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2 

 

When conditions change, unicellular organisms rewire their metabolism to sustain cell 24 

maintenance and cellular growth. Such rewiring may be understood as resource re-allocation 25 

under cellular constraints. Eukaryal cells contain metabolically active organelles such as 26 

mitochondria, competing for cytosolic space and resources, and the nature of the relevant cellular 27 

constraints remain to be determined for such cells. Here we developed a comprehensive metabolic 28 

model of the yeast cell, based on its full metabolic reaction network extended with protein 29 

synthesis and degradation reactions (16304 reactions in total). The model predicts metabolic 30 

fluxes and corresponding protein expression by constraining compartment-specific protein pools 31 

and maximising growth rate. Comparing model predictions with quantitative experimental data 32 

revealed that under glucose limitation, a mitochondrial constraint limits growth at the onset of 33 

ethanol formation - known as the Crabtree effect. Under sugar excess, however, a constraint on 34 

total cytosolic volume dictates overflow metabolism. Our comprehensive model thus identifies 35 

condition-dependent and compartment-specific constraints that can explain metabolic strategies 36 

and protein expression profiles from growth rate optimization, providing a framework to 37 

understand metabolic adaptation in eukaryal cells.  38 
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Macromolecular synthesis and energy conservation by metabolism underlies cellular 39 

maintenance, growth and fitness. Unicellular organisms such as yeasts generally display a great 40 

variety of metabolic strategies that lead to competitive fitness across conditions1. The associated 41 

reprogramming of metabolism between such metabolic strategies is of key interest in 42 

biotechnology and biomedical research.  43 

 One well-known example is <overflow= metabolism in which under aerobic conditions 44 

not all substrate is fully oxidized but secreted as by-products. In cancer cells it is referred to as 45 

the Warburg effect: enhanced glycolytic activity with lactate as byproduct at the expense of 46 

respiration2. The same phenomenon is known as the Crabtree effect in Saccharomyces 47 

cerevisiae  (Baker’s yeast)3. At sugar limitation yeast respires glucose completely to CO2; at sugar 48 

excess it displays respirofermentative metabolism, where respiration is combined with ethanol 49 

formation (alcoholic fermentation). The extent to which these two metabolic strategies are used 50 

can be titrated in a glucose-limited chemostat: at a specific <critical= dilution (=growth) rate, 51 

ethanol formation starts and increases linearly with growth rate4.  Other microorganisms show 52 

similar behaviour5: for example, E. coli produces acetate at higher growth rates at the expense of 53 

respiration6.  54 

In the last decade a theoretical framework has been developed that can explain why cells 55 

shift metabolic strategies upon environmental or gene-expression perturbations5,7–10. In essence 56 

it is based on the catalytic benefits of proteins and their associated costs11. These costs comprise 57 

competition for resources such as building blocks, energy and synthesis machineries, and for 58 

space in cellular compartments. Two key features of this resource allocation paradigm can 59 

explain metabolic adaptations. First, cellular compartments can become <full= when they are 60 

fully occupied with (maximally) active proteins, such that an increase in one protein has to come 61 

at the expense of another. This was postulated as a phenomenological rule based on 62 

experimental observations12, but also follows naturally from growth-rate maximization13. 63 

Second, cells allocate their limited resources for protein synthesis according to their  64 

demands14,15. Consequently, fractions of needed proteins vary with growth rate within 65 
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compartments whose protein content is bounded, and this can lead to <active proteome 66 constraints= related to full compartments.   67 

Within this framework, the onset of overflow metabolism was explained by the smaller 68 

protein cost of generating ATP through fermentation than respiratory pathways6,7; this becomes 69 

important at fast growth when biosynthesis and ribosome demands are high and thus require 70 

large proteome fractions. Earlier work suggests that the proteome-constrained resource 71 

allocation paradigm, which was largely developed for E. coli, may also be a powerful perspective 72 

for regulation of eukaryal yeast metabolism, such as ribosome biosynthesis16, and growth on 73 

different sugars17. However, a key feature of the metabolism of a eukaryal cell is the presence of 74 

metabolically active organelles, most prominently mitochondria. Each organelle introduces two 75 

new compartments (intra-organellar space and membrane), and how these compartments 76 

impacts adaptation of metabolism, and which compartments become limiting under different 77 

conditions, is an open question.  78 

Moreover, despite the wealth of experimental data on Saccharomyces cerevisiae, a 79 

comprehensive, quantitative, data set in which growth rate is systematically varied and both 80 

fluxes and protein expression levels are measured, which are needed to validate resource 81 

allocation predictions, are still rare (see however, some recent studies16,18). Here we generated 82 

such data sets and in parallel developed the most detailed and comprehensive, 83 

compartmentalized and quantitative model of metabolism and protein synthesis of yeast. The 84 

model can compute the costs and benefits of protein expression and translocation; It can be used 85 

to interpret or predict experimentally determined changes in growth rate, (minimal) protein 86 

expression and metabolic fluxes as a result of growth rate optimization through resource 87 

allocation into different, compartmentalized, proteome fractions. Comparison of the model 88 

predictions with the data gives unprecedented insight into our physiological understanding of 89 

this important model organism.  90 

 91 
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Results 92 

Construction of a comprehensive proteome-constrained yeast model 93 

We extended an existing19 metabolic genome-scale metabolic model of yeast (GEM) by 94 

coupling metabolic fluxes to the synthesis of the catalysing enzyme and added constraints on 95 

protein concentrations, expressed as protein fractions of the total proteome (Fig. 1a). We refer 96 

to the resulting model as proteome-constrained Yeast (pcYeast). Earlier GEM-based approaches 97 

exist that incorporate resource allocation, and for yeast these considered constraints on enzyme 98 

activities and total protein content17,20–23, whereas for E. coli constraints and reactions 99 

associated with transcription and translation were added9. Others considered membrane-area 100 

constraints and limitations of protein allocation to specific pathways8,24.  We combined all these 101 

extensions (see Supplementary Notes for detailed information) to make pcYeast: a next-102 

generation yeast GEM and computable knowledge base that incorporates protein expression, 103 

translation, folding, translocation and degradation at genome-scale for a compartmentalized, 104 

eukaryal, organism. In our current model, we consider the protein compartments most relevant 105 

for central metabolism: plasma membrane, cytosol, mitochondrion, and mitochondrial 106 

membrane. Other cell compartments such as the nucleus or endoplasmic reticulum are not (yet) 107 

specified explicitly - but do occupy volume in the cytosol. 108 

The cellular proteome was divided into metabolically active, ribosomal, and unspecified 109 

(UP) proteins. The UP fraction is cytosolic, has an average amino acid composition and is added 110 

to always maintain a constant protein density in the cytosol. It has a minimum expression level 111 

estimated from the experimental proteomics data (Fig. S1, Supplementary Notes). The minimal 112 

UP fraction represents growth-rate independent structural, signalling and <household= proteins. 113 

Higher expression of UP than minimal represent both unspecified anticipatory proteins, or 114 

metabolic proteins that do not carry flux – including the unsaturated fraction of flux-carrying 115 

enzymes, as we will explain.  116 
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Metabolic enzymes are assigned to a specific compartment, either cytosol, plasma 117 

membrane, mitochondrial matrix or inner mitochondrial membrane; Mitochondrial proteins 118 

require additional protein transport complexes25. For each protein we comprehensively 119 

modelled synthesis and degradation processes, which are responsible for the largest fraction of 120 

cellular energy usage. Our model includes 1,523 proteins whose life cycles are described by 121 

16,304 reactions that include translation initiation, elongation and termination factors, 122 

ribosomal assembly factors, protein-specific folding by chaperones and degradation reactions, 123 

as well as 5’UTR-length dependent energetic costs for translation initiation (Table 1, 124 

Supplementary Notes).  125 

We applied three classes of constraints that couple metabolic fluxes and peptides 126 

synthesis rates (Fig. 1b and Supplementary Notes for details). The enzyme capacity constraint 127 

sets the minimal enzyme synthesis rate required to achieve a certain metabolic flux. Thus, all 128 

metabolically-active proteins are modeled to work at their maximal rate and are minimally 129 

expressed in the model; the unsaturated fraction of flux-carrying enzymes is represented by UP, 130 

the unspecified protein that is used to maintain protein density. In this way we prevent choices 131 

about unknown regulatory and kinetic mechanisms that may affect the activity of enzymes; 132 

rather we use the deviation between predicted minimal and measured actual protein expression 133 

levels to indicate the level of saturation of each enzyme. The total enzyme synthesis rate is 134 

constrained by the abundance of ribosomes through a ribosome capacity constraint, for both 135 

cytosol and mitochondria. Finally, we added compartment-specific constraints on the proteome, 136 

for the cytosol, the plasma membrane, and the mitochondrial matrix and inner membrane, (Fig. 137 

1b). The values for these constraints are based on independent literature data or were fitted to 138 

experimental data (as explicified in Supplementary Notes) and the values are either fixed or 139 

growth-rate dependent, depending on the nature of the constraint.  140 

The steady-state metabolite balances, the enzyme synthesis and degradation balances, 141 

and the compartment-specific proteome constraints together specify a linear program with its 142 

fluxes as optimisation variables, provided the growth rate is treated as a parameter. We use a 143 
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binary search algorithm to find the maximum growth rate where the linear program is still 144 

feasible, and a marginal increase in the growth rate would result in an infeasible linear 145 

programming problem. The model returns all the flux values associated with the maximal 146 

feasible growth rate. It should be noted that the structure of the pcYeast model is strain-147 

independent: this allows subsequent calibration of the model to accommodate and account for 148 

differences in cell physiology and metabolism, inherent to any specific strain of S. cerevisiae.  149 

 150 

Calibrating the model against experimental data 151 

We performed a series of experiments, using a wild-type S. cerevisiae strain CEN.PK 113-152 

7D, for collection of high-quality datasets of fluxes and protein levels, used either as model input 153 

or for comparison with model predictions. We used glucose-limited continuous cultures 154 

operated at dilution rates close to the critical dilution rate for ethanol formation, to capture 155 

proteome change upon the onset of overflow metabolism. Additionally, we varied the growth 156 

rate in pH-controlled batch experiments, either with different sugar quality or through 157 

translation inhibition. We measured fluxes, including O2 and CO2 fluxes (Supplementary Dataset 158 

1), which combined with biomass measurements, allowed to estimate the so-called maintenance 159 

parameters, i.e. ATP usage that is not explicitly accounted for in the model (Supplementary 160 

Notes). Label-free proteome quantification allowed us to reliably estimate proteome fractions of 161 

around 3000 of the 6000 proteins (Supplementary Datasets 2, 3, and 4). 162 

 Parameters associated with translation strongly affected our model outcomes, and we 163 

used published quantitative proteomics data16 to estimate parameters for protein translation, 164 

such as the elongation rate (Supplementary Notes). Following experimental reports we assumed 165 

a constant inactive fraction of ribosomes and a fixed saturation of the actively translating 166 

ribosomes16,27 and were able to describe the growth-rate dependent ribosome mass fraction 167 

with the model (Fig. 1c). As evidence for correctly capturing the costs of protein synthesis, we 168 

correctly predicted the effect of over-expressing mCherry, an unneeded, <gratuitous= protein, on 169 

the specific growth rate (Fig. 1d). 170 
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     171 

The model predicts shifts in metabolic strategies 172 

We subsequently used the model to analyse yeast’s physiological response to different 173 

levels of glucose availability. Traditional Flux Balance Analysis computes continuous chemostat 174 

cultures by minimizing glucose uptake rate at fixed growth (=dilution) rate28. Here we 175 

simulated glucose availability by varying the degree of saturation of the glucose transporter. We 176 

needed to constrain the maximal expression level of the glucose transport system based on 177 

literature data (Supplementary Notes), as leaving expression free to occupy available membrane 178 

space led to unrealistically high expression levels and overestimation of growth rate at low 179 

glucose levels. At each saturation level we computed the maximal feasible growth rate and 180 

compared model predictions with published data29, and with data from our glucose-limited 181 

chemostat cultures (growth rates between 0.2 – 0.34 h-1). We also included our data from batch 182 

cultures on glucose (growth rates 0.37-0.39 h-1) and on trehalose; Trehalose is a disaccharide of 183 

two glucose molecules, hydrolyzed extracelullarly30, thus providing slow release of glucose that 184 

supports low growth rates. 185 

As in the chemostat the specific growth rate is equal to the dilution rate, the maximal 186 

feasible growth rate that the model predicted can be directly compared to the experimental data 187 

(Fig. 2a, 2c-d). The (residual) glucose concentrations were calculated from documented (high) 188 

affinity of the transporters, which is close to 1 mM31. The resulting relationship between growth 189 

rate and residual glucose concentration fit experimental data very well (Fig. 2a), validating our 190 

expectation that we could ignore glucose efflux from the cells due to minute levels of 191 

intracellular glucose32 (see Supplementary Notes for details). Increasing glucose transporter 192 

saturation increased predicted growth rate, and the effect saturated (Fig. 2b), suggesting that at 193 

maximal growth rate further increase in glucose availability has little impact. Predicted biomass 194 

yield (Fig. 2c) and fluxes (Fig. 2d) corresponded well with the experimental data, as did the 195 

intracellular flux ratios from previously published 13C-labeling flux analysis at three specific 196 

growth rates in glucose-limited chemostat cultures (Supplementary Figure 2). In particular, the 197 
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model predicted a maximal oxygen consumption rate at dilution rates higher than 0.28 h-1, at the 198 

onset of ethanol formation. Above 0.35 h-1, this rate rapidly drops to the low level that is 199 

observed under glucose excess (batch) conditions. We conclude that the model can adequately 200 

predict the changes in metabolic fluxes when the growth rate is varied through the availability of 201 

glucose. 202 

 203 

Changes in metabolic strategies are the result of proteome constraints 204 

We used pcYeast to identify the active proteome constraints, i.e. the protein pools that 205 

limit growth rate, because, according to resource allocation theory, the number of active 206 

proteome constraints determines the maximal number of independent metabolic behaviors that 207 

are possible in optimal states5,13. For this we computed the occupancy of each protein pool: a 208 

pool that is fully occupied is indicative of an active constraint. At low growth rates, below 0.28 h-209 

1, the glucose transporter was the only proteome pool that is fully occupied (Fig. 2e). With only 210 

glucose uptake as active constraint, pure respiration is the single optimal strategy. At the onset 211 

of ethanol formation a second metabolic mode started to carry flux (for formal computation of 212 

these modes and the concomitant theory, see Supplementary Notes), and thus a second 213 

constraint must have become active. Indeed, at this growth rate the occupancy of the inner-214 

mitochondrial membrane became maximal (Fig. 2e). Thus, the model suggests that under 215 

glucose-limited chemostat conditions, the onset of ethanol formation is caused by a limit of the 216 

mitochondrial membrane space, and hence the amount of proteins that yeast can maximally 217 

express in this compartment.  218 

At a growth rate of 0.35 h-1 we found that the unspecified protein level reached its 219 

minimal value (Fig. 2e), equivalent to the cytosol being completely filled with maximally active 220 

proteins. Further growth rate increase requires higher ribosomes and biosynthetic protein 221 

fractions, which now has to come at the expense of the least proteome-efficient pathway. The 222 

model confirmed earlier calculations33 that respiration is less proteome efficient than 223 

fermentation (Supplementary Figure 3) and respiration is therefore replaced by fermentation. 224 
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The model suggested therefore that at growth rate above 0.35 h-1 the second growth-limiting 225 

constraint was shifted from the mitochondrial proteome to the cytosolic proteome. Thus, the 226 

metabolic changes in the model, when growth rate and thus metabolic fluxes increase, are 227 

dictated by the filling up of different cellular compartments with active protein, unique for an 228 

eukaryal cell. The level of detail in our model to suggest the condition-dependent, active, 229 

protein-concentration constraints belonging to different compartments has so far not been 230 

provided by any other model.  231 

 232 

Proteomics data validates model predictions 233 

We subsequently measured protein levels with quantitative proteomics and compared 234 

them to the minimal protein levels that the model predicted to be needed to support metabolic 235 

flux. Since we compute minimal levels as if all the enzymes worked at their maximal rate, we 236 

expected to underestimate most proteome fractions. Especially at lower growth rates where 237 

nutrient limitation is most severe, one can expect lower average enzyme saturation, and indeed 238 

we observed larger deviations between predicted minimal protein levels and measured protein 239 

fractions at low growth rates (Fig. 3a). The difference between the predicted minimal level and 240 

the data may be interpreted as a proxy for the average saturation of enzymes. In terms of 241 

protein synthesis costs, the difference between the experimentally measured enzyme expression 242 

and the predicted minimal expression level, however, are covered by the expression of the UP. 243 

We see an overall tendency that the saturation of enzymes increases with growth rate 244 

(Supplementary Figure 4). This is most prominent for the glycolytic pathway; also for amino 245 

acid biosynthesis, the protein expression is higher than expected based on metabolic activity, 246 

indicating also here a substantial undersaturation of the enzymes, as observed before for 247 

bacteria such as E. coli34 and L. lactis35. We find similar patterns for other biosynthetic pathways, 248 

except for lipids (Supplementary Figure 5). 249 

For mitochondrial proteins involved in the citric acid cycle and respiration, however, we 250 

found that predicted minimal proteome fractions were very close to the measured ones (Fig. 251 
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3a). Unless ýý�þ values of mitochondrial enzymes are systematically underestimated, this 252 

indicates that mitochondrial proteins work at higher average saturation than cytosolic proteins - 253 

and seemingly close to their maximal capacity. Regardless of absolute numbers, the saturation of 254 

the mitochondria seems rather constant, suggesting that yeast tunes the total amount of 255 

mitochondria, rather than make excess (hence subsaturated) mitochondria, at least under these 256 

conditions. This may make sense, given the extra costs of mitochondrial components such as 257 

membranes, and for protein translocation of host-derived proteins during mitochondrial 258 

biogenesis, which competes for membrane space with respiratory proteins.  259 

Upon closer inspection, we observed that at the onset of ethanol formation the total 260 

mitochondrial protein fraction started to decrease (Fig. 3b). The observed decay follows the 261 

theoretical dilution-by-growth kinetics if at that point the rate of mitochondrial biosynthesis has 262 

reached a maximum (Fig. 3b). Thus, the data suggests that the rate of mitochondrial biogenesis, 263 

rather than  the maximal mitochondrial membrane area currently used by the model, may reach 264 the host’s maximal capacity at the onset of ethanol formation. When we zoom in on the 265 

mitochondrial proteome, we find that the mitochondrial ribosome fraction increased as a 266 

funtion of growth rate, and also other proteins re-allocated (Supplementary Fig. 6). Indeed, 267 

mitochondria are self-replicating entities abiding to the same resource allocation principles as 268 

the host, which even includes selection for fast replication - but obviously severely dictated by 269 

the proteins the host provides. More data related to the mitochondrial biosynthetic processes, 270 

such as mitochondrial ribosomal capacity and protein import machinery would be required to 271 

predict the maximal mitochondrial growth rate from first principles, which is outside the scope 272 

of this study. Nonetheless, the distinct changes of mitochondrial proteins at the critical dilution 273 

rate are consistent with the model prediction that a mitochondrial constraint is responsible for 274 

the onset of ethanol formation under glucose-limited conditions.  275 

 276 
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Constraints and fluxes under sugar excess conditions 277 

We then varied growth rate (between 0.05 h-1 and 0.4 h-1) by providing different sugars, 278 

i.e. trehalose, galactose, maltose and glucose during batch cultivation. Ethanol production was 279 

already observed on galactose, already at a growth rate of 0.16 h-1 so at a much lower growth 280 

rate than the critical growth rate of 0.28 h-1 under glucose-limited growth (Fig. 4a). Maltose 281 

showed intermediate growth rate and fluxes. Initial model simulations with a <naïve= model 282 

using the reported catalytic rates of the transporters and catabolic enzymes involved in 283 

galactose and maltose metabolism, however, resulted in predicted growth rates and fluxes not 284 

far from growth on glucose. This suggests that there are additional cost factors that were not 285 

included in the model, and or that Saccharomyces cerevisiae is not as well adapted to these 286 

sugars.  287 

We therefore used the model as data analysis tool to estimate possible changes in 288 

parameters that fit the observed growth rate and corresponding fluxes (see Supplementary 289 

Notes for details). Such parameter changes may be interpreted as costs for suboptimal 290 

metabolism of carbon sources other than glucose. The onset of ethanol formation at a growth 291 

rate of 0.16 h-1 required a combination of changes in both sugar uptake and the intracellular 292 

proteome (through the minimal UP fraction constraint): a lower sugar uptake capacity alone 293 

would be identical to lowering saturation of the transporter as was done for glucose (Fig. 2), and 294 

pure respiration would have been found at 0.16 h-1. Conversely, only an increase in minimal UP 295 

would have resulted in a proportional flux decrease that we also found with mCherry 296 

overexpression (or translation inhibition, Supplementary Figure 7), and more ethanol were to 297 

be found. 298 

We had to decrease the maximal galactose uptake rate by a factor of 2.5 compared to 299 

glucose. Furthermore, an increase in minimal UP fraction was needed, to 0.49 g/g protein. To fit 300 

all fluxes optimally, we also required additional energetic costs (see Supplementary Notes), 301 

whose mechanistic underpinning remains to be explored but may be related to the reported 302 

toxicity of galactose intermediates36. Such a change in energetic costs were not needed to 303 
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describe the data for growth on maltose: only a change in the maltose uptake rate and minimal 304 

UP fraction (of 0.34 g/g protein) were required to achieve good fit.  305 

For maltose, a disaccharide of glucose, the reason for the required parameter changes is 306 

not clear. Only a maltose proton-symporter and a maltase protein distinguishes it from growth 307 

on glucose. The transport expression may be tightly regulated as very high maltose uptake rates 308 

can result in substrate-accelerated death37. For galactose, the toxicity of its intermediates36 309 

results in an evolutionary trade-off with growth on glucose38; on galactose yeast cells appear to 310 

be still prepared for growth on glucose, which may prevent them from optimal expression of 311 

proteins on galactose, as shown by expression titration experiments39. Indeed, laboratory 312 

evolution experiments on galactose select mutations in Ras/cAMP signalling and adapted strains 313 

show increased growth rates and concomitant increased ethanol fluxes38. Interestingly, the 314 

direction of change points to the optimal behaviour predicted by the initial naïve model, 315 

suggesting that the pcYeast model may aid in predicting the direction of evolutionary change 316 

during laboratory evolution experiments (Supplementary Figure 8).  317 

With the updated parameters, we identified for both sugars that the active constraints 318 

limiting growth were the sugar transport expression and the minimal UP fraction constraint 319 

(Figure 4d, Supplementary Notes, Supplementary Figure 9). These active constraints explains 320 

ethanol formation during growth on galactose even though the growth rate is lower than the 321 

critical dilution rate on glucose. 322 

 323 

Proteomics data on sugar excess shows re-allocation of metabolic strategies  324 

If growth rate is actively constrained by the cytosolic proteome under galactose, maltose 325 

and glucose excess conditions, it implies that all cytosolic proteins work at their maximum 326 

activity, and changes in flux must be brought about by changes in protein level. We therefore 327 

turned to proteomics again. Comparing the minimal levels of the model with experimental data, 328 

we find again that mitochondrial proteins for the TCA cycle and respiration are very similar to 329 

the predicted minimal levels required to sustain flux (Fig. 4c). Cytosolic proteins were 330 
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underestimated - even at sugar excess conditions. (Note however that the expected maximal 331 

attainable activity is not likely at the maximal rate in the forward direction as product inhibition 332 

is inevitable in a chain of enzymes.) 333 

More indicative of <a full cytosol= is that at the onset of ethanol formation (at galactose 334 

growth rate and higher) we find evidence for proportional relationships between protein and 335 

flux for high-flux carrying, pathway-grouped, proteins as a function of growth rate (Fig. 4c). This 336 

is observed even down to the individual protein level (also involving changes in expressed 337 

isozymes), as illustrated for glycolytic and respiratory proteins in Fig. 4d. This implies that 338 

under these conditions, enzyme saturation was constant (and maximal, we expect) and changes 339 

in flux could only be brought about by corresponding changes in enzyme levels. This data 340 

illustrates how mitochondrial proteins are being traded in for glycolytic proteins needed for an 341 

enhanced fermentation and growth rate. It also confirms the model’s prediction that the 342 

cytosolic proteome constraint is active during growth on these sugars.  343 

 344 

Inhibition of translation highlights the role of environmental signalling in coordination 345 

of metabolism in yeast. 346 

Finally we varied growth rate by translation inhibition by cyclohexamide under 347 

controlled glucose batch conditions, and again measured fluxes, growth rate and proteome 348 

profiles (Fig. 5a). Upon inhibition of translation, we found a decrease in growth rate and close to 349 

proportional decreases in glucose, ethanol and CO2 fluxes, for both the model and the 350 

experimental data (Fig. 5b). Such behaviour is expected when one dominant constraint is active 351 

and its extent is varied (cf. glucose-limited fully respiratory growth, Fig. 2). In the case of glucose 352 

excess, the model suggested that the cytoplasmic volume was fully occupied with active proteins 353 

(minimal UP constraint was hit), and inhibition of translation required higher expression levels 354 

of ribosomes, taking away limited proteome space for growth-supporting activities. 355 

However, experimental observations compromised this initial explanation. First, for 356 

oxygen the model also predicted a proportional increase with growth rate, but experimentally 357 
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the fluxes did not change much as did the expression of enzymes involved in oxygen 358 

consumption, such as TCA cycle and oxidative phosphorylation (Fig. 5d). Moreover, the 359 

ribosomal proteome fraction increased much less with inhibition than the model predicted (Fig. 360 

5c). Since translation inhibition in the model has the same effect as overexpression of a non-361 

functional protein (Supplementary Figure 7), we followed the earlier observation that the 362 

inactive fraction of ribosomes could be recruited for translation, depending on the translational 363 

load16, with only a small improvement (Supplementary Figure 10).  364 

This suggested that either some constraint prevents the ribosomal fraction from 365 

increasing to the optimal levels predicted by the model, or the expression of ribosomes in yeast 366 

is dominantly regulated by environmental nutrient signalling and less by internal cues. A 367 

dominant role of signalling in ribosomal biogenesis has been suggested before16. In yeast the 368 

TOR pathway appears to be the master regulator of ribosomal biosynthesis and assembly at 369 

steady-state growth40,41. Following the TOR-specific targets described by Kunkel41, we find that 370 

key target proteins of this signalling pathway, including ribosomal auxiliary factors, had 371 

constant expression levels (Supplementary Figure 11 and Supplementary Table 1), supporting 372 

the dominant role of external rather than internal cues. 373 

When we constrained ribosomal expression to the measured maximal response, 374 

ribosomal expression rapidly became the only active constraint in the model, and the proteome 375 

space that became available in the cytosol at the lower growth rates was used for increased 376 

respiration (Supplementary Figure 12). This is not observed experimentally, and our data 377 

suggest that respiration does not respond to internal cues either. In contrast the fluxes and 378 

expression of proteins involved in glycolysis and amino acid metabolism did decrease with 379 

growth rate (Fig. 5bd). This suggests that these pathways must be sensitive to internal feedback 380 

regulation, as is well known for amino acid metabolism42. Thus, the proportional fluxes we found 381 

for ethanol and glucose upon translation inhibition, are likely the result of control by demand43, 382 

with lower demand at lower growth rate.  383 

 384 
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Discussion 385 

In this work, we developed the most comprehensive model of a growing, 386 

compartmentalized, eukaryal cell to date. It includes all its known metabolic reactions, and 387 

details of the protein synthesis, degradation and transport machinery to express the enzymes. 388 

The key of our approach is the application of constraints on protein pools in the different 389 

compartments that have direct biochemical meaning and could be independently estimated 390 

from literature data. Our approach is unique in level of detail and in dealing with cellular 391 

compartmentation, in particular of the mitochondria. We furthermore generated a unique set of 392 

high-quality quantitative data on both fluxes and the proteome under different, well-controlled, 393 

conditions. Through integration and comparison with the model, we provide deeper insight into 394 

the physiology of Saccharomyces cerevisiae.  395 

First, we firmly established that metabolic growth strategies of yeast on glucose can be 396 

well understood from a proteome-constrained optimisation problem with growth rate as 397 

objective. Through our high resolution sampling around the critical dilution rate, we observed 398 

distinct changes in proteins exactly at the onset of ethanol formation in the glucose-limited 399 

chemostat. We also show that the active constraints that drive these changes can be different 400 

under different conditions such as batch growth on galactose - even if ethanol is made in both 401 

cases. Our approach to identify the active cellular constraints may resolve some of the 402 

discussion in current literature about the cause of overflow metabolism, not only in yeast but 403 

possibly also in other eukaryotes, including discussion about the Warburg effect in mammalian 404 

cells44.  405 

Second, the proteome constraints of the model are currently based on experimental 406 

observations, but further research could drill deeper into their origin. For example, why would 407 

the protein density in the cytosol be relatively constant? Does this balance diffusion rates with 408 

catalytic capacities45? Are the current morphological dimensions of a yeast cell optimal for 409 

growth rate? Recent work on selection for cell number showed that smaller cells can be readily 410 

selected for46. We also identified that the levels of glucose transport and that of mitochondria 411 
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need to be constrained to describe the data. Why would yeast not express these components at 412 

higher levels? In the case of mitochondria, the proteomics data suggest that rather than a 413 

maximum mitochondrial membrane area and matrix volume, there is a maximal rate of 414 

mitochondrial biogenesis. Can we calculate this rate from first principles? One could imagine 415 that an upper limit for mitochondrial <growth rate= exists if all but eight metabolic proteins need 416 

to be transported over the same membrane that must also harbour the full machinery for 417 

oxidative phosphorylation. Moreover, we focused on mitochondrial protein content, and ignored 418 

details on morphology, lipid synthesis, or possible assembly costs. Thus, a next version of the 419 

model will need to address the mitochondrial transport, biosynthesis and morphology in much 420 

more detail. 421 

In the case of glucose transport, the model suggested that further increase in glucose 422 

transporters beyond wild type expression did not increase growth rate substantially and would 423 

likely be invisible for evolution. At maximal saturation of the transporter, glucose transport 424 

expression was (just) no longer an active constraint in our model (Fig. 2e). Thus, it appears as if 425 

yeast expresses just enough glucose transporters to maximise its growth rate under glucose 426 

excess – as found in bacteria47. Expressing higher transport levels at lower glucose levels would 427 

enhance growth rate but may not pay off if this state is a transient towards glucose starvation, or 428 

could be outright dangerous if suddenly glucose would become available37. The expression level 429 

of the hexose transporters may thus have evolved to be an adaptation to dynamic 430 

environments48. Long-term evolution experiments in glucose-limited chemostats indeed show 431 

gene duplications of high-affinity glucose transporters49, showing that growth limitation, and 432 

hence selection pressure, is on glucose transport under these conditions.   433 

Third, in the case of nutrient uptake limitation, there appears to be <excess= proteome 434 

space that could be filled with anticipatory proteins or heterologous enzymes at no cost in 435 

fitness. Even though the composition of such excess proteome space cannot be predicted with 436 

our model, we were able to predict metabolic fluxes very well: in this nutrient-limited regime 437 

metabolic efficiency (ATP per glucose), not proteome efficiency (ATP per protein), determines 438 
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the best growth rate strategy. This explains why Flux Balance Analysis applied to only the 439 

metabolic network has been so successful, but only under nutrient-limited conditions.  440 

Finally, we found linear or even proportional relationships between growth rate and 441 

flux, and between flux and enzyme levels in a sugar excess (batch culture) regime. In terms of 442 

regulation analysis50, such a regime is characterised by hierarchical regulation with absence of 443 

metabolic regulation, that is, all changes in flux are brought about by changes in enzyme levels, 444 

not their degree of saturation. For glycolysis and amino acid metabolism, the average saturation, 445 

estimated as the ratio of the predicted minimal enzyme level to the expressed enzyme level, at 446 

maximal growth rate is around 0.5, incidently the level predicted as theoretical optimum for 447 

specific reaction rate51. In contrast, when growth is limited by glucose availability, the degree of 448 

saturation varies and the model suggests a mixture of hierarchical and metabolic regulation, as 449 

previously observed in chemostats as well52.  450 

To conclude, we present a mechanistic, compartmentalized, model of an eukaryal 451 

organism in full details, which can act as a valuable, computable, knowledge base. We show how 452 

it can be used to compute protein costs and identify active growth-limiting constraints, and how 453 

it can be combined with quantitative flux and proteomics data to provide unprecedented insight 454 

into cellular physiology. Finally, we show that also in eukaryal cells, metabolic strategies can be 455 

understood on the basis of growth rate optimisation under nutrient and proteome constraints. 456 

What remains to be understood is how the cell’s signalling and regulatory networks manage to 457 

implement these (optimal) proteome allocation strategies.  458 

 459 

Methods 460 

Model development 461 

The full description of the pcYeast model is provided as Supplementary Notes. The model codes 462 

are available per request to the authors and will be published on GitHub upon acceptance of this 463 

manuscript. 464 
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 465 

Strains and shake flask cultivation 466 

The strain used for this study was Saccharomyces cerevisiae strain CEN.PK 113-7D53. The stocks 467 

used for the experiments were grown in 500 mL shake flask containing 100 mL of YPD medium 468 

(10 g L-1 of Bacto yeast extract, 20 g L-1 of peptone and 20 g L-1 of D-glucose). The culture was 469 

grown up to early stationary phase and 1 mL aliquots were stored in 20% (v/v) of glycerol at -470 

80 °C. For chemostats, pre-cultures were grown in 500 mL shake flasks containing 100 mL of 471 

synthetic medium, the pH was set to 6.0 with 2M KOH and the medium was supplemented with 472 

20 g L-1 of D-glucose54. Shake flasks with medium were inoculated with the 1 mL frozen stocks of 473 

the strain and the cultivations were performed in an orbital shaker at 200 rpm at 30 °C. Pre-474 

cultures for batches with translation inhibitors were performed using a similar approach, 475 

whereas for batches with different carbon sources the pre-cultures were made with the 476 

respective carbon sources instead of D-glucose. 477 

 478 

Chemostat cultivations 479 

Chemostat cultivations were performed in 2 L bioreactors (Applikon, Schiedam, The 480 

Netherlands) with a working volume of 1.0 L, the dilution rates used in this study were 0.2, 0.23, 481 

0.27, 0.3, 0.32 and 0.34 h-1 in two independent replicate cultures. Growth rates were controlled 482 

by modifying the inflow rate on each experiment. Synthetic medium according to Verduyn54 483 

supplemented with 7.5 g L-1 of glucose and 0.25 g L21 Pluronic 6100 PE antifoaming agent was 484 

supplied to the bioreactor from a 20 L continuously mixed reservoir vessel. Cultures were 485 

sparged with dried air at a flow rate of 700 mL min-1 and stirred at 800 rpm. The pH of the 486 

cultures was maintained at 5.0 by automatic addition of 2 M KOH. If, after at least six volume 487 

changes, the cultures dry cell weight concentration and carbon dioxide production ratediffered 488 

less than 2% over two consecutive volume changes the cultures were considered to be in  steady 489 

state. For cultures with dilution rates of 0.27, 0.3, 0.32 and 0.34 h-1, cultures were first 490 
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maintained at a dilution rate of 0.2 h-1 for 15 hours (3 volume changes) prior to increasing the 491 

specific dilution rate to said values. 492 

 493 

Batch cultivations with different carbon sources 494 

Batch cultivations (two independent replicate cultures) were performed using synthetic 495 

medium54, the medium was supplemented with 20 g L-1 final concentrations of the carbon 496 

sources, either D-trehalose, D-galactose, D-maltose or D-glucose (Sigma Aldrich). The 497 

bioreactors were inoculated with 100 mL of yeast shake flask cultures, exponentially growing on 498 

the specific carbon source. The final OD660 of all pre-cultures was 4. Cultivations were performed 499 

at 30 °C, the pH was kept at 5.0 by automatic addition of 2M KOH. The working volume of the 500 

bioreactors was 1.4 L in 2 L bioreactors (Applikon, Schiedam, The Netherlands). The cultures 501 

were stirred at 8000 rpm and sparged with a flow rate of 700 mL min-1 of dried air. Oxygen 502 

levels were kept above 40% of the initial saturation level as measured with Clark electrode 503 

(Mettler Toledo, Greifensee, Switzerland). 504 

 505 

Batch cultivations with the translation inhibitor cycloheximide 506 

Batch cultivations (two independent replicate cultures) with the translation inhibitor 507 

cycloheximide were performed as for the batches with different carbon sources, except that all 508 

the batch cultures ran on 20 g L-1 of D-glucose and were supplemented with different 509 

concentrations of cycloheximide with the aim of reaching specific growth rates. In total five 510 

growth rates were studied, being 0.06, 0.12, 0.2, 0.32 and 0.41 h-1 (adding respective 511 

cycloheximide concentrations of 228.96, 124.51, 52.15, 25.99 and 0 µg L-1). 512 

 513 

Analytical methods 514 

Cultures dry weight was measured by filtering 20 mL of culture, the sample was filtered in pre-515 

dried and pre-weight membrane filters with a pore size of 0.45 µm (Gelman Science), the filter 516 
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was washed with demineralized water, subsequently it was dried in a microwave (20 min, 350 517 

W) and the final weight was measured as described previously.  518 

For the measurement of organic acids and residual carbon source concentrations, supernatants 519 

of the cultures were used. For carbon-limited chemostat cultures, the samples were directly 520 

quenched with cold steel beads and filtered55, whereas samples from batch cultures were 521 

centrifuged (5 min at 16.000× ý). The supernatants were analysed by high-performance 522 

chromatography analysis on an Agilent 1100 HPLC (Agilent Technologies) equipped with an 523 

Aminex HPX-87H ion-exchange column (BioRad, Veenendaal, The Netherlands), operated with 5 524 

mM H2SO4 as the mobile phase at a flow rate of 0.6 mL min21 and at 60 °C. Detection was 525 

according to a dual-wavelength absorbance detector (Agilent G1314A) and a refractive-index 526 

detector (Agilent G1362A), as described previously. 527 

The exhaust gas from batch cultures was cooled down with a condenser (2°C) and dried with a 528 

PermaPure Dryer (model MD 110-8P-4; Inacom Instruments, Veenendaal, the Netherlands) 529 

before online analysis of carbon dioxide and oxygen with a Rosemount NGA 2000 Analyser 530 

(Baar, Switzerland). 531 

 532 

Glycogen and trehalose assays 533 

1 mL of culture was taken from the chemostats and directly added to 5 mL of cold methanol (-40 534 

°C). The sample was mixed and centrifuged (4400× ý, -20 °C for 5 minutes), the supernatant 535 

was discarded, and the pellet was washed in 5 mL of cold methanol (-40 °C), and pellets were 536 

stored at -80 °C until further processing. Subsequently, the pellets were resuspended in 0.25 M 537 

Na2CO3 and processed as described previously56,57. D-glucose released from trehalose and 538 

glycogen were measured with a D-glucose assay kit (K-GLUC Megazyme), two biological 539 

replicates and three technical replicates were analysed per condition. 540 

 541 

RNA determination 542 
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For RNA determination, 1-2 mL of broth was transferred to a filter (pore size of 0.45 µm, Gelman 543 

Science), after which the filter was washed with cold TCA 5 %. The cells were resuspended in 3 544 

mL of TCA 5% and centrifuged for 15 minutes at 4 °C at 4000 rpm. The supernatant was 545 

removed and the pellet was stored at -20 °C. Finally,  samples were processed as described by 546 

Popolo et al., 1982. Two biological replicates and three technical replicates were analysed per 547 

condition. 548 

 549 

Protein determination 550 

For the batches with CHX, culture volumes corresponding to 50 mg of DCW were centrifuged, 551 

washed twice with cold demineralized sterile waterand divided into two aliquots of 5 mL. 2 mL 552 

of the aliquot (containing 10 mg DW) was mixed with 1 mL of 3 M NaOH and incubated at 100 °C 553 

for 10 minutes. The final mix was diluted and processed following the copper-sulfate based 554 

method as described previously58. The absorbance of the supernatant was measured at 510 nm, 555 

for calibration lyophilized bovine serum albumin (A2153, Sigma Aldrich) was used. Two 556 

biological replicates and 3 technical replicates were analysed per condition.  557 

 558 

Proteomics sample preprocessing 559 

Aliquots of 20 mL of culture from chemostats and batches with different carbon sources were 560 

centrifuged (4000 rpm 4 °C, 10 minutes) and washed two times, the final pellet was flash frozen 561 

in liquid nitrogen and stored at -80 °C. Two biological replicates and two technical replicates 562 

were analysed per condition. 563 

Frozen cell pellets were thawed on ice before transfer to Precellys® Lysing Kit 2 ml screw cap 564 

vials with 0.5mm glass beads (Bertin Instruments, France). Lysis was performed in 250 µl lysis 565 

buffer, 50 mM ammonium bicarbonate with cOmplete protease inhibitor cocktail (ROCHE, 566 

Switzerland), using a Minilys Personal Tissue Homogenizer (Bertin Instruments, France), at 567 

maximum speed for 15 cycles of 30 seconds with a one-minute rest on ice between each cycle. 568 
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Lysed material was centrifuged for 10 minutes 13,000× ý at 4°C, the supernatant fraction was 569 removed and retained. Fresh lysis buffer (250 μl) was added to the insoluble material, which 570 

was resuspended before extraction from the vial via a small hole inserted into the vial base. 571 

Soluble and insoluble fractions were recombined and the total final volume recorded. Protein 572 

concentration was determined using PierceTM Coomassie Plus Bradford Assay Kit (ThermoFisher 573 

Scientific, UK).  574 

Protein (100 μg) from each sample was treated with 0.05 % (w/v) RapiGestTM SF surfactant 575 

(Waters, UK) at 80 °C for 10 minutes, reduced with 4 mM dithiothreitol (Melford Laboratories 576 

Ltd., UK) at 60 °C for 10 minutes and subsequently alkylated with 14 mM iodoacetamide 577 

(SIGMA, UK) at room temperature for 30 minutes. Proteins were digested with 2 μg Trypsin 578 

Gold, Mass Spectrometry Grade (Promega, US) at 37 °C for 4 hours before a top-up of a further 2 579 μg trypsin and incubation at 37 °C overnight. Digests were acidified by addition of trifluoroacetic 580 

acid (Greyhound Chromatography and Allied Chemicals, UK) to a final concentration of 0.5 % 581 

(v/v) and incubated at 37 °C for 45 minutes before centrifugation at 13,000× ý (4°C) to remove 582 

insoluble non-peptidic material.  583 

 584 

Proteomics analytics 585 

The sample running order was randomised using a random number generator (Random.org). 586 

Samples were analysed using an UltiMateTM 3000 RSLCnano system (ThermoFisher Scientific) 587 

coupled to a Q Exactive™ HF Hybrid Quadrupole-Orbitrap™ Mass Spectrometer. Protein digests 588 

(1 ug of each) were loaded onto a trapping column (Acclaim PepMap 100 C18, 75 µm x 2 cm, 3 589 

µm packing material, 100 Å) using 0.1 % (v/v) trifluoroacetic acid, 2 % (v/v) acetonitrile in 590 

water at a flow rate of 12 µL min-1 for 7 min.  591 

The peptides were eluted onto the analytical column (EASY-Spray PepMap RSLC C18, 75 µm x 592 

50 cm, 2 µm packing material, 100 Å) at 40°C using a linear gradient of 120 minute shallow 593 

gradient rising from 8 % (v/v) acetonitrile/0.1 % (v/v) formic acid (Fisher Scientific, UK) to 30 594 

% (v/v) acetonitrile/0.1 % (v/v) formic acid at a flow rate of 300 nL min-1. The column was then 595 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2021. ; https://doi.org/10.1101/2021.06.11.448029doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.11.448029
http://creativecommons.org/licenses/by/4.0/


24 

 

washed at 1 % A : 99 % B for 8 min, and re-equilibrated to starting conditions. The nano-liquid 596 

chromatograph was operated under the control of Dionex Chromatography MS Link 2.14. 597 

The nano-electrospray ionisation source was operated in positive polarity under the control of 598 

QExactive HF Tune (version 2.5.0.2042), with a spray voltage of 2.1 kV and a capillary 599 

temperature of 250oC.  The mass spectrometer was operated in data-dependent acquisition 600 

mode.  Full MS survey scans between m/z 300-2000 were acquired at a mass resolution of 601 

60,000 (full width at half maximum at m/z 200).  For MS, the automatic gain control target was 602 

set to 3e6, and the maximum injection time was 100 ms.  The 16 most intense precursor ions 603 

with charge states of 2-5 were selected for MS/MS with an isolation window of 2 m/z units.  604 

Product ion spectra were recorded between m/z 200-2000 at a mass resolution of 30,000 (full 605 

width at half maximum at m/z 200).  For MS/MS, the automatic gain control target was set to 606 

1e5, and the maximum injection time was 45 ms. Higher-energy collisional dissociation was 607 

performed to fragment the selected precursor ions using a normalised collision energy of 30 %.  608 

Dynamic exclusion was set to 30 s. 609 

 610 

Proteomics data analysis 611 

The resulting raw data files generated by XCalibur (version 3.1) were processed using MaxQuant 612 

software (version 1.6.0.16)59. The search parameters were set as follows: label free experiment 613 

with default settings; cleaving enzyme trypsin with 2 missed cleavages; Orbitrap instrument 614 

with default parameters; variable modifications: oxidation (M) and Acetyl (protein N-term); first 615 

search as default; in global parameters, the software was directed to the FASTA file; for 616 advanced identification <Match between runs= was checked; for protein quantification we only 617 

used unique, unmodified peptides. All other MaxQuant settings were kept as default. The false 618 

discovery rate (FDR) for accepted peptide spectrum matches and protein matches was set to 619 

1%. The CEN.PK113-7D Yeast FASTA file was downloaded from the Saccharomyces Genome 620 

Database (SGD) (https://downloads.yeastgenome.org/sequence/strains/CEN.PK/CEN.PK113-621 

7D/CEN.PK113-7D_Delft_2012_AEHG00000000/). 622 
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 623 

The resulting MaxQuant output was then analysed using the MSstats package (version 3.5.6)60  624 

in the R environment (version 3.3.3) to obtain differential expression fold changes with 625 

associated p values, along with normalized LFQ and intensity values as described previously61.  626 
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 789 

 790 

Fig. 1 pcYeast model formulation and calibration of protein synthesis parameters. a. A schematic 791 

overview of reactions in the model, their interdependence and constraints. Metabolic reactions ÿ� are 792 

proportional to enzyme concentrations �� that are synthesized at rate ÿýþÿ,� by the ribosomes �. Each 793 

protein can be degraded with rate ÿþÿ�,� = ýþÿ� ∙ �� or diluted by growth rate ÿþ�ý,� = � ∙ ��. 794 

Compartment-specific constraints are indicated in the light-blue boxes. b. Optimisation problem with 795 

the key constraints, including 1) steady-state mass balances; 2) production of biomass components 796 

such as DNA, lipids, cell wall and polysaccharides. Proteins and tRNA are excluded as their synthesis 797 

rates are optimisation variables 3) enzyme capacity constraints that couple metabolic flux to catalytic 798 

rate ýý�þ,� and the enzyme level, whose value at steady state is determined by its synthesis rate, rates 799 

of enzyme degradation, and dilution by growth. Note we use equalities and hence enzymes work at 800 

their maximal rate and minimal required protein levels are computed; 4) ribosome capacity that 801 

defines an upper bound for protein synthesis rate; 5) compartment-specific proteome constraints that 802 

define the maximal concentration of proteins that can be contained in that compartment, with Ā� the 803 

specific volume or area of protein ÿ; 6) a cytosolic protein density constraint that has the same 804 

function as that of proteome constraints, but whose equality forces the cell to fill up any vacant 805 
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proteome space with unspecified protein UP with average amino acid composition. c. Growth rate was 806 

varied through sugar type (trehalose, galactose, maltose, glucose) or glucose concentration, and 807 

ribosomal protein fraction was determined by proteomics (which was consistent with literature data, 808 

also plotted). The translation rate was calibrated on that data, as detailed in Supplementary Notes. d. 809 

Impact of mCherry protein overexpression on growth rate. Symbols show experimental data26, solid 810 

lines show model predictions based on glucose minimal (SD) medium or rich SC/YPD media. Model 811 

predictions were obtained by varying the proteome mass fraction, occupied by mCherry, and 812 

determining the maximal predicted growth rate at each value of the mass fraction. The relative 813 

growth fitness represents the ratio between the growth rate at certain mCherry expression level vs. 814 

the unperturbed state (no mCherry expression). 815 
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  817 

Fig. 2 Predicted and measured physiological response of S. cerevisiae CEN.PK as a function of glucose 818 

availability a. Measured (symbols) and predicted (line) residual glucose concentrations as a function of 819 

growth rate. The latter was calculated based on published affinity for glucose and assuming negligible 820 

intracellular glucose under these conditions. Note that this resembles a Monod growth curve but with 821 

the dependent and independent axis swapped, as we control growth rate in a chemostat. b. Maximal 822 

feasible growth rates of the model as a function of the glucose transporter saturation. c. Measured 823 

(symbols) and predicted biomass yield on glucose. d. Experimental fluxes from glucose-limited 824 

chemostats at different dilution rates (circles) and from two batch experiments (triangles): excess 825 

trehalose (which mimicks glucose limitation at low dilution rate30) and excess glucose at the highest 826 

growth rate. The lines are model predictions; background colors indicate regimes with different active 827 

constraints; e. Computed proteome occupancy of different constrained protein pools. A fraction of 1 828 

means that the compartment is full with metabolically actively proteins and constrains the growth rate 829 

at that condition.  830 
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 832 

Fig. 3 Proteomics data of selected pathways as a function of glucose availability. Blue symbols are 833 

glucose-limited chemostat data; orange symbols are controlled batch experiments with excess 834 

trehalose (lowest growth rate) or glucose (highest growth rate) a. Comparison of predicted minimal 835 

proteome fractions to sustain growth with the experimentally determined proteome fraction for four 836 

pathways. The ratio between the two represents an estimate of the saturation level of the constituent 837 

enzymes. Lines represent the model; experimental data are symbols. b. Decay of steady-state 838 

mitochondrial protein fraction with growth rate at onset of ethanol formation suggests a maximal rate 839 

of mitochondrial biosynthesis ÿýþÿ,þ�ý. 840 
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 842 

Fig. 4 Model predictions, fluxes and protein levels plotted as a function of growth rate during hexose 843 

sugar excess conditions (in the order: trehalose, galactose, maltose, glucose) a. Fluxes of sugar 844 

consumption, oxygen consumption and ethanol production. Circles are experimental data, bar plots 845 

a b

c

d

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2021. ; https://doi.org/10.1101/2021.06.11.448029doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.11.448029
http://creativecommons.org/licenses/by/4.0/


37 

 

indicate model predictions (of both the growth rate and fluxes); b. Predicted active constraints under 846 

the different sugar excess conditions as predicted by the mode (see legend of Fig. 2 for details). c. 847 

Comparison of predicted minimally needed proteome fractions with experimentally determined ones 848 

suggests differences in saturation level between pathways. Lines represent the model, experimental 849 

data are circles; d. Linearity of the expression of individual enzymes in glycolysis (right) and respiration 850 

(left) with growth rate suggests trading in of respiratory protein for fermentative protein. Asterixes 851 

indicate aggregated proteome fractions instead of fractions of individual proteins.  The respiratory 852 

proteins converge at 0.474 ± 0.0002 h-1. 853 
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 855 

Fig. 5 The effect of translation inhibition by cyclohexamide on growth rate, fluxes and proteome 856 

fractions in controlled aerobic batch fermentations on glucose. a. Dependency of culture optical density 857 

(OD) on the time post-inoculation to the medium supplemented with cycloheximide. Lines are values 858 

of consecutive OD measurements, points represent the times when cultures were sampled. b-d 859 

Comparison of pcYeast predictions and experimental data: lines are model predictions; symbols are 860 

experimental data points. b. Main catabolic fluxes as a function of the growth rate. c. Ribosomal 861 

proteome fractions. Data from Fig. 1c are included for comparison. d. Proteome fractions measured 862 

for key metabolic pathways, and the minimal proteome fractions predicted by pcYeast.  863 
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Table 1. Statistics of the pcYeast model. 865 

Process/Compartment # of reactions # of proteins 

Total 24422 1520 

Metabolic network 5774 913 

 from Yeast7.6 5738 909 

 manually added metabolic reactions 36 4 

Cytoplasm 2349 778 

Plasma membrane 529 114 

Mitochondria 1089 272 

Endomembrane system 2127 133 

Metabolic complex formation, disassembly, dilution 2787 - 

tRNA turnover and modification 2194 56 

Protein synthesis and turnover 13312 403 

 Cytoplasmic translation 1512 138 

 Mitochondrial translation 8 89 

 Protein folding 1515 31 

 Protein degradation 1607 42 

 Protein misfolding, refolding 6061 73 

 Protein transport 1324 30 

 Protein dilution by growth 1285 - 

Formation of macromolecular complexes 355 196 
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Table 2. Changes to the parameters for simulating sugar excess conditions. NGAM is non-growth 867 

related ATP maintenance. 868 

Growth condition Unit Glucose (naïve) Galactose Maltose 

Maximal hexose transporter 

area 

�ÿ2/��þþ 7.5 3.0 3.5 

Carbon-related NGAM ÿÿāþ/ý��// 0.0 3.0 0.0 

Minimal UP fraction ý ��/ý Ă�ā��ÿĀ 0.245 0.49 0.34 
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