

1 **Cellular electron tomography of the apical complex in the apicomplexan**
2 **parasite *Eimeria tenella* shows a highly organised gateway for regulated**
3 **secretion.**

4 Alana Burrell^{1,2}, Virginia Marugan-Hernandez¹, Flavia Moreira-Leite², David J P Ferguson², Fiona M
5 Tomley^{1*}, Sue Vaughan^{2*}

6

7 1 The Royal Veterinary College. University of London. Hawkshead Lane, North Mymms, AL9 7TA, UK

8 2 Department of Biological and Medical Sciences. Oxford Brookes University. Gipsy Lane, Oxford,
9 OX3 0BP, UK

10

11 *Joint corresponding author

12

13 **Abstract:**

14 The apical complex of apicomplexan parasites is essential for host cell invasion and
15 intracellular survival and as the site of regulated exocytosis from specialised secretory organelles
16 called rhoptries and micronemes. Despite its importance, there is little data on the three-
17 dimensional organisation and quantification of these organelles within the apical complex or how
18 they are trafficked to this specialised region of plasma membrane for exocytosis. In coccidian
19 apicomplexans there is an additional tubulin-containing hollow barrel structure, the conoid, which
20 provides a structural gateway for this specialised secretion. Using a combination of cellular electron
21 tomography and serial block face-scanning electron microscopy (SBF-SEM) we have reconstructed
22 the entire apical end of *Eimeria tenella* sporozoites. We discovered that conoid fibre number varied,
23 but there was a fixed spacing between fibres, leading to conoids of different sizes. Associated apical
24 structures varied in size to accommodate a larger or smaller conoid diameter. However, the number
25 of subpellicular microtubules on the apical polar ring surrounding the conoid did not vary, suggesting
26 a control of apical complex size. We quantified the number and location of rhoptries and
27 micronemes within cells and show a highly organised gateway for trafficking and docking of
28 rhoptries, micronemes and vesicles within the conoid around a set of intra-conoidal microtubules.
29 Finally, we provide ultrastructural evidence for fusion of rhoptries directly through the parasite
30 plasma membrane early in infection and the presence of a pore in the parasitophorous vacuole
31 membrane, providing a structural explanation for how rhoptry proteins (ROPs) may be trafficked
32 between the parasite and the host cytoplasm.

33

34

35

36 **Significance:**

37 Apicomplexan parasites cause a wide range of human and animal diseases. The apical
38 complex is essential for motility, host cell invasion and intracellular survival within a specialised
39 vacuole called the parasitophorous vacuole. We know that molecules important for all of these
40 processes are secreted from the apical complex via a set of secretory organelles and there is even
41 evidence that some parasite molecules can enter the host cell from the parasitophorous vacuole, but
42 there is little understanding of exactly how this occurs. Here we have used three dimensional
43 electron microscopy to reconstruct the entire apical end of the parasite and whole individual
44 parasites. Our results provide important insights into the structural organisation and mechanisms for
45 delivery of parasite molecules via this important area of the cell.

46

47 **Keywords:** Apicomplexa, *Eimeria*, conoid, *Toxoplasma*.

48

49 **Introduction:**

50 A defining feature of apicomplexan parasites is the apical complex after which the phylum is
51 named. This comprises an apical polar ring to which are attached a set of helically arrayed
52 subpellicular microtubules, and two types of specialised secretory apical organelles called
53 micronemes and rhoptries that are part of the parasite endomembrane system. The Coccidia sub-
54 class of Apicomplexa, which includes the genera *Eimeria*, *Neospora*, *Sarcocystis* and *Toxoplasma*,
55 also possess a conoid, an apical cone-like hollow structure composed of tubulin-containing fibres
56 (Morrisette and Sibley, 2002) associated with two pre-conoidal rings and a pair of intra-conoidal
57 microtubules (Nichols and Chiappino, 1987). Transmission electron microscopy analysis in
58 *Toxoplasma gondii* estimated the conoid to contain ~14 tubulin fibres (Hu et al., 2002), but there
59 was a level of uncertainty in this number due to inherent difficulties in analysing such a complex
60 structure using two-dimensional methods. The two pre-conoidal rings are located at the apical tip of
61 the cell, above the conoid and just under the plasma membrane, and these rings move together with
62 the mobile conoid when it is extended in *T. gondii*, although their precise role is not understood
63 (Nichols and Chiappino, 1987; Katsis et al., 2014).

64 Co-ordinated exocytosis of apical secretory organelles during host cell invasion is essential
65 not only for parasite entry into the host cell, but also for intracellular survival. Micronemes secrete
66 adhesin complexes (MICs) onto the parasite surface where they span the parasite plasma membrane
67 (PM) and connect to a parasite actinomyosin-based motility system, the glideosome, which occupies
68 a space in the parasite pellicle between the PM and the inner membrane complex for parasite

69 motility in extracellular parasites (Frénal et al., 2017). Surface exposure of MICs is essential for
70 attachment to host cells, gliding motility, migration across tissues and for the formation of a moving
71 junction (MJ) between the parasite and the host cell, during invasion (Carruthers and Tomley, 2008).
72 A complex of rhoptry neck proteins (RONs) are inserted into the host cell PM and act as cognate
73 receptors for the MIC protein AMA1, which is itself anchored to the parasite apical surface after
74 secretion. The AMA1-RON2 interaction is critical for the formation of a stable moving junction
75 (Lamarque et al., 2011) and the RON complex recruits host cytoskeletal structures to the cytosolic
76 face of the host PM, to solidify host-parasite bridging as invasion progresses (Guérin et al., 2017).
77 The MJ also sieves and removes GPI-anchored proteins from the host PM so that the newly formed
78 parasitophorous vacuole (PV) can resist endosome fusion and lysosomal destruction (Mordue et al.,
79 1999). Secreted rhoptry bulb proteins (ROPs) and membranous material contribute to the formation
80 and remodelling of the PV and its membrane and some ROPs traffic beyond the PV into the host cell
81 cytoplasm (Bradley and Sibley, 2007).

82 Secretion of both rhoptry and microneme proteins occurs from the apical complex, but the precise
83 organisation of these trafficking events is not well understood. MIC secretion from micronemes
84 occurs from the apical pole when parasites contact host cells (Frénal et al., 2017; Bumstead and
85 Tomley, 2000). This contact activates a parasite cGMP signalling pathway with two effector arms.
86 Inositol triphosphate (IP3) stimulates intracellular calcium release activating calcium-dependent
87 protein kinases (CDPKs) at the parasite apex. CDPKs then phosphorylate proteins involved in
88 microneme exocytosis and in the activation of the glideosome (Dunn et al., 1996). Diacylglycerol
89 (DAG) is converted to phosphatic acid at the inner leaflet of the parasite PM and sensed by a
90 pleckstrin homology domain protein (APH) that lies on the surface of apical micronemes (Bullen et
91 al., 2019). Despite these advances in understanding the signalling pathway, the actual mechanism of
92 microneme exocytosis remains enigmatic. RON/ROP secretion from rhoptries also occurs at the
93 apical pole, but apart from needing previous MIC discharge (Kessler et al., 2008) little is known about
94 the signalling pathway triggering rhoptry discharge. Apical positioning of the rhoptry seems to be
95 prerequisite for RON/ROP exocytosis (Frénal et al., 2013) and it is not possible to trigger RON/ROP
96 secretion in extracellular parasites. However invasion is not essential; if actin polymerisation (and
97 invasion) are disrupted by treatment with cytochalasin D parasites are still able to attach, form a
98 tight junction with the host PM and discharge rhoptry content into nascent parasitophorous
99 ‘evacuoles’, which can be readily detected with anti-ROP antibodies (Håkansson et al., 2001). Indeed
100 it appears that in normal *in vitro* and *in vivo* infections a proportion of host cells are injected with
101 rhoptry proteins without becoming infected; the reason for this is unknown (Koshy et al., 2012).
102 After discharge, rhoptries are occasionally seen as empty sacs (Lebrun et al., 2005) and in

103 intracellular parasites one or two rhoptries may be seen with their necks extending into the conoid
104 reaching the apical PM, suggesting they are anchored here and ready for secretion (Paredes-Santos
105 et al., 2012). The two intra-conoidal microtubules and associated secretory vesicles are proposed to
106 be involved in microneme and rhoptry spatial organisation within the conoid, but optical resolution
107 has been insufficient to confirm this hypothesis. Recently, a number of molecules involved in rhoptry
108 discharge have been identified, including orthologues of *Plasmodium* non-discharge rosette
109 complexes, as well as rhoptry apical surface proteins (Suarez et al., 2019) and calcium-sensing ferlins
110 (Coleman et al., 2018). While these molecules may hold the key to signalling, the key mechanisms of
111 rhoptry exocytosis, whereby RONs and ROPs cross both the parasite and the host PMs, remain
112 mysterious. The discharge of rhoptry and microneme proteins occur at the apical end presumably by
113 fusion with the PM overlying the conoid (Bannister et al., 2003; Scholtyseck and Mehlhorn, 1970),
114 but this is not well understood and there is uncertainty as to the machinery involved in fusion prior
115 to release. A recent study using cryo-electron tomography of *Toxoplasma gondii* tachyzoites showed
116 rhoptries connected to an apical vesicle underlying the plasma membrane of the conoid and a
117 rosette of non-discharge proteins embedded in the parasite plasma membrane, which appears to
118 represent machinery at least in part required for fusion and delivery of rhoptry contents into the
119 host cytosol (Aquilini et al., 2021).

120 Rhoptries have been visualised within the conoid in many studies (Dos Santos Pacheco et al.,
121 2020), but there has been some uncertainty over the precise location of micronemes either within
122 the conoid (Dubois and Soldati-Favre, 2019) or at the base of the conoid when it is protruded
123 (Paredes-Santos et al., 2012). Here, we used high resolution cellular electron tomography to
124 reconstruct the apical complex of *Eimeria tenella* sporozoites. Data from serial electron microscopy
125 tomography and serial block-face scanning electron microscopy (SBF-SEM) were combined to
126 produce 3D models showing how secretory organelles are arranged for exocytosis. Our data provide
127 evidence for fusion of the rhoptry membrane with the parasite membrane overlying the conoid and
128 a pore in the parasitophorous vacuole membrane that may be important in the delivery of rhoptry
129 contents to the host cytosol early in infection.

130

131 **Results:**

132 **Cellular electron tomography of the apical complex reveals a highly ordered 133 gateway for secretion.**

134 To investigate the detailed ultrastructure of the conoid and how the secretory organelles are
135 organised in the apical complex, serial section electron tomography was performed on freshly

136 hatched extracellular sporozoites and invaded sporozoites (N=17, serial dual axis serial tomograms).
137 These tomograms encompassed the entire apical end covering $\sim 2.5 \mu\text{m}^3$. Segmentation of the
138 conoid and associated structures were carried out for each serial tomogram (e.g. Movie 1 and
139 selected slices through a serial section tomogram images in Fig. 1C). Due to the complexity of the
140 overall structure, we divided the apical complex in two parts: the structures/organelles that
141 surround the conoid barrel are referred to as the ‘outer’ conoid components (Fig 1A) and the
142 structures/organelles contained within the barrel of the conoid are called ‘inner’ conoid components
143 (Fig 1B). The outer apical complex includes an electron-opaque apical polar ring (APR) (Fig 1A;
144 orange). Our work confirms that there are 24 evenly spaced subpellicular microtubules (Fig 1A;
145 green) radiating from APR and extending towards the posterior of the cell, as identified in all 17
146 tomograms. Two ring-shaped structures distal to the conoid - known as pre-conoidal ring-1 (PCR-1)
147 (Fig 1A, light blue) and pre-conoidal ring 2 (PCR-2) (Fig 1A, red) - complete the outer conoid
148 components. The outer apical complex is enclosed by the plasmalemma and partially enclosed by
149 the inner membrane complex (IMC), which is interrupted apically to form a circular apical opening
150 (not shown in the tomograms). This is located distal to the apical polar ring (APR).

151 The inner apical complex components comprise a pair of centrally located intra-conoidal
152 microtubules (Fig 1B; pink). We discovered that one of these microtubules starts and terminates in
153 line with the height of the conoid, whilst the other extends into the cell interior past the base of the
154 conoid and beyond the region covered in our tomograms, which has not been reported previously
155 (Fig 1B; pink, 1C:10 – arrows, 1C:11). Spherical vesicles of varying number are closely associated with
156 the two intra-conoidal microtubules and appear as a row of electron-opaque spheres leading
157 posteriorly from each conoid (Fig 1B – yellow; 1C: 11 - asterisks). Spherical vesicles have been
158 identified in this configuration in numerous studies, but the composition of these are unknown
159 (Paredes-Santos et al., 2012). There has been some uncertainty over the presence or absence of
160 microneme trafficking into the conoid barrel in *Toxoplasma gondii* (Dubois and Soldati-Favre, 2019),
161 but our tomograms clearly show both rhoptries (Fig 1B, dark blue; 1C: 7,8 - “R”) and micronemes (Fig
162 1B, light green; 1C: 10 - “M”) located within the conoid area of all 17 tomograms (see below, movie
163 1, Supple. Fig 2).

164 When viewed as a three-dimensional reconstruction, the conoid appears as an open
165 truncated cone formed from closely apposed helical fibres which follow a left-handed helical path
166 towards the apical end of the parasite (Fig 1A; white). Quantification of the size of the conoid and
167 the number of tubulin-containing fibres reveals a variation in fibre number between individual
168 parasites, but in all tomograms there were always 24 evenly spaced subpellicular microtubules
169 connected to the apical polar ring that surrounds the conoid. Negatively stained whole-mount

170 cytoskeletons of *T. gondii* estimates that the conoid is composed of ~14 helically arranged tubulin-
171 containing fibers (Hu et al., 2002), but high resolution tomography of the conoid had not been
172 carried out to confirm this. Our high-resolution tomograms show that there are between 13 and 16
173 fibres in the conoid, and there can be variation in fibre number even in genetically identical
174 sporozoites within the same sporocyst (Shirley and Harvey, 1996) (Supple. Fig. 1A). The width of
175 each conoid fibre was constant at 22 ± 2 nm and the spacing between each conoid fibre also
176 remained constant at $33 \text{ nm} \pm 4$ nm irrespective of conoid fiber number (supple. Fig 1B). This fixed
177 arrangement of fibre width and distance between each fibre means that a conoid with more fibres
178 must have a larger diameter (Supple. Fig 1C). This was confirmed by measurements of the conoid
179 diameter at the base (mean = 340 nm, +/-20 nm SD) and correlated with fibre number, which
180 revealed a positive correlation (coefficient = 0.78, p = 0.014, Pearson correlation).

181 Further quantitative analysis of the relationship between the increasing conoid diameter
182 and the size of other apical structures was carried out. There was no correlation between conoid
183 height (mean = 193 nm, +/- 35 nm SD) and fibre number (coefficient = 0.57, p=0.113, Pearson
184 correlation), suggesting that differences in fibre number are not linked the length of the conoid
185 fibres (Supple. Fig 1C). The conoid diameter did correlate to the diameter of the pre-conoidal rings.
186 PCR-1 diameter was 169.3 nm (+/- 9.6 nm) and PCR-2 diameter was 221.5 nm (+/- 14.5 nm) and the
187 increase in diameter of both rings was correlated with increasing conoid base diameter (PCR-1;
188 Pearson correlation, r = 0.97, p<0.001; PCR-2; Pearson correlation, r = 0.74, p = 0.037). Finally, APR
189 diameter was 393nm (+/- 19 nm) and there was also a positive correlation between APR diameter
190 and conoid base diameter (= 0.76; p = 0.017, Pearson correlation). Presumably, this would be
191 important in order to maintain the distance between the APR and conoid (Supple. Fig 1D). In
192 summary, our measurements reveal there are differences in conoid fibre number resulting in
193 dependency relationships between the size of the conoid and outer conoid components in order to
194 maintain the integrity of the overall structure despite size heterogeneity between individual
195 parasites.

196

197 **Micronemes and rhoptries are organised along the intra-conoidal
198 microtubules and closely associated with the plasma membrane overlying
199 the conoid.**

200 The serial tomograms we generated encompassed the full area of the conoid in enough
201 resolution to allow us to establish the precise location and number of each type of secretory
202 organelle. Although microneme proteins are known to be secreted at the apical pole, the precise

203 location and mechanism of trafficking of microneme proteins into the apical complex is uncertain
204 and a detailed quantitative analysis had not been carried out previously. In our dataset set we
205 discovered 1-2 rhoptries, 1-5 micronemes and 1-3 spherical vesicles within the barrel of the conoid
206 in all tomograms (Fig 2A-D, Fig 1L, M). Supple. Fig 2 shows examples of 5 freshly excysted
207 sporozoites with differing number of micronemes within the conoid area and entering the conoid
208 area. In addition, rhabdites, micronemes and spherical vesicles were always closely associated with
209 intra-conoidal microtubules, which are located centrally within the barrel of the conoid (Fig 1B, 2A,
210 Movie 1). To quantify the spatial relationships between the intra-conoidal microtubule pair and
211 micronemes, rhabdites and spherical vesicles, we measured the distances between each organelle
212 and the intra-conoidal microtubules, and between each organelle and the conoid fibres (Fig 2C - G).
213 One of the organelles were chosen in each tomogram and measurements taken at roughly the same
214 position within the conoid to take account of the cone shape of the conoid. These measurements
215 reveal that micronemes, rhabdites and spherical vesicles are always located significantly closer to the
216 intra-conoidal microtubule pair within the central barrel of the conoid than to the fibres of the
217 conoid barrel (Fig 2E-G), suggesting a potential role for the intra-conoidal microtubules in organising
218 the secretory organelles within the conoid in readiness for secretion. The plasma membrane
219 overlying the conoid was checked for evidence of fusion events or close apposition of microneme,
220 rhabdite or spherical vesicle membranes. All rhabdites within the conoid were in close apposition with
221 the plasma membrane. Spherical vesicles were organised in single file along the intra-conoidal
222 microtubules and there were always 1 or 2 micronemes and at least 1 spherical vesicle located in
223 close apposition with the plasma membrane overlying the conoid, as well as being closely associated
224 with the intra-conoidal microtubules (Fig 2H-O). This suggests there is a sequential trafficking of
225 micronemes and spherical vesicles along the intra-conoidal microtubules to the plasma membrane
226 overlying the conoid, in preparation for secretion.

227 Whilst fusion of microneme or spherical vesicle membranes with the plasma membrane was
228 not observed in freshly excysted sporozoites, our dataset included two serial section dual-axis
229 tomograms of sporozoites situated within a parasitophorous vacuole (PV) after sporozoite invasion
230 of Madin-Darby bovine kidney (MDBK) cells. In one of these invaded sporozoite tomograms fixed at
231 30 min post-infection, a rhabdite was identified with an electron-lucent interior instead of the usual
232 electron dense rhabdite organisation (Fig 3A and inset, B and inset; Movie 2). The electron-lucent
233 rhabdite (ELR) differed in shape from the electron dense rhabdites (R) in the same and other
234 tomograms, having a broader base and flask-shaped (Fig 3C). Intriguingly, the electron-lucent
235 rhabdite appeared to be continuous with the parasite plasma membrane as if the rhabdite had fused
236 with the parasite plasma membrane overlying the conoid, to release its contents (Fig 3B and inset).

237 At the point of fusion there was a hole in the PV membrane (PVM) appearing to create a channel
238 passing through both the parasite plasma membrane and the PVM, connecting the electron-lucent
239 rhoptry directly with host cell cytoplasm (Fig 3B and inset, C, D, Movie 2).

240 Overall, our extensive tomography analysis of both freshly excysted and invaded sporozoites
241 revealed that different types of secretory organelles converge within the conoid and are closely
242 associated with the intra-conoidal microtubules, forming what appears to be a highly ordered
243 secretory gateway at the apical end of the cell.

244

245 **Whole cell reconstructions of individual sporozoites reveals the organisation
246 and location of major sporozoite organelles.**

247 Our tomography data revealed that only a limited number of individual secretory organelles
248 are located within the conoid area, yet many studies show the presence of hundreds of micronemes
249 within the apical end of the parasite outside the conoid area. To better understand the broad
250 localisation and number of secretory organelles, freshly excysted sporozoites were prepared for
251 serial block face-scanning electron microscopy (SBF-SEM), which allows automated collection of
252 datasets containing hundreds of sequential serial sections. A total of 25 whole individual sporozoite
253 cells found in aligned SBF-SEM series were reconstructed and analysed for organelle number and
254 three dimensional organisation. A single slice of a freshly excysted sporozoite illustrates that most
255 major organelles were visible by SBF-SEM (Fig 4A, B, C; modelled in 4F). Movie 3 illustrates a portion
256 of the SBF-SEM dataset showing 25 slices containing a sporozoite. Organelle volume and number
257 were determined by manual segmentation of each organelle, and the relative abundance and
258 location of all identifiable organelles (including micronemes and rhoptries) were analysed (Fig 4F;
259 Suppl. Fig 3). Due to the number and close packing of micronemes located mainly at the apical end
260 of the sporozoite, it was not possible to accurately count them. Instead, micronemes were
261 segmented using a combination of pixel-density thresholding and manual area selection in three
262 whole cell volumes (Fig 4D). The total mean whole cell volume of individual sporozoites was 61.27
263 μm^3 (Supple. Fig 3A) with micronemes comprising 5% of whole cell volume and rhoptries <0.5% of
264 whole cell volume (Fig 4G). This quantitative analysis revealed that refractile bodies make up 36% of
265 whole cell volume (2 per cell in freshly excysted sporozoites), with the nucleus (1 per cell) and
266 amylopectin granules ($\sim 196/\text{cell}$) each comprising 4%, mitochondria ($\sim 14/\text{cell}$) 2% and
267 acidocalcisomes ($\sim 13/\text{cell}$) 1% of whole cell volume (Supple. Fig 3 for full quantification). The
268 majority of micronemes were densely packed at the apical end of the sporozoite (Fig 3D). Rhoptries

269 were observed as club-shaped structures with a rounded 'bulb' region and an elongated 'neck'
270 region. They were also mostly found towards the sporozoite apical end, although some rhoptries
271 were present in the central and posterior parts of the cell (Fig 4E). Unfortunately, the spherical
272 vesicles observed by tomography (in association with the intra-conoidal microtubules, e.g Fig 1B)
273 were not clearly identified in the reconstructed whole cell SBF-SEM data. By combining findings
274 from tomography and SBF-SEM, we conclude that *E. tenella* sporozoites contain an abundance of
275 micronemes and rhoptries, and only a small number of these are seen within the conoid where
276 secretion occurs, suggesting that there is significant directed movement of these secretory
277 organelles converging at the conoid.

278

279 **Discussion:**

280 Secretion of microneme and rhoptry contents from the apical end of apicomplexan zoites is
281 well documented and hundreds of micronemes have been visualised closely packed at the apical end
282 of many different apicomplexan parasites by classic transmission electron microscopy (TEM) thin
283 sections (For review see Dubois and Soldati-Favre, 2019). Exactly how micronemes are trafficked for
284 secretion to this small portion of plasma membrane is not well understood. In *T. gondii*, focussed ion
285 beam scanning electron microscopy (FIB-SEM) images did not find micronemes within the conoid
286 area and it was proposed that microneme secretion could occur adjacent to the conoid, close to
287 APR and the subpellicular microtubules, where a membrane space could open up as the conoid
288 protrudes (Paredes-Santos et al., 2012), rather than secretion occurring at the plasma membrane
289 directly overlying the conoid. However, further studies using the same technique did observe a
290 microneme inside the conoid area. Although the intra-conoidal microtubules could not be resolved
291 by FIB-SEM (Dubois and Soldati-Favre, 2019), they have been proposed to be involved in secretory
292 cargo trafficking (Hu et al., 2006b). Our experimental data using high resolution cellular electron
293 tomography in *E. tenella* provide experimental evidence for the role of the intra-conoidal
294 microtubules in the trafficking of micronemes through the conoid to the plasma membrane
295 overlying the conoid, suggesting an orderly system for transporting these organelles to the
296 membrane in preparation for docking, fusion and release of contents. We also show here that
297 rhoptries and a set of spherical vesicles (of yet unknown composition) are also closely associated
298 with the intra-conoidal microtubules. This suggests that the intra-conoidal microtubules are a major
299 organiser of orderly trafficking within the conoid area. In addition, our tomograms show that at least
300 one intra-conoidal microtubule may be involved in trafficking of organelles into the conoid space,
301 because this microtubule extends posteriorly into the cytoplasm (beyond the region covered by our

302 tomograms), where it is ideally positioned to interact with secretory organelles and ‘guide’ them to
303 the conoid for discharge.

304 Careful analysis of tomograms did not find direct evidence of fusion of microneme or
305 spherical vesicle membranes with the plasma membrane overlying the conoid, despite their close
306 proximity to the plasma membrane in nearly all tomograms. This might be due to the fixation
307 method used in this study or could indicate that the process is very fast and therefore extremely
308 difficult to capture in still images, but certainly the signalling cascade for membrane fusion exists in
309 apicomplexan organisms (for review see (Dubois and Soldati-Favre, 2019). Our observation of an
310 apparent fusion of a rhoptry to the parasite plasma membrane overlying the conoid and a small pore
311 in the parasitophorous vacuole membrane surrounding an invaded sporozoite has significant
312 implications in re-shaping what is understood about the parasitophorous vacuole. The current view
313 of the apicomplexan parasitophorous vacuole membrane is that this is sealed, requiring insertion of
314 parasite-derived pores for the transport of molecules between the host cell cytosol and the
315 parasitophorous intra-vacuolar space, and in particular for the trafficking of rhoptry proteins into the
316 host cytosol (Gold et al., 2015; Marino et al., 2018). However, our data as well as a rare thin section
317 electron microscopy of an invaded *T. gondii* tachyzoite show a direct connection or pore linking an
318 electron-lucent rhoptry and the host cell cytosol (Nichols et al., 1983). Recently, a mechanism
319 proposed to be involved upstream of rhoptry fusion was discovered in *T. gondii* tachyzoites using
320 cryo-electron tomography. The authors showed that rhoptries connected with an apical vesicle
321 underlying the plasma membrane of the conoid and the position of the apical vesicle coincided with
322 a rosette of non-discharge proteins embedded in the parasite plasma membrane. Direct fusion and a
323 pore were not observed in this study as we show in this work, but the formation of a rosette
324 containing non-discharge proteins maybe a pre-requisite for fusion of membranes and release of
325 rhoptry proteins (Aquilini et al., 2021). It is probable that rhoptry fusion is a highly dynamic event
326 that takes place only at specific stages of intracellular infection, which might explain why they have
327 been visualised only on rare occasions. In addition the pore is small (~40nm), which would make it
328 even more difficult to obtain clear images by thin section transmission electron microscopy.

329 Our detailed measurements and quantification of the conoid showed a highly ordered
330 organisation of conoid fibres in a left-handed helical organisation with fixed spacing between the
331 fibres. This is the first detailed high resolution three dimensional reconstruction of a coccidian
332 conoid and interestingly we have shown there is heterogeneity in fibre number between individual
333 sporozoites even at different developmental stages. This difference in fibre number influences the
334 overall size of the conoid and directly correlates with the associated diameters of the two conoidal
335 rings and the APR, presumably to ensure overall structural integrity to allow for conoid mobility, so it

336 can be recessed and flushed with the apical polar ring or extruded beyond the apical polar ring
337 (Monteiro et al., 2001). Intriguingly in all parasites there were always 24 subpellicular microtubules
338 on the APR, which presumably places a physical constraint for the minimum and maximum possible
339 diameter of the APR and its associated structures and thus, dictates the minimum and maximum
340 overall dimensions of the apical complex at least in the sporozoite stage of the parasite.

341 Here we show that combining high resolution cellular electron tomography and lower
342 resolution SBF-SEM data is a powerful way of investigating specific areas of cells with a whole cell
343 view. These datasets reveal a highly organised gateway for trafficking of secretory organelles to the
344 conoid area of the apical complex. Further work will be required to understand the role of rhoptry
345 fusion and pore formation within the PV and how individual micronemes are trafficked into the
346 conoid area from such a large cluster underlying the conoid area.

347 **Acknowledgements:** This research was supported by a joint PhD studentship between Oxford
348 Brookes University, Oxford, UK and The Royal Vet College (RVC), University of London to Alana
349 Burrell. VMH was funded by BBSRC grant BB/L00299X/1 and by a research fellowship from the RVC.
350 We would like to thank staff at the Oxford Brookes Centre for Bioimaging for technical assistance
351 and advice during collection of datasets and to staff at the Biological Services Unit at the RVC for
352 their assistance in the care of the animals. We also thank Ryuji Yanase and Heloise Gabriel both
353 Oxford Brookes University for assistance in data analysis.

354 **Figure legends:**

355 **Figure 1: Components of the apical complex in sporozoites of *E. tenella*.** The apical complex is
356 divided into outer conoid (A) and inner conoid (B) components. A and B: Segmentation from
357 tomogram. Outer conoid components; Conoid fibres (white); 2 pre-conoidal rings (PCR 1 and 2) (light
358 blue and red), apical polar ring (gold) in association with sub-pellicular microtubules (green); B: Inner
359 conoid components, rhoptry (dark blue), microneme (light green), secretory vesicle (yellow), intra-
360 conoidal microtubule pair (pink); Scale bars - 200nm. C: Series of 15 tomographic slices through a
361 representative tomogram, conoid – yellow arrowheads, micronemes – arrows throughout the series,
362 microneme within the conoid (10,11), Rhoptry (7, 8), long and short intra-conoidal microtubules
363 (10), spherical vesicle asterisks (11), Conoid fibres and inset (13). Scale bar - 500nm.

364
365 **Figure 2: Secretory organelles and their association with the intra-conoidal microtubules and**
366 **overlying the plasma membrane.** A: Series of rotational views of a segmentation created from one
367 serial tomogram illustrating the spatial grouping and alignment of microneme (light blue), rhoptries
368 (dark blue) and spherical vesicles (yellow) with the intra-conoidal microtubule pair (pink); B:
369 Segmentation of a serial tomogram illustrating the relative positioning of the microneme (light

370 green), rhoptry (dark blue) and spherical vesicles (yellow) with the apical end of the parasite; C and
371 D: slices taken from different tomograms (C) longitudinal view and (D) cross section view illustrating
372 how measurements were taken showing the distances from a microneme (M), rhoptry (R) and
373 spherical vesicle (SV) to either the intra-conoidal microtubules or conoid. Double-headed red arrows
374 show where the measurements were taken, single arrow in C for location of the conoid. Single arrow
375 in D the location of intra-conoidal microtubules; E-G: Micronemes, spherical vesicles and rhoptries
376 were significantly closer to the intra-conoidal microtubules (IM) than to the conoid (C) (t-test, $p <$
377 0.0001) (N= 17); H - I: Longitudinal slice views from 8 tomograms illustrating a spherical vesicle (red
378 arrows), microneme (blue arrows and black arrowheads) in close association with the plasma
379 membrane overlying the conoid in each tomogram. Yellow arrowheads show the outer edge of the
380 conoid in each example. Scale bars – 100nm.

381

382 **Figure 3: Characterisation of an electron lucent rhoptry in an intracellular sporozoite.** A: Slice from
383 a tomogram illustrating an intracellular sporozoite with an electron lucent rhoptry (box and A: inset)
384 close to a host cell nucleus (30 min post-infection sample) scale bar 1 m; A: inset: Higher
385 magnification of A illustrating the electron lucent rhoptry (ELR) at the conoid (white arrowheads
386 point out the boundaries of the conoid). Scale bar 500nm; B and B: inset: Slice from a tomogram
387 showing the electron lucent 'empty' rhoptry (ELR) which appeared to be continuous with the
388 parasite plasma membrane and attached at its apex to a hole in the parasitophorous membrane
389 creating a channel passing through both the parasite plasma membrane and the PVM connecting the
390 'empty rhoptry' directly with host cell cytoplasm B – scale bar 100nm; B inset scale bar 50nm; C and
391 D: Segmentation of a serial tomogram outlined in A and B to illustrate the three dimensional
392 organisation and relative positioning of the electron lucent rhoptry (ELR – dark blue), electron dense
393 rhoptry (R – dark blue), conoid fibres (white), spherical vesicles (yellow), parasite plasma membrane
394 (purple), parasitophorous vacuole membrane (green), PCR-1 and 2 (light blue and red), subpellicular
395 microtubules (yellow), intra-conoidal microtubules (pink).

396

397 **Figure 4: SBF-SEM quantification of micronemes, rhoptries and other major organelles in freshly**
398 **excysted sporozoites.** A: Longitudinal section from an SBF-SEM dataset illustrating the major
399 organelles. B and C: Additional slices from SBF-SEM datasets to illustrate identification of major
400 organelles. D and E: Quantification and location of microneme and rhoptry organelles in SBF-SEM
401 whole cell reconstructions. F. Combined model illustrating the positioning of all the major
402 organelles: micronemes – yellow, refractile bodies – green, amylopectin granules – red,

403 acidocalcisomes – black, rhoptries – purple, nucleus – blue - Scale bars – 1 m; G. Relative volumes of
404 major organelles in freshly excysted sporozoites.

405

406 **Supplemental figure 1: Conoid fibre number variation in sporozoites from pre-excystation**
407 **sporocysts, freshly excysted and intracellular.** A: Segmentation of sporozoite conoids from pre-
408 excystation sporozoites within sporocysts, freshly excysted and intracellular sporozoites. The
409 numbers next to sporocysts indicates matching sporozoites within a sporocyst; B: segmentation of a
410 conoid (white) illustrating how measurements were taken for conoid fibre width (1) and conoid fibre
411 to fibre spacing (2); C: segmentation of sporozoite conoid area illustrating how measurements of
412 conoid diameter and height were taken; D: segmentation of a sporozoite conoid area illustrating the
413 measurement criteria of conoid to apical polar ring (arrow). Index: Conoid fibres (white); 2 pre-
414 conoidal rings (PCR 1 and 2) (light blue and red), apical polar ring (gold) in association with sub-
415 pellicular microtubules (green).

416

417 **Supplemental figure 2:** A selected tomogram slices from 5 serial tomograms to illustrate the number
418 of micronemes (mic) and rhoptries in the conoid area. All micronemes that were either partially or
419 fully within the conoid were included. Conoid is highlighted with yellow arrowheads in all examples.
420 Tomogram A containing 2 rhoptries and 5 micronemes within the conoid. Mic 1 and 3 are closest to
421 the plasma membrane underlying the conoid. Mic 2, 4 and 5 have partially entered the conoid area;
422 Tomogram B, slices from a tomogram containing 2 rhoptries and 3 micronemes. Mic 1 is closest to
423 the plasma membrane; Tomogram C, slices from a tomogram with 2 rhoptries and 2 micronemes;
424 Tomogram D, slices from a tomogram containing 2 rhoptries and 2 micronemes. Mic 1 is closest to
425 the plasma membrane; Tomogram E, slices from a tomogram containing 2 rhoptries and 2
426 micronemes.

427

428 **Supplemental figure 3: Volume and numbers of major organelles from whole cell reconstructions**
429 **of freshly excysted sporozoites by SBF-SEM.** Analyses was calculated from segmented SBF-SEM
430 data for each organelle in freshly excysted sporozoites. For each organelle the mean volume of an
431 individual organelle is included, SD = standard deviation, COV = co-efficient of variation, range of
432 volumes of a particular organelle or cell volume. The number of organelles per cell is included for
433 amylopectin granules, acidocalcisomes and mitochondria. AP = Apical end of the parasite. Scale bar
434 1 m.

435 **Movie 1:** Serial section cellular electron tomogram containing the apical complex of a freshly
436 excysted sporozoite and segmentation of the dataset to illustrate the three dimensional model.

437 Conoid fibres (white); 2 pre-conoidal rings (PCR 1 and 2) (light blue and red), apical polar ring (gold)
438 in association with sub-pellicular microtubules (green); rhoptry X 1 within the conoid (dark blue),
439 micronemes X 2 modelled within the conoid (light green), secretory vesicles (yellow), intra-conoidal
440 microtubule pair (pink);

441 **Movie 2:** Serial section cellular electron tomogram of an infected MDKB cell 30 mins post-infection
442 containing an electron lucent rhoptry and pore. Movie illustrates the tomogram data followed by the
443 segmentation. Colour scheme as per Movie 1 figure legend.

444 **Movie 3:** A total of 25 sequential slices (~100nm thick) through an SBF-SEM dataset to illustrate a
445 whole freshly excysted sporozoite used for quantitative analysis of organelles in Fig 4 and Supple. Fig
446 3.

447

448

449

450 **Methods:**

451 **Infection of chickens and sporozoite purification**

452 Three-week-old Lohmann chickens (purchased from APHA Weybridge) kept under specific pathogen
453 free conditions were orally infected with 4,000 sporulated *E. tenella* Wisconsin strain oocysts
454 (Shirley, 1995). Oocysts were harvested at 7 days post-infection and excystation and sporozoite
455 purification performed as previously described (Pastor-Fernández et al., 2020).

456

457 **In vitro *E. tenella* infections**

458 The NBL-1 line of MDBK cells (ECACC-Sigma-Aldrich, Salisbury, UK) were prepared as previously
459 described (Marugan-Hernandez et al; 2020). One millilitre of cell-culture medium containing 0.35 x
460 10^6 MDBK cells was added to wells of a 24 well culture plate. Cells were left to settle for up to 3 hr at
461 38 °C, 5% CO₂, prior to infection with sporozoites. Freshly-purified sporozoites were pelleted by
462 centrifugation at ~ 600 RCF for 10 min and re-suspended in cell-culture medium at a concentration
463 of 3.5 million sporozoites per ml. One millilitre of sporozoite suspension was added to each MDBK-
464 cell containing well.

465

466 **Preparation of freshly excysted sporozoites for electron microscopy**

467 Freshly purified sporozoites (~10-50 million) were suspended in 1 ml of primary fix (2% freshly-
468 prepared formaldehyde solution (Sigma-Aldrich), 2.5% electron microscopy grade glutaraldehyde
469 (TAAB) and 0.1 M sodium cacodylate buffer (TAAB) in double distilled (dd H₂O). Sporozoites were left

470 in primary fixative for two hours at 4°C. Fixed sporozoites were washed five times in 0.1 M
471 cacodylate buffer pH 7.4 for 10 min. Sporozoites were pelleted by centrifugation and incubated in
472 2% osmium tetroxide (TAAB) in 0.1 M cacodylate buffer for 60 min at 4°C. For uranyl acetate
473 staining, sporozoites were added to 1 ml molten 3% agarose (2-Hydroxyethyl agarose – Sigma-
474 Aldrich, dissolved in ddH₂O), centrifuged and incubated at 4°C for 5 min. Approximately 1 mm³
475 blocks were cut from the part of the agarose containing sporozoites and incubated in freshly-filtered
476 2% aqueous uranyl acetate (Agar scientific) in the dark at 4°C overnight. Sporozoites were washed in
477 ddH₂O and then dehydrated by a series of 20 min incubations in acetone/ddH₂O solutions. Samples
478 were incubated for 2 hours in 25% epoxy resin (TAAB 812 resin premix kit) in acetone; overnight in
479 50% resin in acetone; 6 hrs in 75% resin in acetone; overnight in 100% resin, and finally, two changes
480 of 100% resin for 2 hours each. Polymerisation was achieved by incubation at 60°C for 24 h.

481

482

483

484 **Preparation of host cells infected with sporozoites for electron microscopy**

485 Electron microscopy grade glutaraldehyde was added to the infected MDBK cells for 15 min then
486 primary fixation carried out as above.

487

488 **Electron tomography and measurements**

489 Transmission electron tomography was performed using one of several transmission electron
490 microscopes: H-7560 (Hitachi™), Spirit (Tecnai™, FEI™/Thermo Fisher Scientific™) or Talos™
491 (FEI™/Thermo Fisher Scientific™). Sections were cut at 150 nm thickness for 120 kilovolts (kV)
492 (Hitachi™ H-7560 or Tecnai™ Spirit electron microscopes) and at 150 nm-200 nm thickness for 200
493 kV (FEI™ Talos™ electron microscope). Tomogram tilt series generated using the Hitachi™ H-7560
494 electron microscope were taken from -60° to +60° with intervals of +1°. For tomography data
495 acquisition using the Tecnai™ Spirit electron microscope, automated centring, focus adjustment, tilt
496 setting, and image capture were performed using Xplore3D™ software by FEI™. For tomography
497 data acquisition using the FEI™ Talos™ electron microscope, automated centring, focus adjustment,
498 tilt setting, and image capture were performed using DigitalMicrograph™ (Gatan™) with SerialEM™
499 plug-in (Mastronarde, October 2005). Regardless of the microscope used, dual axis tomograms were
500 collected by rotating the grid by 90° and repeating the tilt series image collection. Tomogram image
501 data series processing, segmentation of the tomograms (modelling) to produce three dimensional
502 reconstructions and all measurements from the tomograms were also carried out using using

503 IMOD™ software (Kremer et al., 1996) (University of Colorado, Boulder). All measurements were
504 carried out in IMOD. Measurement were also carried out using the measurement features in IMOD.

505

506 **Serial block face scanning electron microscopy (SBF-SEM) image acquisition**

507 SBF-SEM data was collected using a Zeiss™ Merlin scanning electron microscope with Gatan™
508 3View™ automated sectioning and image capture system. Samples were trimmed to ~1 mm³ and
509 mounted on 3view sample pins using an epoxy conductive adhesive from Circuitworks™. After
510 insertion of the mounted block, the intra-microscope diamond-knife was advanced towards the
511 block-face by 200 nm cutting-strokes until sectioning of the block face was observed. The block-face
512 was then imaged using a scanning electron beam with 3-5 kV accelerating voltage. Electron signal
513 was detected using a back-scatter electron detector (OnPoint, Gatan) and nitrogen gas was injected
514 to raise chamber pressure to 30pa. SBF-SEM data was processed using IMOD™ software, run
515 through Cygwin™ command line interface. Segmentation was also carried out using IMOD™
516 software. (University of Colorado, Boulder).

517

518 **Statistical analysis**

519 Statistical analyses were performed using IBM™ SPSS™ version 25 software. A t-test was used to test
520 for an association between a continuous variable and a binary categorical variable where there was
521 normal distribution for both groups. If testing for an association between a continuous variable and
522 a binary categorical variable where one or both groups did not show normal distribution, the Mann-
523 Whitney U test was used. If dealing with a continuous variable and a categorical variable with more
524 than two groups, where the continuous data was normally distributed for all the groups, One-Way
525 ANOVA was used followed by a post-hoc Turkey HSD test. If there was a continuous variable and a
526 categorical variable with more than two groups, where data within at least one of the groups was
527 not normally distributed, then the Kruskal-Wallis test was used. The Chi-squared test was used when
528 assessing for a statistically significant association between two categorical variables. See individual
529 figures and legends for specific tests for each experiment.

530

531 **References:**

532 Aquilini, E., M.M. Cova, S.K. Mageswaran, N. Dos Santos Pacheco, D. Sparvoli, D.M. Penarete-Vargas,
533 R. Najm, A. Graindorge, C. Suarez, M. Maynadier, L. Berry-Sterkers, S. Urbach, P.R. Fahy, A.N.
534 Guérin, B. Striepen, J.-F. Dubremetz, Y.-W. Chang, A.P. Turkewitz, and M. Lebrun. 2021. An
535 Alveolata secretory machinery adapted to parasite host cell invasion. *Nat Microbiol.* 6:425–
536 434. doi:10.1038/s41564-020-00854-z.

537 Bannister, L.H., J.M. Hopkins, A.R. Dluzewski, G. Margos, I.T. Williams, M.J. Blackman, C.H. Kocken,
538 A.W. Thomas, and G.H. Mitchell. 2003. *Plasmodium falciparum* apical membrane antigen 1
539 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during
540 merozoite development. *J Cell Sci.* 116:3825–3834. doi:10.1242/jcs.00665.

541 Bradley, P.J., and L.D. Sibley. 2007. Rhoptries: an arsenal of secreted virulence factors. *Curr Opin*
542 *Microbiol.* 10:582–587. doi:10.1016/j.mib.2007.09.013.

543 Bullen, H.E., H. Bisio, and D. Soldati-Favre. 2019. The triumvirate of signaling molecules controlling
544 Toxoplasma microneme exocytosis: Cyclic GMP, calcium, and phosphatidic acid. *PLoS*
545 *Pathog.* 15:e1007670. doi:10.1371/journal.ppat.1007670.

546 Bumstead, J., and F. Tomley. 2000. Induction of secretion and surface capping of microneme
547 proteins in *Eimeria tenella*. *Mol Biochem Parasitol.* 110:311–321. doi:10.1016/s0166-
548 6851(00)00280-2.

549 Carruthers, V.B., and F.M. Tomley. 2008. Microneme proteins in apicomplexans. *Subcell Biochem.*
550 47:33–45. doi:10.1007/978-0-387-78267-6_2.

551 Coleman, B.I., S. Saha, S. Sato, K. Engelberg, D.J.P. Ferguson, I. Coppens, M.B. Lodoen, and M.-J.
552 Gubbels. 2018. A Member of the Ferlin Calcium Sensor Family Is Essential for *Toxoplasma*
553 *gondii* Rhopty Secretion. *mBio.* 9. doi:10.1128/mBio.01510-18.

554 Diallo, M.A., A. Sausset, A. Gnahoui-David, A.R.E. Silva, A. Brionne, Y. Le Vern, F.I. Bussière, J. Tottey,
555 S. Lacroix-Lamandé, F. Laurent, and A. Silvestre. 2019. *Eimeria tenella* ROP kinase EtROP1
556 induces G0/G1 cell cycle arrest and inhibits host cell apoptosis. *Cell Microbiol.* 21:e13027.
557 doi:10.1111/cmi.13027.

558 Dos Santos Pacheco, N., N. Tosetti, L. Koreny, R.F. Waller, and D. Soldati-Favre. 2020. Evolution,
559 Composition, Assembly, and Function of the Conoid in Apicomplexa. *Trends Parasitol.*
560 36:688–704. doi:10.1016/j.pt.2020.05.001.

561 Dubois, D.J., and D. Soldati-Favre. 2019. Biogenesis and secretion of micronemes in *Toxoplasma*
562 *gondii*. *Cell Microbiol.* 21:e13018. doi:10.1111/cmi.13018.

563 Dunn, P.P., J.M. Bumstead, and F.M. Tomley. 1996. Sequence, expression and localization of
564 calmodulin-domain protein kinases in *Eimeria tenella* and *Eimeria maxima*. *Parasitology.* 113
565 (Pt 5):439–448. doi:10.1017/s0031182000081506.

566 Frénal, K., J.-F. Dubremetz, M. Lebrun, and D. Soldati-Favre. 2017. Gliding motility powers invasion
567 and egress in Apicomplexa. *Nat Rev Microbiol.* 15:645–660. doi:10.1038/nrmicro.2017.86.

568 Frénal, K., C.L. Tay, C. Mueller, E.S. Bushell, Y. Jia, A. Graindorge, O. Billker, J.C. Rayner, and D.
569 Soldati-Favre. 2013. Global analysis of apicomplexan protein S-acyl transferases reveals an
570 enzyme essential for invasion. *Traffic.* 14:895–911. doi:10.1111/tra.12081.

571 Gold, D.A., A.D. Kaplan, A. Lis, G.C.L. Bett, E.E. Rosowski, K.M. Cirelli, A. Bougdour, S.M. Sidik, J.R.
572 Beck, S. Lourido, P.F. Egea, P.J. Bradley, M.-A. Hakimi, R.L. Rasmusson, and J.P.J. Saeij. 2015.
573 The *Toxoplasma* Dense Granule Proteins GRA17 and GRA23 Mediate the Movement of Small
574 Molecules between the Host and the Parasitophorous Vacuole. *Cell Host Microbe.* 17:642–
575 652. doi:10.1016/j.chom.2015.04.003.

576 Guérin, A., R.M. Corrales, M.L. Parker, M.H. Lamarque, D. Jacot, H. El Hajj, D. Soldati-Favre, M.J.
577 Boulanger, and M. Lebrun. 2017. Efficient invasion by *Toxoplasma* depends on the
578 subversion of host protein networks. *Nat Microbiol.* 2:1358–1366. doi:10.1038/s41564-017-
579 0018-1.

580 Håkansson, S., A.J. Charron, and L.D. Sibley. 2001. *Toxoplasma* vacuoles: a two-step process of
581 secretion and fusion forms the parasitophorous vacuole. *EMBO J.* 20:3132–3144.
582 doi:10.1093/emboj/20.12.3132.

583 Hu, K., D.S. Roos, and J.M. Murray. 2002. A novel polymer of tubulin forms the conoid of *Toxoplasma*
584 *gondii*. *J Cell Biol.* 156:1039–1050. doi:10.1083/jcb.200112086.

585 Katris, N.J., G.G. van Dooren, P.J. McMillan, E. Hanssen, L. Tilley, and R.F. Waller. 2014. The apical
586 complex provides a regulated gateway for secretion of invasion factors in *Toxoplasma*. *PLoS*
587 *Pathog.* 10:e1004074. doi:10.1371/journal.ppat.1004074.

588 Kessler, H., A. Herm-Götz, S. Hegge, M. Rauch, D. Soldati-Favre, F. Frischknecht, and M. Meissner.
589 2008. Microneme protein 8--a new essential invasion factor in *Toxoplasma gondii*. *J Cell Sci.*
590 121:947–956. doi:10.1242/jcs.022350.

591 Koshy, A.A., H.K. Dietrich, D.A. Christian, J.H. Melehani, A.J. Shastri, C.A. Hunter, and J.C. Boothroyd.
592 2012. *Toxoplasma* co-opts host cells it does not invade. *PLoS Pathog.* 8:e1002825.
593 doi:10.1371/journal.ppat.1002825.

594 Kremer, J.R., D.N. Mastronarde, and J.R. McIntosh. 1996. Computer visualization of three-
595 dimensional image data using IMOD. *J Struct Biol.* 116:71–76. doi:10.1006/jsb1.1996.0013.

596 Lamarque, M., S. Besteiro, J. Papoin, M. Roques, B. Vulliez-Le Normand, J. Morlon-Guyot, J.-F.
597 Dubremetz, S. Fauquenoy, S. Tomavo, B.W. Faber, C.H. Kocken, A.W. Thomas, M.J.
598 Boulanger, G.A. Bentley, and M. Lebrun. 2011. The RON2-AMA1 interaction is a critical step
599 in moving junction-dependent invasion by apicomplexan parasites. *PLoS Pathog.*
600 7:e1001276. doi:10.1371/journal.ppat.1001276.

601 Marino, N.D., M.W. Panas, M. Franco, T.C. Theisen, A. Naor, S. Rastogi, K.R. Buchholz, H.A. Lorenzi,
602 and J.C. Boothroyd. 2018. Identification of a novel protein complex essential for effector
603 translocation across the parasitophorous vacuole membrane of *Toxoplasma gondii*. *PLoS*
604 *Pathog.* 14:e1006828. doi:10.1371/journal.ppat.1006828.

605 Monteiro, V.G., E.J. de Melo, M. Attias, and W. de Souza. 2001. Morphological changes during
606 conoid extrusion in *Toxoplasma gondii* tachyzoites treated with calcium ionophore. *J Struct*
607 *Biol.* 136:181–189. doi:10.1006/jsb1.2002.4444.

608 Mordue, D.G., N. Desai, M. Dustin, and L.D. Sibley. 1999. Invasion by *Toxoplasma gondii* establishes a
609 moving junction that selectively excludes host cell plasma membrane proteins on the basis
610 of their membrane anchoring. *J Exp Med.* 190:1783–1792. doi:10.1084/jem.190.12.1783.

611 Morissette, N.S., and L.D. Sibley. 2002. Cytoskeleton of apicomplexan parasites. *Microbiol Mol Biol*
612 *Rev.* 66:21–38; table of contents. doi:10.1128/mmbr.66.1.21-38.2002.

613 Nichols, B.A., and M.L. Chiappino. 1987. Cytoskeleton of *Toxoplasma gondii*. *J Protozool.* 34:217–
614 226. doi:10.1111/j.1550-7408.1987.tb03162.x.

615 Nichols, B.A., M.L. Chiappino, and G.R. O'Connor. 1983. Secretion from the rhoptries of *Toxoplasma*
616 *gondii* during host-cell invasion. *J Ultrastruct Res.* 83:85–98. doi:10.1016/s0022-
617 5320(83)90067-9.

618 Paredes-Santos, T.C., W. de Souza, and M. Attias. 2012. Dynamics and 3D organization of secretory
619 organelles of *Toxoplasma gondii*. *J Struct Biol.* 177:420–430. doi:10.1016/j.jsb.2011.11.028.

620 Pastor-Fernández, I., S. Kim, V. Marugán-Hernández, F. Soutter, F.M. Tomley, and D.P. Blake. 2020.
621 Vaccination with transgenic *Eimeria tenella* expressing *Eimeria maxima* AMA1 and IMP1
622 confers partial protection against high-level *E. maxima* challenge in a broiler model of
623 coccidiosis. *Parasit Vectors.* 13:343. doi:10.1186/s13071-020-04210-2.

624 Saffer, L.D., O. Mercereau-Puijalon, J.F. Dubremetz, and J.D. Schwartzman. 1992. Localization of a
625 *Toxoplasma gondii* rhoptry protein by immunoelectron microscopy during and after host cell
626 penetration. *The Journal of protozoology.* 39:526–530.

627 Scholtyseck, E., and H. Mehlhorn. 1970. Ultrastructural study of characteristic organelles (paired
628 organelles, micronemes, micropores) of sporozoa and related organisms. *Z Parasitenkd.*
629 34:97–127. doi:10.1007/BF00260383.

630 Shirley, M.W., and D.A. Harvey. 1996. *Eimeria tenella*: infection with a single sporocyst gives a clonal
631 population. *Parasitology.* 112 (Pt 6):523–528. doi:10.1017/s0031182000066099.

632 Suarez, C., G. Lentini, R. Ramaswamy, M. Maynadier, E. Aquilini, L. Berry-Sterkers, M. Cipriano, A.L.
633 Chen, P. Bradley, B. Striepen, M.J. Boulanger, and M. Lebrun. 2019. A lipid-binding protein
634 mediates rhoptry discharge and invasion in *Plasmodium falciparum* and *Toxoplasma gondii*
635 parasites. *Nat Commun.* 10:4041. doi:10.1038/s41467-019-11979-z.

636

figure 1

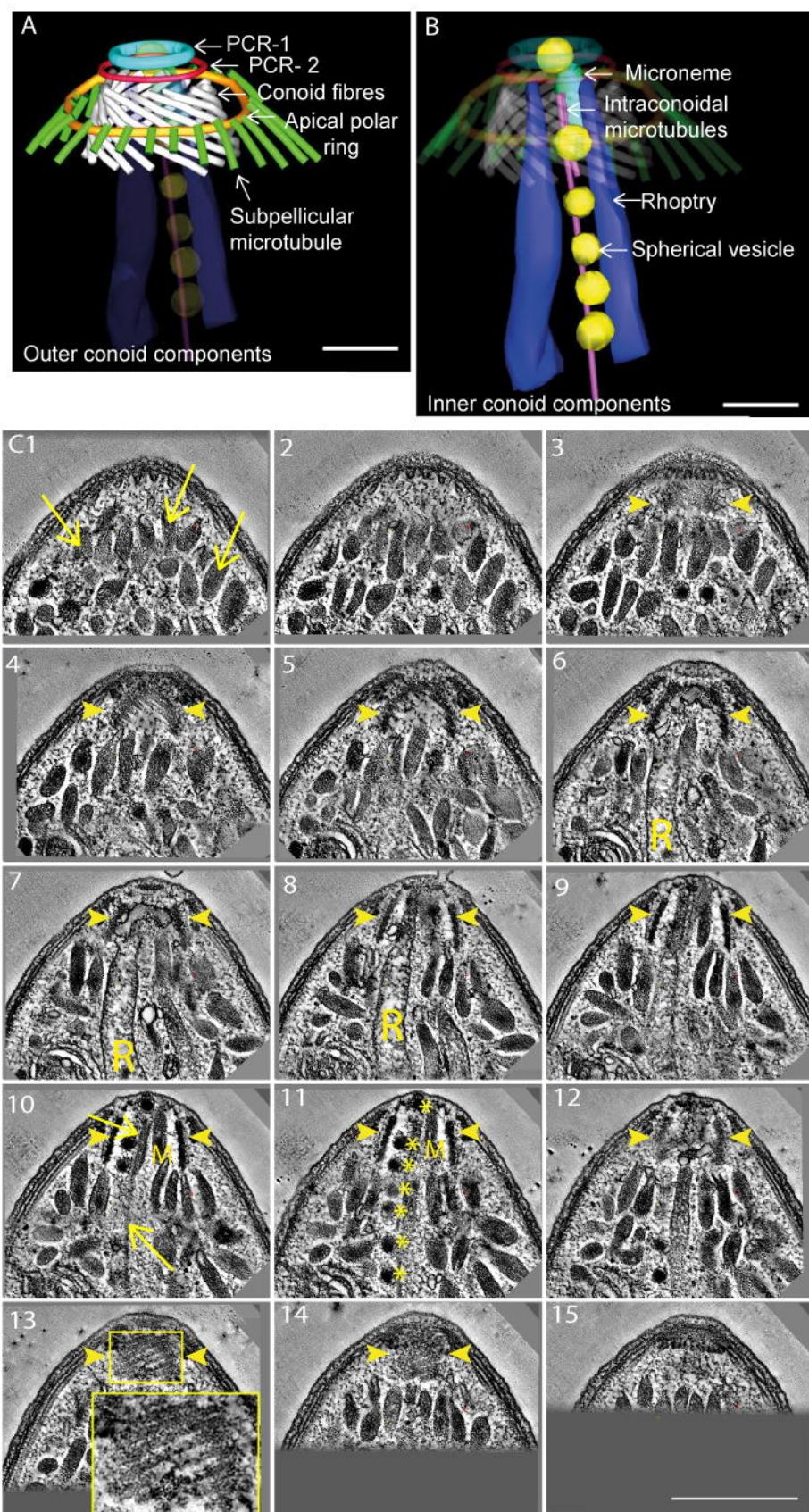
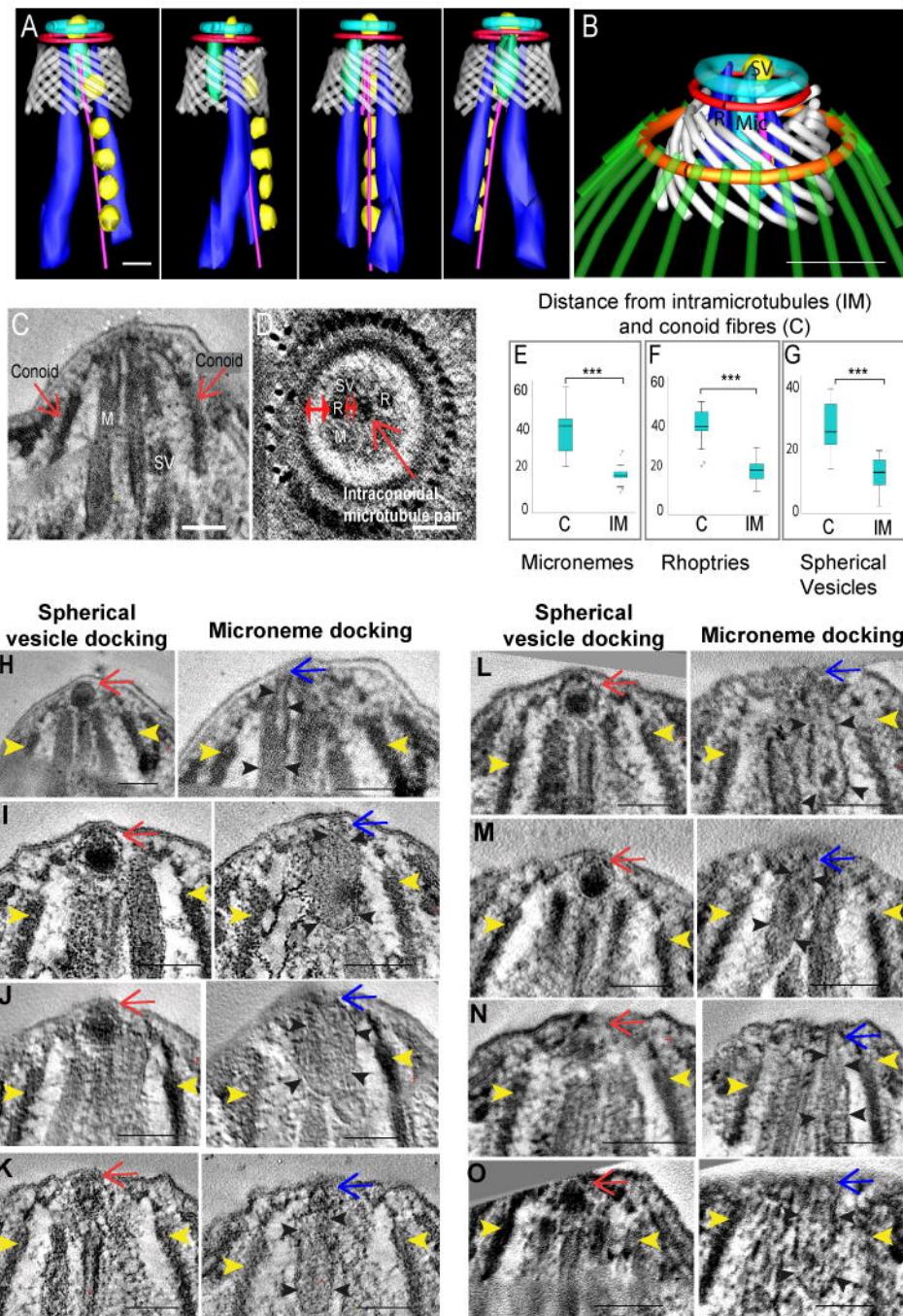



Figure 2

Figure 3

bioRxiv preprint doi: <https://doi.org/10.1101/2021.06.17.448283>; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

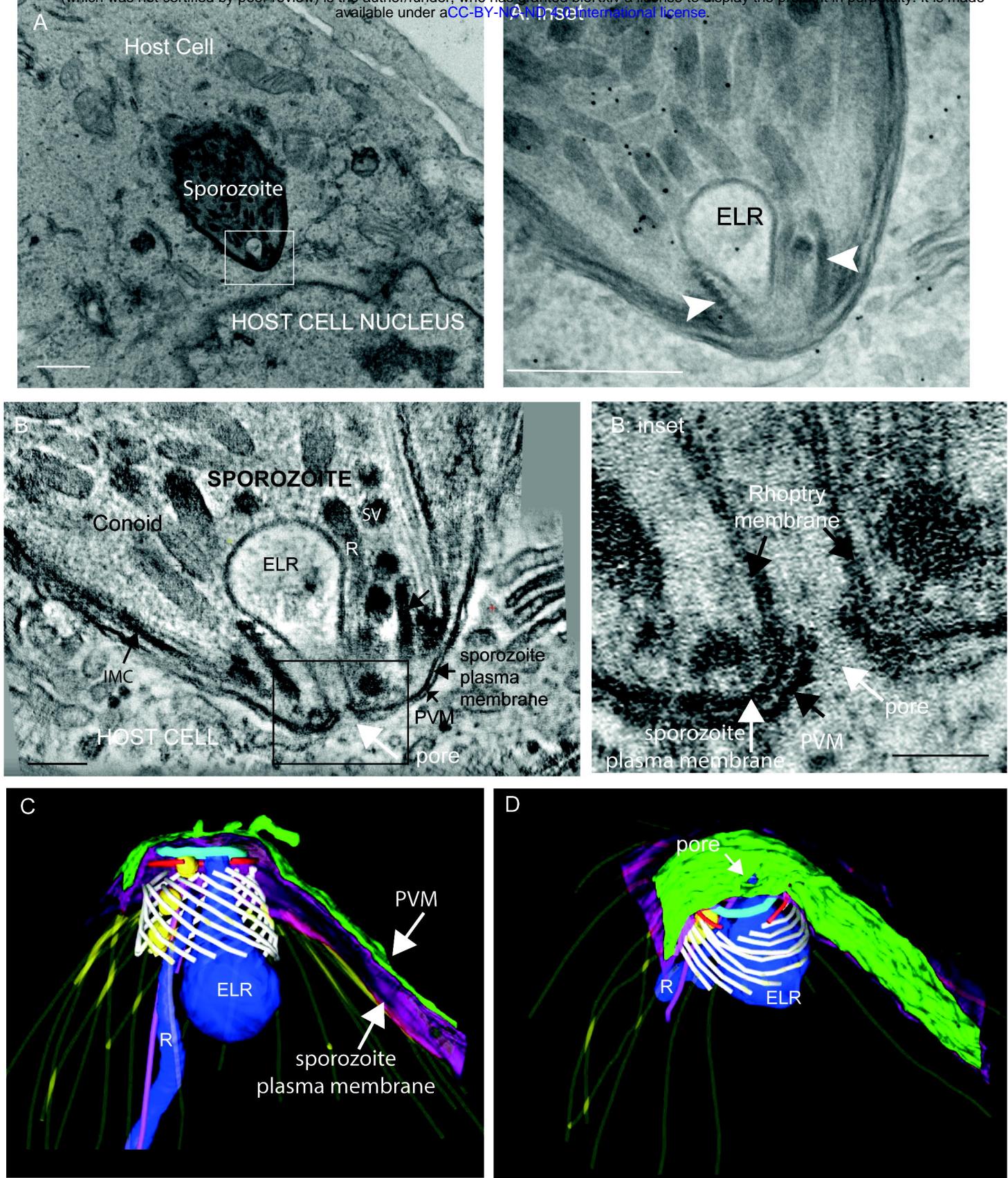
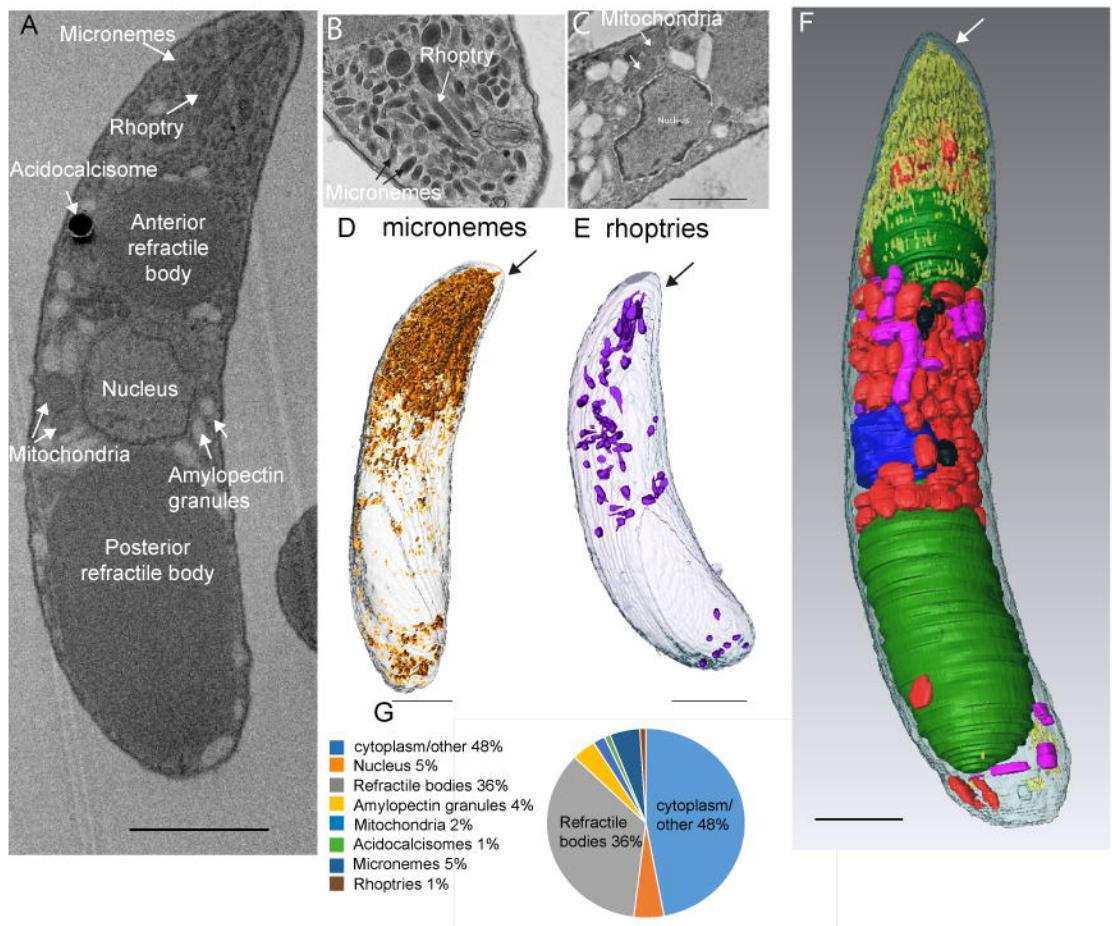



Figure 4

