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Many intrinsically disordered proteins (IDPs) may undergo liquid-
liquid phase separation (LLPS) and participate in the formation of
membraneless organelles in the cell, thereby contributing to the reg-
ulation and compartmentalisation of intracellular biochemical reac-
tions. The phase behaviour of IDPs is sequence-dependent, and its
investigation through molecular simulations requires protein mod-
els that combine computational efficiency with an accurate descrip-
tion of intra- and intermolecular interactions. We developed a gen-
eral coarse-grained model of IDPs, with residue-level detail, based
on an extensive set of experimental data on single-chain proper-
ties. Ensemble-averaged experimental observables are predicted
from molecular simulations, and a data-driven parameter-learning
procedure is used to identify the residue-specific model parameters
that minimize the discrepancy between predictions and experiments.
The model accurately reproduces the experimentally observed con-
formational propensities of a set of IDPs. Through two-body as well
as large-scale molecular simulations, we show that the optimization
of the intramolecular interactions results in improved predictions of
protein self-association and LLPS.

biomolecular condensates | liquid-liquid phase separation | intrinsically

disordered proteins

M any intrinsically disordered proteins (IDPs) and proteins
with disordered regions can condense into liquid-like
droplets, viz. a biomolecule-rich phase coexisting with a more
dilute solution (1-5). This de-mixing process is known as
liquid-liquid phase separation (LLPS) and is one of the ways
cells compartmentalise proteins, often together with nucleic
acids (6). While LLPS plays crucial biological roles in the cell,
its dysregulation leads to maturation of biomolecular conden-
sates into hydrogel-like assemblies, promoting the formation of
neurotoxic oligomers and amyloid fibrils (5, 7). A quantitative
model for the ‘molecular grammar’ of LLPS, including the in-
fluence of disease-associated mutations and post-translational
modifications (PTMs) on the propensity to phase separate,
is key to understand these processes. The sequences of IDPs
and intrinsically disordered regions that easily undergo LLPS
are often characterized by stretches enriched in small polar
residues (spacers) interspersed by e.g. aromatic or arginine
residues (stickers), which are instrumental for the formation
of reversible physical cross-links via 77, cation-m and sp2-7
interactions (8-12). Y and R residues were shown to be nec-
essary for the LLPS of a number of proteins including FUS,
hnRNPA1, LAF-1 and Ddx4 (8, 10, 11, 13-17). While the
propensity to undergo LLPS increases with the number of Y
residues in the sequence, recent studies have revealed that
the role of R residues is context dependent (16) and strongly
affected by salt concentration (17), reflecting the unusual char-

acteristics of the R side chain (18, 19).

Here, we present the development of a coarse-grained (CG)
model capable of predicting the phase behaviour of IDPs based
on amino acid sequence. CG models enable the combination
of a sequence-dependent description with the computational
efficiency necessary to explore the long time and large length
scales involved in phase transitions (11, 20, 21). Although
CG molecular simulations have been employed to explain
the sequence dependence of the LLPS of a number of IDPs
(11, 15, 17, 20-22) as well as the effect of phosphorylation on
LLPS propensities (23, 24), such models have proven difficult
to use to predict the phase behaviour of very diverse sequences
(25). Building on recent developments, including experimen-
tal phase diagrams of a number of IDPs (3, 4, 15, 16), we
trained and tested a robust sequence-dependent model of the
LLPS of IDPs. In particular, due to the similarity between
intramolecular interactions within IDPs and intermolecular
interactions between IDPs (12, 26), we rationalized that by
optimizing a model to capture structural preferences for a
broad set of monomeric IDPs, we could obtain a good model
for interactions between IDPs.

The starting point for our analyses is the hydrophobicity
scale (HPS) model (21) (with minor modification; see SI Ap-
pendiz) wherein, besides steric repulsion and salt-screened
charge-charge interactions, residue-residue interactions are de-
termined by hydropathy parameters (\) which were derived
from the atomic partial charges of a classical all-atom force
field (27). Recently, the development of the HPS-Urry model
(28) presented substantial improvements in accuracy over the
original HPS model. These were achieved using a hydropho-
bicity scale derived from transition temperatures of elastin-like
peptides (29), and further shifting the A parameters by -0.08
to improve agreement with experimentally measured radii of
gyration.

To address the current limitations, we improve upon these
models by optimizing the A parameters through a Bayesian
parameter-learning procedure (30-33), leveraging as prior
knowledge the probability distribution of the A parameters eval-
uated from analysing 87 hydrophobicity scales. The training
set comprises SAXS and paramagnetic relaxation enhance-
ment (PRE) NMR data of 45 IDPs which we selected from
the literature. First, we run Langevin dynamics simulations
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Fig. 1. Assessing the HPS, AVG and HPS-Urry models using experimental data reporting on single-chain conformational properties. (A) Probability distributions of the
) parameters calculated from 87 min-max normalized hydrophobicity scales. Lines are the \ parameters of the HPS model (blue), the average over the hydrophobicity
scales (orange) and the HPS-Urry model (green) (28). Intramolecular PRE intensity ratios for the S43C mutant of a-Synuclein (B) and the S243C mutant of A2 LCD (C)
from simulations and experiments (22, 37) (black). (D) x2 values quantifying the discrepancy between simulated and experimental intramolecular PRE data, scaled by the
hyperparameter n = 0.1 (Materials and Methods). (E and F) Relative difference between simulated and experimental radii of gyration for proteins that do not readily undergo
phase separation alone (E) and for variants of A1 LCD (F), with negative values corresponding to the simulated ensembles being more compact than in experiments.

of single IDPs and estimate the experimental observables
using state-of-the-art methods (34). Second, we employ a
Bayesian regularization approach to prevent over-fitting the
training data and select three models which are equally ac-
curate with respect to single-chain conformational properties.
Third, through two-chain simulations, we validate the mod-
els by comaparing predicted and experimental intermolecular
PRE NMR data for the low complexity domain (LCD) of
the heterogeneous nuclear ribonucleoprotein (hnRNP) A2 (A2
LCD) (22) and the LCD of the RNA-binding protein fused
in sarcoma (FUS LCD) (23). Fourth, we perform coexistence
simulations to test the models against the phase behaviour
of A2 LCD (22, 24), FUS LCD (35, 36), variants of hnRNP
A1 LCD (A1 LCD) (15, 16), the N-terminal region of the
germ-granule protein Ddx4 (Ddx4 LCD) (8, 10, 13) and the
N-terminal, R-/G-rich domain of the P granule protein LAF-1
(LAF-1 RGG domain). We use the final model to provide
insight into the interactions between IDPs within condensates
and to help elucidate the role of different amino acids to the
driving force for LLPS.

Results and Discussion

Analysis of Hydrophobicity Scales. The \ values of the origi-
nal HPS model are based on a hydrophobicity scale derived
by Kapcha and Rossky from the atomic partial charges of
the OPLS all-atom force field (27). Dozens of amino acid
hydrophobicity scales have been derived from experimental
as well as bioinformatics approaches such as the partitioning
of amino acids between water and organic solvent, the parti-
tioning of peptides to the lipid membrane interface and the

accessible surface area of residues in folded proteins (38, 39).
To carry out the Bayesian optimisation of the amino-acid
specific A values, we sought to estimate the prior probability
distribution of the hydropathy parameters from the analysis of
98 hydrophobicity scales collected by Simm et al. (39). Each
scale was min-max normalized and, after ranking in the ascend-
ing order of the HPS scale, we discarded all the scales yielding
a linear fit with negative slope. This procedure allowed us
to identify scales which were present in the set both in their
original form and as the additive inverse of the hydropathy
values (reversed scales). For most scales, the selection criterion
resulted in discarding the reversed form. However, for scales
where the most negative values of the hydropathy parameter

All-atom
trajectories
of IDPs in

Tab. S2

CG simulations
of IDPs in
Tab. S1 and S2

Calculate R,
and PRE data

False
£>10"1° True Accept/Reject Nu;\ige
- A Set
Values

A

Reweighted

5 3 New Energies
Xpre and XRy

and Weights

Fig. 2. Flowchart illustrating the Bayesian parameter-learning procedure (Materials
and Methods).
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Fig. 3. Selection and performance of the M1-3 models with respect to the training data. (A) Overview of the optimal A sets with nX?”RE < 21 and X% < 3 collected
through the parameter learning procedures started from Ao =AVG (up triangles), M1 (squares) and M2 (down triangles). The gray gradient shows the Spearman’s correlation
coefficient between experimental and simulated R, values for the A1 LCD variants in the training set. Colored open symbols indicate the M1 (blue up triangle), M2 (orange
square) and M3 (green down triangle) scales whereas the adjacent values are the respective Spearman’s correlation coefficients. (B) Covariance matrix of the A sets with
nfoRE < 2land X?%g < 3. (C) M1 (blue), M2 (orange) and M3 (green) scales. Solid lines are guides for the eye whereas the gray shaded area shows the mean £2SD of

the \ sets with nx% g < 21 and X?ag < 3. (D-E) Comparison between (D) nx% z; and (E) X?ag values for the HPS model (gray) and the optimized M1 (blue), M2

(orange) and M3 (green) models.

correspond to the most hydrophobic amino acids—such as the
scales by Bull and Breese (40), Guy (41), Bishop et al. (42)
and Welling et al. (43)—we retained only the reversed form.
The 87 scales that remained after this filtering were used to
calculate the average scale (AVG) and the probability distri-
bution of the X values for the 20 amino acids, P(\), which is
normalized so that ZM f;;;;ol P(Xsa) dXae = 20 (Fig. 14).
For the optimization described below we use the AVG scale as
starting point, as well as an indication of the typical accuracy
obtained from the prior knowledge encoded in P()).

We assessed the HPS, HPS-Urry and AVG parameter sets
by running simulations of 45 IDPs ranging in length between
24 and 334 residues and compared the results against exper-
iments. Specifically, we compared the simulations with the
radii of gyration, Ry, of 42 IDPs (Tab. S1) and intramolecular
PRE data of six IDPs (Tab. S2) (16, 22, 23, 37, 44-57). Com-
pared to the AVG scale, the HPS model overestimates the
compaction of a-Synuclein whereas it closely reproduces the
PRE data for A2 LCD (Fig. 1B and C). In general, the HPS
model accurately predicts the conformational properties of
sequences with high LLPS propensity, e.g. FUS LCD, A2 LCD
and Al LCD (Fig. 1D and F'), while the AVG scale is consid-
erably more accurate at reproducing the R, of proteins that
do not readily undergo phase separation alone (Fig. 1E). The
recently proposed HPS-Urry model (28) is the most accurate
at predicting the intramolecular PRE data while it shows in-
termediate accuracy for the Ry values of both proteins that do
not readily undergo phase separation alone and A1 LCD vari-
ants. The HPS-Urry model in particular differs significantly
from the HPS and AVG models for the A parameters for R

Tesei etal.

and E as well as the reversal of the order of hydrophobicity of
Y and F (Fig. 14).

Optimization of Amino-Acid Specific Hydrophobicity Values.
To obtain a model that more accurately predicts the confor-
mational properties of IDPs of diverse sequences and LLPS
propensities, we trained the \ values on a large set of experi-
mental R, and PRE data using a Bayesian parameter-learning
procedure (30) shown schematically in Fig. 2 (Materials and
Methods). We initially performed an optimization run starting
from the AVG X values and setting the hyperparameters to
0 =n = 0.1 (Fig. S1A). We collected the optimized sets of
X values which yielded nx%rp < 21 and X%q < 3 (circles in
Fig. 3A). The optimization was repeated starting from all
A = 0.5 to assess that the parameter space sampled by our
method is independent of the initial conditions (Fig. S24 and
S1D). Thus, while we used the AVG model as starting point,
our final parameters only depend on P(X) via its use as the
prior in the Bayesian optimization.

From the pool of optimized parameters, we selected the
A set which resulted in the largest Spearman’s correlation
coefficient (p = 0.78) between simulated and experimental R,
values for the A1 LCD variants. We base this final selection
of the optimal X set on the Spearman’s correlation coefficient
of the A1 LCD variants because we expect that capturing
the experimental ranking in chain compaction will result in
accurate predictions of the relative LLPS propensities (15,
16, 20, 58, 59). Further, the systematic mutagenesis studies
enable us to more clearly decouple the parameters for Y-vs-F
and R-vs-K (15, 16). We note that while this selection uses
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Fig. 4. (A) Comparison between experimental and predicted radii of gyration (Tab. S1),
Ry, for the HPS, HPS-Urry, and M1-3 models. (B) Zoom-in on the R, values of
the A1 LCD variants, with Pearson’s r coefficients for this subset of the training data
reported in the legend.

only the A1l LCD variants, all three parameter sets result in
good agreement with the full PRE and R, data set (Fig. 34).

The selected model, referred to as M1 hereafter, is the start-
ing point for two consecutive optimization cycles (Fig. S1B)
which were performed with a lower weight for the prior
(6 = 0.05), yielding a new pool of optimized parameters
(squares in Fig. 34) and model M2 (largest p = 0.75). To
generate a third model, we further decreased the confidence pa-
rameter to = 0.02 and performed an additional optimization
run starting from M2 (Fig. S1C). From the collected optimal
parameters (triangles in Fig. 34), we selected M3 (largest
p =0.73). As shown in Fig. 3B, the optimal A values collected
through the four independent optimization runs (Fig. S1A4-
D) are weakly intercorrelated. The covariance values range
between -0.015 and 0.015 for most amino acids, with the ex-
ception of the standard deviations of N, C, T, M, W, and
I. C, M, W, and I are among the least frequent amino acids
in the training set (Fig. S3) and, unsurprisingly, we observe
the largest covariance values for C-W (0.017), C-M (-0.02)
and C-I (-0.016). Fig. 3C shows that M1-3 fall within two
standard deviations (SDs) above and below the mean of the A
values yielding nx5rp < 21 and x3 r, < 3 (gray shaded area).
Despite their differences, M1-3 fit the tramlng data equally
accurately and result in an improvement in x%rp and x% B, Of
~30% and ~95% with respect to the HPS model, respectlvely
(Fig. 3D and E).

Notably, the optimization procedure captures the sequence
dependence of the chain dimensions (Fig. 4) and results in
accurate predictions of intramolecular PRE data for both
highly soluble IDPs and proteins that more readily phase
separate (Fig. S4B-D and Fig. S5-S10), as well as in radii of
gyration with relative errors —14% < ARy / Rg,exp < 12%
(Fig. S4E and F'). Besides reproducing the experimental R,
values for the longer chains with high accuracy, the optimized
models also capture the differences in R, and scaling exponents,
v, for the variants of A1 LCD (Fig. 4B and S11). The lower
Pearson’s correlation coefficients observed for v, compared to
the corresponding R, data, may originate from the different
models used to infer v from SAXS experiments and simulation
data, i.e., respectively, the molecular form factor method
(16, 52) and least-squares fit to long intramolecular pairwise
distances, R;;, vs |t — j| > 10 (60) (Fig. S12).

To assess the impact of phase separating proteins on the
optimized models, we perform an optimization run wherein the

A1 LCD variants are removed from the training set. The major
difference between the resulting optimal A set and models M1—
3 is the considerably smaller values for R and Y residues
(Fig. S2C). Indeed, the large A values for R and Y residues in
M1-3 relative to the HPS, AVG and HPS-Urry models, is a
striking feature which resonates with previous experimental
findings pointing to the important role of R and Y residues in
driving LLPS (8, 14-16, 22, 61, 62).

To identify the hydrophobicity scales which most closely
resemble M1-3, we construct a dendrogram (Fig. S13) com-
plementing the 87 scales retained from the set by Simm et
al. (39) with the Urry, Kapcha-Rossky and M1-3 scales, and
using average linkage-based hierarchical clustering and Eu-
clidean distances as the metric. This analysis reveals that the
hydrophobicity scales by Urry et al. (29), Bishop et al. (42),
Wimley and White (63) and the membrane protein surround-
ing hydrophobicity scale by Ponnuswamy and Gromiha (64)
are those with greatest similarity to M1-3. These scales, which
are characterized by a A value for the R residue above the 80%
quantile, are possibly the best of the unmodified scales for the
properties that we optimized M1-3 to reproduce.

Testing Protein-Protein Interactions. To test whether the pa-
rameters trained on single-chain conformational properties
are transferable to protein-protein interactions, we compared
experimental intermolecular PRE rates, I'2, of FUS LCD and
A2 LCD (22, 23) with predictions from two-chain simulations
of the M1-3 models performed at the same conditions as the
reference experiments. Intermolecular 'y values were obtained
from solutions of spin-labeled N protein and °N protein
without a spin-label in equimolar amount and report on the
transient interactions between a paramagnetic nitroxide probe
attached to a cysteine residue of the spin-labeled chain and
all the amide protons of the *N-labeled chain. We carried
out the calculation of the PRE rates using DEER-PREdict
(34), assuming an effective correlation time of the spin la-
bel, 7, of 100 ps and fitting an overall molecular correlation
time, 7., within the interval 1 < 7. < 20 ns. In agreement
with experiments, 'y values predicted by the M1-3 models
are characterized by no distinctive peaks along the protein
sequence (Fig. 5A-FE), which is consistent with transient and
non-specific protein—protein interactions. Notably, while PRE
rates for FUS LCD are of the same magnitude for all spin-
labeled sites, the A2 LCD presents larger I'y values for S99C
than for S143C indicating that the tyrosine-rich aggregation-
prone region (residues 84-107) is involved in more frequent
intermolecular contacts with the entire sequence. The discrep-
ancy between predicted and experimental intermolecular PRE
data, x$rp, varies significantly as a function of 7. (Fig. 5F—
G). For both FUS LCD and A2 LCD, the optimal 7. is larger
for M1 than for M3, which suggests that the latter has more
attractive intermolecular interactions. While for M1 the mini-
mum of x%pp is at 7. = 17 ns for both proteins, for M3 the
optimal 7. value is ~ 8 ns smaller for FUS LCD than A2 LCD.
Although the accuracy of 7. is difficult to assess in the case of
transiently interacting IDPs, this large difference in 7. (Fig.
5) suggests that the protein-protein interactions predicted for
FUS LCD by M3 may be overly attractive.

To quantify protein-protein interactions with the optimized
models, we calculated second virial coefficients, Bss, from
two-chain simulations (SI Appendiz). The net interactions are
attractive for both the sequences (B22 < 0), and considerably
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Fig. 5. Testing the M1-3 models using experimental findings on protein-protein interactions. (A-E) Comparison between experimental (black) intermolecular PRE rates
(Tab. S3) and predictions from the M1 (blue), M2 (orange) and M3 (green) models for FUS LCD (A-C) and A2 LCD (D—-E) calculated using the best-fit correlation time, 7.
(F—G) Discrepancy between calculated and experimental intermolecular PRE rates X%RE as a function of .. (H) Second virial coefficients, B2, of FUS LCD (circles) and
A2 LCD (squares) calculated from two-chain simulations of the M1-3 models. Error bars are SEMs estimated by bootstrapping 1,000 times 40 Bz values calculated from
trajectory blocks of 875 ns. (/) Probability of the bound state estimated from protein-protein interaction energies in two-chain simulations of the M1-3 models. (L) Dissociation
constants, K 4, of FUS LCD (circles) and A2 LCD (squares) calculated from two-chain simulations of the M1-3 models. For pp and K4, error bars are SDs of ten simulation

replicas. Lines in H and L are guides to the eye.

stronger for A2 LCD than for FUS LCD. As expected from the
A values and amino acid compositions, M3 presents the most
negative Bz values (large A values for Q, G and P), followed
by M2 and M1 (Fig. 51).

To test whether predictions of protein self-association by
M1-3 are sequence dependent, we compared the probability of
finding proteins in the bound dimeric state, pg, in simulations
of a-Synuclein, p15PAF, full length tau (ht40), A2 LCD and
FUS LCD performed at the solution conditions of the reference
experimental data (37, 50, 65) (SI Appendiz). In agreement
with experimental findings, we find that the highly soluble
a-Synuclein, pl15PAF and ht40 proteins do not self-associate
substantially in our simulations, whereas A2 LCD and FUS
LCD have pp ~4% and ~1%, respectively. We further esti-
mated the dissociation constants of A2 LCD and FUS LCD
using Kq = (1—pp)?/(NapsV) and K4 = 1/(Naps(V — Ba2))
self-consistently (66), where N4 is Avogadro’s number (SI Ap-
pendiz, Fig. 5L and S14).

Testing LLPS propensities. To test the ability of the models
to capture the sequence-dependence of LLPS propensity, we
performed multi-chain simulations in a slab geometry and
calculated protein concentrations of the coexisting condensate,
Ccon, and dilute phase, csqi. We compared our simulation
results to an extensive set of sequences which have been shown
to undergo LLPS below an upper critical solution temperature
(UCST), namely FUS LCD (23, 35, 36), A2 LCD (22, 24), the

Tesei etal.

NtoS variant of A2 LCD (24), LAF-1 RGG domain (11, 67—

69), as well as variants of A1 LCD (15, 16) and Ddx4 LCD
(8, 10, 13). From simulations of the optimized models at 37°C,
we observed that, for a number of sequences in the test set,
the predicted csqt values are too low to allow for converged
estimates from ps-timescale trajectories (Fig. S15). Conversely,
the least LLPS-prone variants of Ddx4 LCD yielded one-phase
systems when simulated at 37°C using HPS-Urry and M1-3
models. Thus, to be able to estimate converged csq+ values
(Fig. S16, S17 and S18), simulations were carried out at 50°C,
except for the HPS-Urry model which we simulated at 24°C
(Tab. S4). The FtoA and RtoA variants of Ddx4 LCD were also
simulated at 24°C using the M1-3 models as in simulations of
the same systems at 50°C we only observed a single phase.

Simulations using M1 at 50°C most closely recapitulate
the experimental trend in csq: across the diverse sequences
(Fig. 6A, D and G) and reproduce the reference cecon and csar
values measured at room temperature. Conversely, HPS over-
estimates the relative LLPS propensity of FUS LCD, whereas
simulations using HPS-Urry at 24°C show deviations of about
an order of magnitude from the reference csq+ values for A2
LCD, Ddx4 LCD, A1 LCD and FUS LCD. Regarding the
LAF-1 RGG domain, all of the models overestimate by at
least a factor of ~5 the experimental ccon (68, 69), whereas
M1 reproduces within a factor of ~2 the experimental csqt
value from temperature-dependent turbidity measurements
(11), both for the WT and for variants with randomly shuffled
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Fig. 6. Protein concentrations in the condensate (A-C) and in the dilute phase (D—F) from slab simulations of the M1-3, HPS and HPS-Urry models performed at 50° C (closed
symbols), 37°C (crosses in (H)) and 24°C (open symbols). Red open squares show experimental measurements at ~24°C (A, D, C and F) and ~4°C (B and E). (G and H)
Correlation between log; (csqt /M) from simulations and experiments for diverse sequences (G) and A1 LCD variants (H). Solid lines show linear fits to the simulation data
at 50°C. Dashed lines show linear fits to the HPS-Urry data at 24°C (G and H) and to the M1-3 data at 37°C (H). Values reported in the legends are Pearson’s correlation
coefficients. Error bars are SEMs of averages over blocks of 0.3 ps. We note that the correlation coefficients reported in G are associated with a substantial uncertainty as they

are calculated over only three (HPS), four (HPS-Urry) and five points (M1-3).

sequence (LAF-1 shuf) and without residues 21-30 (LAF-1
A21-30) (Fig. S19). Although M1-3 fit the training data
equally well, the prediction of LLPS propensities for the di-
verse sequences in Fig. 6A and D differ considerably, with
Pearson’s correlation coefficients between simulation and ex-
perimental log; (csat) values ranging from 0.67 for M1 to 0.14
for M3 (Fig. 6G). The discrepancy is particularly evident for
the Ddx4 LCD and FUS LCD which are rich in N and Q
residues, respectively, i.e., the residues for which the M1 and
M3 X sets differ the most.

We further test our predictions against 15 variants of Al
LCD (Fig. 6B and E). These include aromatic and charge
variants, which were designed to decipher the role on the driv-
ing forces for phase separation of Y vs F residues and of R,
D, E and K residues, respectively (16). The nomenclature,
+NxX+NzZ, denotes increase or decrease in the number of
residues of type X and Z with respect to the WT, which is
achieved by mutations to or from G and S residues while
maintaining a constant G/S ratio. M1-3 are found to be
equally accurate, and present a considerable improvement over
previous models with respect to their ability to recapitulate
the trends in LLPS propensity for the aromatic and charged
variants of A1 LCD. Since M1-3 were selected based on their
performance in predicting the experimental ranking for the Ry
values of 21 A1 LCD variants (Tab. S1), this result supports our
model development strategy. For M1-3, Pearson’s correlation
coefficients exceed 0.7 between log, (¢sat) values measured at
4°C (16) and simulation predictions at both 50°C and 37°C

(Fig. 6H). Moreover, csq¢ values from simulations at 37°C are
in agreement with the reference csq: values at 4°C (Fig. 6 H
and S15). As we observed for the diverse sequences, quantita-
tive agreement with the experimental csq:+ values is achieved
by carrying out simulations of the M1 model at a temperature
systematically larger by ~ 30°C than the experimental condi-
tions. In addition to the lack of temperature dependence of
the hydropathy parameters (70), the inconsistency between
the temperature dependence of chain compaction and phase
separation might be attributed to more general aspects of the
model. For instance, the significant decrease in the number of
interaction sites upon coarse-graining at the amino-acid level,
and the resulting reduction in configurational entropy (71, 72),
which may promote LLPS by lowering the entropic penalty
associated with partitioning a chain from the dilute solution
to the condensate.

M1-3 reproduce the experimental ranking for LLPS propen-
sity of the Ddx4 LCD variants, i.e. WT>>CS>FtoAZ>RtoK
(Fig. 6C and F) and, for all the variants, M1 and M3 con-
sistently display the highest and lowest LLPS propensities,
respectively. Simulations at 50°C using M2 are in quantitative
agreement with the experimental csq: values (13) for both
WT and the CS variant, which has the same net charge and
amino acid composition as the WT but a more uniform charge
distribution along the sequence. Moreover, as observed experi-
mentally (13), M1-3 predict a single phase for the RtoK variant
at 24°C. As previously shown by Das et al. (25), the HPS
model predicts a considerable increase in LLPS propensity
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Fig. 7. Correlation between chain compaction and LLPS propensity for aromatic and charge variants of A1 LCD. (A-C) log,(¢sat) VS Vsim for A1 LCD variants from
simulations performed using the M1 (A), M2 (B) and M3 (C) models. Black and colored circles indicate aromatic and charge variants, respectively. Black lines are linear fits to
the aromatic variants. (D—F) Residuals from the linear fits of panels A-C for the charge variants of A1 LCD as a function of the net charge per residue. Values reported in
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R;; = Roli — j|”sim in the long-distance region, |¢ — j| > 10. Solid lines are linear fits to the data. Dotted lines in D—F are lines of best fit to the experimental data by

Bremer, Farag et al. (16).

upon replacement of all 24 R residues in the Ddx4 LCD with
K (RtoK variant; Fig. 6C), in apparent contrast to experimen-
tal observations (10, 13). Interestingly, augmenting the HPS
model with stronger cation-m interactions for R-aromatic than
for K-aromatic pairs (25) has been shown to be insufficient
to capture the lower LLPS propensity of the RtoK variant
compared to WT. On the other hand, our data for the M1-3
and HPS-Urry models indicates that making all the interac-
tions involving R more favourable results in more accurate
predictions. In fact, a large A\ value for R may better mimic
its relatively unfavorable free energy of hydration (19) as well
as the occurrence of R-aromatic cation-7 interactions, R-R
m-stacking and R-D/E bidentate H-bonding (10, 17, 18, 73).
Compared to the Kapcha-Rossky scale, it is noteworthy that
the increase in the A values of R, Y and G in M1-3 is accom-
panied by an overall decrease in the average A value. Hence,
the optimization procedure led to the enhancement of specific
attractive forces while maintaining a balance between electro-
static and non-electrostatic interactions (25), which reveals
itself, for example, in the ability of M1-3 to recapitulate the
lower LLPS propensity of the CS variant with respect to Ddx4
LCD WT.

The M1 and M2 parameter sets differ mainly for the A value
of the N residue (Fig. 3C) and perform equally well against
the test set (Fig. 6). Therefore, we further test the ability
of M1 and M2 to predict the LLPS propensity of the NtoS
variant of A2 LCD with respect to the wild type. Only the M1
model, which has A values for N and S of similar magnitude
correctly predicts approximately the same LLPS propensity
for variant and WT (Fig. S20), in agreement with experiments
(24).

Correlating single-chain properties and phase separation.
Motivated by recent experiments on the A1 LCD (15, 16),

Tesei etal.

we perform a detailed analysis of the coupling between chain
compaction and phase behaviour of the A1 LCD variants. In
agreement with previous observations (16), the log;,(csat) val-
ues for the aromatic variants show a linear relationship with
the scaling exponent, Vs;m, whereas changes in the number of
charged residues (charge variants) result in significant devi-
ations from the lines of best fit (Fig. 7A—C). Following the
approach of Bremer, Farag et al. (16), we plot the residuals
for the charge variants with respect to the lines of best fit as
a function of the net charge per residue (NCPR) (Fig. 7D-F).
The results for M1 and M2 show the V-shaped profile observed
for the experimental data (16), and support the suggestion
that mean-field electrostatic repulsion between the net charge
of the proteins is responsible for breaking the coupling between
chain compaction and LLPS propensity (16). In agreement
with experimental data (16), we observe that for M1 and M2
the driving forces for LLPS are maximal for small positive
values of NCPR (~ 0.02).

The dependence of LLPS on NCPR is clarified by comparing
the residual non-electrostatic energy maps of +8D (NCPR=0),
+4D (NCPR~0.03) and -4D (NCPR~0.09) with respect to the
wild type of A1 LCD (NCPR~0.06) (Fig. S21 and S22). While
in the case of NCPR=0 the residual interaction patterns within
the isolated chain and between chains in the condensate largely
overlap, the energy baselines are clearly down- and up-shifted
for NCPR~0.03 and NCPR~0.09, respectively (Fig. S21G—I
and S22G-I). Although the interaction patterns are still dom-
inated by the stickers, deviations of the NCPR from ~ 0.02
result in electrostatic mean-field repulsive interactions that
disfavor LLPS. The LLPS-promoting effect of small positive
NCPR values finds explanation in the amphiphilic character
of the R side chains (18) which compensate for the repulsion
introduced by the excess positive charge by allowing for favor-
able interactions with both Y and negatively charged residues.
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Fig. 8. Comparing residue-residue interactions in dilute solution and in the condensate. Energy maps from simulations of the M1 model of FUS LCD (A-C) and A2 LCD (D-F)
calculated using non-electrostatic interaction energies. (G—H) 1D projections of the energy maps for FUS LCD (G) and A2 LCD (H), normalized by the absolute average
interaction energy |(E)| and shifted vertically for clarity. Colors indicate that the energies were calculated within a single chain at infinite dilution (blue), between two chains in
the dilute regime (orange) and between a chain located at the center of a condensate and the surrounding chains (green).

As opposed to M1-2, the readily phase-separating M3 model
shows a weaker dependence on NCPR, especially for variants
of net negative charge. This suggests that the experimental
observations regarding the coupling between conformational
and phase behaviour of A1 LCD stem from a well-defined
balance between mean-field repulsion and sticker-driven LLPS
which can be offset by an overall moderate increase of 3-4%
in the X\ values of the residues present in A1 LCD.

Comparing intra- and inter-molecular interactions. After es-
tablishing the ability of model M1 to accurately predict trends
in LLPS propensity for diverse sequences, we analyze the non-
electrostatic residue-residue energies for FUS LCD and A2
LCD within a single chain, as well as between pairs of chains in
the dilute regime and in condensates. We find a striking simi-
larity between intra- and intermolecular interaction patterns
for both proteins (Fig. 8), consistent with a mostly uniform
distribution of stickers along the linear sequence (Fig. 8G
and H) (15, 74). Notably, besides the aromatic F and Y
residues, the analysis also identifies an M residue and four R
residues as stickers in FUS LCD and A2 LCD, respectively.
Therefore, the parameter-learning procedure presented herein
corroborates the important role of R as a sequence depen-
dent sticker (16), whereby the large A\ value for R in models
M1-3 presumably reflects the ability of the amphiphilic guani-
dinium moiety to engage in H-bonding, as well as 7 stacking
and charge-7 interactions (18). Further, in the dilute regime,
the intra- and intermolecular interactions are weaker in the
N- and C-terminal regions than for the rest of the chain, as

evident from the upturning baselines of the 1D interaction
energy projections. This result is consistent with the faster
local motions of the terminal residues inferred from N NMR
relaxation data for both unfolded proteins (75) and a number
of phase separating IDPs (15, 22, 23). We also find that the
aggregation-prone Y-rich region of A2 LCD (residues 84-107)
interacts with the entire polypeptide chain (Fig. 8D-F) and
thus likely drives chain compaction, self-association as well as
LLPS. Finally, in line with previous observations from theory,
simulations and experiments (16, 76, 77), we observe that the
polypeptide chains of A1 LCD, A2 LCD and FUS LCD are
more expanded in the condensed phase than in the dilute
phase (Fig. S23). In particular, we find that the scaling expo-
nents of the LCDs increase towards v = 0.5 in the condensed
phase, and that differences in compaction between wild-type
and charge variants of A1 LCD are greater in the dilute than
in the condensed phase (Fig. S23).

Conclusions

In this work we implement and validate an automated proce-
dure to develop an accurate model of the LLPS of IDPs based
on experimental data reporting on single-chain conformational
properties. We show that this strategy succeeds, in agreement
with the previously observed coupling between chain com-
paction and propensity for phase separation (15, 20, 58, 59),
but also appears to recapitulate the recent discovery that
charge effects may break this relationship (16). Our work
differs from related previous studies (28, 30, 33, 78) in several
ways including the size of the data set used for optimization,
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the use of both NMR PREs and R, values, and the introduc-
tion of a prior for the A values. Moreover, by carrying out
model optimizations with and without the A1 LCD variants,
we show that the presence of phase-separating IDPs in the
training set helps the parameter-learning procedure to capture
the role of Y and R residues as stickers. The accuracy and
general applicability of our model can be tested further by
future experiments on systems that were not used for train-
ing or testing. We also note that our automated, Bayesian
optimization approach makes it relatively straightforward to
continue to develop and improve the model as additional data
becomes available.

Simulations performed using the model optimized herein
reveal that, at least for sequences characterized by a relatively
uniform distribution of stickers, residue-residue interactions
determining chain compaction also drive self-association and
LLPS. Moreover, we show that the experimentally-observed
dependency of LLPS on protein net charge appears to be
captured by salt-screened electrostatic repulsion, even when
assuming a uniform dielectric constant throughout the two-
phase system.

We have here shown how our model may be used to help
elucidate the residues that are important for LLPS of IDPs
with UCST behaviour. Further, we suggest the model could be
applied to study the influence of disease-associated mutations
on the material properties of protein self-coacervates (79, 80),
the LLPS of protein mixtures as a function of composition, and
the partitioning of proteins that do not readily undergo phase
separation alone into condensates formed by other proteins
(81, 82). Finally, owing to the generalized parameter-learning
approach, the model could readily be refined as new experi-
mental data are collected and it should be possible to extend
it to account for specific pairwise interactions such as cation-m
interactions (25), PTMs (83), the salting-out effect (84) and
the temperature dependence of solvent mediated interactions
(70).

Materials and Methods

We use the Ca-based model proposed by Dignon et al. (21) aug-
mented with extra charges for the termini and a temperature-
dependent treatment for dielectric constant of water (SI Appendiz).
Langevin dynamics simulations are conducted using HOOMD-blue
v2.9 (85) in the NVT ensemble using the Langevin thermostat with
a time step of 5 fs and friction coefficient 0.01 ps~! (SI Appendiz).
Additionally, 100- and 300-chain simulations of LAF-1 RGG domain
are also performed using openMM v7.5 (86) (Fig. S20).

Bayesian Parameter-Learning Procedure. The X values are optimized
using a Bayesian parameter-learning procedure (30, 87, 88). The
training set consists of the experimental Ry values of 42 IDPs
(Tab. S1) and the intramolecular PRE data of six proteins (Tab. S2)
(16, 22, 23, 37, 44-57). To guide the optimization within physically
reasonable parameters and to avoid over-fitting the training set, we
introduce a regularization term which penalizes deviations of the A
values from the probability distribution, P()), which is the prior
knowledge obtained from the statistical analysis of 87 hydrophobicity
scales. The optimization procedure consists of the following steps
(Fig. 2):

1. Single-chain CG simulation of the proteins of the training set

(Tab. S1);

2. Conversion of CG simulations into all-atom trajectories using
PULCHRA (89) of the proteins in Tab. S2 for the calculation
of the PRE data;

3. Calculation of per-frame radii of gyration and PRE data. The
PRE rates, I'2, and intensity ratios, Ipara/Idia, are calculated

Tesei etal.

using the rotamer library approach implemented in DEER-
PREdict (34) with 74 = 100 ps and optimizing the correlation
time, 7c € [1,10] ns, against the experimental data.

4. Random selection of six A values which are nudged by random
numbers picked from a normal distribution of standard devi-
ation 0.05. The prior probability distribution, P()\), sets the
bounds of the parameter space: any \; for which P(\;) =0 is
further nudged until P(\;) # 0.

5. Calculation of the Boltzmann weights for the it" frame as
w; = exp —[U(ri, A\g) — U(ri, Xo)]/kBT, where U(r;, Ax) and
U(r;,Xo) are the total Ashbaugh-Hatch energies of the it"
frame for trial and initial A values, respectively. If the effective
fraction of frames,

Nframes
¢eff = €exXp | — Z w; log (wi X Nframes) 5 [1]
i
is below 30%, the trial Ak is discarded.

6. The per-frame radii of gyration and PRE observables are
reweighted and the extent of agreement with the experimental
data is estimated as

Rexp _ Rcu.lc 2
Xk, = <g . 2]

oeTP

and

1 Niabels Nres yerr _ yeale 2
XPRE — %X~ 5 g - _exp [3]
NlabelsNT‘es N O, P
J

i v

where Uszp is the error on the experimental values, Y is either

Ipara/Idia or I'2, Nigpeis is the number of spin-labeled mutants
and Nyes is the number of measured residues;

7. Following the Metropolis criterion (90), the k" set of A values
is accepted with probability:
LAp—1)]—L(X
exp [ ER=EOD | 200 > L)
L L) < LAk-1),
(4]

where the control parameter, &, scales with the number of
iterations as £ = & x 0.99F. £ is the cost function

L) = (¢, W) +10breN) =0 Y In[PO)]  [5]

Ag_15k =

where <X?%g (A)) and (x% (X)) are averages over the proteins
in the training sets. 6 and n are hyperparameters of the
optimization procedure. € determines the trade-off between
between over- and under-fitting the training set whereas n sets
the relative weight of the PRE data with respect to the radii
of gyration.
Steps 4-7 are iterated until £ < 1015, when the reweighting cycle
is interrupted and new CG simulation carried out with the trained
A values. A complete parameter-learning procedure consists of two
reweighting cycles starting from £y = 2 followed by three cycles
starting from §o = 0.1. The threshold on ¢.fs results in average
absolute differences between x? values estimated from reweighting
and calculated from trajectories performed with the corresponding
parameters of ~1.8 and ~0.8 for nxf,RE and x%g, respectively

(Fig. S24).

Data deposition. Datasets, code and Jupyter Notebooks for repro-
ducing our analyses are available on GitHub at github.com/KULL-
Centre/papers/tree/main/2021/CG-IDPs-Tesei-et-al and on Zen-
odo, DOI: 10.5281/zenodo.5005953.
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