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SUMMARY

Epigenetic changes are required for normal devedmprand health, and can also underlie disease
states; yet, the nature and respective contributidactors that drive epigenetic variation in hu-
mans remain to be fully characterized. Here, wessed how the blood DNA methylome of 958
adults is affected by genetic variation, aging, @ea 139 diverse environmental exposures, and
investigated whether these effects are direct aliabed by changes in cellular composition, meas-
ured by deep immunophenotyping. We show that elléterogeneity and DNA sequence varia-
tion are the strongest predictors of DNA methylatevels. We identify latent cytomegalovirus
infection as a major driver of DNA methylation \&tron and delineate three distinct effects of ag-
ing on DNA methylation, including increased dispansconsistent with epigenetic drift. Our rich
dataset provides a unique resource for the desigrnderpretation of epigenetic studies and high-

light critical factors in medical epigenomics stesli
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INTRODUCTION
Epigenetic research has facilitated our understanai the existing links between environmental
risk factors, aging, genetic variation and humaease (Cavalli and Heard, 2019; Michalak et al.,
2019). Epigenome-wide association studies (EWASgIshown that DNA methylation (i.e.,
5-methylcytosine, 5mC), the most studied epigematick in human populations, is associated with
a wide range of environmental exposures alongiftaedurse, such as chemicals, air pollution and
nutrition (Martin and Fry, 2018), as well as pastiseconomic status (Bush et al., 2018; Karlsson
Linner et al., 2017; Lam et al., 2012; Stringhihak, 2015). Changes in DNA methylation have
also been associated with non-communicable disesisels as Parkinson’s and Alzheimer’s
diseases, multiple sclerosis, systemic lupus eny#ttesus, type 2 diabetes and cardiovascular
disease (Hwang et al., 2017; Ling and Ronn, 201&;2dne et al., 2019; van der Harst et al., 2017).
These studies collectively suggest that DNA metiilamarks could have tremendous value as a
gauge of the exposome and as clinical biomarkezsdd@sco and Esteller, 2019; Wild, 2005).

However, interpretation of EWAS remains limitedisEi because the epigenome of a cell
reflects its identity (Farlik et al., 2016; Roadniapigenomics et al., 2015), a risk factor or a aise
that alters cellular composition also alters 5mé&le measured in the tissue (Liu et al., 2013} It
thus necessary to determine if an exposure aftetiislar composition or DNA methylation states
of cell types, in order to better understand thk between such an exposure, DNA methylation and
disease (Lappalainen and Greally, 2017). Previtugies have accounted for cellular heterogeneity
in blood by using cell sorting experiments, or @lalt proportions estimated from 5mC profiles
through deconvolution techniques (Houseman e2@l2; Teschendorff et al., 2017), but these
approaches focus on a subset of frequent cell ty@éapture only a part of blood cellular
composition. Second, genetic variation and DNA yletion are inextricably linked, as attested by
the numerous DNA methylation quantitative traiti IooeQTLs) detected so far (Villicana and Bell,
2021), and genetic variants could confound assonmbetween risk factors, 5mC levels and
diseases or traits. Finally, environmental riskdax with a yet-unknown effect on DNA
methylation, such as common infections, could atstfound associations between other risk
factors, DNA methylation and human phenotypes. Thuwtetailed study of the factors that impact
DNA methylation at the population level, and théeext to which their effects are mediated by
changes in cellular composition, is required toarathnd the role of epigenetic variation in health
and disease.

To address this gap, we generated whole blood-e®IDNA methylation profiles at >850,000
CpG sites for 958 healthy adults of tidieu Intérieur cohort. We leveraged the deep

characterization of the cohort, including high-leson immunophenotyping by flow cytometry
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(Patin et al., 2018; Thomas et al., 2015), to deitez whether and how cellular composition,
genetic variation, intrinsic factors (i.e., age a@ed) and 139 diverse health-related variables and
environmental exposures affect the blood DNA metimd. We performed EWAS adjusted or not
for the measured proportions of 16 immune cell st#ygo robustly delineate effects on DNA
methylation that ardirect, i.e., acting through changes within cells, frévoge that arenediated,

i.e., acting through subtle changes in cellular position (Houseman et al., 2015). We find that the
largest effects on DNA methylation are due to DN4ence variation, whereas the most
widespread differences among individuals are tealref blood cellular heterogeneity. We also
identify latent cytomegalovirus (CMV) infection asnajor driver of epigenetic variation and
observe an increased dispersion of DNA methylatitth aging, suggesting a decrease in the
fidelity of the epigenetic maintenance machinemakly, we show that a large part of the effects on
DNA methylation of aging, smoking, CMV serostatusl @hronic low-grade inflammation is due to
fine-grained changes in blood cell composition, eindracterize the DNA methylation signature of
cell-types affected by these factors. This workegates new hypotheses about mechanisms
underlying DNA methylation variation in the humaopplation and highlights critical factors to be

considered in medical epigenomics studies.
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RESULTS

Population Variation in DNA Methylation Differs Markedly Across the Genome

To investigate the contributions of genetic and-genetic factors to population variation in DNA
methylation, we quantified 5mC levels at >850,0@@Gites, with the lllumina Infinium
MethylationEPIC array, in the 1,000 healthy dorarthe Milieu Intérieur cohort (Thomas et al.,
2015). The cohort includes individuals of Westeurdpean origin, equally stratified by sex (i.e.,
500 women and 500 men) and age (i.e., 200 indilsduam each decade between 20 and 70 years
of age), who were surveyed for detailed demograghichealth-related information, including
dietary habits, upbringing, socioeconomic statusntal health, past and latent infections, and
vaccination and medical histories (Table S1). Tastdor and quantify the blood cell-composition-
mediated effect on DNA methylation of genetic fastantrinsic factors (i.e., age and sex) and
environmental exposures, we measured, in all dotioegproportions of 16 major and minor
immune cell subsets by standardized flow cytométigiuding neutrophils, basophils, eosinophils,
monocytes, natural killer (NK) cells, dendritic lseB cells, CD4 and CD8 T cells at four
differentiation stages (naive, central memory,afiememory and terminally differentiated effector
memory cells) and CDZDS8 T cells (Patin et al., 2018). Furthermore, all @@nwere genotyped at
945,213 single-nucleotide polymorphisms (SNPs)ding 5,699,237 accurate SNPs after
imputation (Patin et al., 2018). After quality caiffiltering, high-quality measurements of 5mC
levels were obtained at 644,517 CpG sites for 958lated individuals (Figure SSTAR

M ethods).

We first investigated population variation in DNAethylation across different well-
characterized chromatin states, using naive dDeells as a reference (Roadmap Epigenomics et
al., 2015). We found that CpG sites in transcripstart sites (TSS) are typically unmethylated and
exhibit the lowest population variance in 5mC Isv@igure 1A, B), suggesting that epigenetic
constraints are the strongest in promoters, whexeiagely transcribed gene bodies and hetero-
chromatin are highly methylated and also show lopytation variance. 5mC levels in enhancers
and Polycomb-repressed regions are the most varigigure 1A, B), suggesting that DNA meth-
ylation in these regions are preferentially affddby genetic, intrinsic or environmental factons, o
cellular heterogeneity. These results indicate 3nat measurements from our cohort reproduce the
known properties of DNA methylation and show highdls of variation across the epigenome and

among individuals.


https://doi.org/10.1101/2021.06.23.449602
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.23.449602; this version posted June 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Widespread L ocal Genetic Control of DNA M ethylation in Whole Blood

Studies of DNA methylation quantitative trait |¢goneQTLs) have revealed that DNA sequence
variation affects 5mC levels at numerous nearby €3 (Bonder et al., 2017; Hannon et al.,
2018), a feature that can confound associationgdagt environmental exposures and DNA
methylation (Lappalainen and Greally, 2017). Tocaet for this, we estimated, for each CpG site,
the effects of nearby DNA sequence variation oir H5r@aC levels (100-Kb windowSTAR

Methods). We adjusted models on genetic ancestry and ldetddype proportions, as well as age,
sex, smoking status and CMV serostatus, which we pgeviously shown to affect blood cell
composition (Patin et al., 2018). We found a sigaiit local meQTL for 29.2% of the 644,517
tested CpG sitesi= 188,129two-stage adjusteB-value,Pag< 0.05; Figure S25TAR methods).
We detected 1,978 CpG sites with a difference émpttoportion of DNA methylation between
homozygotes larger than 0.3, indicating that ttecebf local meQTLs can be substantial.

We found that CpG sites with a local meQTL aredred in enhancers (odds ratio [OR] 95%
Cl: [1.87, 1.95]; Figure 1CSTAR Methods), where the population variance of DNA methylation
the largest (Figure 1B). Conversely, CpG sites witbcal meQTL are depleted in TSS and actively
transcribed genes (OR Cls: [0.32, 0.34] and [00482]), where DNA methylation variance is the
lowest and sequence conservation the highest @ign)y. While confirming that local meQTLs are
enriched in disease and trait associations by genwitle association studies (GWAS) (Bonder et
al., 2017), we found that the enrichment is strghgeenhancers and genic enhancers (enrichment
> 1.8; Presampiing< 1.0x10% Figure 1E) and absent from regions of low seqaemnservation, such
as heterochromatin. These findings indicate thafBblquence variants have widespread, strong
effects on nearby DNA methylation levels, particiylan regulatory elements, and that local

meQTLs are enriched in genetic variants that afibenotypic variation and disease risk.

Structural Factorsand Zinc Finger Proteins are Regulators of DNA Methylation

We investigated the long-range genetic control dDnethylation, by estimating the effect of
genome-wide variants on 5mC levels of a selectfddp@s sites, to reduce the burden of multiple
testing. We selected the 50,000 CpG sites withnitpeest residual variance after fitting a model
including as predictors: (i) the most associatedlloneQTL variant, (ii) genetic ancestry, (iii) bbb
cell proportions and (iv) non-genetic factors dtifeg blood cell compositionSTAR Methods). We
found 2,394 independent long-range meQTLs, for@ BAG sites (3.6%) and 1,761 independent
variants (Table S2). The effects of long-range miedre generally weaker than those of local
meQTLs (Figure S2), yet we found 152 CpG sites withifference in the proportion of methylation

between homozygotes larger than 0.15. As for loezDTLs, remote-effect variants are also
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enriched in GWAS hits (enrichment = 1. Fssampiing< 6.3x10°). Interestingly, CpG sites under
remote genetic control are enriched in TSS regaomkregions associated wiZhF genes, in
contrast with CpG sites under local genetic cor(ffure 1C, F). Furthermore, we found that
remote meQTL SNPs are strongly concentratetNiR genes (OR CI: [15.1, 25.8]; Figure 1G).
These findings indicate that zinc-finger proteid&Rs) play a role in the long-range control of
DNA methylation, in line with their role in the relgtion of heterochromatin ariNF gene
expression (Marchal and Miotto, 2015; O'Geen e8l07; Quenneville et al., 2012).

Genetic variants controlling the expression of hgaranscription factors (TF) have been found
to have widespread, long-range effects on the DN#hglome (Bonder et al., 2017; Hop et al.,
2020). Of the 3,643 genes with a nearby variarda@ated with a remote CpG site, 33% have its
expression altered by the same variant in the e@hLéatabase (V6sa et al., 2018). In total, 200
protein-coding genes have local variants that sse@ated with 5mC levels atl0 remote CpG
sites (Figure 1H). Variants that affect the largeshber of remote CpG sites are located nearby
well-known structural factors and TFs suct8&bIP7, BCLAF1, CTCF, NFKB1 andNFE2, and,
consistently, CpG sites remotely associated Wik éocal eQTL are strongly enriched in binding
sites of the corresponding TF, or a TF related (@ables 1 and S3). For example, the rs10417143
variant alterZNF257 mRNA levels P, = 2.8x10°% (V8sa et al., 2018)) and 5mC levels at 16
CpG sites, which are enriched in binding sitesi@ZNF534 TF (Figure 1l). Likewise,
rs12491955 is associated with increaSENP7 mRNA levels Pag= 4.2x10%% (Vdsa et al., 2018))
and 5mC levels at 35 CpG sites, 30 of which aratkxtin two clusters @NF genes on
chromosome 19 (Lemire et al., 2015). Of these 35 €jtes, 23 are located in binding sites for
KAP1 (encoded byRIM28, Figure 1J), a chromatin remodeler regulated bMSE(Garvin et al.,
2013). Of note, 20 out of the 50 most enriched difesZFPs (Table S3). These results collectively
support the notion that transcriptional variatidmBs results in DNA methylome-wide changes
due to differential occupancy of their binding sitand highlight the role of chromatin remodelers

and ZFPs in the regulation of DNA methylation.

Aging Elicits DNA Hyper methylation Related to Polycomb Repressive Complexes and

I ncreased Epigenetic Dispersion

The link between DNA methylation and aging is vesitablished (Hannum et al., 2013; Heyn et al.,
2012; Johansson et al., 2013; Jones et al., 20abg\at al., 2018); however, given that blood cell
composition is altered with age (Patin et al., 20k8emains unclear how age impacts DNA
methylation in a heterogeneous tissue such as ladtd and Irizarry, 2014). We thus investigated

how the DNA methylome is shaped by the intertwipsatesses of cellular aging (i.e., direct, cell-
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composition-independent effects of age) and ageaelchanges in blood cellular composition (i.e.,
effects of age mediated by changes in cellular amitipn) STAR Methods). At a false discovery
rate (FDR) of 0.05, we found that age has a sicgmii total (i.e., direct and mediated) effect on
5mC levels at 258,830 CpG sites (40.2% of CpG ;Sitiggire 2A and Table 2). When estimating
direct effects by adjusting on measured immuneprejportions, a significant effect was observed
at 144,114 CpG sites (22.4% of CpG sites; FDR §;0r@ble 2), highlighting the widespread, cell-
composition-independent effect of age on 5mC leweldood. Importantly, when we applied a
commonly used deconvolution method to correct &lutar heterogeneity (Koestler et al., 2016),
the number of age-associated CpG sites almost edb¥ 277,209), suggesting that corrections
based on estimated proportions of major cell ssta®t incomplete.

We observed that 69% of CpG sites directly assediatith age show a decrease in 5mC levels
(Figure 2B, C). This pattern predominates in queeschromatin, actively transcribed genic regions
and enhancers. In contrast, DNA hypermethylatios @l@served in 87% of age-associated CpGs
within CpG islands (CGls; Figure S3A, B). ConsiskerCpG sites exhibiting increasing 5mC
levels with age are predominantly found in Polycemapressed regions, bivalent TSSs and bivalent
enhancers, which are CGl-rich regions (FiguresQBnd S1K, L). Furthermore, these CpG sites
are the most enriched in binding sites for RINGIBRID2, RYBP, PCGF1, PCGF2 and SUZ12
TFs (OR > 10.0; Figure 2D and Table S3), whichadrpart of the Polycomb repressive complexes
(PRC) 1 and 2. PRC1 and PRC2 mediate cellular senes and modulate longevity in
invertebrates (Bracken et al., 2007; Siebold e28l10). Importantly, when we restricted the
analysis to CpG sites outside of CpG islands, weadasimilar enrichments in Polycomb-repressed
regions (OR 95% CI [10.4, 14.0]) and PRC TF bindiitgs (RING1B OR 95% CI: [11.4, 14.1];
PCGF2 OR 95% CI[9.89, 13.5]). Finally, genes vaitfe-increasing methylation levels are strongly
enriched in developmental gen@4= 2.2x10*; Table S4), which are regulated by PRCs (Boyer
et al., 2006). These results support a key regylatde of Polycomb proteins in age-related
hypermethylation (Dozmorov, 2015).

Global hypomethylation of the genome and CGl-asgedihypermethylation are both
hallmarks of cancer (Timp and Feinberg, 2013). Bt that genes with a TSS that is increasingly
methylated with age are significantly enrichedumor suppressor genes (OR = 1.55, CI: [1.28,
1.85]; Fisher’s exact teft= 4.0x10° (Zhao et al., 2016). For example, 5mC levelsditye
increase by 0.2% per year of age nearby the TEE6B (Pagj = 4.6x10 Figure 2E), a tumor
suppressor gene that is hypermethylated in cakeeef(al., 2012a). In addition, 5mC levels
increase by 0.1% per year of age nearby the TESNMT3A (Paqj = 6.6x10""; Figure S3E), which

encodes a DNA methyltransferase that plays a Keyimdumorigenesis (Jost et al., 2014). Our
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results indicate that genomic hypomethylation a®l-&ssociated hypermethylation are lifelong
progressive processes, possibly due to an alteagatenance of DNA methylation after multiple
mitotic cell divisions (Teschendorff et al., 20M&ng et al., 2016; Zhou et al., 2018), and support
an intricate link between aging and oncogenesis.

Finally, we determined whether the variance of Se@ls among individuals depends on age, a
phenomenon known as “epigenetic drift” (i.e., tieecgence of the DNA methylome as a function
of age due to stochastic changes) (Fraga et @5;Jones et al., 2015), by fitting models
parameterizing the residual variance with a liregge term, and adjusting for cellular composition,
aging, CMV serostatus and sex in the mean fun¢8dAR methods). We observed a significant
dispersion with age for 16.3% of all CpG sitesikBtgly, 90% of these CpGs show an increase in
the variance of 5mC levels with age (Figure 2Fygasting a decrease in the fidelity of epigenetic
maintenance associated with aging. Examples of §igS with large, age-increasing dispersion are
found in the TSS of th®IAFA andCBLN1 genes Raq = 2.08x10"and 4.63x10° Figure 2G, H).
Similar results were obtained when adjusting théawae function for cellular compositioS{AR
methods). In addition, we found that, out of 104,786 Cpteswith age-related dispersion, 63%
show no significant changes in 5mC levels with @ggure S3F), which suggests that these results
are not driven by relationships between the aveaagevariance of 5mC levels. Collectively, these
findings indicate that aging elicits numerous DNAthylation changes in a cell-composition-
independent manner, including global epigenome-witaethylation, hypermethylation of PRC-
associated regions, and increased variance, higimgythe occurrence of different mechanisms

involved in epigenetic aging.

I mmunosenescence-Related Changesin Cellular Composition M ediate DNA M ethylation
Variation with Age

We detected a significant cell-composition-mediatect of age at ~12% of CpG sites(

75,301; Table 2), indicating that a substantiatticm of age-associated changes in DNA
methylation are due to age-related changes in inensefi proportions. However, mediated effects
are typically weaker than direct effects (Figure ELand CpG sites with the strongest direct age
effects show no mediated effect, suggesting that thanges in 5mC levels are shared across cell
types (Figure 2A). In contrast to direct effect®diated effects are most often associated with
demethylation, regardless of their localizatiorg(FFes 2K and S3C, D). Yet, enhancers and TSS-
flanking regions (but not TSS themselves) are @eddn CpG sites with a significant cell-
composition-mediated, positive effect of age (FegRd), possibly because these regions tend to be

active in a cell-type specific manner (Roadmap Epagnics et al., 2015). In addition, CpG sites
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with a cell-composition-mediated increase in DNAy&ation are enriched in TF binding sites for
RUNX1 and RUNXS, two key regulators of hematopadsiigure 2L and Table S3). Genes with
CpG sites showing a mediated increase or decred3NA methylation with age are respectively
enriched in genes involved in lymphoid or myeloid @ctivation Pagj < 2.0x10™; Table S4),
indicating that mediated age effects on DNA metinytaare related to progressive differences in
the composition of the lymphoid and myeloid comesrtts.

We then determined if age elicits 5mC changes 8péacicertain immune cell subsets, by
deriving and verifying an interaction model capatfielealing with the compositional nature of
immune cell proportions in blood, similarly to prews work (Zheng et al., 2018$TAR
Methods). Because inference was unstable for rare ceiesgbwe restricted the analysis to six
major immune cell types (CD4nd CD8 T cells, CD4CDS8 T cells, B cells, NK cells, and
monocytes), and estimated how DNA methylation cleangith age within these cell types,
compared to the most frequent cell type, i.e., nogphils. We found that 17% of tested CpG sites (
= 106,899) show a cell-type-dependent associatithage in CD8 T cells (Figure 21), 69% of
which show decreasing 5mC levels (Figure S3G). &hesults support previous studies reporting
that this T cell subset undergoes substantialptifg epigenetic changes (Goronzy et al., 2018;
Tserel et al., 2015). Together, our findings previtiong statistical evidence that DNA methylation
variation with age rely on different, non-mutuadiyclusive mechanisms: the progressive decline of
the epigenetic maintenance system, common to latiypes, and the increased heterogeneity of

immune cell subsets that characterizes immunosenes¢Nikolich-Zugich, 2018).

Sex Differences in DNA Methylation are Predominantly Cell- and Age-l ndependent
Given that substantial differences in immune cethposition between sexes have been observed
(Patin et al., 2018), we next assessed how celh@Barogeneity contributes to sex differences in
DNA methylation (Singmann et al., 2015; Yousefakt 2015). We found ~29% of CpG sitesH
186,545) with a significant total effect of sex,092 (h = 126,904) with a significant direct effect,
and ~7% ih = 44,667) with a significant cell-composition-medatffect (FDR < 0.05; Table 2 and
Figure S4A). The largest direct effects of sex wabgerved aDYRK2, DNM1, RFTN1, HYDIN,
andNABL genes R, < 1.0x10°%). For example, thBYRK2 promoter is 11% and 45% methylated
in men and women, respectively, at the CpG sitetlday the X-linked PHF8 histone demethylase
(Figure S4B, C). DYRK2 phosphorylates amino aciuis plays a key role in breast and ovarian
cancer development (Correa-Saez et al., 2020).

DNA methylation levels were higher in women at 7886ex-associated autosomal CpG sites

(Figure S4D, E), a pattern also observed in newbfrausefi et al., 2015). This proportion is
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similar across different genomic regions, baseditirer chromatin states or CpG density (Figure
S4E, 1). When quantifying how sex differences inMidethylation vary during adulthood, by
adding a sex-by-age interaction term to our mo(f&I#\R M ethods), we found only 23 CpG sites
with a significant, sex-dependent effect of ageRFD0.05; Table S5), confirming previous

findings (McCartney et al., 2019; Yusipov et aD20). The most associated genesF@N,
associated with risk-taking behaviors (Karlssomiinet al., 2019) and educational attainment (Lee
et al., 2018), an®RR4, associated with the dry eye syndrome, a hormepesbdent, late-onset
disorder (Perumal et al., 2016). Overall, our fingd indicate that the blood DNA methylome is
widely affected by sex, but its effects are tydicabt mediated by cellular composition and do not

change during adulthood.

Cytomegalovirus I nfection Altersthe Blood DNA M ethylome through Regulation of Host
Transcription Factors

We next leveraged the extensive questionnaire hadqiyping conducted in tiMilieu Intérieur
cohort to identify environmental factors that elll-composition-independent changes in the
blood methylome. Specifically, we estimated how Siengls are influenced by 139 variables
(Table S1), including factors related to upbringfed., birth weight, delivery route, rural or unba
childhood), socio-economic status (e.g., educatiatt@ainment, monthly income, work-hours),
dietary habits (e.g., eating frequency of variemdg), health-related habits (e.g., smoking, BMI,
physical exercise), lipid metabolism (e.g. low- dmgh-density lipoproteins, cholesterol and
triglyceride levels), mental health and sleepinbitsale.g., self-reported depression, hours of
sleep), exposure to pollutants (e.g., asbestozenen silica), reproductive life cycle and
contraception in women (e.g., contraceptive use,adgnenopause), past and present exposure to
infectious agents (e.g., cytomegalovirus, Epstan-Birus), total serum antibody concentrations
(e.g. levels of IgG, IgE and IgM), and vaccioathistory (e.g., MMR, heptiis A vacchne). Tests
between each of the variables and 5mC levels aedisured CpG sites were considered a separate
family and were adjusted to control the FDR at @®PAR M ethods). All models were adjusted

for associated meQTLs, genetic ancestry, batclabias and factors that impact cell composition,
including sex and a non-linear age term.

The factor that is associated with the largest remolb CpG sites is CMV serostatus. CMV is the
causative agent of a latent, mainly asymptomatfection with prevalence ranging from 40% to
100% (Cannon et al., 2010), which drastically altée composition of the CD§ cell
compartment in blood (Klenerman and Oxenius, 20C8)V seropositivity has a significant total
effect on ~36% of CpG sites € 233,014; Figure 3A and Table 2). When adjustardlood cell
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composition, a significant direct effect was deteldior ~10% of CpG sites € 64,383; FDR <
0.05). Of note, the 16 cell proportions we adjustednclude central, effector memory and EMRA
CD8' T cells, which we have previously shown to bersgip associated with CMV serostatus
(Patin et al., 2018). When we used the standardmetution method to correct for cellular
heterogeneity, which does not include estimate3f" sub-compartments (Koestler et al., 2016),
we found twice as many CpG sites directly assogiatieh CMV serostatus (~19%,= 120,024),
indicating again that this standard correctionciatular heterogeneity is not complete.

One of the strongest direct effects of CMV infestwas observed nearby the TS 0BP3 (
value scale 95% Cl: [3.0%, 4.2%q = 2.2x10%, Figure 3E) LTBP3 is a regulator of latent
transforming growth factds (TGF{3) (Morita et al., 2016), which is induced in CM\tdatly
infected cells (Mason et al., 2012). We found tfégcts of CMV are typically smaller than those of
age and sex (Figure S2) and are associated witicegase in 5mC levels in 92% of CpG sites
within CGls and a decrease in 76% of CpGs outsi@ésQFigure S5A, B). As for age, we observed
in CMV" donors an overall increase in 5mC levels in Patyzaepressed regions and binding sites
of PRC-related TFs, and a decrease in regionsafgtranscription (Figure 3B-D), suggesting
dysregulation of the host gene inactivation maalyias a result of latent infection. Similar results
were found when restricting the analysis to Cp@ssiutside of CGls (Polycomb-repressed regions
OR =2.9, CI: [1.9, 4.24]). Interestingly, CpG sihowing increased 5mC levels in Ckdbnors
are strongly enriched in binding sites for the BRIF(OR = 13.5, CI: [11.9, 15.3Paq; < 1.0%10
320 Figure 3D and Table S3), a bromodomain protei iteys a critical role in the regulation of
latent and lytic phases of CMV infection (Groveskt2021). In addition, CpG sites showing a
decrease in DNA methylation in CM\donors are strongly enriched in binding sitesEéi F3
(OR = 9.0, Cl: [8.4, 9.7[Paq < 1.0x10°*®: Figure 3F and Table S3), which is paramount én th
priming of CMV-specific CD8 T cells by cross-presenting dendritic cells (Tettal., 2011).

We investigated if the large shift in the compasitdf the CD8T cell compartment caused by
CMV (Klenerman and Oxenius, 2016) is accompaniedianges in 5mC levels. We found that
33% of CpG sites show a significant cell-composiinediated effect of CMV serostatus<
217,223, FDR < 0.05). Importantly, 93% of CpG sitéth a significant direct effect also show a
significant mediated effech& 60,194; Figure 3A), and we observed a clear cdrosldoetween
total and mediation effect sizeR € 0.93; Figure 3A). For example, the CpG sitehim TSS of
LTBP3 with a large direct effect of CMV has also a langediated effect (Cl: [2.4%, 3.5%aq=
1.8x10); CMV* donors show higher proportions of CDBwracells @ = 1.38x10%), which in
turn are associated with higher 5mC levels B8P3 (P = 6.9x10%), supporting mediation by this

T cell subset (Figure 3G, H). Collectively, our isas indicate that CMV infection affects a large

12


https://doi.org/10.1101/2021.06.23.449602
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.23.449602; this version posted June 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

fraction of the human blood DNA methylome througé tlysregulation of host TFs and fine-

grained changes in cellular composition.

Strong Effects of Smoking are Reversible and I ndependent of Blood Cell Composition
The second exposure that is associated with tgedanumber of CpG sites is cigarette smoking,
for which the total effect was significant for 7726pG sites (~1.1%, Figure 3l and Table 2).
Although active smoking is known to elicit reprochle changes in DNA methylation (Dugue et al.,
2020; Gao et al., 2015), we previously showed $hatking also has a broad effect on blood
immune cell subsets (Patin et al., 2018), suggggtossible mediation by cellular composition.
When adjusting for the 16 immune cell proportioms,found that smoking directly alters 5mC
levels at 2,416 CpG sites (~0.4% of CpG sites; KOIR05; Table 2), 62% of which show a
decrease in 5mC levels. For example, smokers stromgty decreased 5mC levels in the introns of
the dioxin receptor repressor geidRR (B value scale 95% Cl: [-23%, -20%}aq;= 9.9%10'%8),
the second exon 2RL3 (CI: [-10%, -8.6%]Paq = 3.2x10"®) and the first intron dRARA (Cl: [-
10%, -8.5%)]Pag; = 5.4x10%"), in agreement with previous studies (Dugue e28R0; Gao et al.,
2015). No clear differences in the distributioreffect sizes were observed over genomic regions
(Figure S5E, F). CpG sites that are demethylatestinokers are significantly enriched in binding
sites for the hypoxia-related TFs EPAS1 and HIFRA K 7.0x10°), as well as AHRR (OR = 7.22,
Cl: [3.91, 12.2] Pag = 2.4x10%; Figure 3J and Table S3). This indicates that AHRRegulation in
smokers elicits decreased 5mC levels at AHRR b@dites. To determine if such direct effects are
reversible, we compared, for all smoking-associ&@p@ sites, the changes in 5mC levels with
years since last smoke for past smokers, to thegelsawith years of smoking for active smokers. In
agreement with previous studies (Dugue et al., 2G2D et al., 2015), we found a strong negative
correlation between effect sizég £ -0.70; slope = -1.12; Figure S5I), supporting taversibility
of the direct effects of smoking on DNA methylation

We estimated that 5mC levels are significantlyratieoy smoking due to changes in cell
composition at ~3.2% of CpG sitas=£ 20,381 CpG sites with a mediated effect; FDRG5)
Among the most strongly affected CpG sites, we tilrA8RAP (CI: [0.85%, 1.48%)]Pag=
1.23x10%), a subunit of the receptor for IL18 that is diéfetially expressed by NK cells (Crinier et
al., 2018). We observed that active smoking indacesduction in the proportion of NK celB €
1.17x10"), which is in turn associated with lower 5mC levall L18RAP (P = 2.77x10°%; Figure
3K, L), in line with an effect of smoking mediatby NK cells. Of note, mediated effects of
smoking on 5mC levels were also reversible, togrekesimilar to that of direct effectR € -0.69;

slope=-0.84, Figure S5J). Importantly, only 5.3%@iG sites with a direct effect of smoking status
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also have a significant mediation effect, and, werage, mediated effects of smoking are weaker
than direct effects (Figure 3I). Out of the 50 Cqiteés with the largest total effect of smoking ss$at
(Pagi< 2.4><1018), 49 CpG sites, including those AHRR, showed no significant mediation effect

(FDR < 0.05). Collectively, these findings indic#tat the largest effects of cigarette smoking on

the blood DNA methylome are reversible and indepandf blood cell composition.

Other Environmental Exposures do not Trigger Strong, Widespread Changesin the Adult

DNA Methylome

The third environmental exposure that we identiisdaffecting DNA methylation variation is
circulating levels of C-reactive protein (CRP), arker of chronic, low-grade inflammation in
healthy adults. Associations between CRP levelshamdreds of 5SmC marks have been detected
(Ligthart et al., 2016), but the strong relatiopsbf CRP levels with the immune system (Sproston
and Ashworth, 2018) and genetic variation (Ligtredral., 2018) suggests that that these factors
could confound associations. Specifically, charigdsood cell composition may be the cause of
changes in CRP levels, and this could induce spsi@gsociations, instead of mediated effects, at
CpG sites associated with immune cell proportions.

We found an association between CRP and 5mC lav@8,043 CpG sites (~3.1% of CpG
sites; FDR < 0.05; Table 2), a figure that, whepustihg for cellular composition, dropped to only
480, of which 80% (n = 386) showed decreased 5méldevith increased CRP levels. We detected
a CpG site within an enhancer neaBfjL 2, a key regulator of apoptosis and inflammation (@ho
et al., 2020)where5mC levels increase with increasing CRP levielgalue scale 95% CI: [0.6%,
1%], Pagj = 1.06x1C”;, Figure S5K). Another example is a CpG site witimenhancer nearby
ABCG1 (ClI: [0.4%, 0.8%] Pagj= 1.20x1C; Figure S5L). In our cohort, 5mC levels at the saite
are also associated to triglyceride (Cl: [1.2%%8],1P.q = 2.42x1¢) and HDL (CI: [-3.9, -2.1],

Pag= 9.35x10°) levels. The associations were retained in a miodkiding CRP, HDL and
triglyceride levels, indicating that they affeBCG1 5mC levels independently. CRP is known to
inhibit cellular cholesterol efflux by downreguladiABCG1 mRNA levels, which are impaired in
patients with type 2 diabetes, obesity, and hypsita (Li et al., 2012). These results indicate tha
associations between CRP levels and DNA methylattermainly, but not exclusively, due to
changes in blood cell composition, and generatemgtheses on the epigenetic mechanisms
relating subclinical inflammation to metabolic cdrahs.

Besides CMV infection, smoking status and chronflammation, we found limited evidence of a
direct effect of non-heritable factors on the DNAthylome of healthy adults (Table 2). We found a

significant total effect of heart rate, ear temp@m@and hour of blood draw on 5mC levels at
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76,018, 59,728 and 38,884 CpG sites, respecti#NR(< 0.05), but no associations remained
significant when adjusting for cellular heterogéydn total, we found 59 significant cell-
composition-independent associations between thairgng non-heritable factors and 5mC levels
(Table 2), the majority of which relafBCG1, DHCR24 andCPT1A genes with lipid-related traits
and BMI (Braun et al., 2017). In addition, we foumdingle association between log protein levels
and 5mC levels at a CpG site clos®#0O, a gene encoding D-amino acid oxidase involved in
protein catabolism (95% CI: [3.4%, 7%%q= 0.015). We detected an association close to
TCERGIL and educational attainment (95% ClI: [-0.028%, 18%)], Pagj= 0.019). Genetic

variation inTCERGILL is associated with years of education (Lee eR@ll8), but not with 5mC
levels in our cohort. We also found a significasg@iation between log uric acid levels and 5mC
levels at theSLC2A9 gene (cg0007195®@,q; = 0.0034), which is no longer significant when
adjusting on the local meQTL SNP4g = 1.0), illustrating how DNA sequence variatiomca
confound EWAS results. Nutritional habits, assedsesed on 20 dietary frequency variables, have
no detectable effects on the blood DNA methylomegpt the frequency of raw fruit consumption
atGLI2 (95% CI: [-2.5%, -1.1%]P.qj= 0.0022). Of note, we did not replicate previousigorted
associations between DNA methylation and serumeégeéls (Ek et al., 2017; Liang et al., 2015)
and did not detect any association with curreniosseconomic status. Collectively, these results
indicate that environmental exposures related byioging, socio-economic status, nutrition or
vaccination do not induce strong changes of thedh@NA methylome in our cohort of healthy

adults.

Gene x Environment and Gene x Cell Type I nteractions Affect DNA M ethylation Variation

Gene x environment interactions are thought to diedadaptable human responses to
environmental exposures through epigenetic chaftggasberg, 2018). Having established that age,
sex, CMV serostatus, smoking status and chroniegase inflammation (CRP levels) are the

main non-heritable determinants of DNA methylat@miation, we evaluated whether their effects
are genotype-dependent. We thus tested for genstgoe, genotype x sex or genotype x exposure
interactions, adjusting for 16 measured cell propos STAR Methods). We found evidence of
genotype-dependent effects at 175, 41, 4, 29 dahp® sites for age, sex, smoking status, CMV
serostatus and CRP levels, respectively€ 0.05, MAF > 0.10; Figure 4A; Table S5), the
interacting SNP being local in all except 7 ca¥és detected a strong genotype x age interaction
for three CpG sites located in tBACE2 gene the 5mC levels of which decrease with age only in
donors carrying the nearby rs2837990 G>A allglealue scale 95% CI: [11%, 13%}.q =

2.83x10'% Figure 4B; Table S5BACE2 encodes beta-secretase 2, one of two proteaseserivo
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in the generation of amyloid beta peptide, a @ittomponent in the etiology of Alzheimer’s
disease (Holler et al., 2012).

We then explored whether genetic variants affed 3@vels specifically in different immune
cell types, i.e., cell-type-dependent meQTLs. Beeadnferences were unstable for rare immune
cell subsets, we estimated the effects of assaciateants within six major cell types, compared to
the effect of the variants within neutrophils — thest frequent blood cell subset. We found that
genotypes affected DNA methylation differently aclog to cellular composition at 695 CpG sites.
We found 264, 157, 62, 56, 32, and 19 significatéraction effects for CO4T cells, CD8 T cells,
NK cells, B cells, CDLD8 T cells and monocytes, respectiva®f < 0.05; Figure 4A)One of
the strongest signals was found between 5mC lat¢le TSS o€D300A andthe nearby
rs12939435 variant, the effects of which depentherproportion of CD8T cells (Cl: [-0.50%, -
0.29%],Pag; = 2.19x10"; Figure 4C; Table S5). CD300A is an immunomodulatnolecule that is
expressed in various immune cell types and is &tedcwith a cytotoxic molecular signature in
CD8' T cells (Xu et al., 2012b). Overall, our analygktify several environment- and cell-type-
dependent meQTLs, supporting a strong, but liniitgzhact of gene x environment and gene x cell

type interactions on the blood DNA methylome.

Geneticsand Cedlular Heterogeneity Drive DNA M ethylation Variation in Human Blood

Having established how genetic variation, cellglamposition, intrinsic factors and a broad
selection of non-heritable factors shape the b methylome, we next sought to compare the
relative impact of these factors on DNA methylatidre classified the factors into four groups: (i)
the cellular heterogeneity group, which consisthef16 measured cell proportions; (i) the
intrinsic group, which consists of age and seX), tfie genetic group, which consists of the most
associated local-meQTL variant around each CpGasite (iv) the exposure group, which consists
of smoking status, CMV serostatus and chronic loadg inflammation. Since these groups vary in
their degrees of freedom, we measured the relptiegictive strength for each CpG site by the out-
of-sample prediction accuracy, estimated by cradskation STAR methods). To ensure unbiased
estimates, we mapped local meQTLs anew within &agfing set.

The model explains < 5% of out-of-sample variarresfl% of CpG sites (Figure 5A), which
are typically characterized by low total 5mC vadarfFigure S6A). This suggests that these sites
are constrained in the population and that smadtdiations in 5mC levels determine their variation,
possibly due to measurement errors or biologicaledNevertheless, the model explains > 25% of
DNA methylation variance for 21% of CpG sites{133,180). The strongest predictor for these

CpGs is cellular composition, genetics, intringictbrs and exposures in 74%, 22%, 4% and 0% of
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cases, respectively. Cellular composition explai2% of out-of-sample variance for 13% of CpG
sites ( = 86,046; Figure 5A, C and Table S6), with thehlesgt variance explained by cellular
composition for one CpG site being 68.5%. The 14 0BG sites for which > 50% of variance is
explained by cellular composition are typicallydéed in genes related to the immune system (Top
3 gene ontology terms: leukocyte activation, cefivation, cell activation involved in immune
responseP,q< 1.0x10°% Table S4). These CpG sites are concentratedhianger regions (95%

Cl: [3.41 3.69]; Figure S6B), and largely depletenn TSS (95% CI: [0.0761 0.106]), reflecting
the importance of enhancer DNA methylation in tgtle identity.

For the 2,521 CpG sites where the model explains% of variance, local genetic variation is
the strongest predictor in 99% of cases (Figur@aa€Table S6). Local genetic variation explains >
25% of DNA methylation variance at 23,796 CpG sitesl almost as many when adjusting for
cellular compositionr(= 23,062) (Figure 5A, B), indicating that genetftects on 5mC levels are
cell-composition-independent. Intrinsic factors leip > 25% of out-of-sample variance at 3,621
CpG sites, and > 75% at 17 sites (Figure 5C). Wioelitioning on cell composition, these
numbers dropped to 379 and 7 CpG sites, respegtaigjgesting that the predictive ability of age
and sex is partly mediated by immune cell compasi(Figure 5B). Interestingly, environmental
exposures are the weakest predictor of 5mC legg{daining > 25% of the variance at only 23
CpG sites and with a maximum variance explaine@fépG site of 51%.

Finally, we estimated the proportion of variancplaied by genotype x age, genotype x sex
and genotype x exposure interactions, by consigehie difference of the out-of-sample variance
explained by models including interaction terms amatlels with only main effectSTAR
Methods). We found a significant increase in predictivdigbwhen including interaction terms for
1,984 CpG sites (ANOVAR,4< 0.05). However, the effects were typically modesty 35 CpG
sites showed an increase in the proportion of magaxplained larger than 4% (Figure 5B). The
largest difference was found for a CpG site inTilB& of theENOSF1 gene where the interaction
model explained an additional 11.1% of DNA methglatvariance (Table S6). Collectively, these
results show that cellular composition and localagie variation are the main drivers of DNA
methylation variation in the blood of adults, reirding the critical need to study epigenetic risk

factors and biomarkers of disease in the contettiede factors.

17


https://doi.org/10.1101/2021.06.23.449602
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.23.449602; this version posted June 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

DISCUSSION
Here, we present a rich data resource that detisghé contribution of genetics, age, sex,
environmental factors, cellular composition andrthrgeractions to variation in the DNA

methylome. All the results can be explored via &4wvased browseMIMETH browse), to

facilitate the exploration of the estimated effenftshese factors on DNA methylation variation. We
show that genetic variation controlling 5mC levislikely to affect phenotype variation and
disease risk, and often controls the expressidrFef Furthermore, the remote genetic control of
DNA methylation is driven by variants nearBMF genes, consistent with a role of ZFPs as direct
regulators of 5mC levels (Marchal and Miotto, 20F)rthermore, we show that remote meQTLs
preferentially affect 5mC levels @NF genes, supporting the view that the major targeZ-Ps-
mediated regulation ai#NF genes themselves (O'Geen et al., 2007). Most fib&sess a Krippel-
associated box (KRAB) domain, a DNA-binding domihiat elicits KAP1-mediated transcriptional
repression and induce heterochromatin by recrugimgmatin remodelers and DNA
methyltransferases (Quenneville et al., 2012; Vlegell., 2006; Zuo et al., 2012), providing a
putative mechanism for the direct regulation of DiMAthylation by KRAB-ZFPs. This is also
supported by the widespread effect GENP7 regulatory variant on 5mC levels oK&AB-ZNF
gene cluster on chromosome 19; SENP7 is a SUM@asetinvolved in the deSUMOylation of
KAP1 that allows its chromatin remodelling activigarvin et al., 2013).

Our study reveals three different biological meds@s underlying age-related changes in DNA
methylation. The first elicits increased 5mC vacawith age and is related to epigenetic drift
(Fraga et al., 2005; Jones et al., 2015), likelysed by the progressive decline in fidelity of the
DNA methylation maintenance machinery. The secandyxes cell-composition-independent,
global DNA demethylation and CGl-associated hypdinylation. Age-associated DNA
demethylation could be related to the downreguiatibDNMT3A/B de novo methyltransferases,
whereas CGl-associated hypermethylation may résuft the downregulation of the Polycomb
repressive complexes 1 and 2 and/or TET protemgled with a loss of H3K27me3 marks
(Beerman et al., 2013; Li et al., 2018; Williamsakt 2011). Alternatively, these changes may be
related to the mitotic clock, which assumes a msgjve accumulation of DNA methylation chang-
es with mitotic divisions, including loss of methtibn at partially methylated domains (PMD) and
gain of methylation at PRC2-marked CpG-rich regi@fis et al., 2005; Yang et al., 2016; Zhou et
al., 2018). Both scenarios are supported by thielement of Polycomb-repressed regions in age-
associated CpG sites, and of binding sites of P&&ted TFs in CpG sites methylated with age.
The third mechanism elicits cell-composition-meeliatiemethylation at all compartments of the

epigenome, particularly at enhancers of myeloid/atton genes. This process likely reflects an
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increased degree of differentiation in the lymphmdipartment. Single-cell methylomes of differ-
entiating and dividing white blood cells will hedigtermine the role of mitotic and post-mitotic
5mC changes during epigenetic aging.

Latent infections are known to profoundly alter thember, activation status and transcriptional
profiles of immune cell populations, yet their egngtic consequences have attracted little attention
We found that CMV infection elicits widespread cbes in the blood DNA methylome, in contrast
with other herpesviruses such as EBV, HSV-1, HS\n@ VZV. We observe that most CMV effects
are mediated by the profound changes in bloodcoatfiposition caused by CMV (Patin et al.,
2018), including the inflation of CMV-specific memyoCD8' T cells (Klenerman and Oxenius,
2016). However, we also detected cell-compositratependent effects of CMV infection, suggest-
ing that the herpesvirus can directly regulatehibst epigenome. Methylated CpG sites in CMV
donors are targeted by BRD4, a key host reguldt@MV gene expression and latency (Groves et
al., 2021), suggesting that this TF, when upregdlaturing latent CMV infection, binds both viral
and host genomes. Furthermore, CMlnors are characterized by a strong increasei@ Bvels
atLTBP3, the product of which is involved in TGFsecretion. TGE-is a well-known immuno-
suppressive cytokine induced by CMV infection (Mast al., 2012), which represents a possible
strategy of the virus to escape host immunity. €lresults suggest that the capacity of CMV to
manipulate the host epigenetic machinery resulépigenetic changes of latently infected cells.

Another interesting finding of our study is thaveanmental exposures explain a small fraction
of the variance of DNA methylation in healthy adulit odds with the common view that the
epigenome is strongly affected by the environmeatl @nd Fraga, 2012). Twin studies have esti-
mated the heritability of DNA methylation to ranigem ~20-40% (Bell et al., 2012; Grundberg et
al., 2012; van Dongen et al., 2016), suggestingahaironmental effects, along with gene x envi-
ronment interactions, account for the remainin@6@s (Teschendorff and Relton, 2018). However,
other factors, including cellular composition andasurement error, may account for most of the
unexplained variance. Consistently, we estimatatidéllular composition explains >25% of the
variance for ~13% of the DNA methylome, and it baen estimated that measurement error may
explain >50% (Li et al., 2017). Nevertheless, athtion of our study is that perinatal and earyg li
exposures, which are thought to contribute extemgito epigenetic variation in adulthood (Feil and
Fraga, 2012), have not been extensively assessbeMilieu Intérieur cohort. In addition, it has
been hypothesized that gene x environment interasre central to understand the role of epige-
netics in development (Boyce and Kobor, 2015) dbatistical evidence for interaction effects re-
quires larger cohorts (Fleiss, 2011), suggestiagdhr results might represent the small, percepti-

ble fraction of a large number of weak effects (Gaea et al., 2019; Teh et al., 2014). Large, longi-
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tudinal cohorts addressing the developmental wigirdisease are needed to shed new light on the
role of DNA methylation in the interplay betweemgs and the environment.

Collectively, our findings have broad consequerioethe study and interpretation of epigenet-
ic factors involved in disease risk. First, a trofdhe DNA methylome is affected by genetic vari-
ants, some of which are associated with diseakeHEgenetic associations with a given disease or
trait may thus result from the pleiotropic effeofggenetic variants on DNA methylation, which
may confound interpretation. Second, because ageCMV infection, smoking and chronic low-
grade inflammation influence disease risk (Furmtaad.e2019; Mauvais-Jarvis et al., 2020; Niccoli
and Partridge, 2012; Samet, 2013; Savva et al3)20Lr results highlight the critical need to con-
sider such factors in EWAS. Third, our analysearyeshow that the effects of age, CMV
serostatus and CRP levels are largely mediatethbygfained changes in immune cell proportions.
This reinforces the view that EWAS must be intetigulenith caution, particularly when standard
corrections usingstimated cell proportions (Houseman et al., 2012; Koestteal., 2016;
Teschendorff et al., 2017) are incomplete. Thegir@gon of DNA methylation profiling and fine-
grained measurements of immune cell subsets, suttfealata used here, could also help improv-
ing the estimation of blood cell composition frorfR methylation and corrections for cellular
heterogeneity. Finally, our findings highlight thmajor epigenetic impact of aging, persistent viral
infections and inflammation through fine-grainecwbes in blood cell proportions, highlighting
the need to assess the respective role of DNA raibyy and altered cellular composition in the
etiology of disease (Lappalainen and Greally, 200&@)ge-scale studies using single-cell approach-
es will help overcome these challenges, and areigatied to further decode the epigenetic mecha-

nisms underlying healthy aging and the environnmeraases of human disease.
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Figurel. Local and Remote Genetic Control of DNA M ethylation Variation in Whole Blood
(A) Distributions of 5mC levels at 644,517 CpG sitaveraged over 958 donors, across 15 chroma-

tin states.

(B) Distributions of the variance of 5mC leveld¥,517 CpG sites among 958 donors, across 15

chromatin states.

(C) Enrichment in CpG sites associated with locaQWL variants, across 15 chromatin states.

(D) Average Genomic Evolutionary Rate Profiling (&) scores, across 15 chromatin states.

(E) Enrichment of local meQTL variants in diseaséftassociated variants, across 15 chromatin

states.
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(F) Enrichment in CpG sites associated with remm€TL variants, across 15 chromatin states.
(G) Enrichment in remote meQTL variants, acrosstdmatin states.

(H) Number of associated CpG sites per remote nan@riants are annotated based on their clos-
est gene and only one variant per gene is shown.

(I) Network of genes at which CpG sites are assedieemotely witlZNF257 genetic variation.
Green and orange colors denote positive and negetigcts. Bar plots denote the proportion of
CpG sites that overlap with binding sites of theFBR4 TF.

(J) Network of genes at which CpG sites are asgati@motely wittBENP7 genetic variation. Bar
plots denote the proportion of CpG sites that agevith binding sites of the KAP1 TF.

(A-G) Chromatin states were defined in CDwive T cells (Roadmap Epigenomics et al., 2015).
TSS, Fl. and PC denote transcription start sisgkihg and Polycomb, respectively.

(C, F, G) The odds-ratio and 95% ClI are indicatgthle point and error bars, respectively.
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Figure 2. Direct and Cell-Composition-M ediated Effects of Aging on the Blood DNA

Methylome

(A) Total effects against cell-composition-mediagfigcts of age on 5mC levels (50 year effect).
Only CpG sites with a significant total and/or emimposition-mediated effect are shown. Labels
denote genes with strong total or cell-compositieediated effects of age.

(B) Enrichment in CpG sites with significant diredtects of age, across 15 chromatin states.
(C) Distributions of significant direct effects afje, across 15 chromatin states. Numbers on the
right indicate the number of associated CpG siespaoportion of positive effects.

(D) Enrichment of CpG sites with a significant goa, direct effect of age in binding sites for TFs
The 15 most enriched TFs are shown, out of 1,168deTFs.

(E) Genomic distribution of direct age effectstet BCL6B locus.

(F) Number of CpG sites with a significant decreseincreased variance with age.

(G) Increased variance of 5mC levels with age @MAFA locus.
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(H) Increased variance of 5mC levels with age atOBLN1 locus.

(I) P-value distributions for the effect of age on 5ne@dls within six major immune cell types,
compared to the effect of age within neutrophils.

(J) Enrichment of CpG sites with significant cedleposition-mediated effects of age, across 15
chromatin states.

(K) Distributions of significant cell-compositionediated effects of age, across 15 chromatin
states. Numbers on the right indicate the numbessédciated CpG sites and proportion of positive
effects.

(L) Enrichment of CpG sites with significant cetiroposition-mediated, positive effects of age in
binding sites for TFs. The 15 most enriched TFsshvn, out of 1,165 tested TFs.

(B, D, J, L) The odds-ratio and 95% CI are indidatyg the point and error bars, respectively.

(A, C, E, K) Effect sizes are given in the M vakeale.

(G, H) 5mC levels are given in tifjevalue scale.

25


https://doi.org/10.1101/2021.06.23.449602
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.23.449602; this version posted June 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B Cc # % pos. D
7 1965+ i 1536 086 BRD4 | —

. FL TSS - - ——— 5186 078 BCOR 4 -
g Transcr at 5'and 3' - » —— A 465 i JARIDE 4
Strong tmnecy -« Direction —_— 1782 RING1A {
0.51 F Weas transcr. - neg fo—— 4284 PCGF1 4
Ganic anhancers - = *pos —_——— BBS RYBP |

a—

Enhancers - - —ny 5,008 2 EZH2 {phos. T48T) <
88 0.6 ASHIL -
LYLY 4

ZNF ganes - —— —
Helerochromatin g > 215
(— 458 009 Max 4

Bévalen] TES - ] 1
Fl. Bivalent TES - = 1,267 009 KDM2A 4

-

Bivalent Enhancer - ——— H—— 1587 009 sUZ212 4 -
"

"

x
E o
vl

Total effect size
(=]

f
:

i Repressed PG - - —— — 2328 084 PCGF2 4

Weak Reprassed PC - i —— 7910 REBPS 4
-11 . ) ) ) Quinscant - » —<H 31.277 RNF2 4
05 Dﬁ 0.5 1 o 2?2 4 B -04 0D 0.4 246810 14
Mediated effect size Odds ratio Effect size Odds ratio

m
m
@

T

BATFS - | =
LTBP3 BATF-GFP =

NFKBZ - -

Y

BATF - | &
ZNF537 - |m
0.4 NUTMI - (=
ZNF532- |
TPI3-TA- |w

g
o
h

(5]

JUNE
LHX2

PEXd -
- WTHKTS - b Jl‘
““:" .::.L':-': i ARNTL - b
0
-

PGRE - |
65300 65310 65320 65330 246810 14 cMV CMV+ 0.0 0.1 0.2 0.3
Genomic position (kb) Qdds ratio smC levels (LTBP3)
| J = K

ENFa7 et
2 EPAST .
SMAD2-3 - [ » -
SMARCAZ - | b=
1- 2 NFKBZ - [ s
BATFA « | ==

AHRR = |
NOTCHIMNIED - | ——
BRDA - [ =

MEIST - | st

-1 . TSC22D4 - |
HIF2A « [ e
BHLHEZZ - | =
=24 JUNB - [ =
MLL = | v 0

b
(%]

Direct effect size
CDB+ EMRAT cells (%)
2

et

(=]
o

10

%)

NK cells

Tolal effect size
o
w

1 0 1 ? 64812 20 28 Non smoker  Smoker 084 088 092 096
Mediated effect size Odds ratio SmC levels (IL18RAP)

>
Figure 3. Effects of Latent Cytomegalovirus | nfection and Smoking on the Blood DNA
Methylome
(A) Total effects against cell-composition-mediaggfects of latent CMV infection on 5mC levels.
(B) Enrichment in CpG sites with a significant direffect of CMV infection, across 15 chromatin
states.
(C) Distributions of significant direct effects @MV infection across 15 chromatin states. Numbers
on the right indicate the number of associated €jp¢% and proportion of positive effects.
(D) Enrichment of CpG sites with a significant dirgoositive effect of CMV infection in binding
sites for TFs. The 15 most enriched TFs are showunof 1,165 tested TFs.
(E) Genomic distribution of direct effects of CMNeéction at the_ TBP3 locus.
(F) Enrichment of CpG sites with a significant direnegative effect of CMV infection in binding
sites for TFs. The 15 most enriched TFs are shownof 1,165 tested TFs.
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(G) Distributions of the proportion of CDgvra cells in CMV and CMV donors.

(H) 5mC levels at theTBP3 locus against the proportion of CD8eura cells.

() Total effects against cell-composition-mediaggf:cts of smoking status on 5mC levels.

(J) Enrichment of CpG sites with significant dirgmbsitive effects of smoking in binding sites for
TFs. The 15 most enriched TFs are shown, out @5ltdsted TFs.

(K) Distributions of the proportion of NK cells mon-smokers and smokers.

(L) 5mC levels at théL18RAP locus against the proportion of NK cells.

(B, D, F, J) The odds-ratio and 95% CI are indiddig the point and error bars, respectively.

(A, C, E, I) Effect sizes are given in the M vakeale.

(H, L) 5mC levels are given in tiflevalue scale.

(A, I) Only CpG sites with a significant total andtell-composition-mediated effect are shown.
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Figure 4. Effects of Gene x Environment I nteractions on the Blood DNA M ethylome

(A) P-value distributions for significant effects of geype x age, genotype x sex, genotype x ex-
posures and genotype x cell type interactions.ntlmber of significant associations is indicated on
the left. Labels denote genes with strong intevactffects.

(B) Genotype-dependent effect (rs2837990 variairdge on 5mC levels at tlBACE2 locus.

(C) CD8 T cell-dependent effect of the rs12939435 varsmbmcC levels at th€D300A locus.
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Figure5. Best Predictors of the Blood DNA M ethylome of Adults
(A) Complementary cumulative distribution functiohthe out-of-sample variance explained by the

full model, blood cell composition, genetic factargrinsic factors and exposures, for 644,517 CpG

sites.

(B) Complementary cumulative distribution functioithe out-of-sample variance explained by

genetic factors, intrinsic factors, exposures agrkgx environment (G x E) interactions, when con-

ditioning on blood cell composition, for 644,517 &pites.

(C) Proportion of the explained out-of-sample vace of 5mC levels for the 20,000 CpG sites with

the variance most explained by blood cell compasjtgenetic factors, intrinsic factors and expo-

sures, respectively.
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TABLES

DNA . TFBS
Sequence  Chr. Position Closest — eQTL eQTL #CpG Posmvg: TF enrichment

variant gene P-value  direction sites effects (%) [95% CI]
rs77081633 6 136589425BCLAF1 - - 25 48% BCLAF1 7.4 [3.04, 18]
rs11850055 14 105754532 BRF1  1.1x10*  Positive 11 0% BRF1 1011.3 [162.91, 4300]
rs60626639 16 67625797 CTCF - - 22 96% CTCF 16.8 [2.71, 694]
rs11986122 8 10009949 MSRA  1.3x10'" Negative 16 56% - -
rs79755767 12 54698408 NFE2 - - 14 100% NFE2 141 [21.16, 5765]
rs1585215 4 103444474 NFKB1  8.9x10%*  Positive 14 0% NFKB1 59.8 [15.79, 337]
rs12491955 3 101146597 SENP7  4.2x10°%%  Positive 35 9% KAP1 16.3 [6.66, 48]
rs10889104 1  59046496TACSTD2 4.2x10°%  Positive 10 0% - -
rs3809627 16 30103160 TBX6  3.5x10™° Negative 26 31% - -
rs1005278 10 38218748 ZNF25 8.9x10'"!  Positive 10 100% - -
rs10417143 19 22373303 ZNF257 2.8x10’°  Positive 19 16% ZNF534 5.5[0.62, 23]

Table 1. Genetic variantswith multiple, remote effects on the blood DNA methylome. DNA sequence variants that affect 5mC levels atemor
than 10 remote CpG sites can control mMRNA levels wéarby TF or chromatin remodeler, and remotsdpeiated CpG sites caa bnriched in

binding sites for the corresponding TF, or a Tlkted to it. Chr. denotes the chromosome where M €2quence variant is located. e QAL

"9suUd2I| [eUORRWIBIU| 0% AN-DN-AG-DD® Japun a|qe|ieAe
apeuw sl 1| ‘Aunadiad ul uudaid ayy Aejdsip 01 asuadl| B AIxHoIq pajuelh sey oym ‘1spunyoyine ayi si (mainal 1aad Aq pailjiniad jou sem Yyaiym)

value is theéP-value of association between the master variathn@RNA levels of a close gene (V6sa et al., 2028pG sites denote the num

ber of CpG sites remotely associated with the DBduence variant. TFBS stands for TF binding sites.
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Associated CpG sitesAssociated CpG sitesAssociated CpG sites

Factor (total effect) (direct effect) (mediated effect)
age 258,830 144,114 75,301
sex 186,545 126,904 44,667
CMV serostatus 233,014 64,383 217,223
smoking status 7,257 2,416 20,381
log CRP levels 20,043 480 -
log triglyceride levels 4 9 -
years since last cigarette 10 8 -
years of cigarette smoking 0 7 -
surgery 6 6 -
abdominal circumference 1 6 -
log HDL levels 1 3 -
metabolic score 1 3 -
raw fruit consumption 2 2 -
log protein levels 1 2 -
weight 0 2 -
heart rate 76,018 0 -
auricular temperature 59,728 0 -
log CMV IgG levels 52,564 0 -
hour of sampling 38,884 0 -
log glycaemia levels 3 0 -
log chloride levels 2 0 -

Table 2. Number of CpG sites significantly associated with intrinsic factor s and exposures. Out
of 141 tested factors, 20 and 16 have a signifit@at effect (i.e., cell-composition-independent
and cell-composition-mediated effects) or a diedfect (i.e., cell-composition-independent effect)

on the 5mC levels of more than one CpG site, rés@de “log” denotes log-transformation, CMV:

cytomegalovirus, CRP: C-reactive protein, and HBigh-density lipoprotein.
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STAR METHODS
e KEY RESOURCES TABLE

REAGENT or RESOURC SOURCE IDENTIFIER
Biological Sample

Whole blood DNA from 97¢ The Milieu Intérieur cohort,

NCT03905993
healthy donors France
Critical Commercial Assa
Nucleon BACC3 DNA extractio
it Ge Healthcare RPN8512
i
Infinium MethylationEPIC arre  lllumina WG-317-100:
Deposited Dat
Milieu Intérieur MethylationEPIC European Genor-Phenom
) EGASO000XXXXXXX
data Archive
o » European Genon-Phenom

Milieu Intérieur genotype data . EGAS00001002460

Archive
Milieu Intérieur flow cytometry European Genorn-Phenom

EGASO000XXXXXXX

data Archive
Software and Algorithn

R Core Team (2017) R:

language and environment f
R-3.6.0 statistical  computing. F https://www.R-project.org/

Foundation for Statistica
Computing, Vienna, Austria
minfi R package PMID:28035024 https://doi.org/doi:10.18129/B9.bioc.minfi
https://cran -

project.org/web/packages/irlba/index.html

https://cran -

irlba R package

missForest R package PMID: 22039212 project.org/web/packages/missForest/index.ht
ml
sva R package, ComBat functior PMID:16632515 https://rdrr.io/bioc/sva/man/ComBat.html

https://cran -

MatrixEQTL R package PMID:22492648 project.org/web/packages/MatrixEQTL/index
.html
FlowSorted.Blood.EPIC | https://doi.org/doi:10.18129/B9.bioc.Flows
PMID:29843789
package ted.Blood.EPIC

https://cran -
(Stekhoven and Buhlmant

sandwich R package 2012) project.org/web/packages/sandwich/index.h

—

ml
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(Halekoh and Hgjsgaar https://cran-
pbkrtest R package . .
2014) project.org/web/packages/pbkrtest/index.htmi
i https://doi.org/doi:10.18129/B9.bioc.missl!
missMethyl R package PMID: 26424855 hI
nyl

e CONTACT FOR REAGENT AND RESOURCE SHARING
Further information and requests for resourcesiafutmation should be directed to and will be
fulfilled by the Lead Contact, Pr. Lluis Quintana+Mi (Quintana@ pasteurn)fr

e EXPERIMENTAL MODEL AND SUBJECT DETAILS

TheMilieu Intérieur cohort

TheMilieu Intérieur cohort was established with the goal to identéypetic variation and
environmental exposures that affect phenotypesectta the immune system in the adult, healthy
population. The 1,000 healthy donors of kfidieu Intérieur cohort were recruited by BioTrial
(Rennes, France), and included 500 women and 5@0 Daors included 100 women and 100
men from each decade of life, between 20 and 6&y#age. Donors were selected based on
various inclusion and exclusion criteria that aeéaded elsewhere (Thomas et al., 2015). Briefly,
donors were required to have no history or evidericevere/chronic/recurrent pathological
conditions, neurological or psychiatric disordeisphol abuse, recent use of illicit drugs, recent
vaccine administration, and recent use of immundutaory agents. To avoid the influence of
hormonal fluctuations in women, pregnant and pesirapausal women were not included. To
avoid genetic stratification in the study populatithe recruitment of donors was restricted to

individuals whose parents and grandparents wereibdvletropolitan France.

Ethical approvals

The study is sponsored by the Institut PasteutéBatD-RCB Number: 2012-A00238-35) and was
conducted as a single center study without anystiyational product. Thlilieu Intérieur clinical
study was approved by ti@omité de Protection des Personnes — Ouest 6 (Committee for the
protection of persons) on June 13, 2012 and b¥fterchAgence Nationale de Sécurité du
Médicament (ANSM) on June 22, 2012. The samples and dataingéds study were formally
established as thdilieu Intérieur biocollection (study# NCT03905993), with approvaysthe
Comité de Protection des Personnes — Sud Méditerrand the Commission nationale de
linformatique et des libertés (CNIL) on April 12018.
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e METHOD DETAILS

DNA sampling and extraction

Whole blood samples were collected from the 1Ja0eu Intérieur healthy, fasting donors on Li-
heparin, every working day from 8AM to 11AM, fronef@ember 2012 to August 2013, in Rennes,
France. Tracking procedures were established ieracdensure delivery to Institut Pasteur (Paris)
within 6 hours of blood draw, at a temperature leetw18°C and 25°C. Upon receipt, samples were
kept at room temperature until DNA extraction. DWAs extracted using the Nucleon BACC3
genomic DNA extraction kit (GE Healthcare, lllinpldSA). High-quality genomic DNA was
obtained for 978 out of the 1,000 donors.

DNA methylation profiling and data quality controls
Extracted genomic DNA was treated with sodium Wilgu(Zymo Research, California, USA).
Bisulfite-converted DNA was applied to the InfiniuethylationEPIC BeadChip (lllumina,
California, USA), using the manufacturer’s standawdditions. The MethylationEPIC BeadChip
measures 5mC levels at 866,836 CpG sites in thehwanome. Raw IDAT files were processed
with the minfi R package (Fortin et al., 2017). 8dimples showed average detecReralues
lower than 0.005. No sample showed a mean of meg#tylintensity signals lower than 3 standard
deviations from the cohort average. Thus, no sanplre excluded based on detectevalues or
methylated intensity signals. The sex predictethflonC signals on sex chromosomes matched the
declared sex for all samples (Figure S1A). Usirgg38 control SNPs included in the
MethylationEPIC array, a single sample showed kgigimotype discordance with the genome-wide
SNP array data (see ‘Genome-wide DNA genotypinctise) and was thus excluded (Figure S1B).
Unmethylated and methylated intensity signals wereverted to M-values. A total of 2,930 probes
with >1% missingness (i.e., detectiBrvalue > 0.05 for more than 1% of donors) were et
and remaining missing data (missingness = 0.00388t¢ imputed by mean substitution. Using the
irlba R package, Principal Component Analysis (PG®RY values identified nine outlier samples,
including eight that were processed on the sanag #Rigure S1C), which were also excluded. The
“noob” background subtraction method (Triche et2013) was applied on M values for the
remaining 969 samples, which showed highly consisgpigenome-wide 5mC profiles (Figure
S1D,E).

To identify batch effects on the DNA methylatiortalave searched for the factors that were the
most associated with the top 20 PCs of the PCAobrcorrected M values. We used a linear
mixed model that included the proportion of lympytes, age, sex and cytomegalovirus (CMV)

serostatus as fixed effects, and slide positionsamiple plate as random effects. Strong
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associations were observed between the first fQgrdhd slide position and sample plate (Figure
S1F, G). M values were thus corrected for thesebatoh effects using ComBat (Johnson et al.,
2007). After ComBat correction, the ten first P€a & CA of M values were associated with
factors known to affect DNA methylation, includibtpod cell composition, age and sex (Figure
S1H-J), indicating no other, strong batch effectlt@ndata. M-values were converte@tealues,
considering thap = 2 / (2" + 1). Because outlier 5mC values due to measureensr could
inflate the type | error rate of regression modeis excluded, for each CpG site, Mpovalues that
were greater than 5 x standard deviations (SD) ftwrpopulation average, corresponding to
<0.1% of all measures. We also excluded (i) 831889 specific probes that share >90% sequence
identity with several genomic regions (see detnilrice et al., 2013)), (ii) 118,575 probes that
overlap a SNP with MAF>1% in thdilieu Intérieur cohort or in European populations from the
1,000 Genomes project (Auton et al., 2015), (&3 Pprobes that were absent from the lllumina
annotations version 1.0 B4 and (iv) 16,876 probeated on sex chromosomes. As a result, the

final, quality-controlled data was composed of 868ors profiled at 644,51CpG sites.

Flow cytometry

Protocols, panels, staining antibodies and quedtytrol filters used for flow cytometry analyses
are detailed elsewhere (Patin et al., 2018). Bgrigfimune cell proportions were measured using
ten eight-color flow-cytometry panels. The acqiositof cells was performed using two
MACSQuant analyzers, which were calibrated using$@uant calibration beads (Miltenyi,
Germany). Flow cytometry data were generated ugiA@ SQuantify software version 2.4.1229.1.
The mqd files were converted to FCS compatible &ramd analyzed by FlowJo software version
9.5.3. Atotal of 110 cell proportions were expdrieom FlowJo. Abnormal lysis or staining were
systematically flagged by trained experimenters.révidoved outliers by using a scheme detailed
previously (Patin et al., 2018). Briefly, we usedistance-based approach that, for each cell-type,
removes observations in the right tail if the dist&ato the closest observation in the directiothef
mean is larger than 20% of the range of the obtiens Similarly, observations in the left tail vweer
removed if the distance to the closest observatidhe direction of the mean is more than 15%
than the range the observations. We removed 22\@igms in total, including a maximum of 8
observations for a single cell type (i.e., for greportion of neutrophils). Finally, missing datare

imputed using the random forest-based missForgstdRage (Stekhoven and Buhimann, 2012).

Genome-wide DNA genotyping
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Protocols and quality control filters for genomed@/iSNP genotyping are detailed elsewhere (Patin
et al., 2018). Briefly, all the 1,00Qilieu Intérieur donors were genotyped on both the
HumanOmniExpress-24 and the HumanExome-12 BeadQHipsina, California, USA), which
include 719,665 SNPs and 245,766 exonic SNPs, cegply. Average concordance rate between
the two genotyping arrays was 99.9925%. The fias det included 732,341 high-quality
polymorphic SNPs. After genotype imputation andliggtaontrol filters, a total of 11,395,554

SNPs was further filtered for minor allele frequiesc> 5%, yielding a data set composed of 1,000
donors and 5,699,237 SNPs for meQTL mapping. Ten péfirst to third-degree related donors
were detected with KING 1.9 (Manichaikul et al.1B). Out of the 968 donors whose blood

methylome was profiled, 958 unrelated donors we kor subsequent analyses.

e QUANTIFICATION AND STATISTICAL ANALYSIS

Circulatingimmune cells

One of the key questions in this study is whetliggr@nces in 5mC levels observed with respect to
different factors are due to epigenetic changesroiog within cells or if they in fact reflect
changes in cell composition. To answer this questd@ adjusted models on measured proportions
of 16 major subsets of blood: naive, central menj@M), effector memory (EM) and terminally
differentiated effector memory (EMRA) subsets of4££@nd CD8 T cells, CDACDS T cells, B

cells, dendritic cells, natural killer (NK) cellsionocytes, neutrophils, basophils and eosinophils
(Patin et al., 2018). We also investigated whesioene factors affect 5mC levels differently within
cellular subsets. To answer this question, we ddrimnteraction models, where measured cell
proportions interacted with the factor. Since theselels showed inflated variance for small
subsets, we used a reduced set of 7 immune ceb tigo this analysis: CD4nd CD8 T cells,
CD4CDST cells, B cells, NK cells, monocytes and neutréphi

L ocal meQTL mapping

Local meQTL mapping was performed using the Maf@AE R package (Shabalin, 2012).
Association was tested for each CpG site and ebi¢hisa 100-Kb window around the CpG site,
by fitting a linear regression model assuming atlitac allele effect. Models included the set of 16
immune cell proportions (see above) as predicilidiey also included factors we have previously
identified to have a large impact on blood ananritdecular characteristics: a nonlinear age term
encoded by 3 degrees-of-freedom (DoF) natural eplisex, smoker status, ex-smoker status and
CMV serostatus (Patin et al., 2018). We also adiusdr the top two PCs of a PCA of the genotype

data. We did not include more PCs because of thetpulation substructure observed in the
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cohort (Patin et al., 2018). For theh individual and the:th CpG site, ley” be the measured 5mC
levels on the M value scal&NP/" the number of minor alleles of the m:th tested $dtRhe CpG
site andf,;Age(Agei) a nonlinear age term of natural splines with gposding parameter vector
Bage- Moreover, let the vectar; be measurements of the 16 immune cell types éortth

individual andg, be the corresponding parameter vector. The additiele effect of the SNP was

estimated by the paramejgy, in the model,

ylp =pu+ SNleBm + CiTﬁc + fBAge(Agei) + WomaniﬁWoman Eqg. 1
+ ExsmOkeriBExsmoker + SmOkeriBSmoker + CMVi.BCMV

+ PC1;Bpc1 + PC2ifBpcs + &,
Whereg; is a symmetrical zero-mean distribution with canstariance.

Long-range meQTL mapping

Testing all possible associations between 644,53 €ites and 5,699,237 SNPs would require
performing 3,769 billion statistical tests. To reduhe number of tests, long-range meQTL
mapping was conducted on a selection of 50,000 €S with the highest residual variance in the
model described ifqg. 1, but withmindexing in this case the most associated loc& ®iNeach

site. For each of the 50,000 selected CpG sitesherefitted one model per SNP located outside of
a 1-Mb window around the CpG site. For each SNP-BaiG we estimated the additive allele
effect of the remote SNP using the model specifide. 1.

Local and long-range meQTL mapping were adjustedniatiple testing by employing a two-stage
hierarchical procedure designed for the structitesied hypotheses (Peterson et al., 2016).

Consider all performed hypothesis tesis,, ,p = 1,..,N, m, =1,..,M,, whereN is the
number of CpG sites ard, is the number of SNPs considered forptte CpG site, with
corresponding’-values,Pp,mp. Define the family of all hypothesis tests perfedrfor thep:th CpG

site,

Hy = {Hp 1, o, Hypy, |
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For each such family, we tested the intersectigrothesis of no genetic control of 5mC levels at
the CpG site. Th€-value for this hypothesis was computed as thelsstd@onferroni-adjusteB-

value in the set dP-values for the family,

P, = r?nipn {MpPp}mp}.
To adjust for multiplicity due to the number of Cgles, we adjusted thevalue collection
B,,p = 1,..,N by the Benjamini-Hochberg procedure. We considareuhtersection hypothesis to
be rejected if its Benjamini-Hochberg adjuskedalue was below 0.05. L&tbe the number of
rejected intersection hypotheses. In the finalestage performed hypothesis tests for association of
SNPs with 5mC levels of CpG sites under genetidrobn.e., within families with a rejected

intersection hypothesis. We considered a hypothg,g’;% within a selected family to be rejected fif,

N
My By m, < < 0.05.

This procedure controls the false discovery rai2RJfor discovery of CpG sites under genetic
control, the global FDR over all tests and the agerfamily-wise error rate (FWER) over selected
families (Peterson et al., 2016).

Detection of independent remote meQTLs

We designed the following scheme to compute @saftindependently associated remote SNPs for
each CpG site, where all such SNPs are associdtieémC levelsy, at thep:th CpG site
conditional on the most associated local SNP andrd@NPs inb. DefineX; to be the set of SNPs
with a long-range associationgp and letx, be the most associated significant local SNP, if it
exists. The seX; includes many SNPs that are in linkage disequilibr(LD). The algorithm uses
an iterative procedure to build séfg of SNPs, where in thgth iteration, SNPs that are not
associated with 5mC levels at the CpG site conthition SNPs included iM;_, are discarded,
while the most associated is retainedjn In the final step, the sdt is constructed by elements of
M; that are associated with 5SmC levels at the Cp&csinditional on all the other elements.
Intuitively, ® consists of the most associated SNP in each LEKbIthe algorithm is given in
pseudocode iAlgorithm 1, where the conditiof # 0 is determined by an F test on the level

a =105
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Algorithm 1: Forming a set of long-range independently asseti8NPs with a CpG site

If the CpG site is under local genetic control thetrM; = x,, otherwise leM; = @
Repeat foj = 1,2,...

P={x€Xj\M: By #0iny, = u+xPx + Xsem; 2B, + &€ ~ (0,0%)}

If P = @ Exit

Xjy1 =P

Mj.1 = M; U {x:x SNP with the smallef-value inP}

End
= {x € Mj1 \xo: B #0iNYy = U+ xBx + Xsem;,\y 2B + &€ ~ (0,6%)

Epigenome-wide association studies of non-genetic factors

We assessed the effect of 141 non-genetic vari§bédde S1) on the blood methylome of adults.
The measured 5mC levels at a CpG site is an avefabe methylation state of this CpG site in all
cells in the blood sample. Cell composition is kelly to have a strong causal effect on most of the
investigated variables, with few exceptions, swEiCaeactive protein (CRP) levels. However,
many of the 141 candidate variables are likelyhftuence cell composition, which will cause a
corresponding change in 5mC levels. We denoteeffest the “(cell-type-)mediated effect”. In
addition, the variable might alter 5mC levels witindividual cells, or within cell types. We denote
this effect the “direct effect” (See Figure S3H éoschematic directed acyclic graph of the system).
Several important factors are known to have a leffget on blood cell composition in healthy
donors, the most important being age, sex, CMVstatas and smoking (Patin et al., 2018). As an
added complexity, these factors are also assoamdthdnost of the other variables in the study.
Based on this framework, we investigated four qaest each one targeted by a separate statistical
model.

Thetotal effect

The total effect includes both changes in 5mC kireluced by changes in cellular composition
and those induced within cell types. For each éeiaf intereskt and CpG site pair, the total effect
was estimated in a regression model including 5ev€l$ of the CpG site on the M value scale as
response variable and a nonlinear age term of 3 DoF natural splines, G&V serostatus,
smoking status, the most associated significara IBBIP, independently associated remote SNPs

and the two first PCs of the genotype matrix aslipters. In addition, since we noticed variability
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in 5mC levels across days of blood draw, we indud&te of blood draw as a random effect. jLet
be the day of blood draw for ttigth individual. For the:th CpG site, ley” be the 5mC levels of
thei:th individual on the M value scalﬁ;Age(Agei) a nonlinear age term of 3 DoF natural splines
andSNP; a vector of the number of minor alleles of indegemtly associated SNPs with
corresponding parameter vecf . The total effect of the variablewas estimated by the
corresponding paramet@y in the model,
W=+ xp + Sfpage(AgED) + Woman; Byoman + Exsmoker; Beysmoker Eq. 2
+ Smoke?;Bsmoker + CMV; Bemy + PC1;Bpc1 + PC2;Bpc
+ SNP/ Bsnp + DayOfSampling ;) + €,

whereDayOfSampling ;) ~ N(0, 03) andg; ~ (0,0%). Aging was tested by removingand
replacing the non-linear age term with a linear iorieg. 2. The effects of sex, smoking status and
CMV serostatus were tested by removinm Eq. 2. For variables concerning women only (e.qg.,
age of menarche), we excluded men from the anayglsemoved th® oman; By oman t€rM.
Hypothesis tests were performed by the Kenward-Rapgproximation of the F-test for linear

mixed models, implemented in the pbkrtest R packbigégekoh and Hgjsgaard, 2014).

The direct effect
Let the vector; be measurements of the 16 immune cell types @&irtthindividual ands,. be the
corresponding parameter vector. Using the saméiotas for the total effect, the direct effect of

the variabler was estimated bg, in the model,

yip =u+ xiﬁx + CiTBc + fﬁAge(Agei) + WomaniBWoman Eq. 3
+ ExsmOkeriﬁExsmoker + SmOkeTiﬁSmoker + CMVi.BCMV

+ PC1;Bpcy + PC2;Bpcy + SNP] Bsyp + DayOfSampling; + &;.
For age and sex, age and CMV serostatus, and dgamaking status, we also estimated their
interaction effect by including one interactionnteat a time in the model specifiedtq. 3.
Hypothesis tests were performed by the Kenward-Rapgproximation of the F-test for linear

mixed models, implemented in the pbkrtest R packbigéekoh and Hgjsgaard, 2014).

The mediated effect
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We estimated the mediated effect of aging, sexabkes related to smoking and CMV serostatus. It
was estimated as the effect on 5mC levels mediatathanges in proportions of the 16 cell subsets
due to the given factor. Estimates were computeal two-stage procedure. Introduce the vekfor

of covariates: age (an entry for each spline tesa®, smoking, CMV serostatus and ancestry (2
PCs), but excluding the variable of interasfmediated effect of aging was estimated with adin
term), and let; be a vector of measured proportions of the 16tadsets. We fitted two different
groups of models. In the first, measured propostiohimmune cells were response variables. For
the model of thex:th cell type, lef3;’ be the parameter vector for covaridteandp? the

parameter for the variable of interest. tRtdenote then:th entry of the vectar;, the measured
proportion of then:th cell type for the:th individual. For the model of 5mC levels in tievalue

scale at the:th CpG sitey/”, letd, be a parameter for the variable of interest @nando,

parameter vectors for the effects of cell propodiand covariates. To estimate mediated effects of

the variable of interest, we fit the models,

E{c! | x;,ki} = Bo + x; B2 + k] B2, forn = 1,..,16,
and

E{P | x,ci, ki) = 00 + x,0, + cT0, + kT 0.

The mediated effect of on DNA methylation was estimated By, (VanderWeele, 2015).

Inference was done by the parametric bootstrap.

IDOL-adjusted effect

To compute the IDOL-adjusted effect, we estimategprtions of CD4and CD8 T cells, B cells,
NK cells, monocytes and neutrophils by the esti@atlCounts2 function in the
FlowSorted.Blood.EPIC package with IDOL optimizepdCsites (Salas et al., 2018). For age, sex,
smoking status and CMV serostatus, we estimatetDi®é&-adjusted effect by adjusting for these

estimated 6 proportions in the model specifiedely3, instead of the 16 measured proportions.

Detection of the dispersion of DNA methylation with age

To estimate the change in dispersion of 5mC lewéls age, we fit regression models where the
residual variance depends on age.;t.r”ebe methylation levels on the M value scale forttle
CpG site and théeth individual. Using a similar notation as abowe, estimated the dispersion

effect of age by the paramefeim the model,
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yip =u+ xiﬁx + CiTﬁc + SNPiTBSNP + fﬁAge(Agei) + WomaniﬁWoman Eq. 4
+ ExsmOkeriﬁExsmoker + SmOkeriﬂSmoker + CMViﬂCMV

+ PC1;Bpc1 + PC2ifpcy + &,

whereg; ~ N'(0,02), log{ o} = 7 + Age;0. We devised a hypothesis test foby a likelihood ratio
test comparing that model to a model with~ N (0, 62), log{ ¢} =  in Eq. 4. As a sensitivity
analysis, we also fitted a model with~ N'(0,02), log{ o} =t + ¢/ B, + Age;0 in Eq. 4.
Hypothesis test fof in this case was done by comparing to a model ayith A" (0, 6%), log{ o} =
7+ ¢/ B, in Eq. 4. In this analysis, 77,708 CpG sites showed siggifi dispersion with age, 10%

of which showed an increase in dispersion.
Cell-type specific methylation changes
Let y; be 5mC levels measured at a CpG site offs vedue scale for theth individual. Further, let

m! be 5mC levels and measured proportions of th¢h cell type and; a vector of variables of

interest. Expected average 5mC levels over alt oalh be decomposed into,

E{y; | ¢/, ---,CiL,Xi}=ZcilE{m% [ x;}. Eq.5
]

Now assume that the expected valuembidepends linearly on covariates of intepgst
E{m} | x;} = p' + x] 6" Eq. 6
InsertingEq. 6 in EQ. 5 yields

E{Yi|Cil,---,CiL,xi}=Zcfu’+2cile6’ Eq.7
1 1

Now, ¢! are proportions, so

ci=1-)dl. £q 8
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InsertingEg. 8 into Eq. 7 and rearranging gives,

E(il e, clx} =npt +x{6; + ZCf(ul —uh)+ Z cix[(6' — 6",  Eao
=1 1#1

which, by a change of parametars- u!, g = 0,, t* = u* — ut, B = 6' — 6, gives the interaction

model,

E{y;lc},...ct,x}=u+xfp+ Z cl(Th) + z cixl gt Eq. 10

I#1 [#1

We can now interpret the parameters of this maded. intercepj: corresponds to the intercept

level of 5mC levels in a baseline cell type. Theémadfect terms3 andz! are the effects of
covariatesy; on 5mC levels in the baseline cell type and tiffergince in intercept term in thigh

cell type compared to the baseline cell type. lntie interaction parameter vector of interg'st

is the difference in the effect of the covariatasbC levels in th&th cell type compared to the
baseline cell type. Because it is the largest inemell subset in blood, we used neutrophils as
baseline cell type. This model had inflated vareafur very small blood subsets. We therefore used
the reduced set of 7 immune cells in this analys estimated cell-specific effects on 5mC levels

of age, sex and CMV serostatus by using,
xI' = (Age; Sex; CMV).

For cell-specific effects of genetic variants, veed a model that additionally included main effect
terms for aging, sex and CMV serostatus,

By clyoschxiy = wb xl B+ KB+ ) cl@)+ ) clxfpl,  Ean

1#1 1+1

where the vectak; contains age (3 DoF spline term), sex and CMV«tatos, and; = SNP/*, the
minor allele dosage of theth SNP associated with 5mC levels at the CpGfaitéhei:th
individual. Inference was done by Wald tests wighelnoscedasticity-consistent standard errors
estimated by the sandwich R package (Zeileis e2@20). To test the interaction modeldm 10
andEg. 11, we performed simulations of a system like the gpecified inEg. 5 andEqg. 6, except

that the output oEg. 6 was logit-transformed to ensure that it was a priopa We used observed
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cell proportions for the simulations. When we siateti cell-type specific effects of aging in CD8
T cells and NK cells, drawn from a normal distribantwith mean and standard deviation taken
from those estimated for a moderate signal in thinraffect age EWASPyq~ 10°), and zero
effects of aging in the other cells, our model eotlly detected cell-specific age effects in CO8

cells and NK cells, but not in the other cells (FigS3l).

Detection of gene x environment inter actions

We tested whether age, sex, CMV serostatus, smakatgs and CRP levels could have a different
effect on the methylome depending on genotypestheirth individual, letSN P* be minor allele
dosages of SNPs associated with 5mC levels at:theCpG site in the M value scalg, and letc;

be a vector of measured proportions of blood sshsih corresponding parameter veggpr
Interaction effects for each variable of interesd aach associated SNP were estimated for each

CpG site in the model,

E{y? | SNP}, ..., SNPY, Age, Woman;, Smoker;, CMV;} Eq 12
=u+ z SNP}*Bsypn + ¢ Be + PC1;Bpc1 + PC2;Bpc;
n

+ AgeiﬁAge + WomaniﬂWoman + SmOkeriﬁSmoker + CMI/iBCMV

+ Z SNP! (AgeiGXge + Woman,; 00, man + Smoker;08, o rer
n

+ CMV;60yy).

We investigated CRP in a separate model that siaghded corresponding log-transformed CRP
terms toEg. 12. Inference was done by Wald tests with heterost®ilg-consistent standard errors

estimated by the sandwich R package (Zeileis £2@20).

Estimation of proportions of explained 5mC variance

According to our analyses, 5mC levels in the pdjrieare mainly associated with local genetic
variation, blood cell composition, age, sex, smgki@MV infection and CRP levels. We grouped
these variables into 4 groups: genetic, cell coritipos intrinsic and exposures. For a particular
CpG site and théeth individual, we collected observations of the aniallele dosage for the most

associated local SNP &Y, proportions of the 16 major cell types in thetveef, intrinsic factors

(sex and natural spline expanded values of agiginectorr/™ and exposures (smoking status,
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CMV serostatus and log-transformed CRP levelshénviector., with corresponding parameter
vectorsfy, B, Bin andg,.. We interpret log-transformed CRP levels as ayrogasure of the

exposure of chronic low-grade inflammation. Forlegmoup, we define the linear predictor terms:

fo(x!) = 7By, Eq 13
£G) = (OB, £q. 14
fin (™) = (") B, £q. 15
£ = ()T B Eq. 16

These functions vary in complexity, so to get a é@mparison between them, we estimated group
effect sizes as the out-of-sample proportion oiarexe explained by each group predictor. This
estimation is done by indexing samples into twgodis index groupd; andl,, fitting the model on
samples froni,, and evaluating the prediction accuracy on sanfpdes/,.

Let y; be 5mC levels at a CpG site on the M value sGaleompute théotal effect of each groum

on CpG methylation, we first fit the predictor faion in individuals indexed tf,
fux) =0+ M B i €1 Eq. 17

with parameters estimated by least squares,

@ B = argmin, g E(yi —u-— fn(xi”))z. Eq. 18

iel,

We can then define thetal effect size for groupn as the squared correlation between observations

and the out-of-sample prediction,

N 2 Eq. 19
(R}Y)2 = cor (yj,fn(xj")) ,j €1 q
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For groups other than the cell composition group also computed direct effect. For each group,
it was computed as the added out-of-sample prapodi variance explained when adding the

group predictor term to that of the cell compositgroup. The effect was computed for grauby
(Rg)z — (Ry’llb_l_zc)z _ (Rg’ot)z Eqg. 20

Where(R}%'.)? is the total effect of the predictor including bafroupn and proportions of cell

types
fon O xE) = A4 X Bp + (TB.. Eq. 21

To mitigate the impact of sampling on estimatetotai anddirect effects, we did four independent
repeats of fivefold cross-validation and averadpddffect sizes across all 20 drawn samples. To
have an unbiased estimation of the out-of-sampiaeed variance, we redid a local meQTL
mapping on the training set in each iteration eft¢hoss-validation scheme. The algorithm for

drawing samples of the total effect is detailedligorithm 2.

Algorithm 2: Cross-validation for estimating out-of-sample graotal effect size

Repeat 4 times:

Fork = 1,..,5

Index a fifth of individuals a#,, the others are indexed R

Select SNP for the predictgy by performing a local meQTL mapping on individuiald, ,
For predictotf,, € {fy, for fins f2}

Estimatef,, by Eq. 17 andEq. 18 with I, = I,

Compute(R°)? by Eq. 19 with I, = I,

Finally, we computed an effect size for interactitbetween genetic and non-genetic factors. It was
computed, similar t&qg. 20, as the added out-of-sample proportion of varianqeained by the

regression function,
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fix(Age;, Woman;, CMV;, ExSmoker;, Smoker;, CRP;) Eq. 22
= U+ SNP;Bsnp + AgeiﬂAge + Woman; By oman + CMV;Bemy
+ ExSmoker;Brxsmoker + Smokerifsmoker + l0g(CRP)Pcrp
+ SNP,(AgeiBige + WomanBijgman + CMViBny

+ ExsmOkeriﬂgJIcvgmoker + SmOkeriﬁgrlr\{gker + lOg (CRPi)ﬂgII?V}I‘J)J
compared to the same regression function withdataaction terms:

fisain(Age;, Woman,;, CMV;, ExSmoker;, Smoker;, CRP;) Eq. 23
= U+ SNP;Bsnp + AgeiBage + Woman; By oman + CMV; Loy
+ ExsmOkeriBExSmoker + SmOkeriBSmoker + log (CRPi)ﬂCRP-

Biological annotations

Information about the position, closest gene an@ @pnsity of each CpG site was obtained from
the lllumina EPIC array manifest v.1.0 B4. We etgd the chromatin state of regions around each
CpG site, using the 15 chromatin states inferred ®hromHMM for CD4 naive T cells by the
ROADMAP Epigenomics consortium (Roadmap Epigenoratcsl., 2015). We used CDdaive T
cells as a reference because it is a large, relathomogeneous subset of cells that are less
differentiated than memory cells. We obtained simiesults when using other cell subsets as
reference (data not shown). The data was downlofrdedthe consortium webpage
(https://egg2.wustl.edu/roadmap/web_portal/chr_steéening.htm). The transcription factor

binding site data used was public CHIP-seq dateateld and processed for the 2020 release of the
ReMap database (Cheneby et al., 2020), includiogghof 1,165 TFs. Binding sites include both
direct and indirect binding. Enrichment analysesengerformed by creating a simple two-way

table for each target set and TF, and then perfayriFisher’s exact test. Gene ontology
enrichments were computed with the gometh funatdhe missMethyl R package (Phipson et al.,
2016).

We tested if a set of local or remote meQTL SNPs is enriched in diseas&ait-associated

variants, by sampling at random, among all testéBsS 15,000 sets af SNPs with minor allele
frequencies matched to those of meQTL SNPs. Fdr emampled set, we calculated the

proportion of variants either known to be assodiatéh a disease or trait, or in linkage

disequilibrium (LD; set here 5 > 0.6) with a disease/trait-associated vari@adlue < 5x10%
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EBI-NHGRI Catalog of GWAS hits version €100 r2021-1). The enrichmerR-value was
estimated as the percentage of resamples for vihiglproportion was larger than that observed in
meQTL SNPs. LD was precomputed for all 5,699,23PSWith PLINK 1.9 (with arguments ‘—
show-tags all-tag-kb 500-tag-r2 0.6’) (Chang et24115).

e DATA AND SOFTWARE AVAILABILITY
The Infinium MethylationEPIC raw intensity data lkdyeen deposited at the European Genome-

phenome Archive (EGAjttps://www.ebi.ac.uk/egpinder accession number

EGASO000XXXXXX. Data access applications are reddwy a data access committee (DAC)
and access is granted if the request is consisimthe consent provided ilieu Intérieur
participants. All association statistics obtainedhis study (i.e., local meQTL mapping, the 141
EWAS and interaction models) can be explored anehttiaded from the web browser

hub05.hosting.pasteur.frfMIMETH_browseMI the code supporting the current study hasbee

uploaded to GitHubhttps://github.com/JacobBergstedt/mimeth
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SUPPLEMENTAL INFORMATION

The supplemental PDF includes 6 supplemental figure

Supplemental tables are provided as 6 separatéféese

Table S1. Candidate intrinsic and environmental factorsegd$or association with the blood DNA
methylome of adults.

Table S2. Summary statistics for significant remote-effectQiés.

Table S3. Significant enrichments of variable-associated Gpés in binding sites for transcription
factors (TFs).

Table $4. Significant gene ontology enrichments of geneseclo variable-associated CpG sites.
Table S5. CpG sites significantly associated with two intireg variables.

Table S6. Proportions of variance explained by intrinsictéas, exposures, cell composition and

local SNPs for the 10,000 CpG sites with the meptaned variance.
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