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Many intrinsically disordered proteins (IDPs) may undergo liquid-

liquid phase separation (LLPS) and participate in the formation of

membraneless organelles in the cell, thereby contributing to the reg-

ulation and compartmentalisation of intracellular biochemical reac-

tions. The phase behaviour of IDPs is sequence-dependent, and its

investigation through molecular simulations requires protein mod-

els that combine computational efficiency with an accurate descrip-

tion of intra- and intermolecular interactions. We developed a gen-

eral coarse-grained model of IDPs, with residue-level detail, based

on an extensive set of experimental data on single-chain proper-

ties. Ensemble-averaged experimental observables are predicted

from molecular simulations, and a data-driven parameter-learning

procedure is used to identify the residue-specific model parameters

that minimize the discrepancy between predictions and experiments.

The model accurately reproduces the experimentally observed con-

formational propensities of a set of IDPs. Through two-body as well

as large-scale molecular simulations, we show that the optimization

of the intramolecular interactions results in improved predictions of

protein self-association and LLPS.
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Many intrinsically disordered proteins (IDPs) and proteins1

with disordered regions can condense into liquid-like2

droplets, viz. a biomolecule-rich phase coexisting with a more3

dilute solution (1–5). This de-mixing process is known as4

liquid-liquid phase separation (LLPS) and is one of the ways5

cells compartmentalise proteins, often together with nucleic6

acids (6). While LLPS plays crucial biological roles in the cell,7

its dysregulation leads to maturation of biomolecular conden-8

sates into hydrogel-like assemblies, promoting the formation of9

neurotoxic oligomers and amyloid fibrils (5, 7). A quantitative10

model for the ‘molecular grammar’ of LLPS, including the in-11

fluence of disease-associated mutations and post-translational12

modifications (PTMs) on the propensity to phase separate,13

is key to understand these processes. The sequences of IDPs14

and intrinsically disordered regions that easily undergo LLPS15

are often characterized by stretches enriched in small polar16

residues (spacers) interspersed by e.g. aromatic or arginine17

residues (stickers), which are instrumental for the formation18

of reversible physical cross-links via π-π, cation-π and sp2-π19

interactions (8–12). Y and R residues were shown to be nec-20

essary for the LLPS of a number of proteins including FUS,21

hnRNPA1, LAF-1 and Ddx4 (8, 10, 11, 13–17). While the22

propensity to undergo LLPS increases with the number of Y23

residues in the sequence, recent studies have revealed that24

the role of R residues is context dependent (16) and strongly25

affected by salt concentration (17), reflecting the unusual char-26

acteristics of the R side chain (18, 19). 27

Here, we present the development of a coarse-grained (CG) 28

model capable of predicting the phase behaviour of IDPs based 29

on amino acid sequence. CG models enable the combination 30

of a sequence-dependent description with the computational 31

efficiency necessary to explore the long time and large length 32

scales involved in phase transitions (11, 20, 21). Although 33

CG molecular simulations have been employed to explain 34

the sequence dependence of the LLPS of a number of IDPs 35

(11, 15, 17, 20–22) as well as the effect of phosphorylation on 36

LLPS propensities (23, 24), such models have proven difficult 37

to use to predict the phase behaviour of very diverse sequences 38

(25). Building on recent developments, including experimen- 39

tal phase diagrams of a number of IDPs (3, 4, 15, 16), we 40

trained and tested a robust sequence-dependent model of the 41

LLPS of IDPs. In particular, due to the similarity between 42

intramolecular interactions within IDPs and intermolecular 43

interactions between IDPs (12, 26), we rationalized that by 44

optimizing a model to capture structural preferences for a 45

broad set of monomeric IDPs, we could obtain a good model 46

for interactions between IDPs. 47

The starting point for our analyses is the hydrophobicity 48

scale (HPS) model (21) (with minor modification; see SI Ap- 49

pendix) wherein, besides steric repulsion and salt-screened 50

charge-charge interactions, residue-residue interactions are de- 51

termined by hydropathy parameters (λ) which were derived 52

from the atomic partial charges of a classical all-atom force 53

field (27). Recently, the development of the HPS-Urry model 54

(28) presented substantial improvements in accuracy over the 55

original HPS model. These were achieved using a hydropho- 56

bicity scale derived from transition temperatures of elastin-like 57

peptides (29), and further shifting the λ parameters by -0.08 58

to improve agreement with experimentally measured radii of 59

gyration. 60

To address the current limitations, we improve upon these 61

models by optimizing the λ parameters through a Bayesian 62

parameter-learning procedure (30–33), leveraging as prior 63

knowledge the probability distribution of the λ parameters eval- 64

uated from analysing 87 hydrophobicity scales. The training 65

set comprises SAXS and paramagnetic relaxation enhance- 66

ment (PRE) NMR data of 45 IDPs which we selected from 67

the literature. First, we run Langevin dynamics simulations 68
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Fig. 1. Assessing the HPS, AVG and HPS-Urry models using experimental data reporting on single-chain conformational properties. (A) Probability distributions of the

λ parameters calculated from 87 min-max normalized hydrophobicity scales. Lines are the λ parameters of the HPS model (blue), the average over the hydrophobicity

scales (orange) and the HPS-Urry model (green) (28). Intramolecular PRE intensity ratios for the S43C mutant of α-Synuclein (B) and the S243C mutant of A2 LCD (C)

from simulations and experiments (22, 37) (black). (D) χ2 values quantifying the discrepancy between simulated and experimental intramolecular PRE data, scaled by the

hyperparameter η = 0.1 (Materials and Methods). (E and F ) Relative difference between simulated and experimental radii of gyration for proteins that do not readily undergo

phase separation alone (E) and for variants of A1 LCD (F ), with negative values corresponding to the simulated ensembles being more compact than in experiments.

of single IDPs and estimate the experimental observables69

using state-of-the-art methods (34). Second, we employ a70

Bayesian regularization approach to prevent over-fitting the71

training data and select three models which are equally ac-72

curate with respect to single-chain conformational properties.73

Third, through two-chain simulations, we validate the mod-74

els by comaparing predicted and experimental intermolecular75

PRE NMR data for the low complexity domain (LCD) of76

the heterogeneous nuclear ribonucleoprotein (hnRNP) A2 (A277

LCD) (22) and the LCD of the RNA-binding protein fused78

in sarcoma (FUS LCD) (23). Fourth, we perform coexistence79

simulations to test the models against the phase behaviour80

of A2 LCD (22, 24), FUS LCD (35, 36), variants of hnRNP81

A1 LCD (A1 LCD) (15, 16), the N-terminal region of the82

germ-granule protein Ddx4 (Ddx4 LCD) (8, 10, 13) and the83

N-terminal, R-/G-rich domain of the P granule protein LAF-184

(LAF-1 RGG domain). We use the final model to provide85

insight into the interactions between IDPs within condensates86

and to help elucidate the role of different amino acids to the87

driving force for LLPS.88

Results and Discussion89

Analysis of Hydrophobicity Scales. The λ values of the origi-90

nal HPS model are based on a hydrophobicity scale derived91

by Kapcha and Rossky from the atomic partial charges of92

the OPLS all-atom force field (27). Dozens of amino acid93

hydrophobicity scales have been derived from experimental94

as well as bioinformatics approaches such as the partitioning95

of amino acids between water and organic solvent, the parti-96

tioning of peptides to the lipid membrane interface and the97

accessible surface area of residues in folded proteins (38, 39). 98

To carry out the Bayesian optimisation of the amino-acid 99

specific λ values, we sought to estimate the prior probability 100

distribution of the hydropathy parameters from the analysis of 101

98 hydrophobicity scales collected by Simm et al. (39). Each 102

scale was min-max normalized and, after ranking in the ascend- 103

ing order of the HPS scale, we discarded all the scales yielding 104

a linear fit with negative slope. This procedure allowed us 105

to identify scales which were present in the set both in their 106

original form and as the additive inverse of the hydropathy 107

values (reversed scales). For most scales, the selection criterion 108

resulted in discarding the reversed form. However, for scales 109

where the most negative values of the hydropathy parameter 110

Fig. 2. Flowchart illustrating the Bayesian parameter-learning procedure (Materials

and Methods).
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Fig. 3. Selection and performance of the M1–3 models with respect to the training data. (A) Overview of the optimal λ sets with ηχ2

P RE < 21 and χ2

Rg
< 3 collected

through the parameter learning procedures started from λ0 =AVG (up triangles), M1 (squares) and M2 (down triangles). The gray gradient shows the Spearman’s correlation

coefficient between experimental and simulated Rg values for the A1 LCD variants in the training set. Colored open symbols indicate the M1 (blue up triangle), M2 (orange

square) and M3 (green down triangle) scales whereas the adjacent values are the respective Spearman’s correlation coefficients. (B) Covariance matrix of the λ sets with

ηχ2

P RE < 21 and χ2

Rg
< 3. (C) M1 (blue), M2 (orange) and M3 (green) scales. Solid lines are guides for the eye whereas the gray shaded area shows the mean ±2SD of

the λ sets with ηχ2

P RE < 21 and χ2

Rg
< 3. (D–E) Comparison between (D) ηχ2

P RE and (E) χ2

Rg
values for the HPS model (gray) and the optimized M1 (blue), M2

(orange) and M3 (green) models.

correspond to the most hydrophobic amino acids—such as the111

scales by Bull and Breese (40), Guy (41), Bishop et al. (42)112

and Welling et al. (43)—we retained only the reversed form.113

The 87 scales that remained after this filtering were used to114

calculate the average scale (AVG) and the probability distri-115

bution of the λ values for the 20 amino acids, P (λ), which is116

normalized so that
∑

aa

∫ λaa=1

λaa=0
P (λaa) dλaa = 20 (Fig. 1A).117

For the optimization described below we use the AVG scale as118

starting point, as well as an indication of the typical accuracy119

obtained from the prior knowledge encoded in P (λ).120

We assessed the HPS, HPS-Urry and AVG parameter sets121

by running simulations of 45 IDPs ranging in length between122

24 and 334 residues and compared the results against exper-123

iments. Specifically, we compared the simulations with the124

radii of gyration, Rg, of 42 IDPs (Tab. S1) and intramolecular125

PRE data of six IDPs (Tab. S2) (16, 22, 23, 37, 44–57). Com-126

pared to the AVG scale, the HPS model overestimates the127

compaction of α-Synuclein whereas it closely reproduces the128

PRE data for A2 LCD (Fig. 1B and C ). In general, the HPS129

model accurately predicts the conformational properties of130

sequences with high LLPS propensity, e.g. FUS LCD, A2 LCD131

and A1 LCD (Fig. 1D and F), while the AVG scale is consid-132

erably more accurate at reproducing the Rg of proteins that133

do not readily undergo phase separation alone (Fig. 1E). The134

recently proposed HPS-Urry model (28) is the most accurate135

at predicting the intramolecular PRE data while it shows in-136

termediate accuracy for the Rg values of both proteins that do137

not readily undergo phase separation alone and A1 LCD vari-138

ants. The HPS-Urry model in particular differs significantly139

from the HPS and AVG models for the λ parameters for R140

and E as well as the reversal of the order of hydrophobicity of 141

Y and F (Fig. 1A). 142

Optimization of Amino-Acid Specific Hydrophobicity Values. 143

To obtain a model that more accurately predicts the confor- 144

mational properties of IDPs of diverse sequences and LLPS 145

propensities, we trained the λ values on a large set of experi- 146

mental Rg and PRE data using a Bayesian parameter-learning 147

procedure (30) shown schematically in Fig. 2 (Materials and 148

Methods). We initially performed an optimization run starting 149

from the AVG λ values and setting the hyperparameters to 150

θ = η = 0.1 (Fig. S1A). We collected the optimized sets of 151

λ values which yielded ηχ2

P RE < 21 and χ2

Rg
< 3 (circles in 152

Fig. 3A). The optimization was repeated starting from all 153

λ = 0.5 to assess that the parameter space sampled by our 154

method is independent of the initial conditions (Fig. S2A and 155

S1D). Thus, while we used the AVG model as starting point, 156

our final parameters only depend on P (λ) via its use as the 157

prior in the Bayesian optimization. 158

From the pool of optimized parameters, we selected the 159

λ set which resulted in the largest Spearman’s correlation 160

coefficient (ρ = 0.78) between simulated and experimental Rg 161

values for the A1 LCD variants. We base this final selection 162

of the optimal λ set on the Spearman’s correlation coefficient 163

of the A1 LCD variants because we expect that capturing 164

the experimental ranking in chain compaction will result in 165

accurate predictions of the relative LLPS propensities (15, 166

16, 20, 58, 59). Further, the systematic mutagenesis studies 167

enable us to more clearly decouple the parameters for Y-vs-F 168

and R-vs-K (15, 16). We note that while this selection uses 169
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only the A1 LCD variants, all three parameter sets result in170

good agreement with the full PRE and Rg data set (Fig. 3A).171

The selected model, referred to as M1 hereafter, is the start-172

ing point for two consecutive optimization cycles (Fig. S1B)173

which were performed with a lower weight for the prior174

(θ = 0.05), yielding a new pool of optimized parameters175

(squares in Fig. 3A) and model M2 (largest ρ = 0.75). To176

generate a third model, we further decreased the confidence pa-177

rameter to θ = 0.02 and performed an additional optimization178

run starting from M2 (Fig. S1C ). From the collected optimal179

parameters (triangles in Fig. 3A), we selected M3 (largest180

ρ = 0.73). As shown in Fig. 3B, the optimal λ values collected181

through the four independent optimization runs (Fig. S1A–182

D) are weakly intercorrelated. The covariance values range183

between -0.015 and 0.015 for most amino acids, with the ex-184

ception of the standard deviations of N, C, T, M, W, and185

I. C, M, W, and I are among the least frequent amino acids186

in the training set (Fig. S3) and, unsurprisingly, we observe187

the largest covariance values for C-W (0.017), C-M (-0.02)188

and C-I (-0.016). Fig. 3C shows that M1–3 fall within two189

standard deviations (SDs) above and below the mean of the λ190

values yielding ηχ2

P RE < 21 and χ2

Rg
< 3 (gray shaded area).191

Despite their differences, M1–3 fit the training data equally192

accurately and result in an improvement in χ2

P RE and χ2

Rg
of193

∼30% and ∼95% with respect to the HPS model, respectively194

(Fig. 3D and E).195

Notably, the optimization procedure captures the sequence196

dependence of the chain dimensions (Fig. 4) and results in197

accurate predictions of intramolecular PRE data for both198

highly soluble IDPs and proteins that more readily phase199

separate (Fig. S4B–D and Fig. S5–S10), as well as in radii of200

gyration with relative errors −14% < ∆Rg / Rg,exp < 12%201

(Fig. S4E and F). Besides reproducing the experimental Rg202

values for the longer chains with high accuracy, the optimized203

models also capture the differences in Rg and scaling exponents,204

ν, for the variants of A1 LCD (Fig. 4B and S11). The lower205

Pearson’s correlation coefficients observed for ν, compared to206

the corresponding Rg data, may originate from the different207

models used to infer ν from SAXS experiments and simulation208

data, i.e., respectively, the molecular form factor method209

(16, 52) and least-squares fit to long intramolecular pairwise210

distances, Rij , vs |i − j| > 10 (60) (Fig. S12).211

To assess the impact of phase separating proteins on the212

optimized models, we perform an optimization run wherein the213

A1 LCD variants are removed from the training set. The major 214

difference between the resulting optimal λ set and models M1– 215

3 is the considerably smaller values for R and Y residues 216

(Fig. S2C ). Indeed, the large λ values for R and Y residues in 217

M1–3 relative to the HPS, AVG and HPS-Urry models, is a 218

striking feature which resonates with previous experimental 219

findings pointing to the important role of R and Y residues in 220

driving LLPS (8, 14–16, 22, 61, 62). 221

To identify the hydrophobicity scales which most closely 222

resemble M1–3, we construct a dendrogram (Fig. S13) com- 223

plementing the 87 scales retained from the set by Simm et 224

al. (39) with the Urry, Kapcha-Rossky and M1–3 scales, and 225

using average linkage-based hierarchical clustering and Eu- 226

clidean distances as the metric. This analysis reveals that the 227

hydrophobicity scales by Urry et al. (29), Bishop et al. (42), 228

Wimley and White (63) and the membrane protein surround- 229

ing hydrophobicity scale by Ponnuswamy and Gromiha (64) 230

are those with greatest similarity to M1–3. These scales, which 231

are characterized by a λ value for the R residue above the 80% 232

quantile, are possibly the best of the unmodified scales for the 233

properties that we optimized M1–3 to reproduce. 234

Testing Protein-Protein Interactions. To test whether the pa- 235

rameters trained on single-chain conformational properties 236

are transferable to protein-protein interactions, we compared 237

experimental intermolecular PRE rates, Γ2, of FUS LCD and 238

A2 LCD (22, 23) with predictions from two-chain simulations 239

of the M1–3 models performed at the same conditions as the 240

reference experiments. Intermolecular Γ2 values were obtained 241

from solutions of spin-labeled 14N protein and 15N protein 242

without a spin-label in equimolar amount and report on the 243

transient interactions between a paramagnetic nitroxide probe 244

attached to a cysteine residue of the spin-labeled chain and 245

all the amide protons of the 15N-labeled chain. We carried 246

out the calculation of the PRE rates using DEER-PREdict 247

(34), assuming an effective correlation time of the spin la- 248

bel, τt, of 100 ps and fitting an overall molecular correlation 249

time, τc, within the interval 1 ≤ τc ≤ 20 ns. In agreement 250

with experiments, Γ2 values predicted by the M1–3 models 251

are characterized by no distinctive peaks along the protein 252

sequence (Fig. 5A–E), which is consistent with transient and 253

non-specific protein–protein interactions. Notably, while PRE 254

rates for FUS LCD are of the same magnitude for all spin- 255

labeled sites, the A2 LCD presents larger Γ2 values for S99C 256

than for S143C indicating that the tyrosine-rich aggregation- 257

prone region (residues 84–107) is involved in more frequent 258

intermolecular contacts with the entire sequence. The discrep- 259

ancy between predicted and experimental intermolecular PRE 260

data, χ2

P RE , varies significantly as a function of τc (Fig. 5F– 261

G). For both FUS LCD and A2 LCD, the optimal τc is larger 262

for M1 than for M3, which suggests that the latter has more 263

attractive intermolecular interactions. While for M1 the mini- 264

mum of χ2

P RE is at τc = 17 ns for both proteins, for M3 the 265

optimal τc value is ∼ 8 ns smaller for FUS LCD than A2 LCD. 266

Although the accuracy of τc is difficult to assess in the case of 267

transiently interacting IDPs, this large difference in τc (Fig. 268

5) suggests that the protein-protein interactions predicted for 269

FUS LCD by M3 may be overly attractive. 270

To quantify protein-protein interactions with the optimized 271

models, we calculated second virial coefficients, B22, from 272

two-chain simulations (SI Appendix). The net interactions are 273

attractive for both the sequences (B22 < 0), and considerably 274
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Fig. 5. Testing the M1–3 models using experimental findings on protein-protein interactions. (A–E) Comparison between experimental (black) intermolecular PRE rates

(Tab. S3) and predictions from the M1 (blue), M2 (orange) and M3 (green) models for FUS LCD (A–C) and A2 LCD (D–E) calculated using the best-fit correlation time, τc.

(F–G) Discrepancy between calculated and experimental intermolecular PRE rates χ2

P RE as a function of τc. (H) Second virial coefficients, B22, of FUS LCD (circles) and

A2 LCD (squares) calculated from two-chain simulations of the M1–3 models. Error bars are SEMs estimated by bootstrapping 1,000 times 40 B22 values calculated from

trajectory blocks of 875 ns. (I) Probability of the bound state estimated from protein-protein interaction energies in two-chain simulations of the M1–3 models. (L) Dissociation

constants, Kd, of FUS LCD (circles) and A2 LCD (squares) calculated from two-chain simulations of the M1–3 models. For pB and Kd, error bars are SDs of ten simulation

replicas. Lines in H and L are guides to the eye.

stronger for A2 LCD than for FUS LCD. As expected from the275

λ values and amino acid compositions, M3 presents the most276

negative B22 values (large λ values for Q, G and P), followed277

by M2 and M1 (Fig. 5I ).278

To test whether predictions of protein self-association by279

M1–3 are sequence dependent, we compared the probability of280

finding proteins in the bound dimeric state, pB , in simulations281

of α-Synuclein, p15PAF, full length tau (ht40), A2 LCD and282

FUS LCD performed at the solution conditions of the reference283

experimental data (37, 50, 65) (SI Appendix). In agreement284

with experimental findings, we find that the highly soluble285

α-Synuclein, p15PAF and ht40 proteins do not self-associate286

substantially in our simulations, whereas A2 LCD and FUS287

LCD have pB ∼4% and ∼1%, respectively. We further esti-288

mated the dissociation constants of A2 LCD and FUS LCD289

using Kd = (1−pB)2/(NApBV ) and Kd = 1/(NApB(V −B22))290

self-consistently (66), where NA is Avogadro’s number (SI Ap-291

pendix, Fig. 5L and S14).292

Testing LLPS propensities. To test the ability of the models293

to capture the sequence-dependence of LLPS propensity, we294

performed multi-chain simulations in a slab geometry and295

calculated protein concentrations of the coexisting condensate,296

ccon, and dilute phase, csat. We compared our simulation297

results to an extensive set of sequences which have been shown298

to undergo LLPS below an upper critical solution temperature299

(UCST), namely FUS LCD (23, 35, 36), A2 LCD (22, 24), the300

NtoS variant of A2 LCD (24), LAF-1 RGG domain (11, 67– 301

69), as well as variants of A1 LCD (15, 16) and Ddx4 LCD 302

(8, 10, 13). From simulations of the optimized models at 37◦C, 303

we observed that, for a number of sequences in the test set, 304

the predicted csat values are too low to allow for converged 305

estimates from µs-timescale trajectories (Fig. S15). Conversely, 306

the least LLPS-prone variants of Ddx4 LCD yielded one-phase 307

systems when simulated at 37◦C using HPS-Urry and M1–3 308

models. Thus, to be able to estimate converged csat values 309

(Fig. S16, S17 and S18), simulations were carried out at 50◦C, 310

except for the HPS-Urry model which we simulated at 24◦C 311

(Tab. S4). The FtoA and RtoA variants of Ddx4 LCD were also 312

simulated at 24◦C using the M1–3 models as in simulations of 313

the same systems at 50◦C we only observed a single phase. 314

Simulations using M1 at 50◦C most closely recapitulate 315

the experimental trend in csat across the diverse sequences 316

(Fig. 6A, D and G) and reproduce the reference ccon and csat 317

values measured at room temperature. Conversely, HPS over- 318

estimates the relative LLPS propensity of FUS LCD, whereas 319

simulations using HPS-Urry at 24◦C show deviations of about 320

an order of magnitude from the reference csat values for A2 321

LCD, Ddx4 LCD, A1 LCD and FUS LCD. Regarding the 322

LAF-1 RGG domain, all of the models overestimate by at 323

least a factor of ∼5 the experimental ccon (68, 69), whereas 324

M1 reproduces within a factor of ∼2 the experimental csat 325

value from temperature-dependent turbidity measurements 326

(11), both for the WT and for variants with randomly shuffled 327
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symbols), 37◦C (crosses in (H)) and 24◦C (open symbols). Red open squares show experimental measurements at ∼24◦C (A, D, C and F ) and ∼4◦C (B and E). (G and H)

Correlation between log
10

(csat/M) from simulations and experiments for diverse sequences (G) and A1 LCD variants (H). Solid lines show linear fits to the simulation data

at 50◦C. Dashed lines show linear fits to the HPS-Urry data at 24◦C (G and H) and to the M1–3 data at 37◦C (H). Values reported in the legends are Pearson’s correlation

coefficients. Error bars are SEMs of averages over blocks of 0.3 µs. We note that the correlation coefficients reported in G are associated with a substantial uncertainty as they
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sequence (LAF-1 shuf) and without residues 21–30 (LAF-1328

∆21–30) (Fig. S19). Although M1–3 fit the training data329

equally well, the prediction of LLPS propensities for the di-330

verse sequences in Fig. 6A and D differ considerably, with331

Pearson’s correlation coefficients between simulation and ex-332

perimental log10 (csat) values ranging from 0.67 for M1 to 0.14333

for M3 (Fig. 6G). The discrepancy is particularly evident for334

the Ddx4 LCD and FUS LCD which are rich in N and Q335

residues, respectively, i.e., the residues for which the M1 and336

M3 λ sets differ the most.337

We further test our predictions against 15 variants of A1338

LCD (Fig. 6B and E). These include aromatic and charge339

variants, which were designed to decipher the role on the driv-340

ing forces for phase separation of Y vs F residues and of R,341

D, E and K residues, respectively (16). The nomenclature,342

±NXX±NZZ, denotes increase or decrease in the number of343

residues of type X and Z with respect to the WT, which is344

achieved by mutations to or from G and S residues while345

maintaining a constant G/S ratio. M1–3 are found to be346

equally accurate, and present a considerable improvement over347

previous models with respect to their ability to recapitulate348

the trends in LLPS propensity for the aromatic and charged349

variants of A1 LCD. Since M1–3 were selected based on their350

performance in predicting the experimental ranking for the Rg351

values of 21 A1 LCD variants (Tab. S1), this result supports our352

model development strategy. For M1–3, Pearson’s correlation353

coefficients exceed 0.7 between log10 (csat) values measured at354

4◦C (16) and simulation predictions at both 50◦C and 37◦C355

(Fig. 6H ). Moreover, csat values from simulations at 37◦C are 356

in agreement with the reference csat values at 4◦C (Fig. 6H 357

and S15). As we observed for the diverse sequences, quantita- 358

tive agreement with the experimental csat values is achieved 359

by carrying out simulations of the M1 model at a temperature 360

systematically larger by ∼ 30◦C than the experimental condi- 361

tions. In addition to the lack of temperature dependence of 362

the hydropathy parameters (70), the inconsistency between 363

the temperature dependence of chain compaction and phase 364

separation might be attributed to more general aspects of the 365

model. For instance, the significant decrease in the number of 366

interaction sites upon coarse-graining at the amino-acid level, 367

and the resulting reduction in configurational entropy (71, 72), 368

which may promote LLPS by lowering the entropic penalty 369

associated with partitioning a chain from the dilute solution 370

to the condensate. 371

M1–3 reproduce the experimental ranking for LLPS propen- 372

sity of the Ddx4 LCD variants, i.e. WT�CS>FtoA&RtoK 373

(Fig. 6C and F) and, for all the variants, M1 and M3 con- 374

sistently display the highest and lowest LLPS propensities, 375

respectively. Simulations at 50◦C using M2 are in quantitative 376

agreement with the experimental csat values (13) for both 377

WT and the CS variant, which has the same net charge and 378

amino acid composition as the WT but a more uniform charge 379

distribution along the sequence. Moreover, as observed experi- 380

mentally (13), M1–3 predict a single phase for the RtoK variant 381

at 24◦C. As previously shown by Das et al. (25), the HPS 382

model predicts a considerable increase in LLPS propensity 383
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(csat) vs νsim for A1 LCD variants from

simulations performed using the M1 (A), M2 (B) and M3 (C) models. Black and colored circles indicate aromatic and charge variants, respectively. Black lines are linear fits to

the aromatic variants. (D–F ) Residuals from the linear fits of panels A–C for the charge variants of A1 LCD as a function of the net charge per residue. Values reported in

the legends are Pearson’s correlation coefficients. Error bars of log
10
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Bremer, Farag et al. (16).

upon replacement of all 24 R residues in the Ddx4 LCD with384

K (RtoK variant; Fig. 6C ), in apparent contrast to experimen-385

tal observations (10, 13). Interestingly, augmenting the HPS386

model with stronger cation-π interactions for R-aromatic than387

for K-aromatic pairs (25) has been shown to be insufficient388

to capture the lower LLPS propensity of the RtoK variant389

compared to WT. On the other hand, our data for the M1–3390

and HPS-Urry models indicates that making all the interac-391

tions involving R more favourable results in more accurate392

predictions. In fact, a large λ value for R may better mimic393

its relatively unfavorable free energy of hydration (19) as well394

as the occurrence of R-aromatic cation-π interactions, R-R395

π-stacking and R-D/E bidentate H-bonding (10, 17, 18, 73).396

Compared to the Kapcha-Rossky scale, it is noteworthy that397

the increase in the λ values of R, Y and G in M1–3 is accom-398

panied by an overall decrease in the average λ value. Hence,399

the optimization procedure led to the enhancement of specific400

attractive forces while maintaining a balance between electro-401

static and non-electrostatic interactions (25), which reveals402

itself, for example, in the ability of M1–3 to recapitulate the403

lower LLPS propensity of the CS variant with respect to Ddx4404

LCD WT.405

The M1 and M2 parameter sets differ mainly for the λ value406

of the N residue (Fig. 3C) and perform equally well against407

the test set (Fig. 6). Therefore, we further test the ability408

of M1 and M2 to predict the LLPS propensity of the NtoS409

variant of A2 LCD with respect to the wild type. Only the M1410

model, which has λ values for N and S of similar magnitude411

correctly predicts approximately the same LLPS propensity412

for variant and WT (Fig. S20), in agreement with experiments413

(24).414

Correlating single-chain properties and phase separation.415

Motivated by recent experiments on the A1 LCD (15, 16),416

we perform a detailed analysis of the coupling between chain 417

compaction and phase behaviour of the A1 LCD variants. In 418

agreement with previous observations (16), the log10(csat) val- 419

ues for the aromatic variants show a linear relationship with 420

the scaling exponent, νsim, whereas changes in the number of 421

charged residues (charge variants) result in significant devi- 422

ations from the lines of best fit (Fig. 7A–C). Following the 423

approach of Bremer, Farag et al. (16), we plot the residuals 424

for the charge variants with respect to the lines of best fit as 425

a function of the net charge per residue (NCPR) (Fig. 7D–F). 426

The results for M1 and M2 show the V-shaped profile observed 427

for the experimental data (16), and support the suggestion 428

that mean-field electrostatic repulsion between the net charge 429

of the proteins is responsible for breaking the coupling between 430

chain compaction and LLPS propensity (16). In agreement 431

with experimental data (16), we observe that for M1 and M2 432

the driving forces for LLPS are maximal for small positive 433

values of NCPR (∼ 0.02). 434

The dependence of LLPS on NCPR is clarified by comparing 435

the residual non-electrostatic energy maps of +8D (NCPR=0), 436

+4D (NCPR≈0.03) and -4D (NCPR≈0.09) with respect to the 437

wild type of A1 LCD (NCPR≈0.06) (Fig. S21 and S22). While 438

in the case of NCPR=0 the residual interaction patterns within 439

the isolated chain and between chains in the condensate largely 440

overlap, the energy baselines are clearly down- and up-shifted 441

for NCPR≈0.03 and NCPR≈0.09, respectively (Fig. S21G–I 442

and S22G–I ). Although the interaction patterns are still dom- 443

inated by the stickers, deviations of the NCPR from ∼ 0.02 444

result in electrostatic mean-field repulsive interactions that 445

disfavor LLPS. The LLPS-promoting effect of small positive 446

NCPR values finds explanation in the amphiphilic character 447

of the R side chains (18) which compensate for the repulsion 448

introduced by the excess positive charge by allowing for favor- 449

able interactions with both Y and negatively charged residues. 450
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Fig. 8. Comparing residue-residue interactions in dilute solution and in the condensate. Energy maps from simulations of the M1 model of FUS LCD (A–C) and A2 LCD (D–F )

calculated using non-electrostatic interaction energies. (G–H) 1D projections of the energy maps for FUS LCD (G) and A2 LCD (H), normalized by the absolute average

interaction energy |〈E〉| and shifted vertically for clarity. Colors indicate that the energies were calculated within a single chain at infinite dilution (blue), between two chains in

the dilute regime (orange) and between a chain located at the center of a condensate and the surrounding chains (green).

As opposed to M1–2, the readily phase-separating M3 model451

shows a weaker dependence on NCPR, especially for variants452

of net negative charge. This suggests that the experimental453

observations regarding the coupling between conformational454

and phase behaviour of A1 LCD stem from a well-defined455

balance between mean-field repulsion and sticker-driven LLPS456

which can be offset by an overall moderate increase of 3–4%457

in the λ values of the residues present in A1 LCD.458

Comparing intra- and inter-molecular interactions. After es-459

tablishing the ability of model M1 to accurately predict trends460

in LLPS propensity for diverse sequences, we analyze the non-461

electrostatic residue-residue energies for FUS LCD and A2462

LCD within a single chain, as well as between pairs of chains in463

the dilute regime and in condensates. We find a striking simi-464

larity between intra- and intermolecular interaction patterns465

for both proteins (Fig. 8), consistent with a mostly uniform466

distribution of stickers along the linear sequence (Fig. 8G467

and H ) (15, 74). Notably, besides the aromatic F and Y468

residues, the analysis also identifies an M residue and four R469

residues as stickers in FUS LCD and A2 LCD, respectively.470

Therefore, the parameter-learning procedure presented herein471

corroborates the important role of R as a sequence depen-472

dent sticker (16), whereby the large λ value for R in models473

M1–3 presumably reflects the ability of the amphiphilic guani-474

dinium moiety to engage in H-bonding, as well as π stacking475

and charge-π interactions (18). Further, in the dilute regime,476

the intra- and intermolecular interactions are weaker in the477

N- and C-terminal regions than for the rest of the chain, as478

evident from the upturning baselines of the 1D interaction 479

energy projections. This result is consistent with the faster 480

local motions of the terminal residues inferred from 15N NMR 481

relaxation data for both unfolded proteins (75) and a number 482

of phase separating IDPs (15, 22, 23). We also find that the 483

aggregation-prone Y-rich region of A2 LCD (residues 84–107) 484

interacts with the entire polypeptide chain (Fig. 8D–F) and 485

thus likely drives chain compaction, self-association as well as 486

LLPS. Finally, in line with previous observations from theory, 487

simulations and experiments (16, 76, 77), we observe that the 488

polypeptide chains of A1 LCD, A2 LCD and FUS LCD are 489

more expanded in the condensed phase than in the dilute 490

phase (Fig. S23). In particular, we find that the scaling expo- 491

nents of the LCDs increase towards ν = 0.5 in the condensed 492

phase, and that differences in compaction between wild-type 493

and charge variants of A1 LCD are greater in the dilute than 494

in the condensed phase (Fig. S23). 495

Conclusions 496

In this work we implement and validate an automated proce- 497

dure to develop an accurate model of the LLPS of IDPs based 498

on experimental data reporting on single-chain conformational 499

properties. We show that this strategy succeeds, in agreement 500

with the previously observed coupling between chain com- 501

paction and propensity for phase separation (15, 20, 58, 59), 502

but also appears to recapitulate the recent discovery that 503

charge effects may break this relationship (16). Our work 504

differs from related previous studies (28, 30, 33, 78) in several 505

ways including the size of the data set used for optimization, 506
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the use of both NMR PREs and Rg values, and the introduc-507

tion of a prior for the λ values. Moreover, by carrying out508

model optimizations with and without the A1 LCD variants,509

we show that the presence of phase-separating IDPs in the510

training set helps the parameter-learning procedure to capture511

the role of Y and R residues as stickers. The accuracy and512

general applicability of our model can be tested further by513

future experiments on systems that were not used for train-514

ing or testing. We also note that our automated, Bayesian515

optimization approach makes it relatively straightforward to516

continue to develop and improve the model as additional data517

becomes available.518

Simulations performed using the model optimized herein519

reveal that, at least for sequences characterized by a relatively520

uniform distribution of stickers, residue-residue interactions521

determining chain compaction also drive self-association and522

LLPS. Moreover, we show that the experimentally-observed523

dependency of LLPS on protein net charge appears to be524

captured by salt-screened electrostatic repulsion, even when525

assuming a uniform dielectric constant throughout the two-526

phase system.527

We have here shown how our model may be used to help528

elucidate the residues that are important for LLPS of IDPs529

with UCST behaviour. Further, we suggest the model could be530

applied to study the influence of disease-associated mutations531

on the material properties of protein self-coacervates (79, 80),532

the LLPS of protein mixtures as a function of composition, and533

the partitioning of proteins that do not readily undergo phase534

separation alone into condensates formed by other proteins535

(81, 82). Finally, owing to the generalized parameter-learning536

approach, the model could readily be refined as new experi-537

mental data are collected and it should be possible to extend538

it to account for specific pairwise interactions such as cation-π539

interactions (25), PTMs (83), the salting-out effect (84) and540

the temperature dependence of solvent mediated interactions541

(70).542

Materials and Methods543

We use the Cα-based model proposed by Dignon et al. (21) aug-544

mented with extra charges for the termini and a temperature-545

dependent treatment for dielectric constant of water (SI Appendix).546

Langevin dynamics simulations are conducted using HOOMD-blue547

v2.9 (85) in the NV T ensemble using the Langevin thermostat with548

a time step of 5 fs and friction coefficient 0.01 ps−1 (SI Appendix).549

Additionally, 100- and 300-chain simulations of LAF-1 RGG domain550

are also performed using openMM v7.5 (86) (Fig. S20).551

Bayesian Parameter-Learning Procedure. The λ values are optimized552

using a Bayesian parameter-learning procedure (30, 87, 88). The553

training set consists of the experimental Rg values of 42 IDPs554

(Tab. S1) and the intramolecular PRE data of six proteins (Tab. S2)555

(16, 22, 23, 37, 44–57). To guide the optimization within physically556

reasonable parameters and to avoid over-fitting the training set, we557

introduce a regularization term which penalizes deviations of the λ558

values from the probability distribution, P (λ), which is the prior559

knowledge obtained from the statistical analysis of 87 hydrophobicity560

scales. The optimization procedure consists of the following steps561

(Fig. 2):562

1. Single-chain CG simulation of the proteins of the training set563

(Tab. S1);564

2. Conversion of CG simulations into all-atom trajectories using565

PULCHRA (89) of the proteins in Tab. S2 for the calculation566

of the PRE data;567

3. Calculation of per-frame radii of gyration and PRE data. The568

PRE rates, Γ2, and intensity ratios, Ipara/Idia, are calculated569

using the rotamer library approach implemented in DEER- 570

PREdict (34) with τt = 100 ps and optimizing the correlation 571

time, τc ∈ [1, 10] ns, against the experimental data. 572

4. Random selection of six λ values which are nudged by random 573

numbers picked from a normal distribution of standard devi- 574

ation 0.05. The prior probability distribution, P (λ), sets the 575

bounds of the parameter space: any λi for which P (λi) = 0 is 576

further nudged until P (λi) 6= 0. 577

5. Calculation of the Boltzmann weights for the ith frame as 578

wi = exp −[U(ririri,λkλkλk) − U(ririri,λ0λ0λ0)]/kBT , where U(ririri,λkλkλk) and 579

U(ririri,λ0λ0λ0) are the total Ashbaugh-Hatch energies of the ith
580

frame for trial and initial λ values, respectively. If the effective 581

fraction of frames, 582

φeff = exp

[

−

Nframes
∑

i

wi log (wi × Nframes)

]

, [1] 583

is below 30%, the trial λkλkλk is discarded. 584

6. The per-frame radii of gyration and PRE observables are 585

reweighted and the extent of agreement with the experimental 586

data is estimated as 587

χ2
Rg

=

(

Rexp
g − Rcalc

g

σexp

)2

[2] 588

and 589

χ2
P RE =

1

NlabelsNres

Nlabels
∑

j

Nres
∑

i

(

Y exp
ij

− Y calc
ij

σexp
ij

)2

[3] 590

where σexp
ij

is the error on the experimental values, Y is either 591

Ipara/Idia or Γ2, Nlabels is the number of spin-labeled mutants 592

and Nres is the number of measured residues; 593

7. Following the Metropolis criterion (90), the kth set of λ values 594

is accepted with probability: 595

Ak−1→k =

{

exp

[

L(λk−1λk−1λk−1)]−L(λkλkλk)

ξk

]

, L(λkλkλk) > L(λk−1λk−1λk−1)

1, L(λkλkλk) ≤ L(λk−1λk−1λk−1),

[4] 596

where the control parameter, ξk, scales with the number of 597

iterations as ξ = ξ0 × 0.99k. L is the cost function 598

L(λλλ) = 〈χ2
Rg

(λλλ)〉 + η〈χ2
P RE(λλλ)〉 − θ

∑

i

ln [P (λi)] [5] 599

where 〈χ2
Rg

(λλλ)〉 and 〈χ2
P RE

(λλλ)〉 are averages over the proteins 600

in the training sets. θ and η are hyperparameters of the 601

optimization procedure. θ determines the trade-off between 602

between over- and under-fitting the training set whereas η sets 603

the relative weight of the PRE data with respect to the radii 604

of gyration. 605

Steps 4–7 are iterated until ξ < 10−15, when the reweighting cycle 606

is interrupted and new CG simulation carried out with the trained 607

λ values. A complete parameter-learning procedure consists of two 608

reweighting cycles starting from ξ0 = 2 followed by three cycles 609

starting from ξ0 = 0.1. The threshold on φeff results in average 610

absolute differences between χ2 values estimated from reweighting 611

and calculated from trajectories performed with the corresponding 612

parameters of ∼1.8 and ∼0.8 for ηχ2
P RE

and χ2
Rg

, respectively 613

(Fig. S24). 614

Data deposition. Datasets, code and Jupyter Notebooks for repro- 615

ducing our analyses are available on GitHub at github.com/KULL- 616

Centre/papers/tree/main/2021/CG-IDPs-Tesei-et-al and on Zen- 617

odo, DOI: 10.5281/zenodo.5005953. 618
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