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When conditions change, unicellular organisms rewire their metabolism to sustain cell
maintenance and cellular growth. Such rewiring may be understood as resource re-allocation
under cellular constraints. Eukaryal cells contain metabolically active organelles such as
mitochondria, competing for cytosolic space and resources, and the nature of the relevant cellular
constraints remain to be determined for such cells. Here we developed a comprehensive metabolic
model of the yeast cell, based on its full metabolic reaction network extended with protein
synthesis and degradation reactions (16304 reactions in total). The model predicts metabolic
fluxes and corresponding protein expression by constraining compartment-specific protein pools
and maximising growth rate. Comparing model predictions with quantitative experimental data
revealed that under glucose limitation, a mitochondrial constraint limits growth at the onset of
ethanol formation - known as the Crabtree effect. Under sugar excess, however, a constraint on
total cytosolic volume dictates overflow metabolism. Our comprehensive model thus identifies
condition-dependent and compartment-specific constraints that can explain metabolic strategies
and protein expression profiles from growth rate optimization, providing a framework to

understand metabolic adaptation in eukaryal cells.
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Macromolecular synthesis and energy conservation by metabolism underlies cellular
maintenance, growth and fitness. Unicellular organisms such as yeasts generally display a great
variety of metabolic strategies that lead to competitive fitness across conditions!. The associated
reprogramming of metabolism between such metabolic strategies is of key interest in
biotechnology and biomedical research.

One well-known example is “overflow” metabolism in which under aerobic conditions
not all substrate is fully oxidized but secreted as by-products. In cancer cells it is referred to as
the Warburg effect: enhanced glycolytic activity with lactate as byproduct at the expense of
respiration2. The same phenomenon is known as the Crabtree effect in Saccharomyces
cerevisiae (Baker’s yeast)3. At sugar limitation yeast respires glucose completely to CO; at sugar
excess it displays respirofermentative metabolism, where respiration is combined with ethanol
formation (alcoholic fermentation). The extent to which these two metabolic strategies are used
can be titrated in a glucose-limited chemostat: at a specific “critical” dilution (=growth) rate,
ethanol formation starts and increases linearly with growth rate4. Other microorganisms show
similar behaviours: for example, £. coli produces acetate at higher growth rates at the expense of
respiration®.

In the last decade a theoretical framework has been developed that can explain why cells
shift metabolic strategies upon environmental or gene-expression perturbations57-10, In essence
it is based on the catalytic benefits of proteins and their associated costs!l. These costs comprise
competition for resources such as building blocks, energy and synthesis machineries, and for
space in cellular compartments. Two key features of this resource allocation paradigm can
explain metabolic adaptations. First, cellular compartments can become “full” when they are
fully occupied with (maximally) active proteins, such that an increase in one protein has to come
at the expense of another. This was postulated as a phenomenological rule based on
experimental observations!?, but also follows naturally from growth-rate maximization?3.
Second, cells allocate their limited resources for protein synthesis according to their

demands!415, Consequently, fractions of needed proteins vary with growth rate within
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compartments whose protein content is bounded, and this can lead to “active proteome
constraints” related to full compartments.

Within this framework, the onset of overflow metabolism was explained by the smaller
protein cost of generating ATP through fermentation than respiratory pathwaysé7; this becomes
important at fast growth when biosynthesis and ribosome demands are high and thus require
large proteome fractions. Earlier work suggests that the proteome-constrained resource
allocation paradigm, which was largely developed for £. co/i may also be a powerful perspective
for regulation of eukaryal yeast metabolism, such as ribosome biosynthesis!¢, and growth on
different sugars!’. However, a key feature of the metabolism of a eukaryal cell is the presence of
metabolically active organelles, most prominently mitochondria. Each organelle introduces two
new compartments (intra-organellar space and membrane), and how these compartments
impacts adaptation of metabolism, and which compartments become limiting under different
conditions, is an open question.

Moreover, despite the wealth of experimental data on Saccharomyces cerevisiae, a
comprehensive, quantitative, data set in which growth rate is systematically varied and both
fluxes and protein expression levels are measured, which are needed to validate resource
allocation predictions, are still rare (see however, some recent studies!618). Here we generated
such data sets and in parallel developed the most detailed and comprehensive,
compartmentalized and quantitative model of metabolism and protein synthesis of yeast. The
model can compute the costs and benefits of protein expression and translocation; It can be used
to interpret or predict experimentally determined changes in growth rate, (minimal) protein
expression and metabolic fluxes as a result of growth rate optimization through resource
allocation into different, compartmentalized, proteome fractions. Comparison of the model
predictions with the data gives unprecedented insight into our physiological understanding of

this important model organism.
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92 Results

93  Construction of a comprehensive proteome-constrained yeast model

94 We extended an existing!? metabolic genome-scale metabolic model of yeast (GEM) by
95  coupling metabolic fluxes to the synthesis of the catalysing enzyme and added constraints on
96  protein concentrations, expressed as protein fractions of the total proteome (Fig. 1a). We refer
97  to the resulting model as proteome-constrained Yeast (pcYeast). Earlier GEM-based approaches
98  exist that incorporate resource allocation, and for yeast these considered constraints on enzyme
99 activities and total protein content!7.20-23, whereas for £. coli constraints and reactions
100  associated with transcription and translation were added®. Others considered membrane-area
101  constraints and limitations of protein allocation to specific pathways824. We combined all these
102  extensions (see Supplementary Notes for detailed information) to make pcYeast: a next-
103  generation yeast GEM and computable knowledge base that incorporates protein expression,
104 translation, folding, translocation and degradation at genome-scale for a compartmentalized,
105  eukaryal, organism. In our current model, we consider the protein compartments most relevant
106 for central metabolism: plasma membrane, cytosol, mitochondrion, and mitochondrial
107  membrane. Other cell compartments such as the nucleus or endoplasmic reticulum are not (yet)
108  specified explicitly - but do occupy volume in the cytosol.
109 The cellular proteome was divided into metabolically active, ribosomal, and unspecified
110  (UP) proteins. The UP fraction is cytosolic, has an average amino acid composition and is added
111  to always maintain a constant protein density in the cytosol. It has a minimum expression level
112  estimated from the experimental proteomics data (Fig. S1, Supplementary Notes). The minimal
113 UP fraction represents growth-rate independent structural, signalling and “household” proteins.
114  Higher expression of UP than minimal represent both unspecified anticipatory proteins, or
115  metabolic proteins that do not carry flux - including the unsaturated fraction of flux-carrying

116  enzymes, as we will explain.
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117 Metabolic enzymes are assigned to a specific compartment, either cytosol, plasma

118 membrane, mitochondrial matrix or inner mitochondrial membrane; Mitochondrial proteins
119 require additional protein transport complexes?5. For each protein we comprehensively

120  modelled synthesis and degradation processes, which are responsible for the largest fraction of
121  cellular energy usage. Our model includes 1,523 proteins whose life cycles are described by

122 16,304 reactions that include translation initiation, elongation and termination factors,

123 ribosomal assembly factors, protein-specific folding by chaperones and degradation reactions,
124  as well as 5’"UTR-length dependent energetic costs for translation initiation (Table 1,

125  Supplementary Notes).

126 We applied three classes of constraints that couple metabolic fluxes and peptides

127  synthesis rates (Fig. 1b and Supplementary Notes for details). The enzyme capacity constraint
128  sets the minimal enzyme synthesis rate required to achieve a certain metabolic flux. Thus, all
129  metabolically-active proteins are modeled to work at their maximal rate and are minimally

130  expressed in the model; the unsaturated fraction of flux-carrying enzymes is represented by UP,
131  the unspecified protein that is used to maintain protein density. In this way we prevent choices
132 about unknown regulatory and kinetic mechanisms that may affect the activity of enzymes;

133 rather we use the deviation between predicted minimal and measured actual protein expression
134  levels to indicate the level of saturation of each enzyme. The total enzyme synthesis rate is

135  constrained by the abundance of ribosomes through a ribosome capacity constraint, for both
136  cytosol and mitochondria. Finally, we added compartment-specific constraints on the proteome,
137  for the cytosol, the plasma membrane, and the mitochondrial matrix and inner membrane, (Fig.
138  1b). The values for these constraints are based on independent literature data or were fitted to
139  experimental data (as explicified in Supplementary Notes) and the values are either fixed or
140  growth-rate dependent, depending on the nature of the constraint.

141 The steady-state metabolite balances, the enzyme synthesis and degradation balances,
142  and the compartment-specific proteome constraints together specify a linear program with its

143  fluxes as optimisation variables, provided the growth rate is treated as a parameter. We use a
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144  binary search algorithm to find the maximum growth rate where the linear program is still
145  feasible, and a marginal increase in the growth rate would result in an infeasible linear

146  programming problem. The model returns all the flux values associated with the maximal

147  feasible growth rate. It should be noted that the structure of the pcYeast model is strain-

148 independent: this allows subsequent calibration of the model to accommodate and account for
149  differences in cell physiology and metabolism, inherent to any specific strain of S. cerevisiae.

150
151  Calibrating the model against experimental data

152 We performed a series of experiments, using a wild-type S. cerevisiae strain CEN.PK 113-
153 7D, for collection of high-quality datasets of fluxes and protein levels, used either as model input
154  or for comparison with model predictions. We used glucose-limited continuous cultures

155  operated at dilution rates close to the critical dilution rate for ethanol formation, to capture

156  proteome change upon the onset of overflow metabolism. Additionally, we varied the growth
157  rate in pH-controlled batch experiments, either with different sugar quality or through

158  translation inhibition. We measured fluxes, including 0, and CO; fluxes (Supplementary Dataset
159 1), which combined with biomass measurements, allowed to estimate the so-called maintenance
160  parameters, i.e. ATP usage that is not explicitly accounted for in the model (Supplementary

161  Notes). Label-free proteome quantification allowed us to reliably estimate proteome fractions of
162  around 3000 of the 6000 proteins (Supplementary Datasets 2, 3, and 4).

163 Parameters associated with translation strongly affected our model outcomes, and we
164  used published quantitative proteomics datalé to estimate parameters for protein translation,
165  such as the elongation rate (Supplementary Notes). Following experimental reports we assumed
166  aconstant inactive fraction of ribosomes and a fixed saturation of the actively translating

167  ribosomes!627 and were able to describe the growth-rate dependent ribosome mass fraction

168  with the model (Fig. 1¢). As evidence for correctly capturing the costs of protein synthesis, we
169  correctly predicted the effect of over-expressing mCherry, an unneeded, “gratuitous” protein, on

170  the specific growth rate (Fig. 1d).
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171
172  The model predicts shifts in metabolic strategies

173 We subsequently used the model to analyse yeast’s physiological response to different
174  levels of glucose availability. Traditional Flux Balance Analysis computes continuous chemostat
175  cultures by minimizing glucose uptake rate at fixed growth (=dilution) rate?8. Here we

176  simulated glucose availability by varying the degree of saturation of the glucose transporter. We
177  needed to constrain the maximal expression level of the glucose transport system based on

178  literature data (Supplementary Notes), as leaving expression free to occupy available membrane
179  space led to unrealistically high expression levels and overestimation of growth rate at low

180  glucose levels. At each saturation level we computed the maximal feasible growth rate and

181  compared model predictions with published data2?, and with data from our glucose-limited

182  chemostat cultures (growth rates between 0.2 - 0.34 h-1). We also included our data from batch
183  cultures on glucose (growth rates 0.37-0.39 h'1) and on trehalose; Trehalose is a disaccharide of
184  two glucose molecules, hydrolyzed extracelullarly3?, thus providing slow release of glucose that
185  supports low growth rates.

186 As in the chemostat the specific growth rate is equal to the dilution rate, the maximal
187  feasible growth rate that the model predicted can be directly compared to the experimental data
188  (Fig. 2a, 2c-d). The (residual) glucose concentrations were calculated from documented (high)
189  affinity of the transporters, which is close to 1 mM3L. The resulting relationship between growth
190  rate and residual glucose concentration fit experimental data very well (Fig. 2a), validating our
191  expectation that we could ignore glucose efflux from the cells due to minute levels of

192  intracellular glucose3? (see Supplementary Notes for details). Increasing glucose transporter
193  saturation increased predicted growth rate, and the effect saturated (Fig. 2b), suggesting that at
194  maximal growth rate further increase in glucose availability has little impact. Predicted biomass
195  yield (Fig. 2c) and fluxes (Fig. 2d) corresponded well with the experimental data, as did the

196  intracellular flux ratios from previously published 13C-labeling flux analysis at three specific

197  growth rates in glucose-limited chemostat cultures (Supplementary Figure 2). In particular, the
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198  model predicted a maximal oxygen consumption rate at dilution rates higher than 0.28 h-1, at the
199  onset of ethanol formation. Above 0.35 h-1, this rate rapidly drops to the low level that is

200  observed under glucose excess (batch) conditions. We conclude that the model can adequately
201  predict the changes in metabolic fluxes when the growth rate is varied through the availability of
202 glucose.

203

204 Changes in metabolic strategies are the result of proteome constraints

205 We used pcYeast to identify the active proteome constraints, 7.e. the protein pools that
206  limit growth rate, because, according to resource allocation theory, the number of active

207  proteome constraints determines the maximal number of independent metabolic behaviors that
208  are possible in optimal states513. For this we computed the occupancy of each protein pool: a
209  pool thatis fully occupied is indicative of an active constraint. At low growth rates, below 0.28 h-
210 1, the glucose transporter was the only proteome pool that is fully occupied (Fig. 2e). With only
211  glucose uptake as active constraint, pure respiration is the single optimal strategy. At the onset
212 of ethanol formation a second metabolic mode started to carry flux (for formal computation of
213  these modes and the concomitant theory, see Supplementary Notes), and thus a second

214  constraint must have become active. Indeed, at this growth rate the occupancy of the inner-

215  mitochondrial membrane became maximal (Fig. 2e). Thus, the model suggests that under

216  glucose-limited chemostat conditions, the onset of ethanol formation is caused by a limit of the
217  mitochondrial membrane space, and hence the amount of proteins that yeast can maximally
218  express in this compartment.

219 At a growth rate of 0.35 h-t we found that the unspecified protein level reached its

220  minimal value (Fig. 2e), equivalent to the cytosol being completely filled with maximally active
221  proteins. Further growth rate increase requires higher ribosomes and biosynthetic protein

222 fractions, which now has to come at the expense of the least proteome-efficient pathway. The
223 model confirmed earlier calculations33 that respiration is less proteome efficient than

224  fermentation (Supplementary Figure 3) and respiration is therefore replaced by fermentation.
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225  The model suggested therefore that at growth rate above 0.35 h-1 the second growth-limiting
226  constraint was shifted from the mitochondrial proteome to the cytosolic proteome. Thus, the
227  metabolic changes in the model, when growth rate and thus metabolic fluxes increase, are
228  dictated by the filling up of different cellular compartments with active protein, unique for an
229 eukaryal cell. The level of detail in our model to suggest the condition-dependent, active,

230  protein-concentration constraints belonging to different compartments has so far not been
231  provided by any other model.

232
233  Proteomics data validates model predictions

234 We subsequently measured protein levels with quantitative proteomics and compared
235  them to the minimal protein levels that the model predicted to be needed to support metabolic
236  flux. Since we compute minimal levels as if all the enzymes worked at their maximal rate, we
237  expected to underestimate most proteome fractions. Especially at lower growth rates where
238  nutrient limitation is most severe, one can expect lower average enzyme saturation, and indeed
239  we observed larger deviations between predicted minimal protein levels and measured protein
240  fractions at low growth rates (Fig. 3a). The difference between the predicted minimal level and
241  the data may be interpreted as a proxy for the average saturation of enzymes. In terms of

242  protein synthesis costs, the difference between the experimentally measured enzyme expression
243  and the predicted minimal expression level, however, are covered by the expression of the UP.
244  We see an overall tendency that the saturation of enzymes increases with growth rate

245  (Supplementary Figure 4). This is most prominent for the glycolytic pathway; also for amino
246  acid biosynthesis, the protein expression is higher than expected based on metabolic activity,
247  indicating also here a substantial undersaturation of the enzymes, as observed before for

248  bacteria such as £ colB* and L. lactis?>. We find similar patterns for other biosynthetic pathways,
249  except for lipids (Supplementary Figure 5).

250 For mitochondrial proteins involved in the citric acid cycle and respiration, however, we

251  found that predicted minimal proteome fractions were very close to the measured ones (Fig.

10
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252 3a).Unless k.4 values of mitochondrial enzymes are systematically underestimated, this

253  indicates that mitochondrial proteins work at higher average saturation than cytosolic proteins -
254  and seemingly close to their maximal capacity. Regardless of absolute numbers, the saturation of
255  the mitochondria seems rather constant, suggesting that yeast tunes the total amount of

256  mitochondria, rather than make excess (hence subsaturated) mitochondria, at least under these
257  conditions. This may make sense, given the extra costs of mitochondrial components such as
258  membranes, and for protein translocation of host-derived proteins during mitochondrial

259  biogenesis, which competes for membrane space with respiratory proteins.

260 Upon closer inspection, we observed that at the onset of ethanol formation the total

261  mitochondrial protein fraction started to decrease (Fig. 3b). The observed decay follows the

262  theoretical dilution-by-growth kinetics if at that point the rate of mitochondrial biosynthesis has
263  reached a maximum (Fig. 3b). Thus, the data suggests that the rate of mitochondrial biogenesis,
264  rather than the maximal mitochondrial membrane area currently used by the model, may reach
265  the host’'s maximal capacity at the onset of ethanol formation. When we zoom in on the

266  mitochondrial proteome, we find that the mitochondrial ribosome fraction increased as a

267  funtion of growth rate, and also other proteins re-allocated (Supplementary Fig. 6). Indeed,

268  mitochondria are self-replicating entities abiding to the same resource allocation principles as
269  the host, which even includes selection for fast replication - but obviously severely dictated by
270  the proteins the host provides. More data related to the mitochondrial biosynthetic processes,
271  such as mitochondrial ribosomal capacity and protein import machinery would be required to
272  predict the maximal mitochondrial growth rate from first principles, which is outside the scope
273  of this study. Nonetheless, the distinct changes of mitochondrial proteins at the critical dilution
274  rate are consistent with the model prediction that a mitochondrial constraint is responsible for
275  the onset of ethanol formation under glucose-limited conditions.

276

11
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277  Constraints and fluxes under sugar excess conditions

278 We then varied growth rate (between 0.05 h-1 and 0.4 h-1) by providing different sugars,
279  i.e.trehalose, galactose, maltose and glucose during batch cultivation. Ethanol production was
280  already observed on galactose, already at a growth rate of 0.16 h-1so at a much lower growth
281  rate than the critical growth rate of 0.28 h-1 under glucose-limited growth (Fig. 4a). Maltose
282  showed intermediate growth rate and fluxes. Initial model simulations with a “naive” model
283  using the reported catalytic rates of the transporters and catabolic enzymes involved in

284  galactose and maltose metabolism, however, resulted in predicted growth rates and fluxes not
285  far from growth on glucose. This suggests that there are additional cost factors that were not
286 included in the model, and or that Saccharomyces cerevisiaeis not as well adapted to these

287  sugars.

288 We therefore used the model as data analysis tool to estimate possible changes in

289  parameters that fit the observed growth rate and corresponding fluxes (see Supplementary
290  Notes for details). Such parameter changes may be interpreted as costs for suboptimal

291  metabolism of carbon sources other than glucose. The onset of ethanol formation at a growth
292  rate of 0.16 h'l required a combination of changes in both sugar uptake and the intracellular
293  proteome (through the minimal UP fraction constraint): a lower sugar uptake capacity alone
294  would be identical to lowering saturation of the transporter as was done for glucose (Fig. 2), and
295  pure respiration would have been found at 0.16 h-1. Conversely, only an increase in minimal UP
296  would have resulted in a proportional flux decrease that we also found with mCherry

297  overexpression (or translation inhibition, Supplementary Figure 7), and more ethanol were to
298  be found.

299 We had to decrease the maximal galactose uptake rate by a factor of 2.5 compared to
300 glucose. Furthermore, an increase in minimal UP fraction was needed, to 0.49 g/g protein. To fit
301  all fluxes optimally, we also required additional energetic costs (see Supplementary Notes),
302  whose mechanistic underpinning remains to be explored but may be related to the reported

303  toxicity of galactose intermediates3¢. Such a change in energetic costs were not needed to

12
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304  describe the data for growth on maltose: only a change in the maltose uptake rate and minimal
305  UP fraction (of 0.34 g/g protein) were required to achieve good fit.

306 For maltose, a disaccharide of glucose, the reason for the required parameter changes is
307  not clear. Only a maltose proton-symporter and a maltase protein distinguishes it from growth
308  on glucose. The transport expression may be tightly regulated as very high maltose uptake rates
309 canresultin substrate-accelerated death3’. For galactose, the toxicity of its intermediates36

310 results in an evolutionary trade-off with growth on glucose38; on galactose yeast cells appear to
311  be still prepared for growth on glucose, which may prevent them from optimal expression of
312  proteins on galactose, as shown by expression titration experiments3°. Indeed, laboratory

313  evolution experiments on galactose select mutations in Ras/cAMP signalling and adapted strains
314  show increased growth rates and concomitant increased ethanol fluxes38. Interestingly, the

315  direction of change points to the optimal behaviour predicted by the initial naive model,

316  suggesting that the pcYeast model may aid in predicting the direction of evolutionary change
317  during laboratory evolution experiments (Supplementary Figure 8).

318 With the updated parameters, we identified for both sugars that the active constraints
319 limiting growth were the sugar transport expression and the minimal UP fraction constraint
320  (Figure 4d, Supplementary Notes, Supplementary Figure 9). These active constraints explains
321  ethanol formation during growth on galactose even though the growth rate is lower than the
322  critical dilution rate on glucose.

323
324  Proteomics data on sugar excess shows re-allocation of metabolic strategies

325 If growth rate is actively constrained by the cytosolic proteome under galactose, maltose
326  and glucose excess conditions, it implies that all cytosolic proteins work at their maximum

327  activity, and changes in flux must be brought about by changes in protein level. We therefore
328  turned to proteomics again. Comparing the minimal levels of the model with experimental data,
329  we find again that mitochondrial proteins for the TCA cycle and respiration are very similar to

330  the predicted minimal levels required to sustain flux (Fig. 4c). Cytosolic proteins were
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331 underestimated - even at sugar excess conditions. (Note however that the expected maximal
332  attainable activity is not likely at the maximal rate in the forward direction as product inhibition
333  isinevitable in a chain of enzymes.)

334 More indicative of “a full cytosol” is that at the onset of ethanol formation (at galactose
335  growth rate and higher) we find evidence for proportional relationships between protein and
336  flux for high-flux carrying, pathway-grouped, proteins as a function of growth rate (Fig. 4c). This
337 s observed even down to the individual protein level (also involving changes in expressed

338  isozymes), as illustrated for glycolytic and respiratory proteins in Fig. 4d. This implies that

339  under these conditions, enzyme saturation was constant (and maximal, we expect) and changes
340  in flux could only be brought about by corresponding changes in enzyme levels. This data

341  illustrates how mitochondrial proteins are being traded in for glycolytic proteins needed for an
342  enhanced fermentation and growth rate. It also confirms the model’s prediction that the

343  cytosolic proteome constraint is active during growth on these sugars.

344

345 Inhibition of translation highlights the role of environmental signalling in coordination

346  of metabolism in yeast.

347 Finally we varied growth rate by translation inhibition by cyclohexamide under

348  controlled glucose batch conditions, and again measured fluxes, growth rate and proteome

349  profiles (Fig. 5a). Upon inhibition of translation, we found a decrease in growth rate and close to
350 proportional decreases in glucose, ethanol and CO; fluxes, for both the model and the

351  experimental data (Fig. 5b). Such behaviour is expected when one dominant constraint is active
352  and its extent is varied (cf. glucose-limited fully respiratory growth, Fig. 2). In the case of glucose
353  excess, the model suggested that the cytoplasmic volume was fully occupied with active proteins
354  (minimal UP constraint was hit), and inhibition of translation required higher expression levels
355  ofribosomes, taking away limited proteome space for growth-supporting activities.

356 However, experimental observations compromised this initial explanation. First, for

357  oxygen the model also predicted a proportional increase with growth rate, but experimentally
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358 the fluxes did not change much as did the expression of enzymes involved in oxygen

359  consumption, such as TCA cycle and oxidative phosphorylation (Fig. 5d). Moreover, the

360 ribosomal proteome fraction increased much less with inhibition than the model predicted (Fig.
361  5c). Since translation inhibition in the model has the same effect as overexpression of a non-
362  functional protein (Supplementary Figure 7), we followed the earlier observation that the

363 inactive fraction of ribosomes could be recruited for translation, depending on the translational
364  load!s, with only a small improvement (Supplementary Figure 10).

365 This suggested that either some constraint prevents the ribosomal fraction from

366  increasing to the optimal levels predicted by the model, or the expression of ribosomes in yeast
367  is dominantly regulated by environmental nutrient signalling and less by internal cues. A

368 dominant role of signalling in ribosomal biogenesis has been suggested beforelé. In yeast the
369 TOR pathway appears to be the master regulator of ribosomal biosynthesis and assembly at
370  steady-state growth*041, Following the TOR-specific targets described by Kunkel#!, we find that
371  Kkey target proteins of this signalling pathway, including ribosomal auxiliary factors, had

372  constant expression levels (Supplementary Figure 11 and Supplementary Table 1), supporting
373  the dominant role of external rather than internal cues.

374 When we constrained ribosomal expression to the measured maximal response,

375  ribosomal expression rapidly became the only active constraint in the model, and the proteome
376  space that became available in the cytosol at the lower growth rates was used for increased

377  respiration (Supplementary Figure 12). This is not observed experimentally, and our data

378  suggest that respiration does not respond to internal cues either. In contrast the fluxes and

379  expression of proteins involved in glycolysis and amino acid metabolism did decrease with

380  growth rate (Fig. 5bd). This suggests that these pathways must be sensitive to internal feedback
381  regulation, as is well known for amino acid metabolism*2. Thus, the proportional fluxes we found
382  for ethanol and glucose upon translation inhibition, are likely the result of control by demand*3,
383  with lower demand at lower growth rate.

384
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385 Discussion

386 In this work, we developed the most comprehensive model of a growing,

387 compartmentalized, eukaryal cell to date. It includes all its known metabolic reactions, and

388  details of the protein synthesis, degradation and transport machinery to express the enzymes.
389  The key of our approach is the application of constraints on protein pools in the different

390 compartments that have direct biochemical meaning and could be independently estimated
391 from literature data. Our approach is unique in level of detail and in dealing with cellular

392  compartmentation, in particular of the mitochondria. We furthermore generated a unique set of
393  high-quality quantitative data on both fluxes and the proteome under different, well-controlled,
394  conditions. Through integration and comparison with the model, we provide deeper insight into
395  the physiology of Saccharomyces cerevisiae.

396 First, we firmly established that metabolic growth strategies of yeast on glucose can be
397  well understood from a proteome-constrained optimisation problem with growth rate as

398  objective. Through our high resolution sampling around the critical dilution rate, we observed
399  distinct changes in proteins exactly at the onset of ethanol formation in the glucose-limited

400  chemostat. We also show that the active constraints that drive these changes can be different
401  under different conditions such as batch growth on galactose - even if ethanol is made in both
402  cases. Our approach to identify the active cellular constraints may resolve some of the

403  discussion in current literature about the cause of overflow metabolism, not only in yeast but
404  possibly also in other eukaryotes, including discussion about the Warburg effect in mammalian
405  cells*.

406 Second, the proteome constraints of the model are currently based on experimental
407  observations, but further research could drill deeper into their origin. For example, why would
408 the protein density in the cytosol be relatively constant? Does this balance diffusion rates with
409  catalytic capacities*s? Are the current morphological dimensions of a yeast cell optimal for

410  growth rate? Recent work on selection for cell number showed that smaller cells can be readily

411  selected for6. We also identified that the levels of glucose transport and that of mitochondria
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412  need to be constrained to describe the data. Why would yeast not express these components at
413  higher levels? In the case of mitochondria, the proteomics data suggest that rather than a

414  maximum mitochondrial membrane area and matrix volume, there is a maximal rate of

415  mitochondrial biogenesis. Can we calculate this rate from first principles? One could imagine
416  thatan upper limit for mitochondrial “growth rate” exists if all but eight metabolic proteins need
417  to be transported over the same membrane that must also harbour the full machinery for

418  oxidative phosphorylation. Moreover, we focused on mitochondrial protein content, and ignored
419  details on morphology, lipid synthesis, or possible assembly costs. Thus, a next version of the
420  model will need to address the mitochondrial transport, biosynthesis and morphology in much
421  more detail.

422 In the case of glucose transport, the model suggested that further increase in glucose
423  transporters beyond wild type expression did not increase growth rate substantially and would
424  likely be invisible for evolution. At maximal saturation of the transporter, glucose transport

425  expression was (just) no longer an active constraint in our model (Fig. 2e). Thus, it appears as if
426  yeast expresses just enough glucose transporters to maximise its growth rate under glucose

427  excess - as found in bacteria?’. Expressing higher transport levels at lower glucose levels would
428  enhance growth rate but may not pay off if this state is a transient towards glucose starvation, or
429  could be outright dangerous if suddenly glucose would become available3”. The expression level
430  of the hexose transporters may thus have evolved to be an adaptation to dynamic

431  environments*s. Long-term evolution experiments in glucose-limited chemostats indeed show
432  gene duplications of high-affinity glucose transporters*?, showing that growth limitation, and
433  hence selection pressure, is on glucose transport under these conditions.

434 Third, in the case of nutrient uptake limitation, there appears to be “excess” proteome
435  space that could be filled with anticipatory proteins or heterologous enzymes at no cost in

436  fitness. Even though the composition of such excess proteome space cannot be predicted with
437  our model, we were able to predict metabolic fluxes very well: in this nutrient-limited regime

438  metabolic efficiency (ATP per glucose), not proteome efficiency (ATP per protein), determines
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439  the best growth rate strategy. This explains why Flux Balance Analysis applied to only the

440 metabolic network has been so successful, but only under nutrient-limited conditions.

441 Finally, we found linear or even proportional relationships between growth rate and
442  flux, and between flux and enzyme levels in a sugar excess (batch culture) regime. In terms of
443  regulation analysis®?, such a regime is characterised by hierarchical regulation with absence of
444  metabolic regulation, that is, all changes in flux are brought about by changes in enzyme levels,
445  not their degree of saturation. For glycolysis and amino acid metabolism, the average saturation,
446  estimated as the ratio of the predicted minimal enzyme level to the expressed enzyme level, at
447  maximal growth rate is around 0.5, incidently the level predicted as theoretical optimum for
448  specific reaction rate>l. In contrast, when growth is limited by glucose availability, the degree of
449  saturation varies and the model suggests a mixture of hierarchical and metabolic regulation, as
450  previously observed in chemostats as well52.

451 To conclude, we present a mechanistic, compartmentalized, model of an eukaryal

452  organism in full details, which can act as a valuable, computable, knowledge base. We show how
453 it can be used to compute protein costs and identify active growth-limiting constraints, and how
454 it can be combined with quantitative flux and proteomics data to provide unprecedented insight
455  into cellular physiology. Finally, we show that also in eukaryal cells, metabolic strategies can be
456  understood on the basis of growth rate optimisation under nutrient and proteome constraints.
457  What remains to be understood is how the cell’s signalling and regulatory networks manage to
458  implement these (optimal) proteome allocation strategies.

459

460 Methods

461  Model development
462  The full description of the pcYeast model is provided as Supplementary Notes. The model codes
463  are available per request to the authors and will be published on GitHub upon acceptance of this

464  manuscript.
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465

466  Strains and shake flask cultivation

467  The strain used for this study was Saccharomyces cerevisiae strain CEN.PK 113-7D53. The stocks
468  used for the experiments were grown in 500 mL shake flask containing 100 mL of YPD medium
469 (10 gL of Bacto yeast extract, 20 g L1 of peptone and 20 g L-! of D-glucose). The culture was
470  grown up to early stationary phase and 1 mL aliquots were stored in 20% (v/v) of glycerol at -
471 80 °C. For chemostats, pre-cultures were grown in 500 mL shake flasks containing 100 mL of
472  synthetic medium, the pH was set to 6.0 with 2ZM KOH and the medium was supplemented with
473 20 g L't of D-glucose>*. Shake flasks with medium were inoculated with the 1 mL frozen stocks of
474  the strain and the cultivations were performed in an orbital shaker at 200 rpm at 30 °C. Pre-
475  cultures for batches with translation inhibitors were performed using a similar approach,

476  whereas for batches with different carbon sources the pre-cultures were made with the

477  respective carbon sources instead of D-glucose.

478

479  Chemostat cultivations

480  Chemostat cultivations were performed in 2 L bioreactors (Applikon, Schiedam, The

481  Netherlands) with a working volume of 1.0 L, the dilution rates used in this study were 0.2, 0.23,
482 0.27, 0.3, 0.32 and 0.34 h-! in two independent replicate cultures. Growth rates were controlled
483 by modifying the inflow rate on each experiment. Synthetic medium according to Verduyn>+

484  supplemented with 7.5 g L-1 of glucose and 0.25 g L-1 Pluronic 6100 PE antifoaming agent was
485  supplied to the bioreactor from a 20 L continuously mixed reservoir vessel. Cultures were

486  sparged with dried air at a flow rate of 700 mL min-! and stirred at 800 rpm. The pH of the

487  cultures was maintained at 5.0 by automatic addition of 2 M KOH. If, after at least six volume
488  changes, the cultures dry cell weight concentration and carbon dioxide production ratediffered
489  less than 2% over two consecutive volume changes the cultures were considered to be in steady

490 state. For cultures with dilution rates of 0.27, 0.3, 0.32 and 0.34 h-1, cultures were first

19


https://doi.org/10.1101/2021.06.11.448029
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448029; this version posted September 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

491  maintained at a dilution rate of 0.2 h-1 for 15 hours (3 volume changes) prior to increasing the
492  specific dilution rate to said values.

493

494  Batch cultivations with different carbon sources

495  Batch cultivations (two independent replicate cultures) were performed using synthetic

496  medium54, the medium was supplemented with 20 g L-! final concentrations of the carbon

497  sources, either D-trehalose, D-galactose, D-maltose or D-glucose (Sigma Aldrich). The

498  Dbioreactors were inoculated with 100 mL of yeast shake flask cultures, exponentially growing on
499  the specific carbon source. The final ODseo of all pre-cultures was 4. Cultivations were performed
500 at 30 °C, the pH was kept at 5.0 by automatic addition of 2M KOH. The working volume of the
501 bioreactors was 1.4 L in 2 L bioreactors (Applikon, Schiedam, The Netherlands). The cultures
502  were stirred at 8000 rpm and sparged with a flow rate of 700 mL min-! of dried air. Oxygen

503 levels were kept above 40% of the initial saturation level as measured with Clark electrode

504  (Mettler Toledo, Greifensee, Switzerland).
505

506  Batch cultivations with the translation inhibitor cycloheximide

507  Batch cultivations (two independent replicate cultures) with the translation inhibitor

508 cycloheximide were performed as for the batches with different carbon sources, except that all
509  the batch cultures ran on 20 g L-! of D-glucose and were supplemented with different

510  concentrations of cycloheximide with the aim of reaching specific growth rates. In total five
511  growth rates were studied, being 0.06, 0.12, 0.2, 0.32 and 0.41 h-! (adding respective

512  cycloheximide concentrations of 228.96, 124.51, 52.15, 25.99 and 0 ug L-1).

513

514  Analytical methods

515  Cultures dry weight was measured by filtering 20 mL of culture, the sample was filtered in pre-

516  dried and pre-weight membrane filters with a pore size of 0.45 pum (Gelman Science), the filter
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517  was washed with demineralized water, subsequently it was dried in a microwave (20 min, 350
518 W) and the final weight was measured as described previously.

519 For the measurement of organic acids and residual carbon source concentrations, supernatants
520  of the cultures were used. For carbon-limited chemostat cultures, the samples were directly
521  quenched with cold steel beads and filtered>5, whereas samples from batch cultures were

522  centrifuged (5 min at 16.000X g). The supernatants were analysed by high-performance

523  chromatography analysis on an Agilent 1100 HPLC (Agilent Technologies) equipped with an
524  Aminex HPX-87H ion-exchange column (BioRad, Veenendaal, The Netherlands), operated with 5
525 mM H;SO0, as the mobile phase at a flow rate of 0.6 mL min-! and at 60 °C. Detection was

526  according to a dual-wavelength absorbance detector (Agilent G1314A) and a refractive-index
527  detector (Agilent G1362A), as described previously.

528  The exhaust gas from batch cultures was cooled down with a condenser (2°C) and dried with a
529 PermaPure Dryer (model MD 110-8P-4; Inacom Instruments, Veenendaal, the Netherlands)
530  before online analysis of carbon dioxide and oxygen with a Rosemount NGA 2000 Analyser

531  (Baar, Switzerland).

532

533  Glycogen and trehalose assays

534 1 mL of culture was taken from the chemostats and directly added to 5 mL of cold methanol (-40
535  °C). The sample was mixed and centrifuged (4400% g, -20 °C for 5 minutes), the supernatant
536  was discarded, and the pellet was washed in 5 mL of cold methanol (-40 °C), and pellets were
537  stored at-80 °C until further processing. Subsequently, the pellets were resuspended in 0.25 M
538  NazC0zand processed as described previously>¢>7. D-glucose released from trehalose and

539  glycogen were measured with a D-glucose assay kit (K-GLUC Megazyme), two biological

540  replicates and three technical replicates were analysed per condition.

541

542 RNA determination
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543  For RNA determination, 1-2 mL of broth was transferred to a filter (pore size of 0.45 um, Gelman
544  Science), after which the filter was washed with cold TCA 5 %. The cells were resuspended in 3
545  mL of TCA 5% and centrifuged for 15 minutes at 4 °C at 4000 rpm. The supernatant was

546  removed and the pellet was stored at -20 °C. Finally, samples were processed as described by
547  Popolo et al,, 1982. Two biological replicates and three technical replicates were analysed per
548  condition.

549

550  Protein determination

551  For the batches with CHX, culture volumes corresponding to 50 mg of DCW were centrifuged,
552 washed twice with cold demineralized sterile waterand divided into two aliquots of 5 mL. 2 mL
553  ofthe aliquot (containing 10 mg DW) was mixed with 1 mL of 3 M NaOH and incubated at 100 °C
554  for 10 minutes. The final mix was diluted and processed following the copper-sulfate based

555  method as described previously8. The absorbance of the supernatant was measured at 510 nm,
556  for calibration lyophilized bovine serum albumin (A2153, Sigma Aldrich) was used. Two

557  biological replicates and 3 technical replicates were analysed per condition.

558

559  Proteomics sample preprocessing

560  Aliquots of 20 mL of culture from chemostats and batches with different carbon sources were
561  centrifuged (4000 rpm 4 °C, 10 minutes) and washed two times, the final pellet was flash frozen
562  inliquid nitrogen and stored at -80 °C. Two biological replicates and two technical replicates

563  were analysed per condition.

564  Frozen cell pellets were thawed on ice before transfer to Precellys® Lysing Kit 2 ml screw cap
565  vials with 0.5mm glass beads (Bertin Instruments, France). Lysis was performed in 250 pl lysis
566  buffer, 50 mM ammonium bicarbonate with cOmplete protease inhibitor cocktail (ROCHE,

567  Switzerland), using a Minilys Personal Tissue Homogenizer (Bertin Instruments, France), at

568 maximum speed for 15 cycles of 30 seconds with a one-minute rest on ice between each cycle.
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569  Lysed material was centrifuged for 10 minutes 13,000 g at 4°C, the supernatant fraction was
570 removed and retained. Fresh lysis buffer (250 pl) was added to the insoluble material, which
571  was resuspended before extraction from the vial via a small hole inserted into the vial base.

572  Soluble and insoluble fractions were recombined and the total final volume recorded. Protein
573  concentration was determined using Pierce™ Coomassie Plus Bradford Assay Kit (ThermoFisher
574 Scientific, UK).

575  Protein (100 pg) from each sample was treated with 0.05 % (w/v) RapiGest™ SF surfactant
576  (Waters, UK) at 80 °C for 10 minutes, reduced with 4 mM dithiothreitol (Melford Laboratories
577  Ltd. UK) at 60 °C for 10 minutes and subsequently alkylated with 14 mM iodoacetamide

578  (SIGMA, UK) at room temperature for 30 minutes. Proteins were digested with 2 pg Trypsin
579  Gold, Mass Spectrometry Grade (Promega, US) at 37 °C for 4 hours before a top-up of a further 2
580  pgtrypsin and incubation at 37 °C overnight. Digests were acidified by addition of trifluoroacetic
581 acid (Greyhound Chromatography and Allied Chemicals, UK) to a final concentration of 0.5 %
582  (v/v) and incubated at 37 °C for 45 minutes before centrifugation at 13,000x g (4°C) to remove
583  insoluble non-peptidic material.

584

585  Proteomics analytics

586  The sample running order was randomised using a random number generator (Random.org).
587  Samples were analysed using an UltiMate™ 3000 RSLCnano system (ThermoFisher Scientific)
588  coupled to a Q Exactive™ HF Hybrid Quadrupole-Orbitrap™ Mass Spectrometer. Protein digests
589 (1 ugofeach) were loaded onto a trapping column (Acclaim PepMap 100 C18, 75 pm x 2 cm, 3
590  um packing material, 100 A) using 0.1 % (v/v) trifluoroacetic acid, 2 % (v/v) acetonitrile in

591  water at a flow rate of 12 pL min-1 for 7 min.

592  The peptides were eluted onto the analytical column (EASY-Spray PepMap RSLC C18, 75 pm x
593 50 cm, 2 um packing material, 100 A) at 40°C using a linear gradient of 120 minute shallow

594  gradientrising from 8 % (v/v) acetonitrile/0.1 % (v/v) formic acid (Fisher Scientific, UK) to 30

595 % (v/v) acetonitrile/0.1 % (v/v) formic acid at a flow rate of 300 nL min-1. The column was then

23


https://doi.org/10.1101/2021.06.11.448029
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448029; this version posted September 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

596  washedat1 % A:99 % B for 8 min, and re-equilibrated to starting conditions. The nano-liquid
597  chromatograph was operated under the control of Dionex Chromatography MS Link 2.14.

598 The nano-electrospray ionisation source was operated in positive polarity under the control of
599  QExactive HF Tune (version 2.5.0.2042), with a spray voltage of 2.1 kV and a capillary

600 temperature of 250°C. The mass spectrometer was operated in data-dependent acquisition
601  mode. Full MS survey scans between m/z 300-2000 were acquired at a mass resolution of

602 60,000 (full width at half maximum at m/z 200). For MS, the automatic gain control target was
603  setto 3e® and the maximum injection time was 100 ms. The 16 most intense precursor ions
604  with charge states of 2-5 were selected for MS/MS with an isolation window of 2 m/z units.
605  Production spectra were recorded between m/z 200-2000 at a mass resolution of 30,000 (full
606  width at half maximum at m/z 200). For MS/MS, the automatic gain control target was set to
607  1e5 and the maximum injection time was 45 ms. Higher-energy collisional dissociation was
608  performed to fragment the selected precursor ions using a normalised collision energy of 30 %.
609  Dynamic exclusion was set to 30 s.

610

611  Proteomics data analysis

612  The resulting raw data files generated by XCalibur (version 3.1) were processed using MaxQuant
613  software (version 1.6.0.16)5%. The search parameters were set as follows: label free experiment
614  with default settings; cleaving enzyme trypsin with 2 missed cleavages; Orbitrap instrument
615  with default parameters; variable modifications: oxidation (M) and Acetyl (protein N-term); first
616  search as default; in global parameters, the software was directed to the FASTA file; for

617  advanced identification “Match between runs” was checked; for protein quantification we only
618  used unique, unmodified peptides. All other MaxQuant settings were kept as default. The false
619  discovery rate (FDR) for accepted peptide spectrum matches and protein matches was set to
620  1%. The CEN.PK113-7D Yeast FASTA file was downloaded from the Saccharomyces Genome
621  Database (SGD) (https://downloads.yeastgenome.org/sequence/strains/CEN.PK/CEN.PK113-

622  7D/CEN.PK113-7D_Delft 2012_AEHG00000000/).
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623
624  The resulting MaxQuant output was then analysed using the MSstats package (version 3.5.6)60
625  inthe R environment (version 3.3.3) to obtain differential expression fold changes with

626  associated pvalues, along with normalized LFQ and intensity values as described previously®!.

627
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Fig. 1 pcYeast model formulation and calibration of protein synthesis parameters. a. A schematic
overview of reactions in the model, their interdependence and constraints. Metabolic reactions v; are
proportional to enzyme concentrations e; that are synthesized at rate vy, ; by the ribosomes R. Each
protein can be degraded with rate Vge4; = Kqeg * €; Or diluted by growth rate vg;;; = - e;.
Compartment-specific constraints are indicated in the light-blue boxes. b. Optimisation problem with
the key constraints, including 1) steady-state mass balances; 2) production of biomass components
such as DNA, lipids, cell wall and polysaccharides. Proteins and tRNA are excluded as their synthesis
rates are optimisation variables 3) enzyme capacity constraints that couple metabolic flux to catalytic
rate k.q¢; and the enzyme level, whose value at steady state is determined by its synthesis rate, rates
of enzyme degradation, and dilution by growth. Note we use equalities and hence enzymes work at
their maximal rate and minimal required protein levels are computed; 4) ribosome capacity that
defines an upper bound for protein synthesis rate; 5) compartment-specific proteome constraints that
define the maximal concentration of proteins that can be contained in that compartment, with w; the
specific volume or area of protein i; 6) a cytosolic protein density constraint that has the same

function as that of proteome constraints, but whose equality forces the cell to fill up any vacant
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806 proteome space with unspecified protein UP with average amino acid composition. c. Growth rate was
807  varied through sugar type (trehalose, galactose, maltose, glucose) or glucose concentration, and

808 ribosomal protein fraction was determined by proteomics (which was consistent with literature data,
809  also plotted). The translation rate was calibrated on that data, as detailed in Supplementary Notes. d.
810 Impact of mCherry protein overexpression on growth rate. Symbols show experimental data?®, solid
811 lines show model predictions based on glucose minimal (SD) medium or rich SC/YPD media. Model
812 predictions were obtained by varying the proteome mass fraction, occupied by mCherry, and

813 determining the maximal predicted growth rate at each value of the mass fraction. The relative

814  growth fitness represents the ratio between the growth rate at certain mCherry expression level vs.
815  the unperturbed state (no mCherry expression).

816
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818  Fig. 2 Predicted and measured physiological response of S. cerevisiae CEN.PK as a function of glucose
819  availability a. Measured (symbols) and predicted (line) residual glucose concentrations as a function of
820  growth rate. The latter was calculated based on published affinity for glucose and assuming negligible
821  intracellular glucose under these conditions. Note that this resembles a Monod growth curve but with
822  the dependent and independent axis swapped, as we control growth rate in a chemostat. b. Maximal
823  feasible growth rates of the model as a function of the glucose transporter saturation. c¢. Measured
824  (symbols) and predicted biomass yield on glucose. d. Experimental fluxes from glucose-limited

825  chemostats at different dilution rates (circles) and from two batch experiments (triangles): excess
826  trehalose (which mimicks glucose limitation at low dilution rate®®) and excess glucose at the highest
827 growth rate. The lines are model predictions; background colors indicate regimes with different active
828  constraints; e. Computed proteome occupancy of different constrained protein pools. A fraction of 1
829 means that the compartment is full with metabolically actively proteins and constrains the growth rate
830  at that condition.
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Fig. 3 Proteomics data of selected pathways as a function of glucose availability. Blue symbols are
glucose-limited chemostat data; orange symbols are controlled batch experiments with excess
trehalose (lowest growth rate) or glucose (highest growth rate) a. Comparison of predicted minimal
proteome fractions to sustain growth with the experimentally determined proteome fraction for four
pathways. The ratio between the two represents an estimate of the saturation level of the constituent
enzymes. Lines represent the model; experimental data are symbols. b. Decay of steady-state
mitochondrial protein fraction with growth rate at onset of ethanol formation suggests a maximal rate

of mitochondrial biosynthesis Vsyn max-

35


https://doi.org/10.1101/2021.06.11.448029
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448029; this version posted September 19, 2021. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

a b Unspecified protein  Carbon uptake
25 1.0 1.0
Flux
0l @ 0.5 0.5
= © qO:
<= @ qFtoH
i o 0.0 0.0
% 15{ @ 0qco; 0.00 0.25 0.50 0.00 0.25 0.50
R Growth rate (h~1) Growth rate (h~1)
[s]
E 10 A Mito. membrane Mito. matrix
= 1.0 1.0
3
(VIS 5 B
0.5 0.5
ol A
0.0 01 0.2 0.3 0.4 05 00 0.0
Growth rate (h-1) 0.00 0.25 0.50 0.00 0.25 0.50
Growth rate (h™1) Growth rate (h™1)
C Glycolysis AA biosynthesis TCA cycle Oxidative phosphorylation
5 0.15 0.06 0.06
g ® ®
Z0.104© © 01045 © ¢] 0.04 A 0.04 1@
£ o (6]
5 0.05 A 0.05 - 0.02 - 0.02 -
2 / o]
£ 0.00 : 0.00 : 0.00 : 0.00 :
0.00 0.25 050 0.00 025 050 0.00 025 050 0.00 025 050

Growth rate (h71)

Growth rate (h~1)

d [i2

1.0 1

0.8 1

0.6 1

Relative proteome fraction

CCP1
e NDEL ..
ATP*
COR1
RIP1
CYT1
COX*

QCR*

0.4- ‘.4' -
=zl oval
0.2 '{_'-._/”D”
'-.'/cvaz
0.0 . sl GUT2
0.0 0.2 0.4 0.6

Growth rate (h™1)

Growth rate (h™1)

3.0

0.2

0.4 0.6

Growth rate (h™1)

Growth rate (h™1)

CO2+H?20
sugar
842 EtOH
843 Fig. 4 Model predictions, fluxes and protein levels plotted as a function of growth rate during hexose
844 sugar excess conditions (in the order: trehalose, galactose, maltose, glucose) a. Fluxes of sugar
845  consumption, oxygen consumption and ethanol production. Circles are experimental data, bar plots
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846 indicate model predictions (of both the growth rate and fluxes); b. Predicted active constraints under
847  the different sugar excess conditions as predicted by the mode (see legend of Fig. 2 for details). c.
848 Comparison of predicted minimally needed proteome fractions with experimentally determined ones
849 suggests differences in saturation level between pathways. Lines represent the model, experimental
850 data are circles; d. Linearity of the expression of individual enzymes in glycolysis (right) and respiration
851 (left) with growth rate suggests trading in of respiratory protein for fermentative protein. Asterixes
852 indicate aggregated proteome fractions instead of fractions of individual proteins. The respiratory
853 proteins converge at 0.474 + 0.0002 h%,

854
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855

856 Fig. 5 The effect of translation inhibition by cyclohexamide on growth rate, fluxes and proteome

857  fractions in controlled aerobic batch fermentations on glucose. a. Dependency of culture optical density
858 (OD) on the time post-inoculation to the medium supplemented with cycloheximide. Lines are values
859  of consecutive OD measurements, points represent the times when cultures were sampled. b-d

860  Comparison of pcYeast predictions and experimental data: lines are model predictions; symbols are
861 experimental data points. b. Main catabolic fluxes as a function of the growth rate. c. Ribosomal

862 proteome fractions. Data from Fig. 1c are included for comparison. d. Proteome fractions measured
863  for key metabolic pathways, and the minimal proteome fractions predicted by pcYeast.

864
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865  Table 1. Statistics of the pcYeast model.

Process/Compartment # of reactions # of proteins
Total 24422 1520
Metabolic network 5774 913
from Yeast7.6 5738 909
manually added metabolic reactions 36 4
Cytoplasm 2349 778
Plasma membrane 529 114
Mitochondria 1089 272
Endomembrane system 2127 133
Metabolic complex formation, disassembly, dilution 2787 -
tRNA turnover and modification 2194 56
Protein synthesis and turnover 13312 403
Cytoplasmic translation 1512 138
Mitochondrial translation 8 89
Protein folding 1515 31
Protein degradation 1607 42
Protein misfolding, refolding 6061 73
Protein transport 1324 30
Protein dilution by growth 1285 -
Formation of macromolecular complexes 355 196

866
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867  Table 2. Changes to the parameters for simulating sugar excess conditions. NGAM is non-growth

868 related ATP maintenance.

Growth condition Unit Glucose (naive) | Galactose | Maltose
Maximal hexose transporter um? /cell 7.5 3.0 3.5
area

Carbon-related NGAM mmol/gDW /h | 0.0 3.0 0.0
Minimal UP fraction g UP/g protein | 0.245 0.49 0.34

869
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