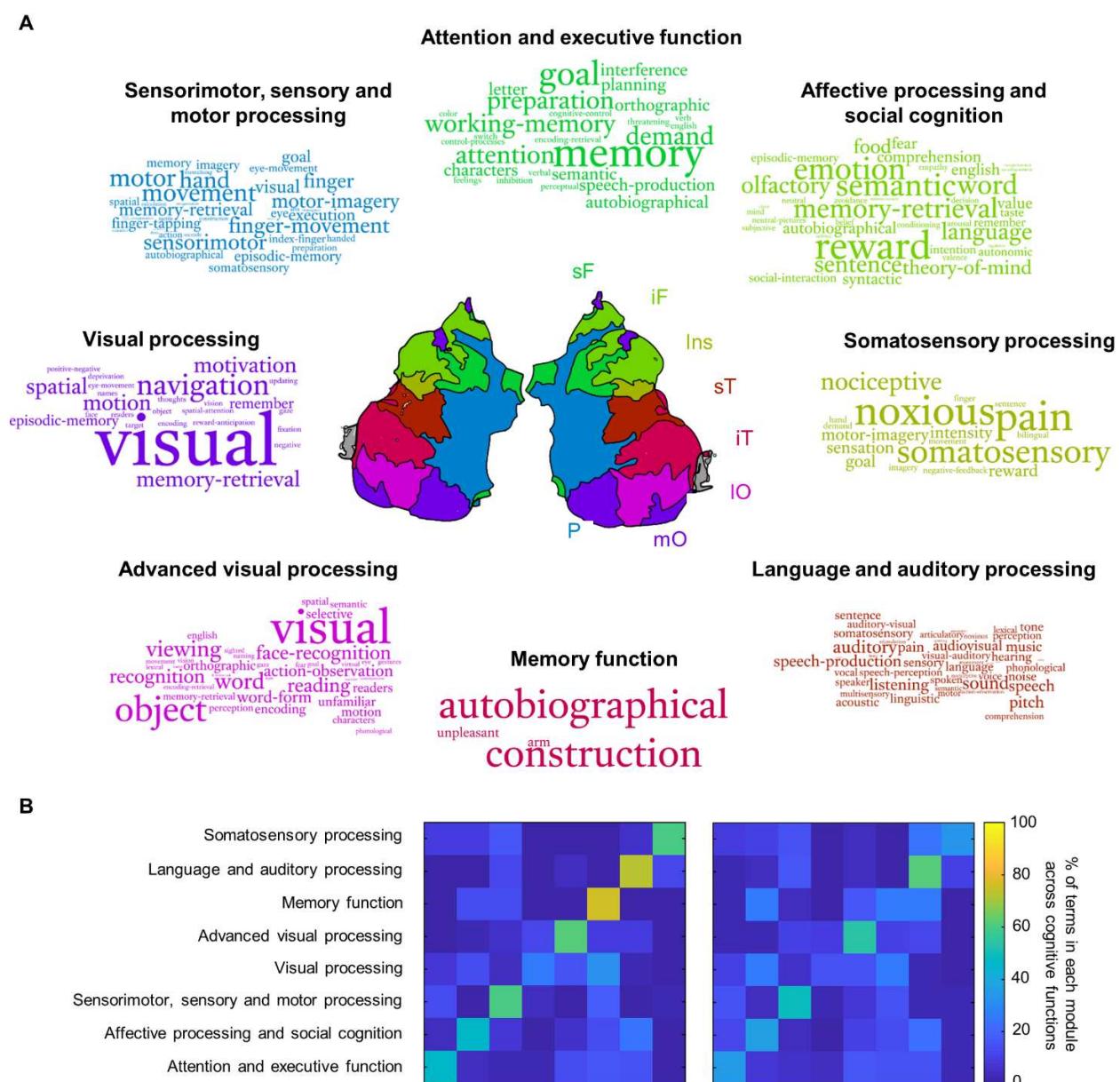


Figure 6. Modules in connectomes of phase-synchronization comprise functionally related regions. A. Terms and putative functional roles specific to each of the eight consensus modules displayed in centre. Sizes of words are proportional to their frequency of occurrence. sF=superior Frontal, iF=inferior Frontal, Ins=Insula, sT=superior Temporal, iT=inferior Temporal, IO=lateral Occipital, mO=medial Occipital, P=Parietal. **B.** Percentages of terms specific to each module (row) assigned to each of eight cognitive functions (left) and percentages of all terms related to each module (row) assigned to the same cognitive functions (right).

504 terms for the insula module related to somatosensory processing. The results suggest that, similarly
 505 to modules in resting-state fMRI, the modules in connectomes of phase-synchronization comprised
 506 regions with shared functional roles in task-related processing. The putative functional roles of these
 507 modules, inferred from their sets of terms, were in good agreement with overarching functions of
 508 their constituent regions (Gazzaniga et al. (2009)).

509 Please find the set of terms selectively associated to each of the consensus modules, in our shared
510 open dataset (Williams et al. (2021)).

511 We sought further verification of the functional specificity of modules, *i.e.* that they are specialised
512 to support particular cognitive functions rather than support diverse cognitive functions. To verify
513 this, we determined the percentage of selectively associated terms for each module that could be
514 categorised under every module's assigned functional role. We compared this against the percentage
515 of all terms for each module, *i.e.* before FDR-thresholding, that could be categorised under every
516 module's assigned cognitive function. Functional specificity of modules would be reflected by high
517 percentages of selectively associated terms for each module being assigned to their assigned cognitive
518 function, but the set of all terms for each modules being distributed across diverse cognitive functions.
519 As expected, we found high percentages of selectively associated terms for each module were
520 categorised within the cognitive function assigned to them (Figure 6B, left), but the set of all terms
521 for each module were distributed across diverse cognitive functions (Figure 6B, right). These results
522 further verify the functional specificity of the identified modules.

523 **3.6 Robustness of results**

524 We evaluated the robustness of the identified modules to the specific SEEG electrode-contact pairs
525 used to generate the connectomes. To do this, we generated two split connectomes from the original
526 connectome and compared the modules identified from each. Modules identified from the split
527 connectomes were highly similar to each other (Figure S4). Hence, the identified modules were robust
528 to the particular SEEG contact-pairs used to generate the connectomes.

529 We further evaluated the robustness of the identified modules to the particular algorithm used for
530 community detection. To do this, we identified modules with Infomap community detection (Rosvall
531 & Bergstrom (2008)) and compared these to the modules we had identified with Louvain community
532 detection. Modules identified by both these methods were highly similar up to high-gamma (113 Hz)
533 (Figure S5). Hence, the identified modules were robust to the particular algorithm used up to high-
534 gamma frequencies but were algorithm-specific for high-frequency oscillations (135–320 Hz).

535 Finally, we investigated if identifying the modules is confounded by the amplitudes of oscillations of
536 individual nodes of the network. We compared modules identified from 20 subject-level networks of
537 phase synchronization, across frequencies, before and after removing amplitude-related differences
538 in strengths of functional connections. The identified modules were highly similar before and after

539 correcting for amplitude-related differences, across all subjects and frequencies (Figure S6). Hence,
540 the identified modules are not confounded by oscillation amplitudes of individual network nodes.

541 **4. Discussion**

542 Modules in the fMRI connectome comprise distinct sets of connected regions for sensory, motor and
543 cognitive processing (Valencia et al. (2009), Benjaminsson et al. (2010), Yeo et al. (2011), Power et
544 al. (2011), Lee et al. (2012)). In this study, we investigated whether connectomes of phase-
545 synchronization between fast neuronal oscillations possess modular organization akin to that
546 observed in fMRI connectomes. We used intracerebral SEEG data from 67 subjects to generate
547 connectomes of phase-synchronization between meso-scale cortical oscillations, negligibly affected
548 by volume conduction. We found that connectomes of phase-synchronization possessed modular
549 organization at multiple spatial scales, at all studied frequencies. The modules were anatomically
550 similar within neurophysiologically meaningful frequency bands, *i.e.* delta (3-4 Hz), theta/alpha (5-
551 10 Hz), beta (14-20 Hz), gamma (28-57 Hz), high-gamma (80-113 Hz) and high frequency oscillation
552 (135-320 Hz) bands. In contrast to the modules identified in fMRI, we found that modules up to high-
553 gamma frequency band (80-113 Hz) comprised only anatomically contiguous regions. Importantly,
554 modules comprised brain regions with significantly shared functional roles in *e.g.* attentional and
555 executive function, language and memory.

556 **SEEG recordings can be used to identify modules in connectomes of phase-synchronization**

557 Despite the millimeter scale anatomical specificity and high signal-to-noise ratio (SNR) offered by
558 intra-cranial EEG methods like Electrocorticography and SEEG (Parvizi & Kastner (2018)), their
559 sparse spatial coverage and artefacts due to epileptogenic activity have militated against their use to
560 identify modules in connectomes of phase-synchronization. Our results demonstrate the viability of
561 combining SEEG recordings with state-of-the-art methods to identify modules in connectomes of
562 phase-synchronization. We counteracted sparse SEEG coverage by pooling data from 67 subjects and
563 addressed epileptogenic artefacts by removing SEEG contacts and data segments potentially
564 containing epileptic artefactual activity. Further, we used automated procedures to overcome the
565 problem of assigning SEEG contacts to brain regions and used closest-white-matter referencing to
566 minimise volume conduction, to accurately estimate connectomes of phase-synchronization. Finally,
567 we combined consensus clustering with community detection to identify modules in the connectomes,
568 despite the presence of missing connections. A recent MEG study (Zhigalov et al. (2017)) used a
569 similar procedure with a smaller cohort ($N = 27$) to estimate the connectome of phase-
570 synchronization, but did not identify modules in these due to the high proportion of missing

571 connections. A recent Electrocorticography (ECoG) study (Kucyi et al. (2018)) measured amplitude
572 correlations between a number of brain regions, but lacked the spatial coverage to estimate the
573 connectome or modules in the connectome. Hence, our study is the first to our knowledge to harness
574 the high SNR and fine anatomical specificity of intra-cranial EEG to study the modular organization
575 of the connectome of phase-synchronization.

576 **SEEG reveals novel modules in connectomes of phase-synchronization**

577 Some of the distinct modules we identified with SEEG have not previously been observed with non-
578 invasive methods. We identified modules comprising superior frontal regions, inferior frontal
579 regions, superior temporal regions, inferior temporal regions, parietal regions, insula, lateral occipital
580 regions and medial occipital regions. A recent MEG study (Zhigalov et al. (2017)) also reported the
581 presence of modules in occipital, parietal and frontal regions. Another recent MEG study (Vidaurre
582 et al. (2018)) used Hidden-Markov modelling to identify spatially localised “functional states”,
583 including those comprising occipital, parietal and frontal regions. The “functional states”, were short-
584 lived patterns of inter-regional coherence and hence, constituted module-like structures. However,
585 the modules we identified in superior frontal, inferior frontal, superior temporal, inferior temporal
586 and insula regions are novel to this study. These novel modules might be observed due to the
587 sensitivity of interaction measures, *e.g.* Phase Locking Value, to near-zero-lag phase-synchronization
588 when used with SEEG. MEG field spread or EEG volume conduction produce high amounts of
589 spurious phase-synchronization when these measures are applied to MEG or EEG data.

590 Similar to the modules we identified with SEEG, modules comprising occipital regions, parietal
591 regions and temporal regions have been identified in resting-state fMRI (Benjaminsson et al. (2010),
592 Yeo et al. (2011), Power et al. (2011)). However, we also identified novel modules comprising
593 regions in the superior frontal, inferior frontal and insula regions. Further, we identified separate
594 modules of superior temporal and inferior temporal regions compared to a single module of temporal
595 regions reported in fMRI, and separate modules of medial occipital and lateral occipital regions
596 compared to a single module of occipital regions reported in fMRI. Each of these modules comprised
597 anatomically contiguous regions in contrast to, for *e.g.*, attentional or default-mode brain systems
598 identified with fMRI, which include regions distributed across frontal, parietal, and temporal lobes
599 (Benjaminsson et al. (2010), Yeo et al. (2011), Power et al. (2011)). Hence, SEEG furnishes novel
600 modules or sets of regions functionally interacting during resting-state.

601

602 **Modules at multiple spatial scales consistent with hierarchical organization**

603 Our study is the first to report modular organization at multiple spatial scales in connectomes of
604 phase-synchronization. The module of frontal regions identified at a coarse spatial scale splits into
605 modules of superior frontal regions and inferior frontal regions at a finer spatial scale. Similarly, the
606 module of temporal regions identified at a coarse spatial scale splits into modules of superior temporal
607 regions and inferior temporal regions at a finer spatial scale. This recursive occurrence of sub-
608 modules within modules is consistent with hierarchical modular organization, and has been observed
609 in resting-state fMRI (Meunier et al. (2009)) but not with electrophysiological methods. However, a
610 stricter assessment of hierarchical modular organization requires simultaneously identifying modules
611 at multiple spatial scales. Separately identifying modules at multiple spatial scales, as in the current
612 study, make it difficult to rigorously assess hierarchical modular organization due to the very high
613 number of possible permutations when matching modules across spatial scales.

614 **Functional specificity of identified modules suggests their behavioural relevance**

615 We used information from an independent database of fMRI studies to infer the functional role of
616 each module. Regions in different modules had shared involvement in cognitive functions of attention
617 and executive function, affective processing and social cognition, somatosensory processing,
618 language and auditory processing, memory function, visual processing, advanced visual processing
619 and sensori-motor processing respectively. The demonstrated functional specificity of these modules
620 suggests that they operate as distinct brain systems. In line with proposed frameworks on brain
621 function (Tononi et al. (1994), Tononi et al. (1998), Balduzzi & Tononi (2008), Lord et al. (2017),
622 Shine et al. (2018)) strong connections within modules might support segregated information
623 processing (Chan et al. (2014)), while weak connections between modules might support integrated
624 information processing (Deco et al. (2015), Westphal et al. (2017)).

625 We speculate that the identified modules impose a functional architecture of the connectome during
626 resting-state, which is reorganized to meet task-related demands for segregation and integration.
627 Recent frameworks propose that cognitive function is implemented by integration between modules
628 present in the baseline period (Wig (2017)). Some fMRI studies have found evidence to support
629 this, in the form of associations between cognitive performance and task-related functional
630 reorganization of the brain to facilitate interaction between modules operating at baseline (Spadone
631 et al. (2015), Shine et al. (2016), Cohen & D'Esposito (2016)). While many MEG/EEG studies
632 have found task-related phase synchronization in for e.g. studies of attention (Lobier et al. (2018)),
633 somatosensory processing (Hirvonen et al. (2018)) and working memory (Kitzbichler et al. (2011)),

634 there are no studies investigating task-related phase synchronization as reorganization of the
635 functional architecture imposed by modules during resting-state. Future studies could describe task-
636 related phase-synchronization with reference to the natural framework provided by the identified
637 modules in connectomes of phase-synchronization during resting-state.

638 **5. Conclusion**

639 In this study, we combined resting-state SEEG recordings with state-of-the-art methods to
640 accurately identify modules in connectomes of phase-synchronization. We found the modules to
641 predominantly comprise anatomically contiguous regions, unlike modules identified in resting-state
642 fMRI. Importantly, each of the modules comprised regions with shared involvement in specific
643 cognitive functions. Hence, these modules might represent distinct brain systems with particular
644 roles in perceptual, cognitive and motor processing.

645 **Acknowledgments**

646 The authors gratefully acknowledge the support of Human Brain Project (604102), Sigrid Juselius
647 Foundation and Academy of Finland (J.M.P. project numbers: 253130, 256472, 281414, 296304,
648 266745. S.P. project numbers: 266402, 266745, 303933, 325404) to complete this project. Further,
649 the authors are grateful to Jonni Hirvonen and Santeri Rouhinen, for help with data processing, and
650 to Dr. Francesco Cardinale and Annalisa Rubino for facilitating the SEEG recordings.

651 **References**

- 652 1. Arenas A., Díaz-Guilera A., Pérez-Vicente C. (2006) Synchronization reveals topological scales
653 in complex networks. *Phys Rev Lett*, 96(11), 114102
- 654 2. Arnulfo G., Hirvonen J., Nobili L., Palva S., Palva M. (2015a) Phase and amplitude correlations
655 in resting-state activity in human stereotactical EEG recordings. *NeuroImage*, 112:114-127
- 656 3. Arnulfo G., Narizzano M., Cardinale F., Fato M., Palva M. (2015b) Automatic segmentation of
657 deep intracerebral electrodes in computed tomography scans. *BMC Bioinform*, 16(1):1-12
- 658 4. Arnulfo G., Wang S., Myrov V., Toselli B., Hirvonen J., Fato M., Nobili L., Cardinale F.,
659 Rubino A., Zhigalov A., Palva S., Palva M. (2020) Long-range phase synchronization of high-
660 frequency oscillations in human cortex. *Nat Commun*, 11:5363
- 661 5. Balduzzi D., Tononi G. (2008) Integrated Information in Discrete Dynamical Systems:
662 Motivation and Theoretical Framework. *PLoS Comput Biol* 4(6): e1000091

663 6. Bastos A., Vezoli J., Bosman C., Schoffelen J., Oostenveld R., Dowdall J., De Weerd P.,
664 Kennedy H., Fries P. (2015) Visual areas exert feedforward and feedback influences through
665 distinct frequency channels. *Neuron*, 85(2):390-401

666 7. Beckmann C., DeLuca M., Devlin J., Smith S. (2005) Investigations into resting-state
667 connectivity using independent component analysis. *Philos Trans R Soc Lond B Biol Sci*,
668 360(1457): 1001-1013

669 8. Ben-Hur A., Elisseeff A., Guyon I. (2002) A stability based method for discovering structure in
670 the clustered data. *Pac Symp Biocomput*, 6-17

671 9. Benjamini Y., Hochberg Y. (1995) Controlling the false discovery rate: a practical and powerful
672 approach to multiple testing. *J R Statist Soc B*, 57(1):289-300

673 10. Benjaminsson S., Fransson P., Lansner A. (2010) A novel model-free data analysis technique
674 based on clustering in a mutual information space: application to resting-state fMRI. *Front Syst
675 Neurosci*, 4:34

676 11. Blondel V., Guillame J-L, Lambiotte R., Lefebvre E. (2008) Fast unfolding of communities in
677 large networks. *J Stat Mech*, P10008

678 12. Brookes M., Woolrich M., Barnes G. (2012) Measuring functional connectivity in MEG: a
679 multivariate approach insensitive to linear source leakage. *NeuroImage*, 63(2):910-920

680 13. Brookes M., Woolrich M., Luckhoo H., Price D., Hale J., Stephenson M., Barnes G., Smith S.,
681 Morris P. (2011) Investigating the electrophysiological basis of resting state networks using
682 magnetoencephalography. *Proc Natl Acad Sci USA*, 108(40):16783-16788

683 14. Cohen J., D'Esposito M. (2016) The segregation and integration of distinct brain networks and
684 their relationship to cognition. *J Neurosci*, 36(48):12083-12094

685 15. da Silva F. (2011) EEG and MEG: Relevance to Neuroscience. *Neuron*, 80(5):1112-1128

686 16. Damoiseaux J., Rombouts S., Barkhof F., Scheltens P., Stam C., Smith S., Beckmann C. (2006)
687 Consistent resting-state networks across healthy subjects. *Proc Natl Acad Sci USA*,
688 103(37):13848-13853

689 17. Deco G., Tononi G., Boly M., Kringelbach M. (2015) Rethinking segregation and integration:
690 contributions of whole-brain modelling. *Nat Rev Neurosci*, 16(7): 430-439

691 18. Destrieux C., Fischl B., Dale A., Halgren E. (2010) Automatic parcellation of human cortical
692 gyri and sulci using standard anatomical nomenclature. *NeuroImage*, 53(1):1-15

693 19. Doucet G., Naveau M., Petit L., Delcroix N., Zago L., Crivello F., Jobard G., Tzourio-Mazoyer
694 N., Mazoyer B., Mellet E., Joliot M. (2011) Brain activity at rest: a multiscale hierarchical
695 functional organization. *J Neurophysiol*, 105(6):2753-2763

696 20. Engel A., Gerloff C., Hilgetag C., Nolte G. (2013) Intrinsic coupling modes: multiscale
697 interactions in ongoing brain activity. *Neuron*, 80(4):867-886

698 21. Fell J., Axmacher N. (2011) The role of phase synchronization in memory processes. *Nat Rev
699 Neurosci*, 12 (2): 105-118

700 22. Fries P. (2015) Rhythms for cognition: communication through coherence. *Neuron*, 88(1):220-
701 235

702 23. Gazzaniga, M., Ivry, R. and Mangun, G. (2009) Cognitive Neuroscience: The Biology of the
703 Mind. Norton Press, London

704 24. Hirvonen J, Monto S, Wang S, Palva M, Palva S (2018) Dynamic large-scale network
705 synchronization from perception to action. *Netw Neurosci*, 2(4):442-463

706 25. Kitzbichler M., Henson R., Smith M., Nathan P., Bullmore E. (2011) Cognitive effort drives
707 workspace configuration of human brain functional networks. *J Neurosci*, 31(22):8259-8270

708 26. Kucyi A., Schrouff J., Bickel S., Foster B., Shine J., Parvizi J. (2018) Intracranial
709 electrophysiology reveals reproducible intrinsic functional connectivity with human brain
710 networks. *J Neurosci*, 38(17): 4230-4242

711 27. Lachaux J-P., Rodriguez E., Martinerie J., Varela F. (1999) Measuring phase synchrony in brain
712 signals. *Hum Brain Mapp*, 8:194-208

713 28. Lancichinetti A., Fortunato S. (2012) Consensus clustering in complex networks. *Sci Rep*,
714 2(1):1-7

715 29. Lee M., Hacker C., Snyder A., Corbetta M., Zhang D., Leuthardt E. (2012) Clustering of resting
716 state networks. *PLoS ONE*, 7(7): e40370

717 30. Lobier M, Palva M, Palva S (2018) High-alpha band synchronization across frontal, parietal and
718 visual cortex mediates behavioural and neuronal effects of visuospatial attention. *NeuroImage*,
719 165:222-237

720 31. Lord L., Stevner A., Deco G., Kringelbach M. (2017) Understanding principles of integration
721 and segregation using whole-brain computational connectomics: implications for
722 neuropsychiatric disorders. *Phil Trans R Soc A* 375: 20160283

723 32. Meunier D., Lambiotte R., Fornito A., Ersche K., Bullmore E. (2009) Hierarchical modularity
724 in human brain functional networks. *Front Neuroinformatics*, 3:37

725 33. Mucha P., Richardson T., Macon K., Porter M., Onnela J-P. (2010) Community structure in
726 time-dependent, multiscale and multiplex networks. *Science*, 328(5980):876-878

727 34. Narizzano M., Arnulfo G., Ricci S., Toselli B., Tisdall M., Canessa A., Cardinale F. (2017)
728 SEEG assistant: a 3DSlicer extension to support epilepsy surgery. *BMC Bioinform*, 18:124

729 35. Palva M., Palva S., Kaila K. (2005) Phase synchrony among neuronal oscillations in the human
730 cortex. *J Neurosci*, 25(15): 3962-3972

731 36. Palva M., Wang S., Palva S., Zhigalov A., Monto S., Brookes M., Schoffelen J., Jerbi K. (2018)
732 Ghost interactions in MEG/EEG source space: A note of caution on inter-areal coupling
733 measures. *NeuroImage*, 173:632-643

734 37. Palva S., Palva M. (2012) Discovering oscillatory interaction networks with M/EEG: challenges
735 and breakthroughs. *Trends Cogn Sci*, 16(4): 219-230

736 38. Parvizi J., Kastner S. (2018) Promises and limitations of human intracranial
737 electroencephalography. *Nat Neurosci*, 21(4):474-483

738 39. Power J., Cohen A., Nelson S., Wig G., Barnes K., Church J., Vogel A., Laumann T., Miezin
739 F., Schlaggar B., Petersen S. (2011) Functional network organization of the human
740 brain. *Neuron*, 72(4): 665-678

741 40. Reichardt J., Bornholdt S. (2006) Statistical mechanics of community detection. *Phys Rev E*,
742 74(1),016110

743 41. Ronhovde P., Nussinov Z. (2009) Multiresolution community detection for megascale networks
744 by information-based replica correlations. *Phys Rev E*, 80(1), 016109

745 42. Rosvall M., Bergstrom C. (2008) Maps of random walks on complex networks reveal
746 community structure. *Proc Natl Acad Sci USA*, 105(4):1118-1123

747 43. Rubinov M., Sporns (2010) Complex network measures of brain connectivity: Uses and
748 interpretations. *NeuroImage*, 52(3):1059-1069

749 44. Schroeder C., Lakatos P. (2009) Low-frequency neuronal oscillations as instruments of sensory
750 selection. *Trends Neurosci*. 32(1):9-18

751 45. Shine J., Aburn M., Breakspear M., Poldrack R. (2018) The modulation of neural gain
752 facilitates a transition between functional segregation and integration in the brain. *eLife*,
753 7:e31130

754 46. Shine J., Bissett P., Bell P., Koyejo O., Balsters J., Gorgolewski K., Moodie C., Poldrack R.
755 (2016) The dynamics of functional brain networks: integrated network states during cognitive
756 task performance. *Neuron*, 92:544-554

757 47. Smith S., Fox P., Miller K., Glahn D., Fox M., Mackay C., Filippini N., Watkins K., Toro R.,
758 Laird A., Beckmann C. (2009) Correspondence of the brain's functional architecture during
759 activation and rest. *Proc Natl Acad Sci USA*, 106(31):13040-13045

760 48. Spadone S., Penna S., Sestieri C., Betti V., Tosoni A., Perrucci M., Romani G., Corbetta M.
761 (2015) Dynamic reorganization of human resting-state networks during visuospatial attention.
762 *Proc Natl Acad Sci USA*, 112(26): 8112-8117

763 49. Sun Y., Danila B., Josić K, Bassler K (2009) Improved community structure detection using a
764 modified fine-tuning strategy. *EPL Europhys Lett*, 86(2), 28004

765 50. Tononi G., Edelman G., Sporns O. (1998) Complexity and coherency: integrating information
766 in the brain. *Trends Cogn Sci*, 2(12): 474-484

767 51. Tononi G., Sporns O., Edelman G. (1994) A measure for brain complexity: relating functional
768 segregation and integration in the nervous system. *Proc Natl Acad Sci USA*, 91(11):5033-5037

769 52. Uhlhaas P., Roux F., Rodriguez E., Rotarska-Jagiela A., Singer W. (2010) Neural synchrony
770 and the development of cortical networks. *Trends Cogn Sci*, 14(2):72-80

771 53. Valencia M., Pastor M., Fernández-Seara M., Artieda J., Martinerie J., Chavez M. (2009)
772 Complex modular structure of large-scale brain networks. *Chaos*, 19(2):023119

773 54. van den Heuvel M., Pol H. (2010) Exploring the brain network: a review on resting-state fMRI
774 functional connectivity. *Eur Neuropsychopharmacol*. 20(8):519-534

775 55. Vanhatalo S., Palva M., Holmes M., Miller J., Voipio J., Kaila K. (2004) Infraslow oscillations
776 modulate excitability and interictal epileptic activity in the human cortex during sleep. *Proc
777 Natl Acad Sci USA*, 101(14):5053-5057

778 56. Varela F., Lachaux J., Rodriguez E., Martinerie J. (2001) The brainweb: phase-synchronization
779 and large-scale integration. *Nat Rev Neurosci*, 2(4):229-239

780 57. Vidaurre D., Hunt L., Quinn A., Hunt B., Brookes M., Nobre A., Woolrich M. (2018)
781 Spontaneous cortical activity transiently organizes into frequency-specific phase-coupling
782 networks. *Nat Commun*, 9:2987

783 58. Vinck M., Oostenveld R., Wingerden M., Battaglia F., Pennartz C. (2011) An improved index
784 of phase-synchronization for electrophysiological data in the presence of volume-conduction,
785 noise and sample-size bias. *NeuroImage*, 55(4):1548-1565

786 59. Westphal A., Wang S., Rissman J. (2017) Episodic Memory Retrieval Benefits from a Less
787 Modular Brain Network Organization. *J Neurosci*, 7(13):3523-3531

788 60. Wig G (2017) Segregated systems of human brain networks. *Trends Cogn Sci*, 21(12): 981-996

789 61. Williams N., Arnulfo G., Wang S., Nobili L., Palva S., Palva M. (2019) Comparison of methods
790 to identify modules in noisy or incomplete brain networks. *Brain Connect*, 9(2):128-143

791 62. Williams N., Wang S., Arnulfo G., Nobili L., Palva S., Palva M. (2021) Modules in Human
792 Electrophysiological Connectomes of Phase-Synchronization. *Mendeley Data*, V1

793 63. Yarkoni T., Poldrack R., Nichols T., Van Essen D., Wager T. (2011) Large-scale automated
794 synthesis of human functional neuroimaging data. *Nat Methods*, 8(8):665-670

795 64. Yeo B., Krienen F., Sepulchre J., Sabuncu M., Lashkari D., Hollinshead M., Roffman J.,
796 Smoller J., Zöllei L., Polimeni J., Fischl B., Liu H., Buckner R. (2011) The organization of the

797 human cerebral cortex estimated by intrinsic functional connectivity. *J Neurophysiol*, 106(3):
798 1125-1165

799 65. Zhigalov A., Arnulfo G., Nobili L., Palva S., Palva M. (2015) Relationship of fast-and-slow-
800 timescale neuronal dynamics in human MEG and SEEG. *J Neurosci*, 35(13):5385-5396

801 66. Zhigalov A., Arnulfo G., Nobili L., Palva S., Palva M. (2017) Modular co-organization of
802 functional connectivity and scale-free dynamics in the human brain. *Netw Neurosci* 1(2):143-
803 165

804

805

806

807

808

809

810

811

812

813

814

815

816

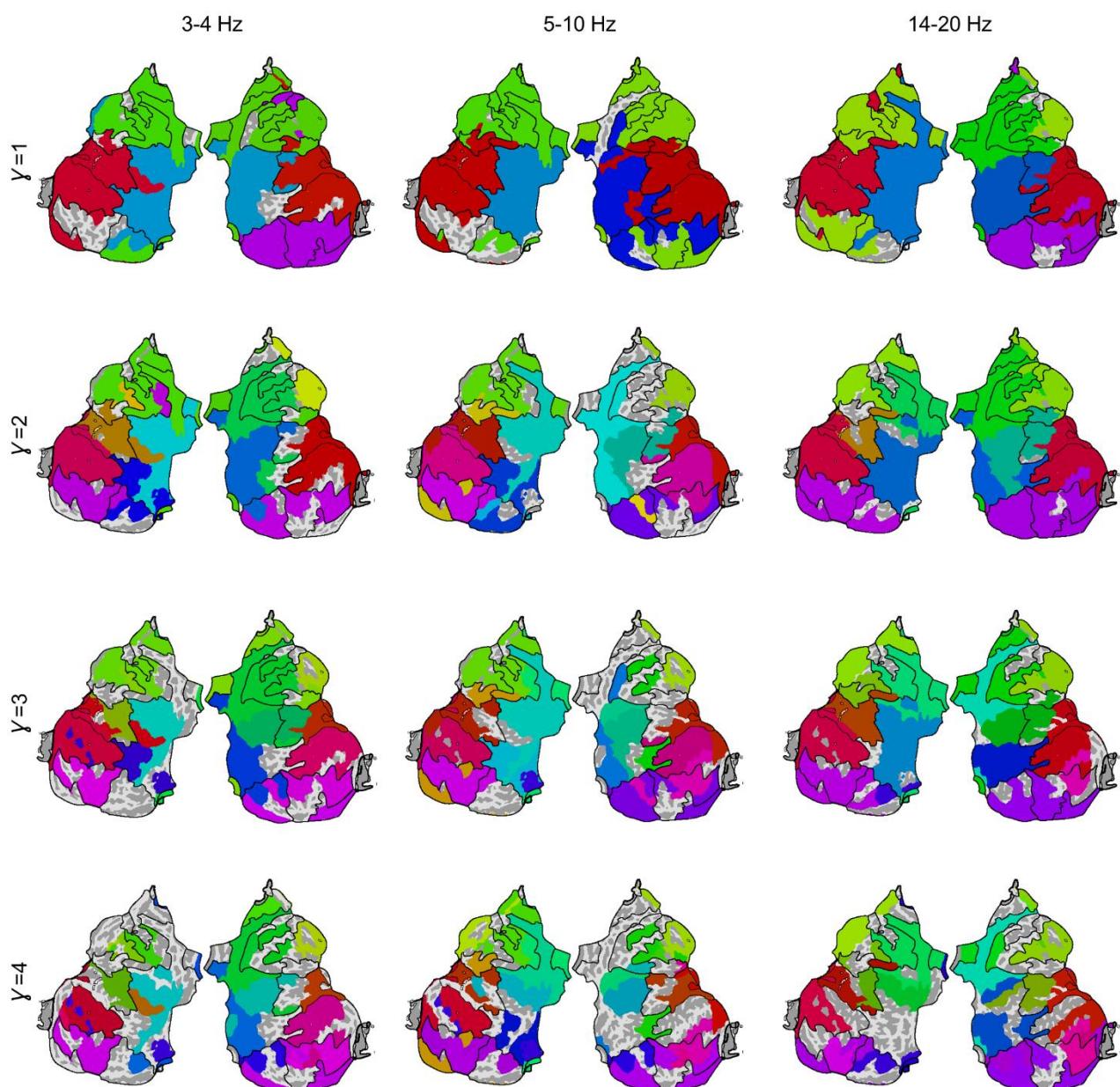
817

818

819

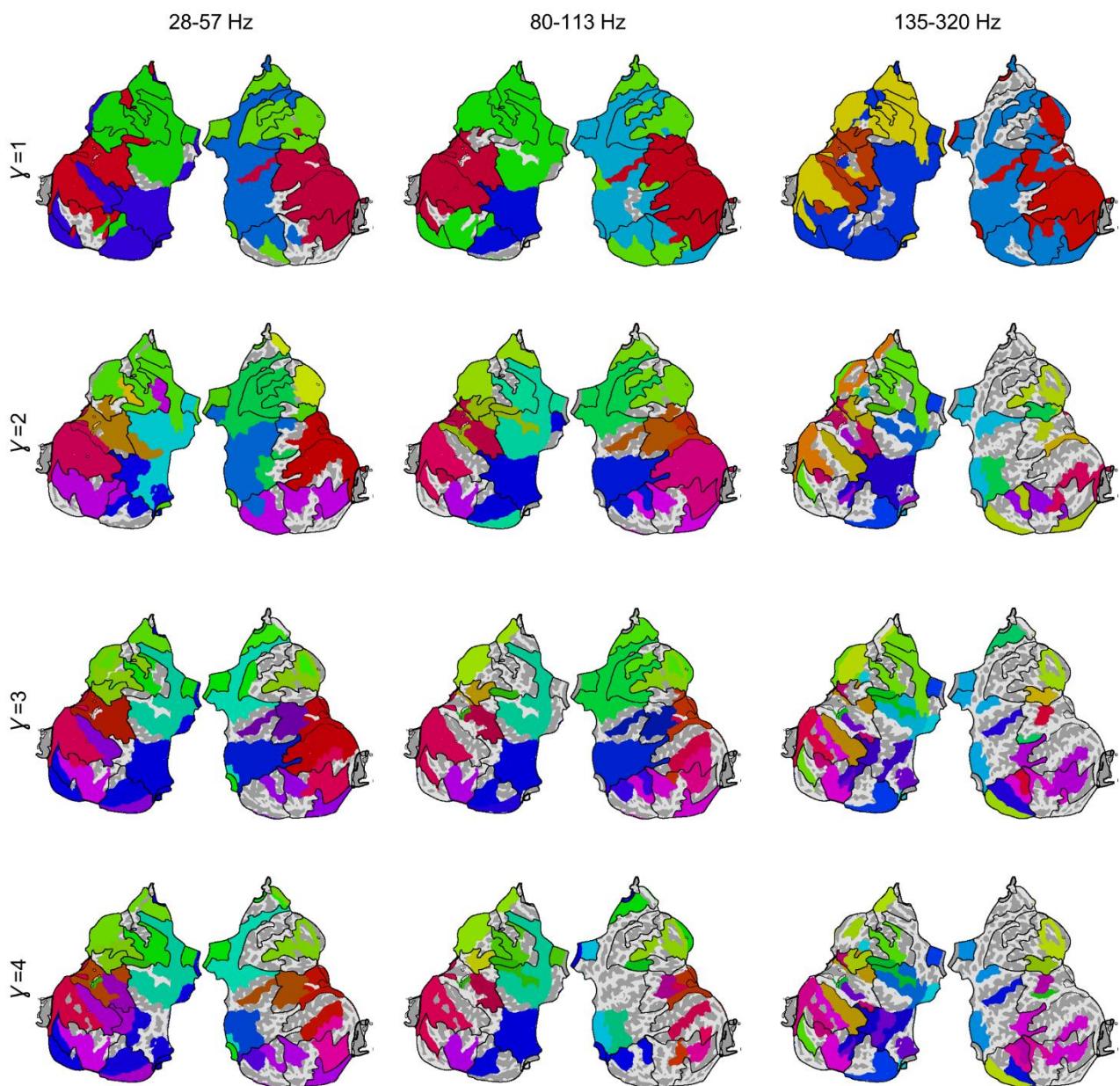
820

821 **Supplementary figures**



822
823 **Figure S1. Modules in connectomes of phase-synchronization for 3-4 Hz, 5-10 Hz and 14-20**
824 **Hz comprise anatomically contiguous regions.** Flat-brain representations of modules in
825 connectomes of phase-synchronization for 3-4 Hz, 5-10 Hz and 14-20 Hz, at four spatial scales (Y
826 = 1 to 4). Black lines on each flat-brain show outlines of consensus modules, *i.e.* sets of regions
827 assigned to the same module across frequencies and spatial scales.

828
829



830

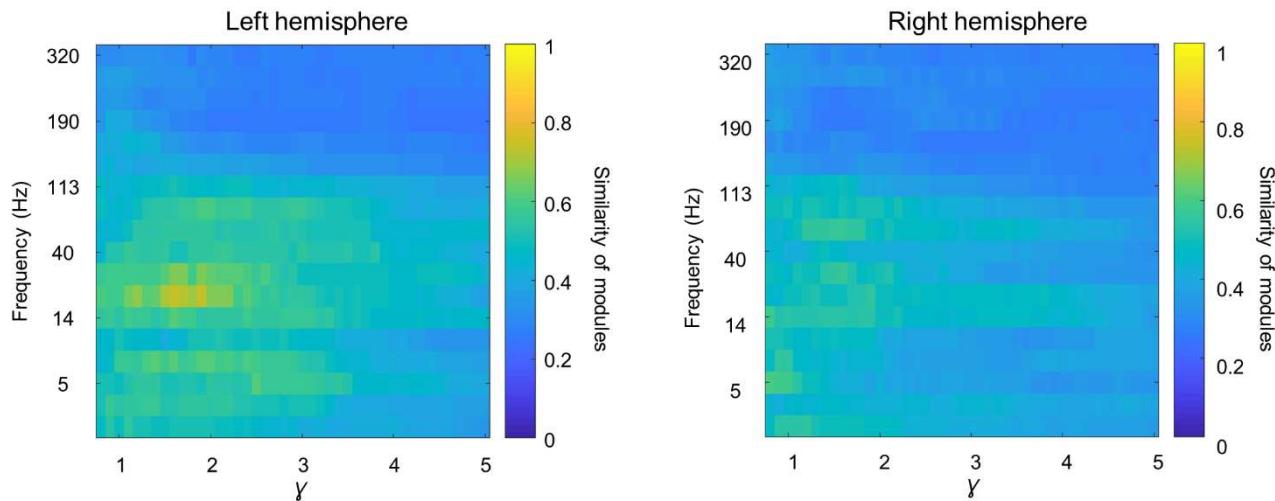
831 **Figure S2. Modules in connectomes of phase-synchronization for 28-57 Hz, 80-113 Hz but not**
832 **135-320 Hz comprise anatomically contiguous regions.** Flat-brain representations of modules in
833 connectomes of phase-synchronization for 28-57 Hz, 80-113 Hz and 135-320 Hz, at four spatial
834 scales ($Y = 1$ to 4). Black lines on each flat-brain show outlines of consensus modules, *i.e.* sets of
835 regions assigned to the same module across frequencies and spatial scales.

836

837

838

839



840

841 **Figure S3. Consensus modules resemble modules at lower frequencies and intermediate**
842 **spatial scales.** Similarity between consensus modules and modules at each combination of spatial
843 scale and frequency, for both left and right hemispheres.

844

845

846

847

848

849

850

851

852

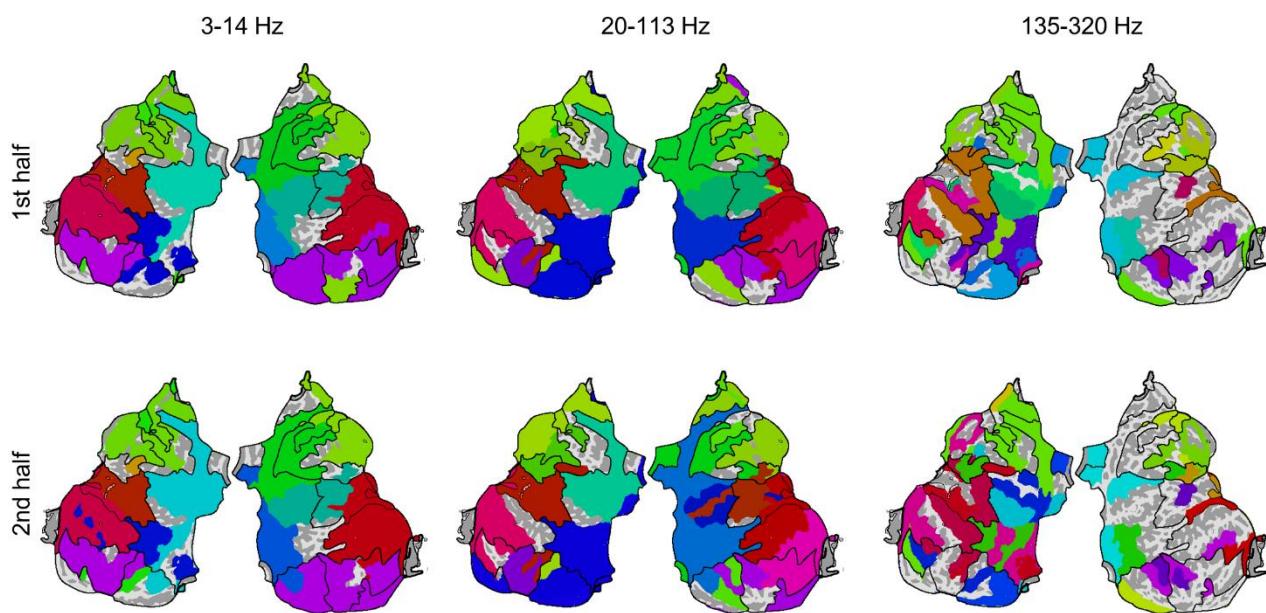
853

854

855

856

857



858

859 **Figure S4. Modules in split connectomes of phase-synchronization are highly similar.** Flat-
860 brain representations of modules in two split connectomes of phase-synchronization (top and
861 bottom rows) for 3-14 Hz, 20-113 Hz and 135-320 Hz, at a single spatial scale ($V = 2$). Black lines
862 on each flat-brain show outlines of consensus modules, *i.e.* sets of regions assigned to the same
863 module across frequencies and spatial scales.

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

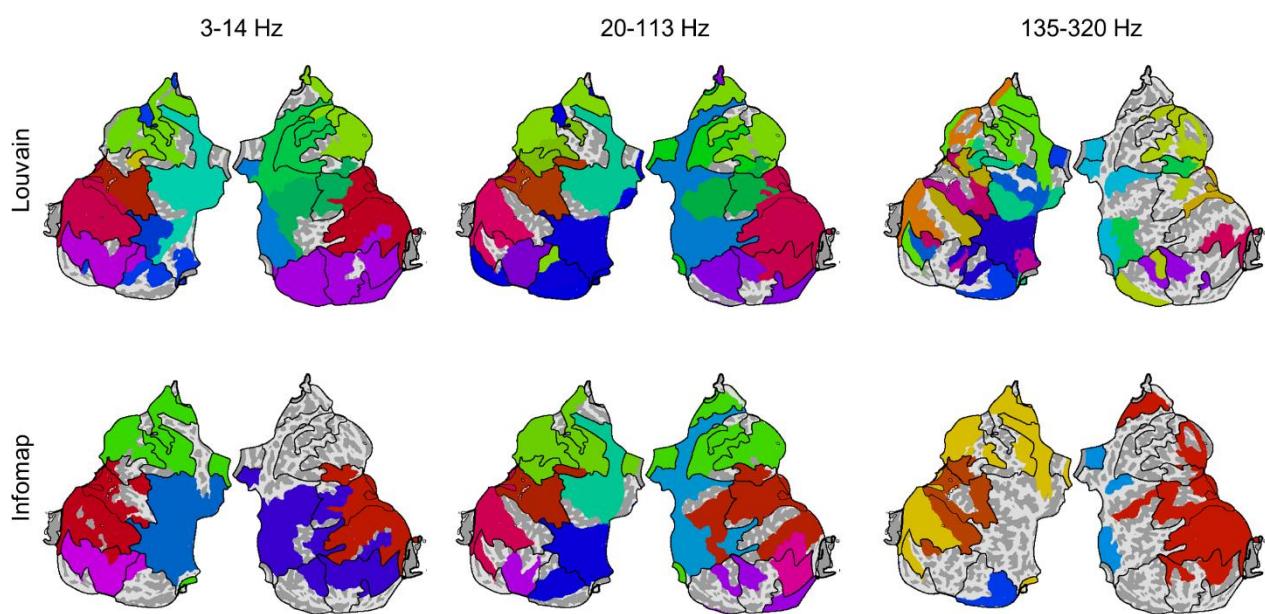
883

884

885

886

887



888
889
890 **Figure S5. Modules in connectomes of phase-synchronization similar for Louvain and**
891 **Infomap community detection, up to high gamma frequency band.** Flat-brain representations of
892 modules in connectomes of phase-synchronization estimated with Louvain (top row) and Infomap
893 (bottom row) community detection, for 3-14 Hz, 20-113 Hz and 135-320 Hz, at a single spatial
894 scale ($Y = 2$). Black lines on each flat-brain show outlines of consensus modules, *i.e.* sets of regions
895 assigned to the same module across frequencies and spatial scales.

896
897

898

899

900

901

902

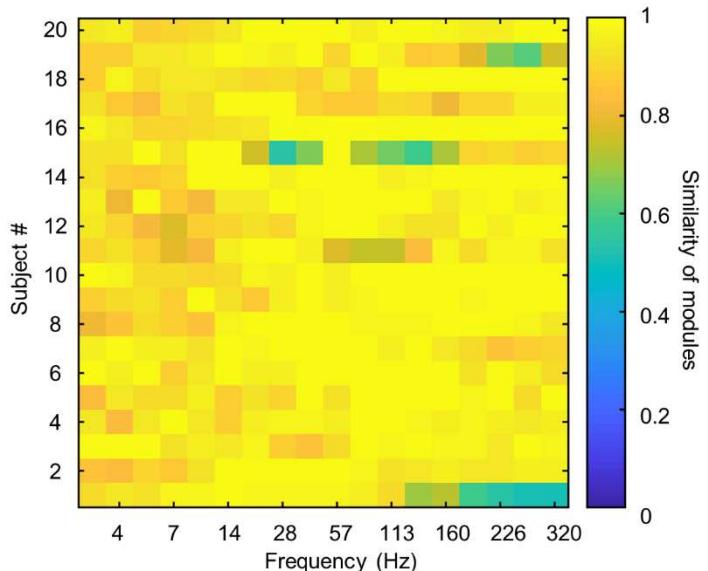
903

904

905

906

907



908

909 **Figure S6. Amplitude of activity does not confound identification of modules.** Similarity
910 between modules identified on subject-level networks of phase-synchronization before and after
911 removing amplitude confound.

912

913

914

915

916

917