

# 1      **Landscape and climatic variations of the Quaternary shaped multiple 2      secondary contacts among barn owls (*Tyto alba*) of the Western 3      Palearctic**

6      Tristan Cumér<sup>1\*</sup>, Ana Paula Machado<sup>1</sup>, Guillaume Dumont<sup>1</sup>, Vasileios Bontzorlos<sup>2,3</sup>, Renato  
7      Ceccherelli<sup>4</sup>, Motti Charter<sup>5,6</sup>, Klaus Dichmann<sup>7</sup>, Hans-Dieter Martens<sup>8</sup>, Nicolaos Kassinis<sup>9</sup>, Rui  
8      Lourenço<sup>10</sup>, Francesca Manzia<sup>11</sup>, Laure Prévost<sup>12</sup>, Marko Rakovic<sup>13</sup>, Felipe Siverio<sup>14</sup>,  
9      Alexandre Roulin<sup>‡1</sup>, Jérôme Goudet<sup>‡1,15</sup>

10     ‡ co-senior authors

11     \* corresponding author

12     Contact details for corresponding author: Department of Ecology and Evolution, Biophore  
13     Building, University of Lausanne, CH -1015 Lausanne, Switzerland. Tel: +41 21 692 42 18.  
14     Email: Tristan.cumer@unil.ch

15     1 Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland

16     2 Green Fund, Kifisia, Athens, Greece

17     3 "TYTO" - Organization for the Management and Conservation of Biodiversity in  
18     Agricultural Ecosystems, Larisa, Greece

19     4 Centro Recupero Rapaci del Mugello, Firenze, Italy

20     5 Shamir Research Institute, University of Haifa, Katzrin, Israel

21     6 Department of Geography and Environmental Sciences, University of Haifa, Haifa, Israel

22     7 Hyldehegnet 27, 6400 Sønderborg, Denmark

23     8 Gettorfer Weg 13, 24214 Neuwittenbek, Germany

24     9 Game and Fauna Service, Ministry of the Interior, Nicosia, Cyprus

25     10 MED Mediterranean Institute for Agriculture, Environment and Development, Laboratory  
26     of Ornithology, IIFA, University of Évora, Évora, Portugal

27     11 Centro di Recupero per la Fauna Selvatica-LIPU, Rome, Italy

28     12 Association C.H.E.N.E., Centre d'Hébergement et d'Etude sur la Nature et  
29     l'Environnement, 76190 Allouville-Bellefosse, France

30     13 Natural History Museum of Belgrade, Belgrade, Serbia

31     14 Canary Islands' Ornithology and Natural History Group (GOHNIC) 38480 Buenavista del  
32     Norte, Tenerife, Canary Islands, Spain

33     15 Swiss Institute of Bioinformatics, Lausanne, Switzerland

34     Tristan Cumér - 0000-0002-0276-7462

35     Ana Paula Machado - 0000-0001-9203-7000

36     Motti Charter - 0000-0003-3861-6356

37     Nicolaos Kassinis - 0000-0003-2559-6683

38     Rui Lourenço - 0000-0001-7694-0478

39     Marko Rakovic - 0000-0002-3658-3362

40     Felipe Siverio - 0000-0002-0324-0646

41     Alexandre Roulin - 0000-0003-1940-6927

42     Jérôme Goudet - 0000-0002-5318-7601

47 Key words

48

49 Demographic modeling; glacial refugium; Haplotypes; Population genomics; postglacial  
50 recolonization; Whole-genome resequencing

51 Abstract

52 The combined actions of climatic variations and landscape barriers shape the history of  
53 natural populations. When organisms follow their shifting niches, obstacles in the landscape  
54 can lead to the splitting of populations, on which evolution will then act independently. When  
55 two such populations are reunited, secondary contact occurs in a broad range of admixture  
56 patterns, from narrow hybrid zones to the complete dissolution of lineages. A previous study  
57 suggested that barn owls colonized the Western Palearctic after the last glaciation in a ring-  
58 like fashion around the Mediterranean Sea, and conjectured an admixture zone in the  
59 Balkans. Here, we take advantage of whole-genome sequences of 94 individuals across the  
60 Western Palearctic to reveal the complex history of the species in the region using  
61 observational and modeling approaches. Even though our results confirm that two distinct  
62 lineages colonized the region, one in Europe and one in the Levant, they suggest that it  
63 predates the last glaciation and identify a narrow secondary contact zone between the two  
64 in Anatolia. Nonetheless, we also show that barn owls re-colonized Europe after the glaciation  
65 from two distinct glacial refugia: a western one in Iberia and an eastern one in Italy. Both  
66 glacial lineages now communicate via eastern Europe, in a wide and permeable contact zone.  
67 This complex history of populations enlightens the taxonomy of *Tyto alba* in the region,  
68 highlights the key role played by mountain ranges and large water bodies as barriers and  
69 illustrates the power of population genomics in uncovering intricate demographic patterns.

70 Introduction

71 Species distribution patterns fluctuate in response to climatic variations, as populations  
72 relocate to follow their shifting niches<sup>1</sup>. When organisms colonize new areas, obstacles in the  
73 landscape may lead populations to split with varying degrees of geographic isolation.  
74 Evolution, via mutation, drift, local adaptation and gene flow, will then act independently on  
75 each of the isolated populations. If two allopatric populations are later geographically  
76 reconnected, after a certain amount of time and divergence, it can create a secondary contact  
77 zone. For example, when populations on both sides of an obstacle meet at the end of it in a  
78 ring-like fashion, as described in birds <sup>2</sup>, amphibiens <sup>3, 4</sup>, or plants <sup>5</sup>. Likewise, climate  
79 oscillations can lead to cyclical isolation and secondary contacts between populations as  
80 regional suitability varies <sup>6</sup>.

81 This complex interplay between climatic variations and landscape has been extensively  
82 studied in the Western Palearctic <sup>7,8</sup>, specifically in light of the cycles of glacial and interglacial  
83 periods that characterized the Quaternary <sup>9</sup>. During the last glaciation, colder temperatures  
84 and the expansion of the ice sheets in the north rendered large areas unsuitable for many  
85 species, which led them to follow their niches southward. Species found refuge in the  
86 Mediterranean peninsulas and in northern Africa where climatic conditions were more  
87 amenable, forming isolated populations. At the end of the last glaciation maximum (i.e.  
88 approximatively 20k years ago <sup>10</sup>), this process was reversed as the climate warmed and the  
89 melting of the continental ice caps exposed free land that could be recolonized. An extensive  
90 literature addressing the post-glacial history of European organisms describes how the  
91 complex landscape of the continent, combined with the distribution of species during the  
92 glaciation, conditioned their recolonization processes <sup>8,11</sup>. However, the low-resolution of

93 genetic data used before the genomic era was often insufficient to resolve the intricate and  
94 often fine-scale evolutionary processes that occurred during recolonization.

95 Rapid development of high-throughput sequencing technologies and corresponding  
96 methodological tools during the last decades has opened new avenues to study natural  
97 populations with high precision. In particular, it has allowed biologists to reconstruct the  
98 evolutionary history of species and highlight the diversity of processes acting when  
99 populations or subspecies interact in secondary contact. These processes have been found to  
100 result in a variety of situations. While the prolonged isolation of populations may lead to  
101 allopatric speciation (many examples in plants <sup>12,13</sup>, amphibian <sup>3</sup>, insects <sup>14</sup>, mammals <sup>15</sup> and  
102 birds <sup>16</sup>), secondary contact tends to show a broad range of admixture patterns. When  
103 admixture occurs, it may vary from narrow hybrid zones between lineages <sup>17</sup>, to the complete  
104 dissolution of a lineage <sup>18</sup>, through a gradual level of admixture along a gradient of mixing  
105 populations <sup>19</sup>.

106 Microsatellite and mitochondrial data suggested that the barn owls (*Tyto alba*), a non-  
107 migratory raptor, colonized the Western Palearctic in a ring-like fashion around the  
108 Mediterranean Sea after the last glaciation <sup>20</sup>. Under this scenario, a postglacial expansion  
109 from the glacial refugium in the Iberian Peninsula to northern Europe formed the western  
110 branch of the ring, with the eastern branch present across the Levant and Anatolia. While  
111 these observations led to conjecture of a potential admixture zone in the Balkans, the  
112 available data at the time combined with the overall low genetic differentiation in this species  
113 did not allow to fully resolve this question. Moreover, the peculiar genetic makeup of  
114 populations in the presumed contact zone brought into question the possibility of a cryptic  
115 glacial refugium in the eastern Mediterranean peninsulas.

116 The difficulty in resolving the post glacial expansion of barn owls is mirrored by their  
117 convoluted taxonomy in the Western Palearctic. In this region, *Tyto alba* is classified into  
118 different subspecies based on geography and plumage coloration. First, *T. a. erlangeri*  
119 (Sclater, WL, 1921) reported in Crete, Cyprus and Middle East, may match the Levant lineage.  
120 Second, *T. a. alba* (Scopoli, 1769) is white-colored and supposedly present in western Europe  
121 and western Canary Islands, and could represent the western arm of the ring colonization. *T.*  
122 *a. guttata* (Brehm, CL, 1831), the third subspecies is a dark rufous morph allegedly found in  
123 Northern and Eastern Europe, in the Balkans and around the Aegean Sea. This taxonomy does  
124 not match any known genetic lineage identified so far and overlaps with the area where  
125 admixture between the two lineages that colonized Europe supposedly happens, making the  
126 presence of a subspecies in this area puzzling in light of the history known so far.  
127 Here, taking advantage of whole genome sequences of 94 individuals from all around  
128 continental Europe and the Mediterranean Sea, we elucidate the demographic history of barn  
129 owls in the Western Palearctic. Combining descriptive and modelling approaches based on  
130 genomic and ecological data, we identify how the climatic variations and landscape of the  
131 region shaped the history of this species. We also investigate how previously isolated  
132 populations of barn owls interact at secondary contacts between different lineages, and  
133 discuss the convoluted taxonomy with regards to their history.

134 Material and methods

135

136 **Samples and data preparation**

137 *Sampling, molecular and sequencing methods*

138 The whole genomes of 96 individual barn owls (*Tyto alba*) were used in this study (table S1):

139 94 individuals were sampled in 11 Western Palearctic localities: Canary Islands (Tenerife

140 island - WC), Portugal (PT), France (FR), Switzerland (CH), Denmark (DK), Serbia (SB), Greece

141 (GR), Italy (IT), Aegean islands (AE), Cyprus (CY) and Israel (IS). In addition, one Eastern (*Tyto*

142 *javanica* from Singapore) and one American barn owl (*Tyto furcata* from California, USA) were

143 used as outgroups. Illumina whole-genome sequences of individuals from PT, FR, CH, DK and

144 the outgroups were obtained from the GenBank repository (BioProject PRJNA700797). For

145 the remaining 61 individuals, we followed a similar library preparation and sequencing

146 protocol as outlined in Machado et al. <sup>21</sup>. Briefly, genomic DNA was extracted using the

147 DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany), and individually tagged. 100bp TruSeq

148 DNA PCR-free libraries (Illumina) were prepared according to manufacturer's instructions.

149 Whole-genome resequencing was performed on multiplexed libraries with Illumina HiSeq

150 2500 PE high-throughput sequencing at the Lausanne Genomic Technologies Facility (GTF,

151 University of Lausanne, Switzerland).

152

153 *Data processing, SNP calling and technical filtering*

154 The bioinformatics pipeline used to obtain analysis-ready SNPs was adapted from the

155 Genome Analysis Toolkit (GATK) Best Practices <sup>22</sup> to a non-model organism following the

156 developers' instructions, as in Machado et al. <sup>21</sup>. Raw reads were trimmed with Trimomatic

157 v.0.36 <sup>23</sup> and aligned to the reference barn owl genome <sup>21</sup> with BWA-MEM v.0.7.15 <sup>24</sup>. Base

158 quality score recalibration (BQSR) was performed using high-confidence calls obtained from  
159 two independent callers – GATK’s HaplotypeCaller and GenotypeGVCF v.4.1.3 and ANGSD  
160 v.0.921<sup>25</sup> – as a set of “true variants” in GATK v.4.1.3.  
161 Genotype calls were filtered for analyses using a hard-filtering approach as proposed for non-  
162 model organisms, using GATK and VCFtools<sup>26</sup>. Calls were removed if they presented: low  
163 individual quality per depth (QD < 5), extreme coverage (1100 > DP > 2500), mapping quality  
164 (MQ < 40 and MQ > 70), extreme hetero or homozygosity (ExcessHet > 20 and  
165 InbreedingCoeff > 0.9) and high read strand bias (FS > 60 and SOR > 3). Then, we removed  
166 calls for which up to 5% of genotypes had low quality (GQ < 20) and extreme coverage (GenDP  
167 < 10 and GenDP > 40). We kept only bi-allelic sites, excluded SNPs on the heterozome (Super  
168 scaffolds 13 and 42<sup>21</sup>) and an exact Hardy-Weinberg test was used to remove sites that  
169 significantly departed (p=0.05) from the expected equilibrium using the package  
170 HardyWeinberg<sup>27,28</sup> in R<sup>29</sup>, yielding a dataset of 6,448,521 SNP (mean individual coverage:  
171 19.99X (sd: 4.38)). Lastly, we discarded singletons (minimum allelic count (mac) < 2), yielding  
172 to a total of 5,151,169 SNP for the population genomic analyses.

173

#### 174 *SNP phasing and quality control*

175 The set of 6,448,521 variants was phased in two steps. First, individual variants were phased  
176 using a read-based approach in which reads covering multiple heterozygous sites were used  
177 to resolve local haplotypes. To do so, WhatsHap v1.0<sup>30</sup> was run independently for each  
178 individual with default parameters. Secondly, variants were statistically phased with Shape-It  
179 v4.1.2<sup>31</sup>. This algorithm integrates local individual phase and applies an approach based on  
180 coalescence and recombination to statistically phase haplotypes and impute missing data.  
181 Shape-It was run following the manual instructions for a better accuracy: the number of

182 conditioning neighbors in the PBWT was set to 8, and the MCMC chain was run with 10 burn-  
183 in generations, 5 pruning iterations, each separated by 1 burn-in iteration, and 10 main  
184 iterations.

185 To assess the quality of the phasing, we examined phase accuracy by using the switch-error-  
186 rate metric<sup>32</sup>. When comparing two phasing for an individual's variants, a switch error occurs  
187 when a heterozygous site has its phase switched relative to that of the previous heterozygous  
188 site. Thus, for each individual, we compared the *true* local phasing inferred from the read-  
189 based approach (WhatsHap) and the *statistical* phasing of this individual's variants  
190 statistically phased by Shape-It, with read-based phase information ignored only for the  
191 individual considered (same version and parameters than in the paragraph above). The final  
192 estimation of the switch error rate was done using the switchError code to compare both  
193 phasing sets (available at <https://github.com/SPG-group/switchError>) (fig. S1).

194

## 195 **History of barn owls around the Mediterranean Sea**

### 196 *Population structure and genetic diversity*

197 In order to investigate population structure among our samples, sNMF<sup>33</sup> was run for a  
198 number of clusters K ranging from 1 to 10 with 25 replicates for each K to infer individual  
199 clustering and admixture proportions. For this analysis, SNPs were pruned for linkage  
200 disequilibrium in PLINK v1.946<sup>34</sup> (parameters --indep-pairwise 50 10 0.1) as recommended  
201 by the authors, yielding 594,355 SNP. Treemix<sup>35</sup> was used to calculate a drift-based tree of  
202 our populations, using this LD-pruned dataset. To detect admixture events between  
203 populations, 10 Treemix replicates were run for 0 to 10 migration events, with the tree rooted  
204 on the WC population, representative of a non-admixing population (see results, fig. S6).

205 Population expected and observed heterozygosity, population-specific private alleles,  
206 population-specific rare alleles (mac<5) and population-specific total number of polymorphic  
207 sites were estimated using custom R scripts on the 5,151,169 variants dataset. To account for  
208 differences in sample sizes, which ranges from 4 to 10, population-specific statistics were  
209 calculated by randomly sampling 5 individuals from the larger populations (all except FR and  
210 SB) 10 times in a bootstrap-fashion and estimating the mean and standard deviation (SD).  
211 Individual-based relatedness ( $\beta$ )<sup>36</sup> and inbreeding coefficient for SNP data were calculated  
212 with the R package SNPRelate<sup>37</sup>. Overall  $F_{ST}$ , population pairwise  $F_{ST}$  and population specific  
213  $F_{ST}$ <sup>36</sup> were computed with the hierfstat package v.0.5-9<sup>38</sup>. Confidence intervals for population  
214 specific FST were computed by dividing the SNPs into 100 blocs, and bootstrapping 100 times  
215 100 blocks with replacement. Finally, Principal Component Analyses (PCA) were also  
216 performed with the R package SNPRelate, first with all individuals and second only with the  
217 66 European ones (excluding WC, CY and IS).

218

219 *Haplotype sharing*

220 To measure shared ancestry in the recent past between individuals, we ran fineSTRUCTURE  
221<sup>39</sup> on the phased dataset including all individuals. For this analysis we initially modelled  
222 haplotype sharing between individuals using ChromoPainter to generate a co-ancestry  
223 matrix, which records the expected number of haplotypes chunks each individual donates to  
224 another. For this ChromoPainter step, we converted phased haps files to chromopainter  
225 phase files using the impute2chromopainter.pl script provided at  
226 <http://www.paintmychromosomes.com> and generated a uniform recombination map with  
227 the makeuniformrecfile.pl script. Using the version of ChromoPainter built into  
228 fineSTRUCTURE v.2.0.8, we performed 10 EM iterations to estimate the Ne and Mu

229 parameters (switch rate and mutation rate). The model was then run using the estimated  
230 values for these parameters (respectively 570.761 for Ne and 0.0074240 for Mu), and we used  
231 default settings to paint all individuals by all others (-a 0 0). We ran fineSTRUCTURE's MCMC  
232 model on the co-ancestry matrix for 500,000 burn-in and 500,000 sampling iterations,  
233 sampling every 10,000 iterations to determine the grouping of samples with the best  
234 posterior probability.

235

## 236 **Modeling of history of European barn owl**

237 *Maximum-likelihood demographic inference*

238       *Data preparation*

239 To describe the history of barn owls in Europe, we modeled five different demographic  
240 scenarios using fastsimcoal2<sup>40,41</sup>. Given the position of Italy on the PCA (fig. 1e), its high  $F_{ST}$   
241 and lower haplotype sharing with the rest of European populations (fig. 2), we tested in  
242 particular whether it could have been a cryptic glacial refugium during the last glaciation. To  
243 focus on European populations and due to computational constraints, we simplified the  
244 dataset to model the history of four populations of eight individuals (table S1): PT as  
245 representatives of the known refugium in the Iberian Peninsula<sup>42</sup>; IT and GR representing the  
246 peninsulas of Italy and Balkans, respectively; and CH, a product of the recolonization of  
247 northern Europe from the Iberian refugium<sup>42</sup>.

248 Autosomal SNPs were filtered to retain only neutrally evolving regions by excluding SNPs  
249 found in genic regions and CpG mutations<sup>43</sup>. To achieve homogeneity among SNPs, we  
250 removed all sites with missing data and excluded positions with a coverage outside two thirds  
251 of the standard deviation of the mean. We employed a parsimony approach based on the  
252 Tytonidae phylogenetic tree<sup>44</sup> to determine the ancestral state of the SNPs using the

253 genomes of the two outgroups. Sites for which it was impossible to attribute a state based on  
254 the available outgroups were discarded. The remaining 770,718 SNPs were used to produce  
255 population pairwise site frequency spectra (SFS).

256

257 *Demographic scenarios and parameters*

258 Five different scenarios were tested to model the history of barn owls in continental Europe,  
259 with a special focus on the period since the last glaciation (fig. 2, fig. S8). Three models  
260 included only one refugium in the Iberian Peninsula and various possibilities of colonization  
261 scenarios, thus excluding the persistence of barn owls in a second refugium during the  
262 glaciation. The two last models included two refugia during the last glacial maximum (LGM),  
263 a western refugium in the Iberian Peninsula and an eastern refugium, in the Italian Peninsula.  
264 The models *1R-1*, *1R-2* and *1R-3* included only one refugium in the Iberian Peninsula. *1R-1*  
265 model assumed only one colonization route around the north side of the Alps (forming the  
266 CH population), and from there move southeast to reach first the Balkans (GR) and then Italy  
267 (IT). The two other single-refugium models (*1R-2* and *1R-3*) assumed two distinct colonization  
268 routes, one north of the Alps to CH and the other south of the Alps along the Mediterranean  
269 coast to IT. *1R-2* assumes current Greece would have been colonized by owls from the Italian  
270 Peninsula, following the route along the Mediterranean coast. In *1R-3*, Greece would have  
271 been colonized via northern Europe, while the Mediterranean expansion would have stopped  
272 in Italy.

273 The last two models included a second, eastern, refugium (*2R-1* and *2R-2*). In these models,  
274 the western lineage expansion from the Iberian population would have colonized Europe  
275 before the last glaciation, thus occupying all the Mediterranean peninsulas. During the last  
276 glaciation, two distinct populations would have survived, respectively in the Iberian (western

277 refugium) and Italian (eastern refugium) Peninsulas. Both models assume that northern  
278 Europe was recolonized from the Iberian lineage after the glaciation, but they differ in the  
279 scenario of recolonization of southeastern Europe. In 2R-1, Greece was recolonized from the  
280 Italian refugium while in 2R-2 the expansion from the Iberian Peninsula would have  
281 recolonized all eastern Europe, including current Greece. In this last scenario, the Italian  
282 population would be the only relic from the eastern refugium. For all scenarios, migrations  
283 between populations was allowed (see fig. 2 and table S2).  
284 Wide search ranges for initial simulation parameters were allowed for population sizes,  
285 divergence times and migration rates (table S2). Each population split was preceded by an  
286 instantaneous bottleneck, in which the founding population size was drawn from a log-  
287 uniform distribution between 0.01 and 0.5 proportion of current population sizes.

288

#### 289 *Demographic inference*

290 Demographic simulations and parameter inference were performed under a composite-  
291 likelihood approach based on the joint SFS as implemented in fastsimcoal2<sup>40,41</sup>. For each of  
292 the five scenarios, 100 independent estimations with different initial values were run. For  
293 each run, there were 500000 coalescent simulations (option -n), with 50 expectation-  
294 maximization (EM) cycles (-M and -L). As we do not have an accurate mutation rate for barn  
295 owls, we fixed the end of the glaciation to 6000 generations BP (approximately 18'000 years  
296 BP with a 3-year generation time) and scaled all other parameters relative to it using the -0  
297 command option (using only polymorphic sites). The best-fitting scenario out of the five  
298 tested was determined based on Akaike's information criterion<sup>45</sup> (AIC) and confirmed  
299 through the examination of the likelihood ranges of each scenario as suggested in Kocher et  
300 al. (1989)<sup>46</sup>. Non-parametric bootstrapping was performed to estimate 95% confidence

301 intervals (CI) of the inferred parameters under the best-fitting scenario. To account for LD, a  
302 block-bootstrap approach was employed as suggested by the authors <sup>40,41</sup>: the SNPs were  
303 divided into 100 same-size blocks, and then 100 bootstrap SFS were generated by sampling  
304 these blocks with replacement. Due to computational constraints, for bootstrapping we ran  
305 50 independent parameter inferences per bootstrapped SFS with only 10 EM cycles each,  
306 instead of 50 cycles used for comparing scenarios above. This procedure has been defined as  
307 conservative <sup>47</sup>, and is expected to produce quite large confidence intervals. We accepted this  
308 trade-off as our main goal was to determine the best demographic topology, accepting  
309 uncertainty on specific parameter values. The highest maximum-likelihood run for each  
310 bootstrapped SFS was used to estimate 95% CI of all parameters.

311

312 *Niche modeling*

313 In order to identify the regions of high habitat suitability for barn owls at the last glacial  
314 maximum (LGM, 20'000 years BP) and to support the demographic scenarios tested in the  
315 previous section, we modelled the past spatial distribution of the species in the Western  
316 Palearctic. We built species distribution model (SDM) using Maximum Entropy Modelling  
317 (MaxEnt), a presence-only based tool <sup>48</sup>. Current climatic variables for the Western Palearctic  
318 (fig. S10) were extracted from the WorldClim database at 5 arc min resolution using the R  
319 package rbioclim <sup>49</sup>, and filtered to remove variables with a correlation of 0.8 or higher (fig.  
320 S9). The variables retained were: Mean Diurnal Range (Bio2), Min Temperature of Coldest  
321 Month (Bio6), Temperature Annual Range (Bio7), Mean Temperature of Wettest Quarter  
322 (Bio8), Precipitation Seasonality (Bio15), Precipitation of Driest Quarter (Bio17) and  
323 Precipitation of Coldest Quarter (Bio19). We built models with linear, quadratic and hinge  
324 features, and with a range (1 to 5) of regularization multipliers to determine which

325 combination optimized the model without over complexifying it. The best combination based  
326 on the corrected AIC (as recommended by Warren & Seifert <sup>50</sup>) was achieved with a quadratic  
327 model with 1 as regularization multiplier (table S5). We ran 100 independent maxent models,  
328 omitting 25% of the data during training to test the model. To avoid geographic bias due to  
329 different sampling effort in the distribution area of the species, we randomly extracted 1000  
330 presence points within the IUCN distribution map <sup>51</sup> for each model run <sup>52</sup>.  
331 Predictive performances of the models were evaluated on the basis of the area under the  
332 curve (AUC) of the receiver operator plot of the test data. For all models with an AUC higher  
333 than 0.8 (considered a good model <sup>53,54</sup>), we transformed the output of Maxent into binary  
334 maps of suitability. We assigned a cell as suitable when its mean suitability value was higher  
335 than the mean value of the 10% test presence threshold. This conservative threshold allows  
336 us to omit all regions with habitat suitability lower than the suitability values of the lowest  
337 10% of occurrence records. Finally, we averaged the values of the models for each cell, and  
338 only cells suitable in 90% of the models were represented as such in the map.  
339 We projected the models to the climatic conditions of the mid-Holocene (6'000 years BP) and  
340 the LGM (20'000 years BP), which we extracted from WorldClim at the same resolution as  
341 current data. When projecting to past climates, the Multivariate Environmental Similarity  
342 Surface (MESS) approach <sup>48</sup> was used to assess whether models were projected into climatic  
343 conditions different from those found in the calibration data. As our goal was to highlight only  
344 areas of high suitability for barn owls, cells with climatic conditions outside the distribution  
345 used to build the model were assigned as unsuitable (0 attributed to cell with negative MESS).  
346 For each timepoint, the results of the models were merged and transformed into a binary  
347 map as described for current data (fig. 2c).  
348

349 **Barriers and corridors**

350 *Migration surface estimation in the western Palearctic*

351 The Estimated Effective Migration Surface (EEMS) v.0.0.9 software <sup>55</sup> was used to visualize  
352 geographic regions with higher or lower than average levels of gene flow between barn owl  
353 populations of the Western Palearctic. Using the SNP dataset pruned for LD produced above,  
354 we calculated the matrix of genetic dissimilarities with the tool bed2diff. The free Google  
355 Maps api v.3 application available at <http://www.birdtheme.org/useful/v3tool.html> was used  
356 to draw the polygon outlining the study area in the Western Palearctic. EEMS was run with  
357 1000 demes in five independent chains of 5 million MCMC iterations with a burn-in of 1  
358 million iterations. Results were visually checked for MCMC chain convergence (fig. S11) and  
359 through the linear relation between the observed and fitted values for within- and between-  
360 demes estimates using the associated R package rEEMSplots v.0.0.1 <sup>55</sup>. With the same  
361 package, we produced a map of effective migration surface by merging the five MCMC chains.

362

363 *Isolation by distance in continental Europe*

364 To investigate how population structure correlated with spatial distances between European  
365 populations and to detail the role of the Alps as a barrier to gene flow, we performed Mantel  
366 tests as implemented in the ade4 package v.1.7-15 <sup>56</sup> for R. We compared the genetic  
367 distances (pairwise  $F_{ST}$  between populations, see section *Population Structure and Genetic*  
368 *Diversity* for details) with different measures of geographical distance between populations:  
369 the shortest distance over land via direct flight and the distance constrained by the presence  
370 of the Alps, forcing the connection of the Italian population to the other populations via the  
371 Greek Peninsula (fig. S13). We also tested the linear regression between both variables in R.

372 Results

373

374 **History of barn owls around the Mediterranean Sea**

375 *Genetic diversity and population structure in the Western Palearctic*

376 Despite an overall low differentiation (overall  $F_{ST}=0.047$ , comparable with the overall  
377  $F_{ST}=0.045$  estimated by Burri et al. <sup>20</sup>), the dataset revealed a structuration of the genetic  
378 diversity among barn owls of the Western Palearctic. The first axis of the genomic PCA  
379 (explaining 3.32% of the total variance) contrasted individuals from the Levant populations  
380 (IS and CY) to all other individuals (fig. 1d), consistent with K=2 being the best estimate in  
381 sNMF (fig. S4, fig. S5). For K=3 (fig. 1b), the Canary population (WC) formed an independent  
382 genetic cluster, and this was confirmed by the second axis of the PCA (explaining 2.6% of the  
383 variance) opposing it to all other individuals (fig. 1d, fig. S2). This isolation of WC was also  
384 observable in table 1, with a lot of privates and rare alleles in Tenerife island, it's higher  $F_{IT}$   
385 and the highest population specific  $F_{ST}$  of all sampled populations. On the same PCA (fig. 1d),  
386 individuals from European populations (FR, CH, DK, IT, SB, GR, AE) formed a third distinct  
387 cluster, matching their grouping in a single cluster at K=3 with sNMF (fig. 1b). The Iberian  
388 individuals (PT) occupied a central position on the PCA (around 0 on both axes) and a mixed  
389 composition in sNMF (fig. 1b). This central position of the Iberian population was also visible  
390 in the pairwise  $F_{ST}$ , where the highest value in the pairs involving PT is 0.055 (with both CY  
391 and WC) while all other pairwise comparisons involving populations from two of the distinct  
392 groups identified before (Levant, Canary Islands and Europe) have values equal or higher (fig.  
393 1c). The TreeMix analysis (fig. 1f) was also consistent with these results, since it also identified  
394 these major lineages, first isolating the Canary population in a specific lineage, then grouping

395 the Levant populations (IS and CY) in a second lineage and finally all European populations in  
396 a third lineage. In Europe, the Iberian population was basal to all other populations.

397

398 *Population structure in continental Europe*

399 Focusing only on European samples, southern populations (PT, IT, GR and AE) harbored a  
400 higher genetic diversity than northern populations (CH, FR, DK, SB) (table 1). The first axis of  
401 the genomic PCA based on samples from European-only populations opposed the Italian  
402 individuals to all others (fig.1e, fig. S3). This isolation of Italian samples was also apparent in  
403 the pairwise  $F_{ST}$  within Europe, with all the largest values involving IT. These results were  
404 consistent with sNMF on all samples for K higher than 3, where IT individuals formed an  
405 independent genetic cluster (fig. S5, illustrated in fig. 1a), as well as TreeMix, where the Italian  
406 population was the first to split and had the longest branch within European lineage (fig. 1f).

407 Consistently with the distribution of the individuals in the European PCA (fig. 1e, fig. S3), the  
408 ancestry coefficients in the sNMF analyze of k=4 and k=5 (fig. S5) revealed the genetic  
409 differentiation of northern populations (FR, CH and DK) compared to the Italian one, also  
410 opposed in the first axis. Individuals from GR and AE individuals shared ancestry with both  
411 western and Italian population, in line with their central position along this first axis of the  
412 European PCA. For k=5, a third European component was distinguished in the Aegean  
413 individuals. This component was the majoritarian in Greek samples with contributions of both  
414 northern and Italian component; and Serbian samples appeared as a mix of the northern and  
415 the Aegean component. The eastern lineage (CY and IS), grouped at previous K, were split  
416 into two distinct ancestry pools at K=6 (fig. 1a). AE individuals harbored low amounts of CY  
417 ancestry, absent in all other European populations, and two CY individuals carried a large  
418 contribution of the Aegean component. Consistently, the first migration event detected by

419 TreeMix was from CY, a population from the Levant lineage, to AE, a population from the  
420 European lineage (fig. 1f).

421

422 *Fine Structure and Haplotype sharing*

423 The clustering of individuals by FineStructure, based on shared haplotypes between  
424 individuals was consistent with previous results (fig. S7). Individuals from the different  
425 populations sampled were monophyletic, except for CH and FR individuals, mixed in the same  
426 population. Consistently with this grouping, haplotypes from any given population were more  
427 likely to be found in individuals from the same population, followed by its most related  
428 populations (fig. 2). In the Levant lineage, IS haplotypes mostly painted IS Individuals but also  
429 CY individuals and vice versa. Iberian haplotypes mostly painted PT individuals, but also  
430 contributed greatly to the painting of all European individuals, decreasing with distance.  
431 Western European haplotypes (from FR and CH) mostly painted western European  
432 individuals, then northern individuals (from DK) and finally eastern individuals (from SB, GR  
433 and AE). The reverse pattern was observed for haplotypes from eastern Europe (GR, AE), with  
434 a gradient of contribution decreasing from east to west. Haplotypes from DK and SB mostly  
435 painted individuals from their own population, but also in their respective neighbors in both  
436 eastern and western European populations. Italian haplotypes were the most distinct  
437 haplotypes among European populations, mostly painting Italian individuals, followed by  
438 Greek individuals, and being painted by other populations at a lower rate than expected given  
439 its geographic position. Finally, AE haplotypes also painted more often CY individuals than IS  
440 individuals. This painting of levant individuals by AE haplotypes was higher than the  
441 contribution from any other European individual, and both CY and IS haplotypes painted more  
442 AE individuals than any other European individual.

443

444 **Modeling of the history of European barn owls**

445 *Species distribution modeling*

446 Habitat suitability projections showed that, from a climatic point of view, there were suitable

447 regions for barn owls all around the Mediterranean Sea during the glaciation (20'000 years

448 BP; fig. 3c). Large areas were suitable in northern Africa and the Iberian Peninsula, but also in

449 the two eastern Mediterranean peninsulas (current Italy and Greece). At this point, the sea

450 levels were lower than today's and the two eastern peninsulas were more connected,

451 allowing for a continuous region of suitable barn owl habitat. At the mid-Holocene (6'000

452 years BP), major changes in sea level revealed a coastline very similar to nowadays. Our

453 projections revealed a reduction of habitat suitability in northern Africa at this time, while the

454 suitability of western and northern Europe increased (fig. 3c). Finally, today, nearly all

455 continental Europe is suitable for the barn owls, with the notable exception of mountain areas

456 (fig. 3c).

457

458 *Demographic inference*

459 AIC and raw likelihood comparisons showed that the two refugia model 2R-1 explains best

460 the SFS of our dataset (table S3; Fig. 3b). In this model, an ancestral Italian lineage (IT) split

461 from the Iberian lineage (PT) before the last glaciation, estimated at approximately 69'000

462 years BP (95% CI: 24'000-90'000 years BP; calculated with 3-year generation time). After its

463 initial expansion, the ancestral population is estimated to have been larger in the Italian

464 Peninsula than in Iberia (respectively 189K (11K-320k) and 11k (10K-73k) haploid individuals).

465 During the glaciation (fixed between 24 and 18K years BP), both populations experienced a

466 bottleneck, with a population size reduced to 6.8k (1.2k-141k) individuals in the Iberian

467 lineage and 62 (36-116k) in the Italian. After the glaciation, the size of both populations  
468 increased to their current size, estimated at 44k (20K-380k) in the Iberian Peninsula and 1.3k  
469 (1k-326k) in the Italian Peninsula, both smaller but consistent with their estimated census size  
470 (55k-98k<sup>57,58</sup> and 6k-13k<sup>59</sup>, respectively). The Greek population split from the Italian branch  
471 around 5'700 years BP while the Swiss (CH) population split slightly later from Iberia (5'000  
472 years BP) and maintain a high level of gene flow (estimated to 90 (46-1.4k) from CH to PT and  
473 8 (3-62) in the reverse direction). Current effective population sizes of the CH and GR  
474 populations are estimated to 3.4k (1k-205k) and 1.4k (1k-208k), respectively (fig. 2b), in line  
475 with census results (1000-2500<sup>60</sup> and 3000-6000<sup>61</sup>, respectively). Migration between these  
476 populations is estimated to be highest from IT and GR to CH (respectively 27 (0.2-157)  
477 migrants from IT and 42 (0.1-156) from GR) and lowest in the opposite direction (respectively  
478 1.3 (0.1-96) migrants from CH to GR and 0.02 (0.2-38) from CH to IT) (table S4). Point  
479 estimates with 95% confidence intervals for all parameters of the best model are given in  
480 (table S4), as well as single point estimates for all models (table S2).

481

## 482 **Barriers and corridors**

### 483 *Migration Surface Estimate in the Western Palearctic*

484 Estimated Effective Migration Surface identified large water bodies, especially in the eastern  
485 Mediterranean and around Cyprus, as regions resisting to migration (fig. S12). On the  
486 mainland, barriers to gene flow matched the main formations of the Alpide belt in the region,  
487 an orogenic formation spanning from western Europe to eastern Asia. From west to east, a  
488 light barrier overlapped with the Pyrenees, a strong barrier spanned the Alps to the Balkans  
489 and a third obstacle matched the Taurus mountains in Anatolia. A region with high gene flow

490 was identified in continental Europe above the Alps, spanning from western Europe to the  
491 Balkan Peninsula.

492

493 *Isolation by distance in Europe*

494 In continental Europe, the shortest path overland did not correlate significantly with genetic  
495 distance (fig. S13) (mantel test, p-value = 0.193,  $R = 0.20$  / linear model, p-value = 0.26,  $R^2 =$   
496 0.012). On the contrary, when the geographic distance between populations included the  
497 barrier formed by the Alps (i.e. the Italian population was connected to other populations via  
498 the Greek Peninsula, itself connected to western Europe via northern Europe), both tests  
499 were significant (mantel test, p-value = 0.002,  $R = 0.68$  / linear model, p-value =  $1.3 \times 10^{-5}$ ,  $R^2 =$   
500 0.507).

501 Discussion

502

503 The history of natural populations is shaped by the combination of landscape barriers and  
504 climatic variations that isolate and mix lineages through their combined actions. Consistently  
505 with previous work <sup>20</sup>, we show that barn owls colonized the Western Palearctic in a ring-like  
506 fashion around the Mediterranean Sea, with one arm around the Levant and the second  
507 throughout Europe. However, using whole genome sequences we found this colonization  
508 actually predates the last glaciation and pinpoint a narrow secondary contact zone between  
509 the two lineages in Anatolia rather than in the Balkans. In addition, we provide evidence that  
510 barn owls recolonized Europe after the LGM from two distinct glacial refugia – a western one  
511 in Iberia and an eastern in Italy – rather than a single one as it was previously thought. As  
512 temperatures started rising, western and northern Europe were colonized by owls from the  
513 Iberian Peninsula while, in the meantime, the eastern refugium population of Italy had spread  
514 to the Balkans (fig. 4). The western and eastern glacial populations finally met in eastern  
515 Europe. This complex history of populations questions the taxonomy of the multiple *Tyto alba*  
516 subspecies, highlights the key roles of mountain ranges and large water bodies as barriers to  
517 gene flow for a widespread bird and illustrates the power of population genomics in  
518 unraveling intricate patterns.

519

520 *Colonization of the Western Palearctic and gene flow in Anatolia*

521 Our results show that two distinct barn owl genetic lineages surround the Mediterranean  
522 Basin: one in the Levant, and a second in Europe (fig. 1b, 1c, 1d, 1f), likely connected via  
523 northern Africa. Supported by the higher and specific diversity of the basal population of each  
524 arm (namely, IS and PT; table 1), these observations are consistent with the ring colonization

525 scenario hypothesized by Burri et al. <sup>20</sup>. However, we show that a barn owl population  
526 survived the last glaciation in Italy (see next section for details) and that its genetic makeup  
527 resembles the European lineage (fig. 1b, 1d, 1f). Therefore, the ring colonization of Europe  
528 around the Mediterranean appears to have been pre-glacial, whereas the post-glacial history  
529 is more convoluted (see next section).

530 In previous studies, the ancestry of Greek and Aegean populations was unclear, with a  
531 hypothesized mixed origin between the European and Levant lineages <sup>20</sup>. This uncertainty was  
532 mostly likely due to the low resolution of genetic markers (Mitochondrial DNA and  
533 microsatellites), as the genomic data reported here clearly show that Greek and Aegean owls  
534 are genetically much closer to European than to Levant ones (fig. 1b, 1c, 1d, 1f). This  
535 observation indicates that the European lineage reached further east than previously  
536 assumed, allowing us to pinpoint the secondary contact zone between the European and  
537 Levant lineages to Anatolia, instead of the Balkans as it had been proposed. In Anatolia, the  
538 Taurus and Zagros mountain ranges form an imposing barrier that appears to have stopped  
539 the expansion of the Levant lineage both during the ring colonization and nowadays.

540 Despite the barrier, and although we do not see a complete admixture of the two lineages,  
541 there is evidence of some gene flow. Indeed, the first migration in Treemix (fig. 1f) pointed to  
542 a secondary contact between CY and AE, consistent with the signals of admixture between  
543 these populations (fig. 1a, 1b, 2). The admixture pattern however is restricted geographically  
544 to this narrow region and does not permeate further into either of the lineages, as  
545 surrounding populations (IS in the Levant and GR and SB in Europe) do not show signals of  
546 admixture (fig. 1, 2). Thus, the migration between populations on both sides seems limited  
547 and possibly only occurs along a narrow corridor along the Turkish coast where only a few

548 barn owls have been recorded <sup>62</sup>. Further analyses with samples from Anatolia should allow  
549 to characterize in high resolution how and when admixture occurred in this region.

550

551 *Glacial refugia and recolonization of Europe*

552 Previous studies showed that barn owls survived the last glaciation by taking refuge in the  
553 Iberian Peninsula and maybe even in emerged land in the Bay of Biscay <sup>21,42</sup>. The observed  
554 distribution of diversity in Europe, and especially the specific makeup of the Italian  
555 populations, is best explained by a demographic model with two glacial refugia – one in Iberia  
556 and a second in Italy, derived from the Iberian population before the glaciation (fig. 3a and  
557 3b; table S5). Environmental projections not only support this model, as Italy was highly  
558 suitable for the species at the time, but also show that, due to the low levels of the Adriatic  
559 Sea, the suitable surface extended to the west coast of the Balkans (LGM - fig. 3c). Crucially,  
560 three of the barn owl's key prey also had glacial refugia in the Italian and Balkan peninsulas,  
561 namely the common vole (*Microtus* sp.) <sup>63</sup>, the wood mouse (*Apodemus* sp.) <sup>64</sup> and shrews  
562 (*Crocidura* sp.) <sup>65</sup>. The inferred size of the pre-glacial population of barn owls inhabiting  
563 current Italy was larger than any other (189k (11K-320K)), prior to a strong bottleneck during  
564 the glaciation (population reduced to 62 individuals (36-116k)). These values are likely  
565 inflated by necessary simplification of the model (e.g. instant bottlenecks) or by gene flow  
566 from unmodeled/unsampled populations, for example from the Levant lineage to eastern  
567 European populations (GR), or from northern Africa to Italy via Sicily. The latter would have  
568 been facilitated by the increased connectivity between Italy and North Africa during the  
569 glaciation (fig. 3c) <sup>66,67,68</sup>.

570 With the warming following the LGM, Europe became gradually more suitable and, by the  
571 mid-Holocene (6000 years ago), most of western and northern Europe were appropriate for

572 barn owls (fig. 2b) as well as the common vole (*Microtus arvalis*) <sup>69</sup>. The genetic similarity  
573 between Iberian (PT) and northwestern populations (CH, FR, DK; fig. 1a, 1e) indicates that  
574 barn owls colonized these newly available regions from the Iberian refugium as previously  
575 thought <sup>42</sup>. The contribution from the Italian refugium to northern populations appears to  
576 have been hindered by the Alps (see next sections), as suggested by the higher genetic  
577 distance between them (fig. 1a, 1c, 1d and 2). Instead, at this time the Adriatic Sea had neared  
578 today's levels, isolating genetically and geographically the Italian refugium from its  
579 component in the Balkan Peninsula (fig. 3b – IT-GR split ~6k fig. 3b and fig. 3c). Only more  
580 recently did the rise of temperatures allow for areas in the east of Europe to become suitable,  
581 finally connecting the southeastern populations near the Aegean Sea (GR and AE) with  
582 populations in the northeastern part of Europe (fig. 3c). In particular, the high heterozygosity  
583 and admixed ancestry of Serbian individuals (table 1, fig. 1a) suggest that the suture between  
584 the Iberian and the Italo-Greek glacial lineages took place in eastern Europe. This newly  
585 identified postglacial recolonization scheme of continental Europe by the barn owl matches  
586 the general pattern described for the brown bear (*Ursus arctos*) and shrew (*Sorex* sp.) <sup>7</sup>.  
587 The isolation by distance pattern observed between European populations (fig. S13)  
588 highlights a diffusion of alleles in the European populations rather than a narrow hybrid zone.  
589 Further, the inferred migration rates support high current gene flow in the region (fig. 3b, CH  
590 and GR in table S4), and we found signals of each ancestry in populations far from the suture  
591 zone (dark blue in GR and light blue in CH and DK, fig. 1a). Finally, the measure of haplotype  
592 sharing decreases consistently with distance between populations around the northern side  
593 of the Alps between populations from Iberia to Greece, excluding IT (fig. 2). Surrounded by  
594 the sea and the Alps, Italy is the exception and appears to have avoided incoming gene flow  
595 (fig. S12, isolation in fig. 2), thus being a better-preserved relic of the refugium population

596 (own cluster in sNMF K>4, fig. S5). In contrast, the Balkan component admixes smoothly with  
597 the other European populations. Such seamless mixing of the two glacial lineages from  
598 southern refugia where barn owls are mostly white <sup>20,70</sup>, brings further into question the  
599 subspecies *T. a. guttata*.

600

601 *The case of Tyto alba guttata*

602 Traditionally, in Europe, the eastern barn owl (*T. a. guttata* (Brehm, CL, 1831)) is defined by  
603 its dark rufous ventral plumage in contrast to the white western barn owl (*T. a. alba* (Scopoli,  
604 1769)) <sup>71</sup>. With a wide distribution, it is recorded from The Netherlands to Greece, including  
605 most of northern and eastern Europe <sup>72</sup>. However, this repartition does not match the history  
606 of any specific glacial lineage identified above, nor any genetically differentiated population.  
607 The dark populations of northern Europe (DK) are genetically as similar to lighter western  
608 populations (FR, CH) than to the dark ones in the east (SB). This color variance within  
609 European populations has been shown to be maintained through local adaptation <sup>70</sup>, and  
610 while the genomic basis and history of this trait remain worthy of future investigations, we  
611 suggest that all European barn owls form a single subspecies (*T. a. alba*), reflecting the entire  
612 European population, regardless of their color.

613

614 *Barriers and corridors shape the connectivity of the Western Palearctic meta-population*

615 The partition of genetic diversity among barn owls in the Western Palearctic allowed us to  
616 identify barriers and corridors to gene flow. Populations isolated by large water bodies have  
617 accumulated substantial genetic differences as, for example, the higher  $F_{ST}$  in the Canary and  
618 Cyprus islands (fig. 1c, table 1), and reflect the importance of water as a barrier to dispersion  
619 in this species <sup>21</sup>. On the mainland, and as described for the American barn owl <sup>73</sup>, major

620 mountain ranges act as significant obstacles to migration for European barn owls and can  
621 generate genetic structure. First, the high mountain ranges of Taurus and Zagros coincide  
622 with the contact zone between the Levant and the European lineages both nowadays and  
623 potentially at the time of the pre-glacial ring colonization of Europe (see above). Second, the  
624 Alps and the Balkan Mountains slowed the northward expansion of the glacial populations of  
625 Italy and Greece after the LGM and still constrain migration between populations on both  
626 sides of their ranges. If these results remain to be confirmed with observational data (i.e.  
627 ringing data not available for all countries), they emphasize that, despite its worldwide  
628 repartition and its presence on many islands, the connectivity of barn owl populations is  
629 heavily driven by biogeographical barriers.

630

631 Conclusion

632

633 The combination of whole genome sequencing and sophisticated modeling methods revealed  
634 the complex history of the barn owl in the Western Palearctic with a precision previously  
635 unachievable. It allowed the localization of a secondary contact zone as well as the discovery  
636 of a cryptic glacial refugium. However, several questions remain unanswered, awaiting for  
637 relevant samples to be collected and analyzed: What role did northern African populations  
638 played in connecting the Levant and European lineages? Did they contribute to the diversity  
639 observed in Italy? How narrow is the contact zone between the Levant and European lineages  
640 in Anatolia? Lastly, the origin of barn owls from the Western Palearctic as a whole also  
641 deserves further investigation, as they are believed to have colonized the Western Palearctic  
642 from the east, given the species' supposed origin in southeastern Asia approximately 4 million  
643 years ago. But this is at odds with the higher genetic diversity of the Iberian population

644 compared to the Levant one. Such inconsistency points to the need for samples from around  
645 the world, to understand how this charismatic group of nocturnal predators conquered the  
646 entire planet.

647 Research on postglacial recolonization and the subsequent phylogeographic patterns peaked  
648 at the turn of the century, with many studies providing an overview of the history of a wide  
649 variety of organisms (reviewed by Hewitt<sup>7</sup>). The rise in availability of genomic data for non-  
650 model species, combined with the type of approaches used here, will rewrite the history of  
651 many of them. Furthermore, it will allow to detail the genomic consequences of such history  
652 both from a neutral and selective perspective. Applied to several species, these approaches  
653 will redefine with greater clarity the broad phylogeographical patterns in the Western  
654 Palearctic and elsewhere, to re-think taxonomic classifications and to better understand how  
655 organisms might adapt to a changing environment in a complex, fragmented and rapidly  
656 changing landscape.

657 Acknowledgements

658

659 We thank the following institutions and individuals for providing samples or aiding in  
660 sampling: The European Barn Owl Network, Sylvain Antoniazza and Reto Burri, the Natural  
661 History Museum of Tenerife, the Wildlife Rehabilitation Centre La Tahonilla (Cabildo Insular  
662 de Tenerife), Kristijan Ovari and the Palić Zoo (Serbia). We thank Céline Simon and Luis San-  
663 José for their valuable assistance with molecular work as well as Alexandros Topaloudis for  
664 scripts. Finally, we also thank Olivier Delaneau for his advice on the phasing of the individuals  
665 and its evaluation. This study was funded by the Swiss National Science Foundation with  
666 grants 31003A-138180 & 31003A\_179358 to JG and 31003A\_173178 to AR.

667

668 Data Accessibility

669 The raw Illumina reads for the whole-genome sequenced individuals are available in  
670 BioProject PRJNA700797 and BioProject PRJNA727977.

671

672 Author Contribution

673

674 TC, APM, AR, JG designed this study; GD and APM produced whole-genome resequencing  
675 libraries and called the variants; TC and APM conducted the analyses; KD, RL, JL, HDM, PB,  
676 VB, MC, KD, HDM, NK, RL, FM, KO, LP, MR and FS provided samples to the study; TC led the  
677 writing of the manuscript with input from APM and all authors.

678 References

- 679 1. Huntley, B. & Webb, T. Migration: Species' Response to Climatic Variations Caused by  
680 Changes in the Earth's Orbit. *J. Biogeogr.* **16**, 5–19 (1989).
- 681 2. Irwin, D. E., Irwin, J. H. & Price, T. D. Ring species as bridges between microevolution and  
682 speciation. *Genetica* **112**, 223–243 (2001).
- 683 3. Devitt, T. J., Baird, S. J. & Moritz, C. Asymmetric reproductive isolation between terminal  
684 forms of the salamander ring species *Ensatina escholtzii* revealed by fine-scale genetic  
685 analysis of a hybrid zone. *BMC Evol. Biol.* **11**, 245 (2011).
- 686 4. Pereira, R. J., Monahan, W. B. & Wake, D. B. Predictors for reproductive isolation in a ring  
687 species complex following genetic and ecological divergence. *BMC Evol. Biol.* **11**, 194  
688 (2011).
- 689 5. Cacho, N. I. & Baum, D. A. The Caribbean slipper spurge *Euphorbia tithymaloides*: the first  
690 example of a ring species in plants. *Proc. R. Soc. B Biol. Sci.* **279**, 3377–3383 (2012).
- 691 6. Stöck, M. *et al.* Cryptic diversity among Western Palearctic tree frogs: Postglacial range  
692 expansion, range limits, and secondary contacts of three European tree frog lineages  
693 (*Hyla arborea* group). *Mol. Phylogenet. Evol.* **65**, 1–9 (2012).
- 694 7. Hewitt, G. M. Post-glacial re-colonization of European biota. *Biol. J. Linn. Soc.* **68**, 87–112  
695 (1999).
- 696 8. Hewitt, G. The genetic legacy of the Quaternary ice ages. *Nature* **405**, 907–913 (2000).
- 697 9. Willeit, M., Ganopolski, A., Calov, R. & Brovkin, V. Mid-Pleistocene transition in glacial  
698 cycles explained by declining CO<sub>2</sub> and regolith removal. *Sci. Adv.* **5**, eaav7337 (2019).
- 699 10. Clark, P. U. *et al.* The Last Glacial Maximum. *Science* **325**, 710–714 (2009).
- 700 11. Can secondary contact following range expansion be distinguished from barriers to gene  
701 flow? [PeerJ]. <https://peerj.com/articles/5325/>.
- 702 12. Boucher, F. C., Zimmermann, N. E. & Conti, E. Allopatric speciation with little niche  
703 divergence is common among alpine Primulaceae. *J. Biogeogr.* **12** (2015).
- 704 13. Tomasello, S., Karbstein, K., Hodač, L., Paetzold, C. & Hörandl, E. Phylogenomics unravels  
705 Quaternary vicariance and allopatric speciation patterns in temperate-montane plant  
706 species: A case study on the *Ranunculus auricomus* species complex. *Mol. Ecol.* **29**, 2031–  
707 2049 (2020).
- 708 14. Capblancq, T., Després, L., Rioux, D. & Mavárez, J. Hybridization promotes speciation in  
709 Coenonympha butterflies. *Mol. Ecol.* **24**, 6209–6222 (2015).
- 710 15. Hey, J. The Divergence of Chimpanzee Species and Subspecies as Revealed in  
711 Multipopulation Isolation-with-Migration Analyses. *Mol. Biol. Evol.* **27**, 921–933 (2010).
- 712 16. Linck, E., Freeman, B. G. & Dumbacher, J. P. Speciation and gene flow across an elevational  
713 gradient in New Guinea kingfishers. *J. Evol. Biol.* **33**, 1643–1652 (2020).
- 714 17. Poelstra, J. W. *et al.* The genomic landscape underlying phenotypic integrity in the face of  
715 gene flow in crows. *Science* **344**, 1410–1414 (2014).
- 716 18. Rougemont, Q. *et al.* Demographic history shaped geographical patterns of deleterious  
717 mutation load in a broadly distributed Pacific Salmon. *PLOS Genet.* **16**, e1008348 (2020).

718 19. Duranton, M. *et al.* The origin and remolding of genomic islands of differentiation in the  
719 European sea bass. *Nat. Commun.* **9**, 2518 (2018).

720 20. Burri, R. *et al.* The genetic basis of color-related local adaptation in a ring-like colonization  
721 around the Mediterranean: GENETICS OF CIRCUM-MEDITERRANEAN COLOR  
722 ADAPTATION. *Evolution* **70**, 140–153 (2016).

723 21. Unexpected post-glacial colonisation route explains the white colour of barn owls (*Tyto*  
724 *alba*) from the British Isles | bioRxiv.  
725 <https://www.biorxiv.org/content/10.1101/2021.04.23.441058v1>.

726 22. Van der Auwera, G. A. *et al.* From FastQ data to high confidence variant calls: the Genome  
727 Analysis Toolkit best practices pipeline. *Curr. Protoc. Bioinforma.* **43**, 11.10.1-11.10.33  
728 (2013).

729 23. Trimmomatic: a flexible trimmer for Illumina sequence data | Bioinformatics | Oxford  
730 Academic. <https://academic.oup.com/bioinformatics/article/30/15/2114/2390096>.

731 24. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler  
732 transform. *Bioinforma. Oxf. Engl.* **25**, 1754–1760 (2009).

733 25. ANGSD: Analysis of Next Generation Sequencing Data | BMC Bioinformatics | Full Text.  
734 <https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-014-0356-4>.

735 26. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinforma. Oxf. Engl.* **27**, 2156–  
736 2158 (2011).

737 27. Graffelman, J. & Camarena, J. M. Graphical tests for Hardy-Weinberg equilibrium based  
738 on the ternary plot. *Hum. Hered.* **65**, 77–84 (2008).

739 28. Graffelman, J. Exploring Diallelic Genetic Markers: The HardyWeinberg Package. *J. Stat.*  
740 *Softw.* **64**, 1–23 (2015).

741 29. Team, R. C. *R: A language and environment for statistical computing (3.5. 1)[Computer*  
742 *software]*. *R Foundation for Statistical Computing*. (2020).

743 30. Martin, M. *et al.* WhatsHap: fast and accurate read-based phasing. *bioRxiv* 085050 (2016)  
744 doi:10.1101/085050.

745 31. Delaneau, O., Zagury, J.-F., Robinson, M. R., Marchini, J. L. & Dermitzakis, E. T. Accurate,  
746 scalable and integrative haplotype estimation. *Nat. Commun.* **10**, 5436 (2019).

747 32. Choi, Y., Chan, A. P., Kirkness, E., Telenti, A. & Schork, N. J. Comparison of phasing  
748 strategies for whole human genomes. *PLOS Genet.* **14**, e1007308 (2018).

749 33. Fast and Efficient Estimation of Individual Ancestry Coefficients.  
750 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982712/>.

751 34. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses.  
752 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950838/>.

753 35. Pickrell, J. K. & Pritchard, J. K. Inference of Population Splits and Mixtures from Genome-  
754 Wide Allele Frequency Data. *PLoS Genet.* **8**, e1002967 (2012).

755 36. Weir, B. S. & Goudet, J. A Unified Characterization of Population Structure and  
756 Relatedness. *Genetics* **206**, 2085–2103 (2017).

757 37. Zheng, X. *et al.* A high-performance computing toolset for relatedness and principal  
758 component analysis of SNP data. *Bioinformatics* **28**, 3326–3328 (2012).

759 38. Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. *Mol. Ecol. Notes* **5**, 184–186 (2005).

760 39. Lawson, D. J., Hellenthal, G., Myers, S. & Falush, D. Inference of Population Structure using Dense Haplotype Data. *PLoS Genet.* **8**, e1002453 (2012).

761 40. Excoffier, L. & Foll, M. fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. *Bioinformatics* **27**, 1332–1334 (2011).

762 41. Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust Demographic Inference from Genomic and SNP Data. *PLOS Genet.* **9**, e1003905 (2013).

763 42. Antoniazza, S. *et al.* Natural selection in a postglacial range expansion: the case of the colour cline in the European barn owl. *Mol. Ecol.* **23**, 5508–5523 (2014).

764 43. Background selection and biased gene conversion affect more than 95% of the human genome and bias demographic inferences | eLife. <https://elifesciences.org/articles/36317>.

765 44. Uva, V., Päckert, M., Cibois, A., Fumagalli, L. & Roulin, A. Comprehensive molecular phylogeny of barn owls and relatives (Family: Tytonidae), and their six major Pleistocene radiations. *Mol. Phylogenet. Evol.* **125**, 127–137 (2018).

766 45. Akaike, H. A New Look at the Statistical Model Identification. in *Selected Papers of Hirotugu Akaike* (eds. Parzen, E., Tanabe, K. & Kitagawa, G.) 215–222 (Springer, 1998). doi:10.1007/978-1-4612-1694-0\_16.

767 46. Kocher, T. D. *et al.* Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. *Proc. Natl. Acad. Sci.* **86**, 6196–6200 (1989).

768 47. Malaspinas, A.-S. *et al.* A genomic history of Aboriginal Australia. *Nature* **538**, 207–214 (2016).

769 48. Elith, J. *et al.* A statistical explanation of MaxEnt for ecologists. *Divers. Distrib.* **17**, 43–57 (2011).

770 49. M. Exposito-Alonso. rbioclim: Improved getData function from the raster R package to interact with past, present and future climate data from worldclim.org. (2017).

771 50. Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. *Ecol. Appl.* **21**, 335–342 (2011).

772 51. BirdLife International. The IUCN Red List of Threatened Species. Version 6.2. (2019).

773 52. Fourcade, Y. Comparing species distributions modelled from occurrence data and from expert-based range maps. Implication for predicting range shifts with climate change. *Ecol. Inform.* **36**, 8–14 (2016).

774 53. Swets, J. A. Measuring the accuracy of diagnostic systems. *Science* **240**, 1285–1293 (1988).

775 54. Li, Y., Li, M., Li, C. & Liu, Z. Optimized Maxent Model Predictions of Climate Change Impacts on the Suitable Distribution of Cunninghamia lanceolata in China. *Forests* **11**, 302 (2020).

776 55. Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. *Nat. Genet.* **48**, 94–100 (2016).

800 56. Dray, S. & Dufour, A.-B. The ade4 Package: Implementing the Duality Diagram for  
801 Ecologists. *J. Stat. Softw.* **22**, 1–20 (2007).

802 57. Lourenço, R., Roque, I., Tomé, R. & Sepúlveda, P. Current status and distribution of  
803 nocturnal birds (Strigi- formes and Caprimulgiformes) in Portugal. **16**.

804 58. Martí R and del Moral C (eds). *Atlas de las aves reproductoras de España*. (2003).

805 59. Ornitología Italiana - Vol.3 - Stercorariidae Caprimulgidae - Brichetti Pierandrea; Fracasso  
806 Giancarlo | Libro Alberto Perdisa Editore 06/2005 - HOEPLI.it. [www.hoepli.it](http://www.hoepli.it)  
807 [https://www.hoepli.it/libro/ornitologia-italiana-vol3-stercorariidae-](https://www.hoepli.it/libro/ornitologia-italiana-vol3-stercorariidae-caprimulgidae/9788883722417.html)  
808 [caprimulgidae/9788883722417.html](https://www.hoepli.it/libro/ornitologia-italiana-vol3-stercorariidae-caprimulgidae/9788883722417.html).

809 60. 9783952106457: Atlas des oiseaux nicheurs de Suisse : Distribution des oiseaux nicheurs  
810 en Suisse et au Liechtenstein en 1993-1996 - AbeBooks - Hans Schmid; Roland Luder; Beat  
811 Naef-Daenzer; Roman Graf; Niklaus Zbinden: 3952106453.  
812 <https://www.abebooks.fr/9783952106457/Atlas-oiseaux-nicheurs-Suisse-Distribution-3952106453/plp>.

813 61. Birds in Europe: Population Estimates, Trends and Conservation Status | BirdLife.  
814 <https://www.birdlife.org/europe-and-central-asia/news/birds-europe-population-estimates-trends-and-conservation-status>.

815 62. Göçer, E. & Johnson, D. H. The Barn owl (*Tyto alba*) in Turkey. **7(3-4): 500-506**, (2018).

816 63. Stojak, J., Borowik, T., Górný, M., McDevitt, A. D. & Wójcik, J. M. Climatic influences on  
817 the genetic structure and distribution of the common vole and field vole in Europe.  
818 *Mammal Res.* **64**, 19–29 (2019).

819 64. Herman, J. S. *et al.* Post-glacial colonization of Europe by the wood mouse, *Apodemus*  
820 *sylvaticus*: evidence of a northern refugium and dispersal with humans. *Biol. J. Linn. Soc.*  
821 *n/a*.

822 65. Dubey, S. *et al.* Molecular evidence of Pleistocene bidirectional faunal exchange between  
823 Europe and the Near East: the case of the bicoloured shrew (*Crocidura leucodon*,  
824 Soricidae). *J. Evol. Biol.* **20**, 1799–1808 (2007).

825 66. Dapporto, L. & Bruschini, C. Invading a refugium: post glacial replacement of the ancestral  
826 lineage of a Nymphalid butterfly in the West Mediterranean. *Org. Divers. Evol.* **12**, 39–49  
827 (2012).

828 67. Husemann, M., Schmitt, T., Zachos, F. E., Ulrich, W. & Habel, J. C. Palaearctic biogeography  
829 revisited: evidence for the existence of a North African refugium for Western Palaearctic  
830 biota. *J. Biogeogr.* **41**, 81–94 (2014).

831 68. Lodolo, E. *et al.* Post-LGM coastline evolution of the NW Sicilian Channel: Comparing high-  
832 resolution geophysical data with Glacial Isostatic Adjustment modeling. *PLOS ONE* **15**,  
833 e0228087 (2020).

834 69. Heckel, G., Burri, R., Fink, S., Desmet, J.-F. & Excoffier, L. Genetic Structure and  
835 Colonization Processes in European Populations of the Common Vole, *Microtus Arvalis*.  
836 *Evolution* **59**, 2231–2242 (2005).

839 70. Antoniazza, S., Burri, R., Fumagalli, L., Goudet, J. & Roulin, A. Local adaptation maintains  
840 Clinal variation in melanin-based coloration of European barn owl (*Tyto alba*). *Evolution*  
841 (2010) doi:10.1111/j.1558-5646.2010.00969.x.

842 71. Mátics, R., Hoffmann, G. & Owl, B. *Location of the transition zone of the Barn Owl*  
843 *subspecies *Tyto alba alba* and *Tyto alba guttata* (Strigiformes: Tytonidae)*. (2001).

844 72. Clements, J. F. *et al.* The eBird/Clements Checklist of Birds of the World: v2019. (2019).

845 73. Machado, A. P., Clément, L., Uva, V., Goudet, J. & Roulin, A. The Rocky Mountains as a  
846 dispersal barrier between barn owl (*Tyto alba*) populations in North America. *J. Biogeogr.*  
847 **45**, 1288–1300 (2018).

848

849

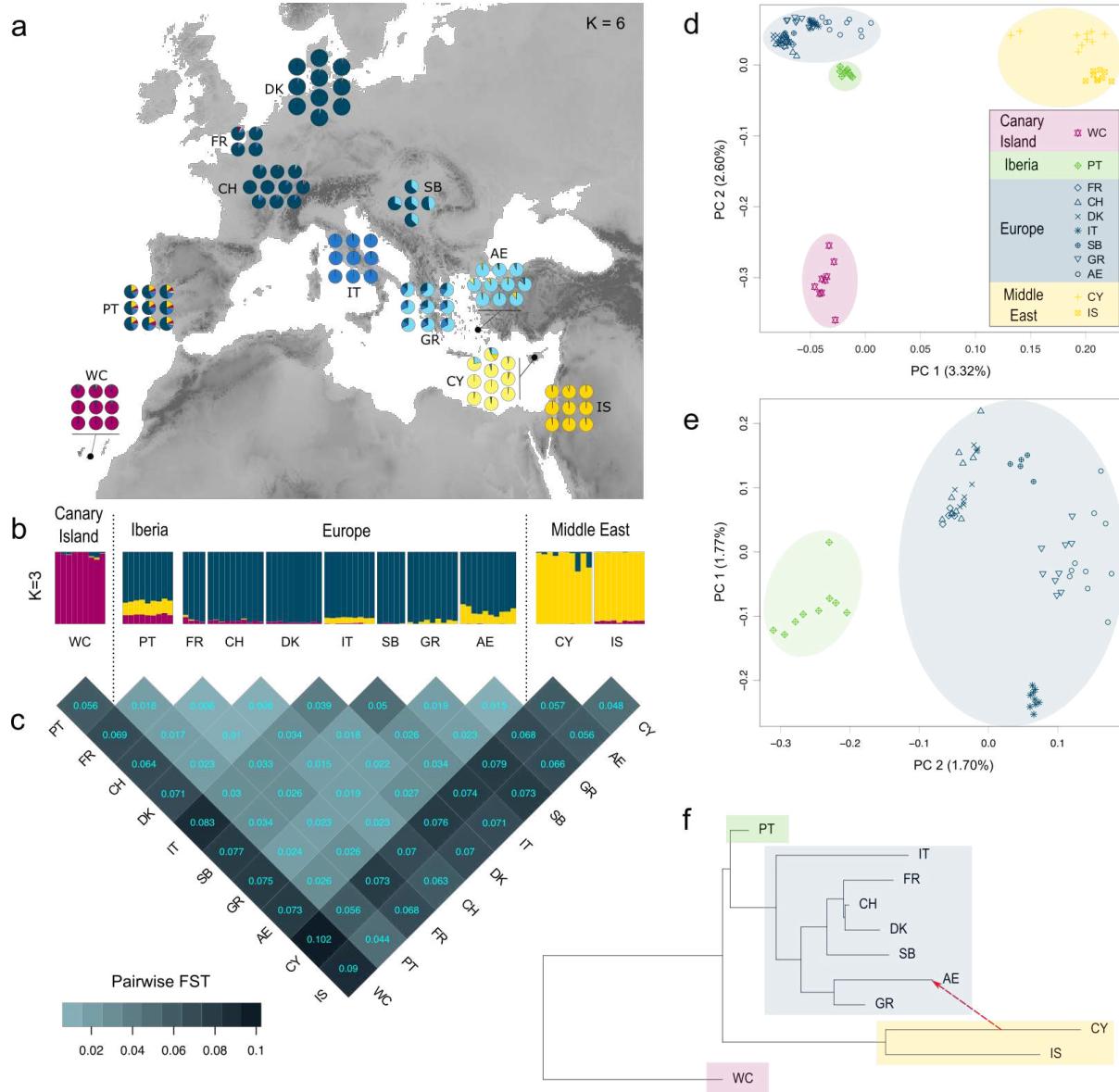
850 **Tables**

851

852 **Table 1** - Population genetic diversity, inbreeding and divergence estimates for 11  
853 populations of barn owls from the Western Palearctic. Standard deviations of the mean are  
854 provided between brackets for each parameter, see Methods section for details.

855

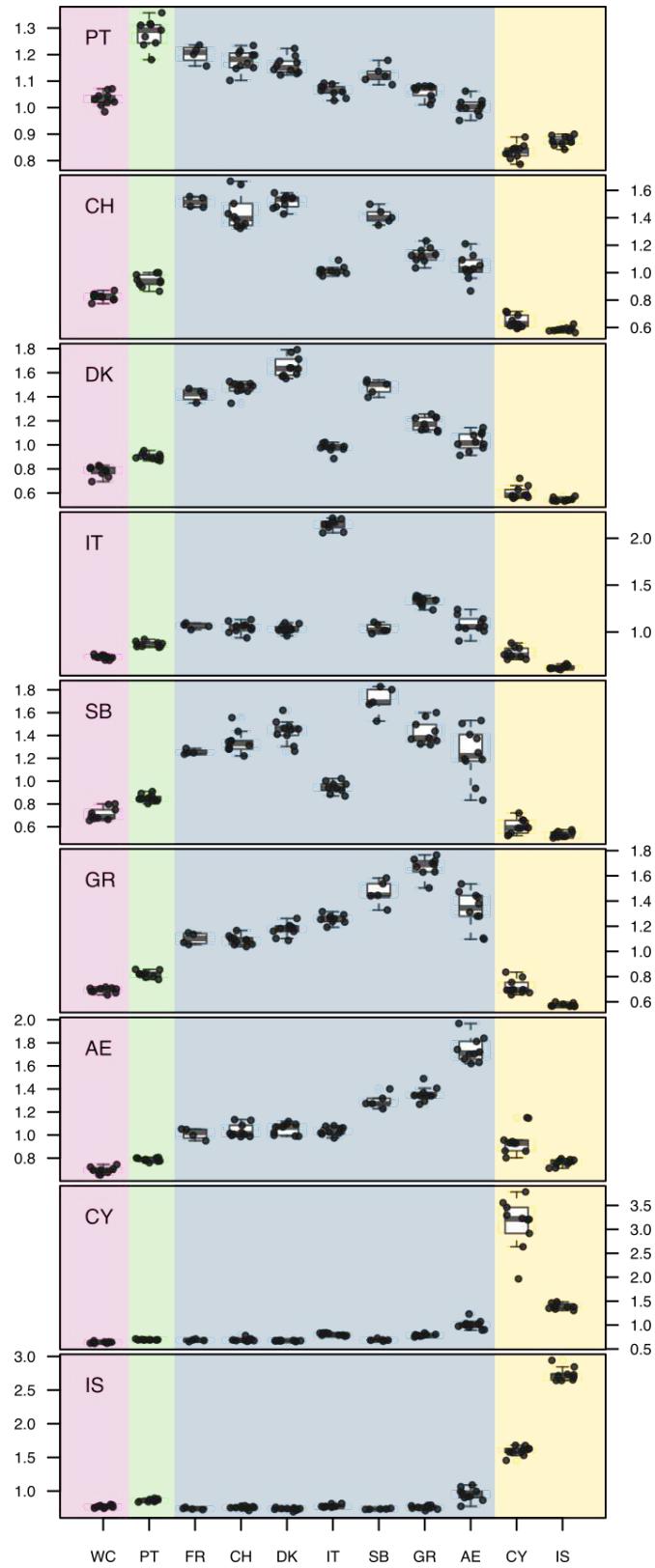
| Pop | N  | #PI                | #PA              | #Rare             | $F_{IT}$       | $F_{IS}$       | Pop $F_{ST}$  |
|-----|----|--------------------|------------------|-------------------|----------------|----------------|---------------|
| WC  | 9  | 2217235<br>(37007) | 123016<br>(2465) | 407403<br>(10568) | 0.067 (0.054)  | -0.022 (0.057) | 0.116 (0.006) |
| PT  | 9  | 2639343<br>(22857) | 102252<br>(2305) | 539157<br>(10106) | -0.018 (0.042) | -0.008 (0.042) | 0.003 (0.003) |
| FR  | 4  | 2151627<br>(0)     | 30290<br>(581)   | 287746<br>(1468)  | 0.039 (0.124)  | 0.043 (0.131)  | 0.050 (0.005) |
| CH  | 10 | 2494462<br>(10723) | 47532<br>(730)   | 386654<br>(3117)  | 0.025 (0.019)  | -0.011 (0.019) | 0.036 (0.002) |
| DK  | 10 | 2410615<br>(15558) | 40650<br>(1378)  | 349800<br>(5434)  | 0.026 (0.020)  | -0.02 (0.021)  | 0.049 (0.002) |
| IT  | 9  | 2404069<br>(7267)  | 66297<br>(1638)  | 401842<br>(4483)  | 0.035 (0.012)  | -0.022 (0.012) | 0.052 (0.005) |
| SB  | 5  | 2336060<br>(0)     | 32096<br>(1515)  | 326906<br>(2519)  | 0.025 (0.011)  | -0.038 (0.011) | 0.056 (0.004) |
| GR  | 9  | 2454653<br>(7365)  | 44996<br>(1146)  | 378422<br>(4152)  | 0.018 (0.028)  | -0.016 (0.027) | 0.039 (0.002) |
| AE  | 10 | 2460422<br>(20650) | 56260<br>(3439)  | 403259<br>(10465) | 0.018 (0.060)  | -0.001 (0.062) | 0.030 (0.002) |
| CY  | 10 | 2338318<br>(48463) | 113377<br>(2229) | 480021<br>(13581) | 0.022 (0.047)  | -0.034 (0.049) | 0.059 (0.004) |
| IS  | 9  | 2509099<br>(9500)  | 172624<br>(4018) | 608944<br>(3597)  | -0.019 (0.015) | -0.036 (0.016) | 0.021 (0.003) |


856

857

858 N: number of individuals in the population; #PI: number of polymorphic sites per  
859 populations; #PA: number of private alleles per population; #Rare: Number of rare alleles  
860 per population;  $F_{IT}$ : mean individual inbreeding coefficient relative to the meta-population;  
861  $F_{IS}$ : population level inbreeding coefficient;  $F_{ST}$ : population specific  $F_{ST}$  as in Weir and Goudet  
862 2017. Populations: WC – Canary Islands, PT – Portugal, FR – France, CH – Switzerland, DK –  
863 Denmark, IT – Italy, SB – Serbia, GR – Greece, AE – Aegean Islands, CY – Cyprus, IS – Israel.

864 **Figures**


865

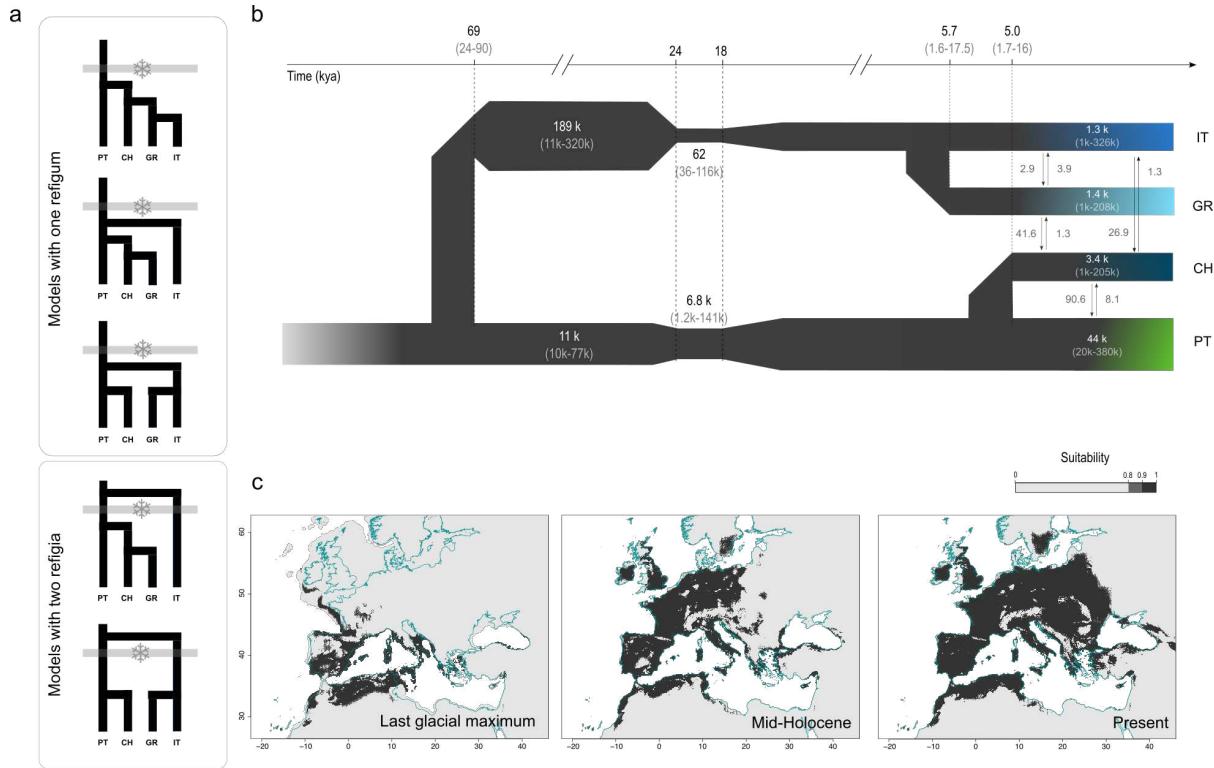


866

867

868 **Figure 1** - Genetic structure of barn owl populations in Western Palearctic. **(a)** Population  
 869 structure for  $K=6$ . Pie charts denote the individual proportion of each of lineages as  
 870 determined by sNMF and are located at the approximate centroid of the sampled  
 871 population. **(b)** Population structure for  $K=3$ . Each bar denotes the individual proportion of  
 872 each of the 3 lineages as determined by sNMF. **(c)** Matrix of pairwise  $F_{ST}$  between barn owl  
 873 populations in Western Palearctic. The heatmap provides a visual representation of the  $F_{ST}$   
 874 values given in each cell. **(d)** PCA based on full set of 94 individuals. Point shape denotes  
 875 populations and colored circles enclose sample clusters observed in sNMF ( $K=3$ ). Values in  
 876 parentheses indicate the percentage of variance explained by each axis. **(e)** PCA based on of  
 877 the 66 European individuals. **(f)** Population tree and the first migration event in Western  
 878 Palearctic populations inferred by Treemix.




879

880

881 **Figure 2** – Individual haplotype sharing between barn owl populations. Part of the total  
882 length of ChromoPainter chunks inherited from other genomes. Each graph summarizes the  
883 information of all the genomes from a given population, indicated on the top-left corner.  
884 Background colors match the lineages identified in fig. 1.

885

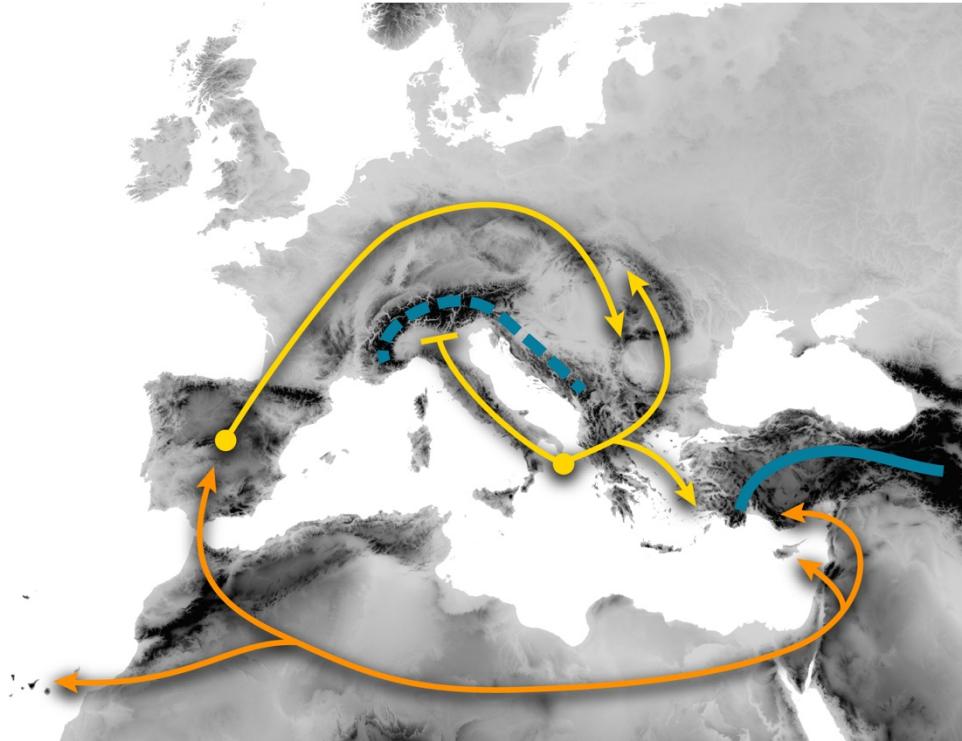
886



887

888

**Figure 3 –** Modeling of the history of the barn owl in Europe. (a) Schematic representation of the five demographic scenarios tested for the colonization of the Europe by barn owls. Three models included one refugium in the Iberia during the LGM while the last two included two refugia, one in Iberia and the second in Italy. Grey bars with snowflakes represent the last glaciation. (b) Best supported demographic model for the history of European barn owl populations as determined by fastsimcoal2. Time is indicated in thousands of years, determined using a 3-year generation time, confidence intervals at 95% are given between brackets. Population sizes (haploid) are shown inside each population bar; arrows indicate forward-in-time migration rate and direction. (c) Species distribution model of barn owls based on climatic variables, projected into the past (last glacial maximum (20 kya) mid-Holocene (6 kya)) and today's condition. Locations in dark grey were highly suitable in 90% of the models. Below that threshold cells were considered as unsuitable (lightest grey shade on the graph). The present coastline is outlined in blue in all graphs.


903

904

905

906

907



908

909

910 **Figure 4** – Schematic representation of the history of barn owls in the Western Palearctic  
911 and the main barriers in the region. Orange arrows depict the colonization of the region by  
912 the three main lineages (Levant, Canary Islands, European). Yellow arrows represent the  
913 modeled postglacial recolonization scheme of Europe, with two distinct refugia (yellow  
914 dots). Blue lines represent the main barriers identified in this work, namely the Alps in  
915 Europe (dashed line) and the Taurus and Zagros mountains in Anatolia (solid line).