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Abstract

A popular approach to quantifying animal behavior from

video data is through discrete behavioral segmentation,

wherein video frames are labeled as containing one or more

behavior classes such as walking or grooming. Sequence

models learn to map behavioral features extracted from

video frames to discrete behaviors, and both supervised

and unsupervised methods are common. However, each

approach has its drawbacks: supervised models require a

time-consuming annotation step where humans must hand

label the desired behaviors; unsupervised models may fail

to accurately segment particular behaviors of interest. We

introduce a semi-supervised approach that addresses these

challenges by constructing a sequence model loss function

with (1) a standard supervised loss that classifies a sparse

set of hand labels; (2) a weakly supervised loss that classi-

fies a set of easy-to-compute heuristic labels; and (3) a self-

supervised loss that predicts the evolution of the behavioral

features. With this approach, we show that a large number

of unlabeled frames can improve supervised segmentation

in the regime of sparse hand labels and also show that a

small number of hand labeled frames can increase the pre-

cision of unsupervised segmentation.

1. Introduction

Behavioral segmentation is an indispensable tool for

quantifying natural animal behavior as well as understand-

ing the effects of targeted interventions [1, 35, 44]. This

procedure begins with the collection of raw behavioral

data during an experiment, typically with video or motion-

capture sensors. In the supervised segmentation setting,

the experimenter then labels a subset of frames that con-

tain behaviors of interest, such as walking, grooming, rear-

ing, etc. Finally, a machine learning algorithm (referred to

here as a “sequence model”) is trained to match each frame
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Figure 1. Temporal sequence models for behavioral classifica-

tion can be augmented with a weakly supervised loss that clas-

sifies heuristic labels and a self-supervised loss that predicts fu-

ture behavioral features in order to improve model performance

on sparsely labeled datasets.

with the corresponding behaviors [16, 18, 20, 31, 32, 6, 33,

39, 41, 43]. As the scale of behavioral data continues to

grow [11, 44], it becomes infeasible to densely label be-

haviors in every video. Therefore, it is crucial to develop

segmentation techniques that perform well with sparsely la-

beled data.

Fully unsupervised behavioral segmentation algorithms

are a complementary approach that require no hand labels

[4, 17, 47, 14, 26]. These algorithms typically reduce the

dimensionality of the raw video data through various meth-

ods, then perform unsupervised clustering on the resulting

low-dimensional behavioral representation [9]. These un-

supervised methods tend to be more scalable than their su-

pervised counterparts because they do not require manual

input. Another benefit of these methods is their ability to

discover new behaviors [9, 35]. However, there may be cer-

tain behaviors of particular interest for downstream analy-

ses, and unsupervised methods cannot guarantee they accu-

rately segment these behaviors.

Here we propose a semi-supervised segmentation algo-
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rithm that combines the strengths of these two approaches

while minimizing their weaknesses: we take advantage of a

small number of hand labels to ensure particular behaviors

are well-represented by the model and also take advantage

of a large number of unlabeled frames in order to improve

the behavioral representation (Fig. 1). We find that this ap-

proach improves supervised segmentation while still allow-

ing for unsupervised behavior discovery.

We propose two simple losses that extract relevant infor-

mation from unlabeled frames, which augment a standard

supervised classification loss computed on labeled frames

(e.g. cross entropy). The first loss is based on the obser-

vation that the behaviors of interest can often be described

heuristically: for example, when tracking the paws and the

nose of a mouse with pose estimation software [29], can-

didate bouts of grooming can be identified by finding all

frames where the distance from the paws to the nose is be-

low some threshold. This procedure may lead to false posi-

tives (e.g. when the mouse grabs a lick spout near its nose)

and false negatives (when the distance threshold is set too

low), but it is a straightforward and computationally effi-

cient way to automatically label many frames in a video.

We propose, then, to use these so-called “heuristic” labels as

an additional supervised signal (which we refer to as weak

supervision) for sequence models.

The second loss is based on the observation that behav-

ior is dynamic; even a “still” behavior is defined in the con-

text of what the animal was doing before and after a “still”

frame. Therefore, we propose to add a self-supervised pre-

diction loss so the model learns to map the behavioral fea-

tures at time t to the behavioral features at time t+1. Note

that this prediction loss can be computed for every single

frame of a video, without the need for corresponding hand

or heuristic labels, again allowing the sequence model to

take advantage of potentially large amounts of unlabeled

data.

We evaluate our proposed semi-supervised approach by

conducting an empirical evaluation on a head-fixed fly

dataset. We find that, individually, the weak and self-

supervised losses improve supervised segmentation met-

rics across all behaviors; combining these losses leads to

additional improvements. We also compare our approach

to fully unsupervised behavioral segmentation models and

show that adding a small number of hand labels can improve

segmentation while still allowing for the discovery of pre-

viously unlabeled behaviors. Code is available at https:

//github.com/themattinthehatt/daart.

Related Work. We focus on behavioral segmentation us-

ing pose estimates, and therefore our work draws from the

literature on skeleton-based action understanding [13]. [10]

shows that motion prediction is a good auxiliary task for

behavioral segmentation when using sparse hand labels;

we build upon this work by including an additional set of

heuristic labels that can strengthen the classifier even fur-

ther. [42] introduces a set of “task program” heuristics to

shape a latent behavioral embedding used by downstream

behavior classifiers; while this is similar in spirit to our ap-

proach, we choose instead to provide direct heuristics for

each hand-labeled behavior, and train our model end-to-

end. [24, 25] use a classification and prediction loss to

perform semi-supervised action recognition (different from

segmentation), though their focus is on an active learning

scheme for determining the most informative data points

for future labeling. Several other works introduce weak

supervision terms to improve segmentation [7, 15, 21, 36],

though they rely on relatively strong assumptions, such as

a known ordering of behaviors, that are not relevant for our

use case.

If we use our model with the self-supervised loss only,

we can perform fully unsupervised behavioral segmentation

by performing a post-hoc clustering of the low-dimensional

behavioral embeddings. This approach follows a common

pipeline successfully used across many studies [9]. For ex-

ample, [26] use an autoencoder RNN to produce a behav-

ioral embedding from pose estimates, apply UMAP [30]

to further reduce the dimensionality, then apply k-means

clustering to perform unsupervised behavioral segmenta-

tion. Other recent works use different combinations of algo-

rithms for embedding, dimensionality reduction, and clus-

tering [4, 47, 17, 3, 27]. Our work expands this pipeline

to include hand and heuristic labels, and we show that this

semi-supervised approach can produce higher quality seg-

mentations.

2. Methods

Most approaches for supervised behavioral segmentation

from video data involve a two-step process: first, for each

frame ft, compute a lower-dimensional feature representa-

tion xt that encodes local spatiotemporal information using

pose estimation [28, 12, 34, 48], Dense Trajectories [45],

or two-stream network outputs [40, 6]; second, a sequence

model f(·) (such as a recurrent neural network) maps the

behavioral feature vector xt (or a window of these features)

to a discrete label vector ŷt, which should match the hand

labels yt. We assume that the hand labels are only defined

on a subset of time points T ⊆ {1, 2, ...T}. The cross-

entropy loss function Lxent [5] then defines the supervised

objective (Lsuper) to optimize:

Lsuper =
∑

t∈T

Lxent

(

yt, f(xt)
)

. (1)

Weak and self-supervised loss functions. We now intro-

duce a set of heuristic labels ỹt, defined at each time point.

Computing the cross-entropy loss on all time points that
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Figure 2. Top: Example frames from four fly behavior classes, each overlaid with the eight points tracked through pose estimation. Smaller

trailing dots indicate the dynamics of each tracked point during the specified behavior. Bottom: F1 score for each behavior on test data as a

function of the weak supervised penalty based on heuristic labels (λh) and the self-supervised prediction penalty (λp). F1 score is overlaid

in text for selected hyperparameter combinations; see Fig. S2 for all values. Higher F1 scores are better, with a maximum of value of 1.

Standard supervised classification corresponds to λh = λp = 0.

do not already have a corresponding hand label defines the

heuristic objective:

Lheur =
∑

t/∈T

Lxent

(

ỹt, f(xt)
)

. (2)

The self-supervised loss requires the sequence model to

predict xt+1 from xt. To properly describe this we now ex-

pand the definition of the sequence model f(·) to include

two components: an encoder e(·), which maps the behav-

ioral features xt to an intermediate behavioral embedding

zt; and a (linear) classifier c(·) which maps zt to the pre-

dicted discrete labels (ŷt = c(e(xt)). We can now incorpo-

rate the self-supervised loss through the use of a predictor

function p(·), which maps zt to x̂t+1, and match x̂t+1 to the

true behavioral features xt+1 through a mean square error

loss LMSE computed on all time points:

Lpred =
T−1
∑

t=1

LMSE

(

xt+1, p(e(xt))
)

. (3)

Finally, we combine all terms into the full semi-

supervised loss function:

Lsemi = λsLsuper + λhLheur + λpLpred, (4)

where the λ terms are hyperparameters that control the

contributions of their respective losses. Note that setting

λh = λp = 0 results in a fully supervised model, while

λs = λh = 0 results in a fully unsupervised model.

Model. Our approach is agnostic to the particular archi-

tecture of the encoder and predictor networks. Here we use

a standard recurrent neural network with GRU layers [8],

which sees frequent use in sequence modeling [2]. Both e(·)
and p(·) are modeled with two layer bidirectional GRU net-

works (32 cells per layer). We performed a small hyperpa-

rameter search across number of layers, cells per layer, and

learning rate, and found that our results are robust across

different settings (data not shown).

Data. We evaluate our approach on a head-fixed fly

dataset [38] (Fig. 2). This dataset contains videos from

10 flies, with videos ranging in length from 10 to 34 min-

utes. We first track eight points on the fly using Deep Graph

Pose [48], and use these points as our behavioral features xt

(see Fig. 2). The flies exhibit a small range of easily iden-

tified behaviors, including standing still, walking on an air-

supported ball, and front and back grooming (Fig. 2, top).

We label up to 300 frames for each of these behaviors per fly

(for a total of 1.1% of all frames labeled; see Table S1). We

also devise a simple set of heuristics to produce weak labels

for each behavior: frames are labeled “Walk” when the ball

motion energy (ME) is above a threshold; “Still” when the

ME of the limb markers is below a threshold; and “Front

(Back) groom” when the fly is not walking, and the ME of

the forelimb (hindlimb) markers is above a threshold.

Training and evaluation. We use 5 fly videos for train-

ing and 5 for testing. All models are trained with the Adam
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Figure 3. Sequence model outputs for sample time segments. Each panel shows the markers (top, black lines; only x-coordinates are

displayed). Background color denotes the highest probability behavior class. The background color is white (”undefined” behavior) if the

largest probability is less than an arbitrary threshold of 0.75. The actual class probabilities are plotted below the markers. Each column

displays a set of random examples from each behavior class; behavior bout onset is indicated by the vertical black dashed line. Probabilities

correspond to the GRU model with λh = 0.5, λp = 1.0, which achieved the highest F1 score averaged over all behaviors on test data. See

Fig. S1 for corresponding outputs of the fully supervised sequence model.

optimizer [19] using an initial learning rate of 1e−4 and a

batch size of 2000 time points. For the 5 training flies, 90%
of frames are used for training, 10% for validation. Train-

ing is terminated once the loss on validation data begins to

rise for 20 consecutive epochs; the epoch with the lowest

validation loss is used for testing. To evaluate the models,

we compute the F1 score – the geometric mean of precision

and accuracy – on the hand labels of the 5 held-out test flies.

3. Results

We first consider the effect of the weak and self-

supervised losses on supervised segmentation (and set λs =
1). The weak supervision provided by the heuristic labels,

controlled by λh, dramatically improves F1 scores across all

four behavior classes, compared to the supervised baseline

of λh = λp = 0 (Fig. 2, bottom). The presence of the high-

quality hand labels also allows the model to surpass the F1

score of the lower-quality heuristic labels, especially on the

more difficult behaviors (see text overlaid on heatmaps in

Fig. 2). Next we consider the effect of self-supervision

through the next-step-ahead prediction, controlled by λp.

Nonzero values of λp also improve F1 scores across all four

behavior classes. Finally, we find that combining both loss

functions can slightly increase F1 yet again (for example see

F1 scores for λh = λp = 0.5). Fig. 3 shows marker traces

and their behavior class probabilities from the best perform-

ing model for several sample time segments; Fig. S1 shows

the corresponding class probabilities from the fully super-

vised model (λh = λp = 0), and demonstrates how the ab-

sence of the weak and self-supervised losses leads to more

errors in the segmentation.

The results above utilize a GRU architecture; to ensure
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Figure 4. Hand labels improve

unsupervised behavioral cluster-

ing. A: 2D UMAP embedding

of behavior colored by hand la-

bels; the model is trained with

both hand and heuristic labels

from 4 behavior classes: “Still”,

“Walk”, “Front groom”, and

“Back groom”. B: 2D UMAP

embedding for the model trained

without labels. C: The addition

of hand labels produces more ho-

mogeneous clusters in the 2D

space. D: Same as panel A, ex-

cept model is trained with labels

from 5 behavior classes - the pre-

vious 4 plus “Abdomen move”.

E: Same as panel B, with ad-

ditional “Abdomen move” points

colored by new hand labels. F:

Same as panel C, but now cluster

homogeneity score is computed

with 5 behavior classes.

these performance gains are not architecture-dependent, we

perform the same hyperparameter search over λh and λp

using two additional architectures: a temporal convolutional

network [23, 22] and an MLP neural network with an initial

1D temporal convolutional layer [3, 46] (Fig. S2). We find

that for all three architectures the addition of the weak and

self-supervised losses drastically improves F1 scores over

standard supervised classification with the hand labels.

We next investigate the behavioral embeddings zt by vi-

sualizing them for a single test fly in a 2D space through

UMAP [30] (Fig. 4A). The points with corresponding hand

labels are colored, revealing that similar behaviors are clus-

tered together. In order to determine how much of this struc-

ture can be attributed to the labels, we refit the model with

the self-supervised loss only (λs = λh = 0). The 2D visu-

alization also shows clustered behaviors (Fig. 4B), but with

more overlap of different behavior classes. Performing seg-

mentation via clustering on this fully unsupervised behav-

ioral embedding – a standard approach [4, 26, 27] – may

therefore result in misclassified behaviors.

To quantify this observation, we next perform k-means

clustering in this 2D space for both models (with and with-

out labels). We then compute a cluster homogeneity score

[37] that measures the extent to which the k-means clus-

ters contain data points from a single behavior class. The

model trained with labels achieves a higher score than the

fully unsupervised model trained solely with the prediction

loss (Fig. 4C). This result demonstrates how adding a small

number of hand labels (and/or a larger number of heuristic

labels) can improve unsupervised behavioral segmentation

with little additional effort.

A primary benefit of unsupervised segmentation is the

ability to discover new behaviors in an unbiased manner

[9, 35]. For example, one of the k-means clusters from

the unsupervised embedding (indicated by the blue ellipse

in Fig. 4B) corresponds to periods where the fly moves its

abdomen (see marker traces in Fig. S3), a behavior not in-

cluded in our hand or heuristic labels. Because our semi-

supervised model learns to predict behavior at the next

time step, it too can potentially capture these unlabeled be-

haviors. Indeed, we find a k-means cluster in the semi-

supervised embedding that also corresponds to this novel

abdomen movement behavior (blue ellipse in Fig. 4A).

Next we demonstrate how to utilize this behavioral dis-

covery to further refine the behavioral segmentation. We

first hand label the abdomen movement behavior for each

of the 10 flies (see Table S1 for details), as well as recom-

pute the heuristic labels: frames are now labeled “Abdomen

move” when the ME of the abdomen markers is above a

threshold. We retrain the sequence models with these new

labels, and find that we can accurately capture this new be-

havior class (Fig. S3).

We repeat our previous cluster homogeneity analysis,

and again find that our semi-supervised approach produces

an embedding with a representation of discrete behaviors

that is more precise than the fully unsupervised embed-
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ding (Fig. 4D-F). Furthermore, we can show that the pre-

vious model – trained without the “Abdomen move” labels

– misclassifies these behavioral bouts as “Back grooming”,

“Walk” and “Still” (Fig. 5). Therefore, the addition of this

new behavior class refines the previous segmentation.

4. Discussion

We presented an approach to semi-supervised behavioral

segmentation that improves upon fully supervised and fully

unsupervised approaches. We demonstrated that supervised

segmentation metrics (F1) can be improved through the ad-

dition of a weakly supervised loss that classifies heuristic

labels, as well as a self-supervised loss that predicts the

evolution of the behavioral features that serve as model in-

put (Fig. 2). Our work can also be viewed as adding a

small number of labels to an unsupervised segmentation

problem [10, 25], which we show increases the precision

of downstream clustering (thus ensuring the model captures

known behaviors of interest) while still allowing the model

to discover novel behavioral phenomena (Fig. 4).

This semi-supervised approach can also serve as the

foundation for an efficient active learning strategy that re-

duces human annotation overhead. Computing heuristic la-

bels is a simple strategy to quickly label many frames. A

model trained with the weak and self-supervised losses pro-

vides an initial embedding that can then guide the selection

of frames to label. Additional behavior classes, if discov-

ered, can be added to the set of heuristic and hand labels.

This procedure can then be iterated. We demonstrated one

aspect of this active learning approach, and believe this is a

fruitful direction for future exploration.
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Supplemental Figures and Tables

Experiment ID Total frames Walk Still Front groom Back groom Abdomen move

2019 08 07 fly2 50000 300 300 100 300 591

2019 08 08 fly1 94960 300 300 300 150 594

Train 2019 08 20 fly2 65108 300 300 300 300 1067

2019 10 10 fly3 141042 300 300 300 300 478

2019 10 14 fly3 140929 300 300 300 300 318

*2019 06 26 fly2 45000 300 300 300 300 706

2019 08 14 fly1 124144 300 300 300 300 693

Test 2019 08 20 fly3 73055 300 300 300 300 405

2019 10 14 fly2 139925 300 300 300 300 101

2019 10 21 fly1 142554 300 300 300 300 0

Totals 1016717 3000 3000 2800 2850 4953

Table S1. The number of labeled frames per behavior for each fly. Initial behaviors (“Walk”, “Still”, “Front groom”, “Back groom”) were

labeled in chunks of 50 contiguous time points. Video frame rate is 70 Hz. Flies often engage in behaviors for longer than 50 frames, so the

selected 50-frame chunks did not contain any transitions from one behavior to another. The “Abdomen move” behavior was added during

a second round of labeling. We labeled longer contiguous chunks in order to capture the full range of the behavior during each bout, which

usually consists of raising the abdomen, a brief hold, and then lowering the abdomen. Labeling was performed using the DeepEthogram

GUI [6]. The asterisk (*) denotes the test experiment visualized in Figs. 3, 4, S1 and S3.
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Figure S1. The absence of the weak and self-supervised losses leads to more errors in the segmentation. Panels show the outputs of the

fully supervised sequence model (GRU with λh = λp = 0) for the same sample time segments as in Fig. 3. Note that for some bouts (e.g.

those in the “Walk” column) the highest probability belongs to the correct behavior class, but the model is less confident. For other bouts,

the model is confident but incorrect (e.g. the final “Still” bout is misclassified as “Front groom”).
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Figure S2. The performance improvement in F1 scores due to weak and self-supervised losses is not architecture dependent. Top: F1 results

from a GRU where both the encoder and decoder are modeled with two layer bidirectional GRU networks with 32 cells per layer (same

models as Fig. 2). Middle: F1 results from a temporal convolutional network (TCN) where both the encoder and decoder are modeled with

two layers of 1D temporal convolutions (filter size of 17), each followed by a temporal downsampling (encoder) or upsampling (decoder)

step. Bottom: F1 results from an MLP network where the first layer of the encoder is a 1D temporal convolution (filter size of 17) and the

second layer is fully connected (32 hidden units). The decoder is modeled as a two layer MLP (no convolutions) with 32 hidden units per

layer. For each architecture we performed a small hyperparameter search across number of layers, cells/units per layer, learning rate, and

temporal filter sizes; we found that our results are robust across different settings (data not shown).
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Figure S3. Sequence models can be fit to new behavior classes. Each column represents model fits for a single behavior class. Top row:

Example frames from five fly behavior classes, overlaid with pose estimates. Second row: F1 scores for each behavior on test data. Bottom

rows: Model outputs for sample time segments. Same conventions as Fig. 3. These probabilities correspond to the GRU model with

λh = 0.5, λp = 5.0, which achieved the highest F1 score averaged over all behaviors on test data.
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