

1 Proinflammatory responses in SARS-CoV-2 infected and soluble spike glycoprotein S1

2 subunit activated human macrophages

5 Kim Chiok¹, Kevin Hutchison², Lindsay Grace Miller¹, Santanu Bose^{1*}, Tanya A. Miura^{2,3#}

6

7 ¹Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine,
8 Washington State University, Pullman, WA 99164, USA

9 ²Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA

10 ³Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844,
11 USA

13 #corresponding author: tmiura@uidaho.edu

14

15 *senior authors

16 **Abstract**

17 Critically ill COVID-19 patients infected with SARS-CoV-2 display signs of generalized
18 hyperinflammation. Macrophages trigger inflammation to eliminate pathogens and repair tissue,
19 but this process can also lead to hyperinflammation and resulting exaggerated disease. The role of
20 macrophages in dysregulated inflammation during SARS-CoV-2 infection is poorly understood.
21 We used SARS-CoV-2 infected and glycosylated soluble SARS-CoV-2 Spike S1 subunit (S1)
22 treated THP-1 human-derived macrophage-like cell line to clarify the role of macrophages in pro-
23 inflammatory responses. Soluble S1 upregulated TNF- α and CXCL10 mRNAs, and induced
24 secretion of TNF- α from THP-1 macrophages. While THP-1 macrophages did not support
25 productive SARS-CoV-2 replication, virus infection resulted in upregulation of both TNF- α and
26 CXCL10 genes. Our study shows that S1 is a key viral component inducing inflammatory response
27 in macrophages, independently of virus replication. Thus, virus-infected or soluble S1-activated
28 macrophages may become sources of pro-inflammatory mediators contributing to
29 hyperinflammation in COVID-19 patients.

30

31

32 **1. Introduction**

33 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of
34 Coronavirus Disease 2019 (COVID-19). Severely ill COVID-19 patients display lung tissue
35 damage associated with cell death and pathologic inflammation^{1,2} linked to enhanced pro-
36 inflammatory cytokine and chemokine levels (e.g., TNF- α and CXCL10)^{3,4}. These pathologies are
37 compatible with dysregulated inflammatory response characteristic of cytokine release syndrome
38 or macrophage-activation syndrome⁵ and generalized hyperinflammation⁶. These patients often

39 progress to respiratory failure due to complications from hyperinflammation and require
40 mechanical ventilation. Analysis of bronchoalveolar lavage fluid (BALF) from critically ill
41 COVID-19 patients revealed upregulation of inflammatory cytokine signatures, indicating influx
42 of active inflammatory macrophages in the airways^{7,8}. Single-cell RNA sequencing also detected
43 SARS-CoV-2 RNA in BALF-associated macrophages⁸, whereas virus antigen was detected in
44 subsets of tissue-resident and lymph node-associated macrophages⁹. Macrophages mediate
45 inflammatory responses following infection, migrating to affected tissue to eliminate invading
46 pathogens. These findings implicate macrophages in the exaggerated inflammatory response
47 during SARS-CoV-2 infection. In this study, we analyzed pro-inflammatory response against
48 SARS-CoV-2 and soluble SARS-CoV-2 spike glycoprotein S1 subunit in the human-derived THP-
49 1 macrophage cell-line.

50

51

52 **2. Results and Discussion**

53 *2.1. Soluble SARS-CoV-2 spike protein S1 subunit induces inflammatory response in THP-1*
54 *cells*

55 Reports using non-soluble SARS-CoV-2 trimeric spike (S) glycoprotein¹⁰ and purified S1 subunit
56 produced in *E.coli*¹¹ suggest that the S protein activates inflammation in macrophages. Prefusion
57 trimeric S is cleaved by cellular proteases¹² that dissociate the S1 subunit during virion assembly¹³
58 or after engagement of the ACE2 receptor¹⁴. Trimeric S is transient on the surface of virions, and
59 constructs designed to stabilize this conformation do not reflect the dynamic state of the S
60 glycoprotein and subunits in contact with cells. Importantly, dissociated S1 may remain engaged
61 to cell receptors and stimulate yet undefined effects. Furthermore, S1 is glycosylated at numerous

62 positions¹⁵ that mediate functions such as shielding of viral epitopes. Glycosylation patterns are
63 not recapitulated in *E.coli* used to purify proteins and thus, non-glycosylated S1 produced in *E.coli*
64 may not reproduce the biological effects of SARS-CoV-2 S1.

65
66 To clarify the role of S1 in proinflammatory responses in macrophages, we tested whether
67 glycosylated, soluble SARS-CoV-2 S1 produced in mammalian cells induced expression of pro-
68 inflammatory and antiviral cytokines. We evaluated expression of the pro-inflammatory cytokines
69 TNF- α , CXCL10 and IFN- γ ^{16,17} due to their association with hyperinflammation in COVID-19
70 patients, and the antiviral cytokine IFN- β since it restricts SARS-CoV-2 infection¹⁶. While S1 did
71 not induce gene expression of antiviral IFN- β (Fig.1A) or IFN- γ (Fig.1B) in THP-1 macrophages,
72 expression of proinflammatory TNF- α (Fig.1C) and CXCL10 (Fig. 1D) was upregulated following
73 exposure to S1. TNF- α was upregulated by 30-fold at 4h post treatment with S1 ($p < 0.05$) and
74 remained upregulated by two-fold at 16h post treatment (Fig. 1C). CXCL10 expression was
75 consistently upregulated by 3 to 8-fold in THP-1 macrophages exposed to S1 up to 16h post
76 treatment ($p < 0.05$) (Fig. 1D). Although macrophages respond to IFN- γ by producing CXCL10,
77 they are not substantial sources of IFN- γ ¹⁸, which is mostly produced by lymphocytes to recruit
78 macrophages to infection sites¹⁹. Thus, SARS-CoV-2 S1 upregulated CXCL10 independently of
79 IFN- γ , similar to LPS²⁰ and TNF- α ²¹.

80 We further examined release of TNF- α from THP-1 macrophages treated with the SARS-CoV-2
81 S1 subunit. Treatment with S1 increased secretion of TNF- α in macrophages up to 30 times more
82 than vehicle-treated controls at 4h post treatment ($p < 0.05$) (Fig. 1E). These results demonstrated
83 that soluble S1 alone suffices to activate inflammatory response in macrophages independently of
84 full-length S protein, S-trimers and virus infection. Non-glycosylated S1 from *E.coli* induced TNF-

85 α secretion in murine macrophages¹¹. Although these studies were conducted in mouse
86 macrophages¹¹, non-glycosylated S1 may expose sites able to trigger pro-inflammatory response,
87 which are cryptic in the glycosylated S1 protein. By utilizing physiologically relevant glycosylated
88 S1 derived from mammalian cells, we demonstrate its pro-inflammatory activity in human
89 macrophages.

90 *2.2. Inflammatory response in SARS-CoV-2 infected THP-1 macrophages in the absence of
91 productive viral replication*

92 Since SARS-CoV-2 S1 induced pro-inflammatory response in macrophages independently of
93 virus infection or replication (Fig. 1), we next evaluated pro-inflammatory response and viral
94 replication in THP-1 macrophages infected with SARS-CoV-2. As expected, infection with SARS-
95 CoV-2 in susceptible Vero E6 cells led to exponential increase of viral nucleocapsid (N) (Fig. 2A)
96 and S (Fig. 2B) genes. In contrast, expression of N (Fig. 2C) and S (Fig. 2D) genes was reduced
97 in THP-1 macrophages over the course of infection. Virus replication and release of infectious
98 progeny was determined by TCID₅₀ assay in supernatants from SARS-CoV-2 infected cells to
99 corroborate viral RNA findings. While infected Vero E6 cells supported robust release of
100 infectious virions due to productive replication, infectious virus production from infected THP-1
101 cells became undetectable after 8h post-infection (Fig. 2E). Finally, THP-1 macrophages did not
102 develop cytopathic effects (CPE) following SARS-CoV-2 infection, whereas Vero E6 cells
103 displayed progressive monolayer damage over the course of infection (Fig. 2F). These results
104 indicate that THP-1 human macrophages do not support productive replication of SARS-CoV-2.
105 Our study is in accord with a report showing non-productive replication of SARS-CoV-2 in human
106 monocyte-derived macrophages and DCs²².

107 Despite non-productive replication, expression of TNF- α (Fig. 2G) and CXCL10 (Fig. 2H) in
108 THP-1 macrophages infected with SARS-CoV-2 was significantly upregulated by 2- and 3-fold at
109 4 and 24 hpi, respectively. Additionally, SARS-CoV-2 infection did not induce IFN- β (Fig. 2I) or
110 IFN- γ (Fig. 2J) expression in THP-1 macrophages, whereas LPS upregulated both cytokines by
111 80- and 3-fold, respectively. Since both TNF- α and CXCL10 are key pro-inflammatory cytokines,
112 our results suggest low-grade pro-inflammatory response in THP-1 macrophages infected with
113 SARS-CoV-2 in the absence of productive virus replication. However, SARS-CoV-2 infection did
114 not prompt type-I interferon dependent antiviral response in these cells.

115

116 Macrophages promote pro-inflammatory responses by producing cytokines and chemokines that
117 initiate and sustain inflammation. The role of macrophages in SARS-CoV-2 infection remains
118 unclear despite their function as pro-inflammatory cells and contribution to immune dysregulation.
119 Our study shows that although THP-1 macrophages do not support productive virus replication,
120 infection with SARS-CoV-2 upregulates expression of pro-inflammatory mediators linked to
121 generalized hyperinflammation in COVID-19 patients^{4,23}. Our study identifies the SARS-CoV-2
122 soluble S1 subunit as a viral factor involved in activation of pro-inflammatory response in
123 macrophages. The soluble S1 subunit triggers pro-inflammatory response in non-infected
124 macrophages and therefore, interaction with the S1 subunit suffices to induce this response
125 independently of virus infection. Extracellular soluble S1 originating from infected lung epithelial
126 cells may interact with uninfected macrophages to stimulate inflammation. Shedding of
127 dissociated S1 has been shown during expression of the entire S protein on the surface of
128 pseudoviruses¹⁴ and in mammalian cells²⁴. Our study raises the possibility that cell-free soluble S1
129 engages with non-infected macrophages to induce low-grade pro-inflammatory response. SARS-

130 CoV-2 infection in THP-1 macrophages does not lead to CPE (indicative of cell death) or
131 productive viral replication, while low-grade inflammatory response remains upregulated for at
132 least 24 hours after SARS-CoV-2 exposure (Fig. 2H). Therefore, virus-infected or S1-activated
133 macrophages may become sources of pro-inflammatory mediators contributing to
134 hyperinflammation in COVID-19 patients. Our study provides evidence for contribution of human
135 macrophages to inflammation-associated immunopathology of SARS-CoV-2 by two possible
136 mechanisms (graphical abstract) – a) virus infection of macrophages, and b) interaction of soluble
137 S1 protein with uninfected macrophages.

138

139 **3. Materials and Methods**

140 *Cells and virus:* Cell cultures were maintained at 37C in a 5% CO₂ atmosphere. Vero E6 cells
141 (ATCC; catalog no. CRL-1586) were cultured in DMEM medium (Gibco 12430062)
142 supplemented with 10% FBS, 100 IU/ml Penicillin and 100 µg/ml Streptomycin. Human
143 monocyte-like cells, THP-1 cell line (ATCC; catalog no. TIB-202), were cultured in RPMI 1640
144 medium (Gibco 21870076) supplemented with 10% FBS, 10mM HEPES, 1mM sodium pyruvate,
145 50µM of beta-mercaptoethanol, 100 IU/ml Penicillin and 100 µg/ml Streptomycin. SARS-CoV-
146 2 isolate USA-WA1/2020 (BEI resources catalog no. NR-52281) was propagated in Vero E6 cells
147 to generate a virus stock with a titer of 1.76 x10⁶ 50% tissue culture infective doses (TCID₅₀)/mL.
148 All the SARS-CoV-2 titrations were performed by TCID₅₀ assay on Vero E6 cells and titers were
149 calculated by the method of Reed and Muench. Work with infectious virus was performed in
150 biosafety cabinets within a biosafety containment level 3 facility. Personnel wore powered air
151 purifying respirators during all procedures (MAXAIR Systems, Irvine, CA).

152 *Cell infection:* THP-1 monocyte-like cells were seeded in the presence of phorbol 12-myristate
153 13-acetate (PMA, 100ng/mL) to induce differentiation into macrophages. After 24 hours of
154 incubation, undifferentiated cells were washed away and remaining differentiated macrophages
155 were incubated in fresh media without PMA for an additional 24 hours. THP-1 cells were either
156 mock infected with supernatants from non-infected Vero E6 cells or inoculated at an MOI of 0.5
157 for 1 hour at 37C with virus stock generated in Vero E6 cells. Cells were washed once with PBS
158 and incubated at 37°C in complete media for the indicated times. Vero E6 cells were seeded and
159 incubated for 24 hours before virus infection at an MOI of 0.1 following the same procedure as
160 with THP-1 cells. After indicated times, culture supernatants were collected for titration assays
161 (TCID₅₀) and RNA was extracted from infected cells using RNeasy Plus Mini Kit (Qiagen; catalog
162 no. 74134) following manufacturer's instructions. RNA extracted from THP-1 cells treated with
163 100ng/mL of LPS (Invivogen, catalog no. tlrl-eklps) for 4 hours was used as a control.

164

165 *Cell treatment:* THP-1 monocyte-like cells were seeded in presence of phorbol 12-myristate 13-
166 acetate (PMA, 100ng/mL) and allowed to differentiate as described above. Cells were treated with
167 8nM (0.6 μ g/mL) of recombinant soluble SARS-CoV-2 Spike S1 protein purified from HEK293
168 cells (SinoBiological; catalog no. 40591-V08H-B) or an equivalent volume of vehicle control for
169 specified times. Cell culture supernatants were collected for ELISA assays and RNA was extracted
170 from infected cells using Trizol (ThermoFisher; catalog no. 15596026) following manufacturer's
171 instructions.

172

173 *Reverse Transcription Quantitative PCR (RT-qPCR):* For cellular genes, total RNA (500ng) was
174 used for cDNA synthesis using High-Capacity cDNA Reverse Transcription Kit (Applied

175 Biosystems; catalog no. 4368814) following manufacturer's instructions. Approximately
176 20ng of cDNA were used as template for qPCR reactions using SSOAdvanced Universal
177 SYBR Green Supermix following manufacturer's instructions (BioRad; catalog
178 no.1725271). Following primers were used for detection of cellular genes by qPCR:
179
180 GAPDH Fw:5'-ACAACTTGGTATCGTGGAAGG-3';
181 Rv: 5'-GCCATCACGCCACAGTTTC-3'
182 TNF- α Fw:5'-CCTCTCTCTAATCAGCCCTCTG-3';
183 Rv:5'- GAGGACCTGGGAGTAGATGAG-3'
184 IL6 Fw: 5'- ACTCACCTCTTCAGAACGAATTG-3';
185 Rv: 5'- CCATCTTGGAAAGGTTCAGGTTG-3'
186 IFN- γ Fw: 5'- TCGGTAAC TGACTGAATGTCCA-3';
187 Rv: 5'- TCGCTTCCCTGTTTAGCTGC-3'
188 IFN- β Fw: 5'- GCTTGGATT CCTACAAAGAAGCA-3';
189 Rv: 5'-ATAGATGGTCAATGCGGCGTC-3'
190 CXCL10 Fw: 5'-GTGGCATTCAAGGAGTACCTC-3';
191 Rv: 5'- GCCTTCGATTCTGGATT CAGACA-3'
192
193 qPCR reactions were performed in a CFX96 Touch Real-Time PCR Detection System
194 (Biorad, CA). Relative gene expression of target genes was determined using the average
195 Ct for technical replicates normalized to GAPDH. Fold change over mock-infected cells
196 was determined using $2^{-\Delta\Delta Ct}$ method.
197

198 For quantification of viral RNA, total RNA (250ng or 500ng) was used for cDNA synthesis using
199 SuperScript IV VILO Master Mix (Invitrogen, catalog no. 11756050) using the manufacturer's
200 instructions. cDNA was diluted to 1:10 and used as a template for qPCR reactions using PowerUp
201 SYBR Green Master Mix (Applied Biosystems, catalog no. A25742). Primers for detection of
202 SARS-CoV-2 genes²⁵ N (Fw:5'-CAATGCTGCAATCGTGCTAC-3'; Rv:5'-
203 GTTGCGACTACGTGATGAGG-3') and S (Fw:5'- GCTGGTGCTGCAGCTTATTA-3';
204 Rv: 5'- AGGGTCAAGTGCACAGTCTA-3') were used for qPCR, along with GAPDH
205 primers listed above. qPCR reactions were performed using a StepOnePlus Real-Time PCR
206 System (Applied Biosystems, CA), Ct values were determined using Design and Analysis 2.5.0
207 (Applied Biosystems), and normalized to GAPDH RNA levels using $2^{-\Delta Ct}$.

208
209 *Enzyme-linked immunosorbent assay (ELISA):* Human TNF alpha Uncoated ELISA Kit
210 (ThermoFisher, catalog no. 88-7346) was used to determine secretion of TNF- α in culture
211 supernatants of cells treated with SARS-CoV-2 S1 subunit. Cytokine concentration was calculated
212 according to manufacturer's instructions.

213
214 *Statistical analysis:* Two-Way ANOVA adjusted by Sidak's multiple comparison test was
215 performed to evaluate relative expression from RT-qPCR data and ELISA from three experimental
216 groups compared at multiple time points. A *p* value of <0.05 was considered significant for all
217 statistical tests. All statistical tests were performed using GraphPad Prism v6.01 (CA, USA).

218
219
220

221 **Authorship**

222 T.A.M., K.C., K.H. and L.G.M. performed the experiments. T.A.M., K.C. and S.B. contributed to
223 the experimental design, data analyses and interpretation, preparation of figures and tables, and
224 prepared the manuscript. All authors have approved the final manuscript as submitted and agree
225 to be accountable for all aspects of the study.

226

227 **Acknowledgements**

228 This research was supported by funding from the Washington Research Foundation (SB) and
229 National Institutes of Health (NIH) R01AI083387 (SB). LGM was supported by NIH NIGMS
230 Predoctoral Biotechnology Training Grant 5T32GM008336. The authors thank Sedelia
231 Dominguez and Shannon Allen at Washington State University's Paul G. Allen School for Global
232 Health for their assistance in the BSL3 facility.

233

234 **Conflict of Interest Disclosure:** Authors have no conflicts of interest to declare.

235

236 **References**

237

238 1. Guan, W. *et al.* Clinical Characteristics of Coronavirus Disease 2019 in China. *N. Engl. J.*
239 *Med.* **382**, 1708–1720 (2020).

240 2. Zhang, H. *et al.* Histopathologic Changes and SARS-CoV-2 Immunostaining in the Lung
241 of a Patient With COVID-19. *Ann. Intern. Med.* **172**, 629–632 (2020).

242 3. Qin, C. *et al.* Dysregulation of Immune Response in Patients With Coronavirus 2019
243 (COVID-19) in Wuhan, China. *Clin. Infect. Dis.* **71**, 762–768 (2020).

244 4. Del Valle, D. M. *et al.* An inflammatory cytokine signature predicts COVID-19 severity

245 and survival. *Nat. Med.* **26**, 1636–1643 (2020).

246 5. Giamarellos-Bourboulis, E. J., Netea, M. G. & Rovina, N. Clinical and Translational
247 Report Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory
248 Failure. doi:10.1016/j.chom.2020.04.009.

249 6. Morris, S. B. *et al.* Case Series of Multisystem Inflammatory Syndrome in Adults
250 Associated with SARS-CoV-2 Infection — United Kingdom and United States, March–
251 August 2020. *MMWR. Morb. Mortal. Wkly. Rep.* **69**, 1450–1456 (2020).

252 7. Liao, M. *et al.* Single-cell landscape of bronchoalveolar immune cells in patients with
253 COVID-19. *Nat. Med.* **26**, 842–844 (2020).

254 8. Grant, R. A. *et al.* Circuits between infected macrophages and T cells in SARS-CoV-2
255 pneumonia. *Nature* 1–8 (2021) doi:10.1038/s41586-020-03148-w.

256 9. Wang, C. *et al.* Alveolar macrophage dysfunction and cytokine storm in the pathogenesis
257 of two severe COVID-19 patients. *EBioMedicine* **57**, 102833 (2020).

258 10. Zhao, Y. *et al.* SARS-CoV-2 spike protein interacts with and activates TLR41. *Cell Res.*
259 (2021) doi:10.1038/s41422-021-00495-9.

260 11. Shirato, K. & Kizaki, T. SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory
261 responses via toll-like receptor 4 signaling in murine and human macrophages. *Helyon* **7**,
262 e06187 (2021).

263 12. Hoffmann, M., Kleine-Weber, H. & Pöhlmann, S. A Multibasic Cleavage Site in the Spike
264 Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. *Mol. Cell* **78**,
265 779-784.e5 (2020).

266 13. Sasaki, M. *et al.* SARS-CoV-2 variants with mutations at the S1/ S2 cleavage site are
267 generated in vitro during propagation in TMPRSS2-deficient cells. *PLoS Pathog.* **17**,

268 e1009233 (2021).

269 14. Zhang, L. *et al.* SARS-CoV-2 spike-protein D614G mutation increases virion spike
270 density and infectivity. *Nat. Commun.* **11**, 1–9 (2020).

271 15. Shajahan, A., Supekar, N. T., Gleinich, A. S. & Azadi, P. Deducing the N- and O-
272 glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2.
273 *Glycobiology* **30**, 981–988 (2020).

274 16. Yoshikawa, T., Hill, T., Li, K., Peters, C. J. & Tseng, C.-T. K. Severe Acute Respiratory
275 Syndrome (SARS) Coronavirus-Induced Lung Epithelial Cytokines Exacerbate SARS
276 Pathogenesis by Modulating Intrinsic Functions of Monocyte-Derived Macrophages and
277 Dendritic Cells. *J. Virol.* **83**, 3039–3048 (2009).

278 17. Chen, N. *et al.* Epidemiological and clinical characteristics of 99 cases of 2019 novel
279 coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet* **395**, 507–513
280 (2020).

281 18. Sanceau, J., Wijdenes, J., Revel, M. & Wietzerbin, J. IL-6 and IL-6 receptor modulation
282 by IFN- γ amma and tumor necrosis factor-alpha in human monocytic cell line (THP-1).
283 Priming effect of IFN- γ amma. *J. Immunol.* **147**, 2021 (1991).

284 19. Schmolka, N. *et al.* Epigenetic and transcriptional signatures of stable versus plastic
285 differentiation of proinflammatory $\gamma\delta$ T cell subsets. *Nat. Immunol.* **14**, 1093–1100
286 (2013).

287 20. Bandow, K. *et al.* LPS-induced chemokine expression in both MyD88-dependent and -
288 independent manners is regulated by Cot/Tpl2-ERK axis in macrophages. *FEBS Lett.* **586**,
289 1540–1546 (2012).

290 21. Harris, D. P., Bandyopadhyay, S., Maxwell, T. J., Willard, B. & DiCorleto, P. E. Tumor

291 necrosis factor (TNF)- α induction of CXCL10 in endothelial cells requires protein
292 arginine methyltransferase 5 (PRMT5)-mediated nuclear factor (NF)- κ B p65 Methylation.
293 *J. Biol. Chem.* **289**, 15328–15339 (2014).

294 22. Zheng, J. *et al.* Severe Acute Respiratory Syndrome Coronavirus 2–Induced Immune
295 Activation and Death of Monocyte-Derived Human Macrophages and Dendritic Cells. *J.*
296 *Infect. Dis.* **XX**, 1–11 (2020).

297 23. Li, S. *et al.* SARS-CoV-2 triggers inflammatory responses and cell death through caspase-
298 8 activation. *Signal Transduct. Target. Ther.* **5**, 1–10 (2020).

299 24. Zhang, J. *et al.* Structural impact on SARS-CoV-2 spike protein by D614G substitution.
300 *Science*. **372**, 525–530 (2021).

301 25. Park, M., Won, J., Choi, B. Y. & Lee, C. J. Optimization of primer sets and detection
302 protocols for SARS-CoV-2 of coronavirus disease 2019 (COVID-19) using PCR and real-
303 time PCR. *Exp. Mol. Med.* **52**, 963–977 (2020).

304
305
306
307

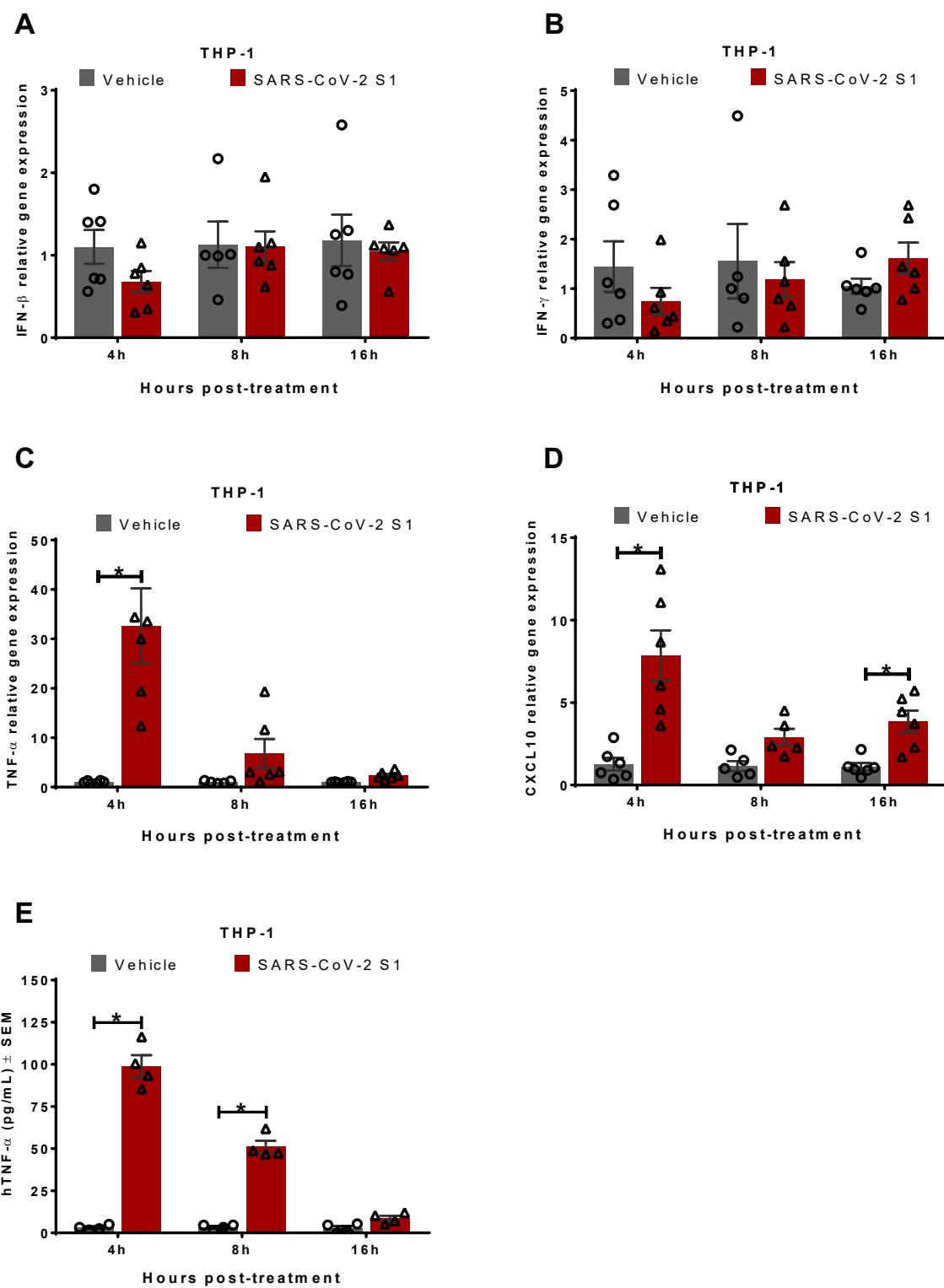
308 **Figure Legends**

309 **Figure 1.** SARS-CoV-2 soluble Spike protein S1 subunit (S1) induces inflammatory response in
310 THP-1 macrophages. THP-1 cells were treated with purified recombinant soluble S1 protein
311 (0.6ug/mL, 8nM) or vehicle for indicated times. RT-qPCR was used to detect relative gene
312 expression of cytokines IFN- β (A), IFN- γ (B), TNF- α (C), and CXCL10 (D). (E) Secretion of
313 TNF- α was determined by ELISA assays in supernatants from THP-1 cells treated with purified
314 recombinant soluble S1 protein. Error bars denote the standard error of the mean (SEM) from 3

315 biologically independent experiments. * $p<0.05$, ** $p<0.01$ determined by Two-way ANOVA
316 adjusted by Sidak's multiple comparison test.

317

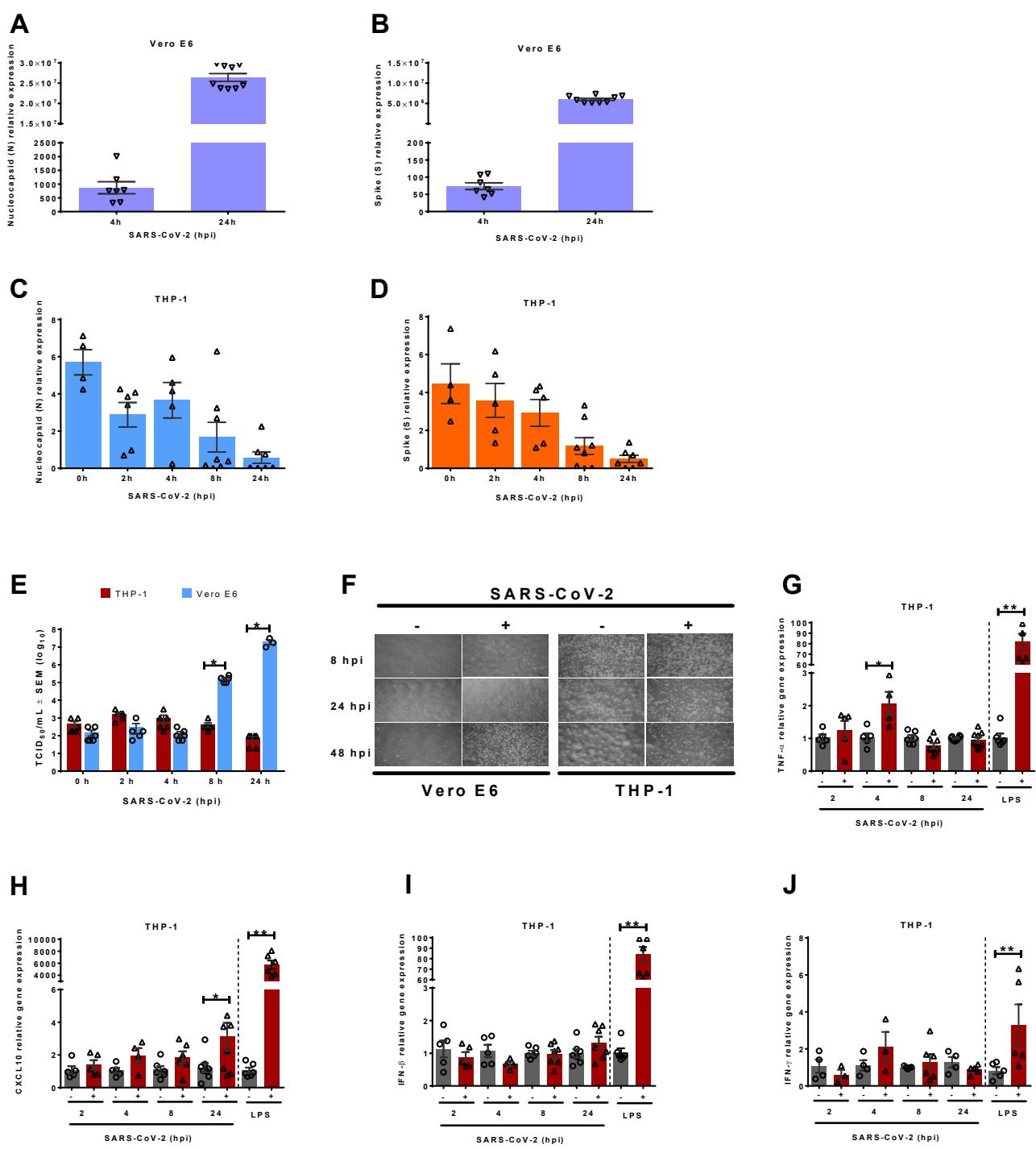
318 **Figure 2.** THP-1 macrophages express cytokines following SARS-CoV-2 infection in the absence
319 of productive virus replication. RT-qPCR was used to detect SARS-CoV-2 N (A) and S (B) viral
320 genes in mock infected or SARS-CoV-2 infected Vero E6 cells. RT-qPCR was used to detect N
321 (C) and S (D) viral genes in mock infected or SARS-CoV-2 infected THP-1 macrophages. E)
322 Culture supernatants from mock infected or SARS-CoV-2 infected THP-1 macrophages and Vero
323 E6 cells were analyzed by TCID₅₀ assay to determine infectious virus production. F) Bright field
324 microscopy photographs of Vero E6 (MOI=0.1) and THP-1 (MOI=0.5) macrophages infected with
325 SARS-CoV-2 for indicated times. RT-qPCR was used to detect relative gene expression of
326 cytokines TNF- α (G), CXCL10 (H), IFN- β (I) and IFN- γ (J) in mock infected or SARS-CoV-2
327 infected THP-1 macrophages. LPS-treated macrophages (100ng/mL, 4 hours) were used as
328 controls. Error bars denote the standard error of the mean (SEM) from 2 to 3 biologically
329 independent experiments. Hpi= hours post infection. * $p<0.05$ determined by Two-way ANOVA
330 adjusted by Sidak's multiple comparison test.


331

332 **Figure 3.** Proposed contribution of SARS-CoV-2 and soluble S1 in inducing inflammatory
333 responses by macrophages. SARS-CoV-2 virions and soluble S1 proteins shed from productively
334 infected epithelial cells trigger proinflammatory responses by macrophages, which then contribute
335 to hyperinflammation and lung disease associated with COVID-19.

336

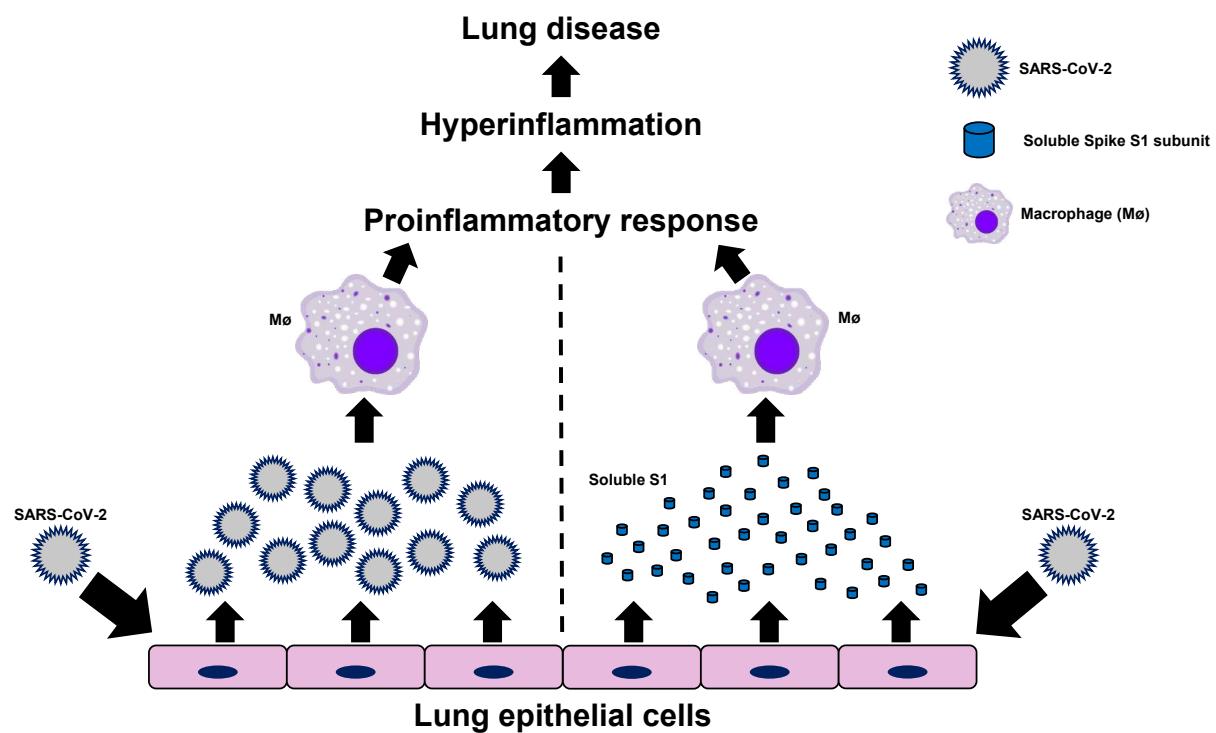
337


338 **Figure 1**

339

340

341 **Figure 2**



342

343

344

345 **Figure 3**

346

347