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Abstract: Predicting the order of biological homologs is a fundamental task in evolutionary
biology. For protein evolution, this order is often determined by first arranging sequences into a
phylogenetic tree, which has limiting assumptions and can suffer from substantial ambiguity.
Here, we demonstrate how machine learning algorithms called language models can learn
mutational likelihoods that predict the directionality of evolution, thereby enabling phylogenetic
analysis that addresses key limitations of existing methods. Our main conceptual advance is to
construct a “vector field” of protein evolution through local evolutionary predictions that we
refer to as evolutionary velocity (evo-velocity). We show that evo-velocity can successfully
predict evolutionary order at vastly different timescales, from viral proteins evolving over years
to eukaryotic proteins evolving over geologic eons. Evo-velocity also yields new evolutionary
insights, predicting strategies of viral-host immune escape, resolving conflicting theories on the
evolution of serpins, and revealing a key role of horizontal gene transfer in the evolution of
eukaryotic glycolysis. In doing so, our work suggests that language models can learn sufficient

rules of natural protein evolution to enable evolutionary predictability.
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I Introduction
2 Predicting evolutionary order has diverse applications that range from tracing the
3 progression of viral outbreaks to understanding the history of life on earth [1]-[6]. For protein
4 evolution, this prediction is often based on reconstructing and rooting phylogenetic trees of
5  protein sequences [7]. While useful, ordering sequences based on a phylogenetic tree has a
6 number of limiting assumptions; for example, determining the root of the tree can drastically
7 alter the predicted order [8], but beyond the strictest assumptions, determining this root requires
8  manual expertise or external evidence (for example, based on known sampling times or the fossil
9  record), which may not always be available [8], [9].
10 Here, we propose a novel approach to analyzing and ordering the trajectories of protein
11 evolution that we refer to as “evolutionary velocity,” or “evo-velocity.” Evo-velocity is
12 conceptually inspired by work in theoretical biology that understands evolution as a path that
13 traverses a “fitness landscape” based on locally optimal decisions [2]-[4], [10]-[12]. Our key
14 conceptual advance is that by learning the rules underlying local evolution, we can construct a
15 global evolutionary “vector field” that we can then use to: (i) predict the root (or potentially
16 multiple roots) of observed evolutionary trajectories, (ii) order protein sequences in evolutionary
17 time, and (ii1) identify the mutational strategies that drive these trajectories.
18 To make local evolutionary predictions, we leverage recent advances in the ability of
19 machine learning algorithms called language models to predict the effects of single-residue
20 mutations on biological fitness when trained on natural sequence variation alone [13]-[16]. Thus
21 far, however, language models have only been applied to modeling local evolution, such as
22 single-residue mutations, rather than more complex changes that occur over long evolutionary

23 trajectories.
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Evo-velocity is aimed at closing the gap between landscape-based evolutionary theory
[2], [3], [10] and the analysis of evolutionary trajectories observed in nature. Our algorithm is
general (we use a single model for all proteins), does not have many of the assumptions typical
of phylogenetic methods (for example, evo-velocity can produce multiple roots or model
convergent evolution), and requires sequence data alone. We use evo-velocity to analyze protein
evolution across a breadth of organisms and evolutionary timescales—from the evolution of viral
proteins over the course of years to the evolution of enzymes across all three domains of life—

suggesting how we might expand our ability to understand and predict evolution.

Results
Overview of language models and evo-velocity

Our approach is based on the premise that evolution occurs through locally optimal
changes that preserve or enhance evolutionary fitness, which has theoretical precedent in the
concept of a path through a fitness landscape [2], [10]. In theory, predicting local evolution
should therefore provide insight into global evolution as well (Figure 1A).

To predict the local rules of evolution, we leverage protein language models, which learn
the likelihood that a particular amino acid residue appears within a given sequence context
(Figure 1B). When trained on large corpuses of natural sequences, this language model
likelihood is a strong correlate of the effects of mutations on various notions of protein fitness.
For example, the ESM-1b language model [15], trained on ~3 million sequences in the UniRef50
database [17] (Table S1), can predict the effects of single-residue mutations as quantified by
deep mutational scanning (DMS) of diverse proteins [18], [19] (Figure 1C and Data S1;
Methods). Surprisingly, this correlation is comparable to that of a state-of-the-art mutational

effect predictor [20] that was specially trained on sequence variation within individual protein
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47  families (Figure 1C); in contrast, ESM-1b is trained on a dataset that removes most intra-family
48 sequence variation [17].

49 Our key hypothesis is that the likelihoods learned by these large-scale protein language
50  models can be used to provide a notion of directionality within evolutionary trajectories. In our
51 approach, which we call evo-velocity, we first model the “landscape” or the “manifold” [21] of
52 sequence variation by constructing a sequence similarity network [22] in which each node

53  represents a protein sequence and edges connect similar sequences (Figure 1D). We quantify

54 sequence similarity as the Euclidean distance in language model embedding space, which can

55  encode complex functional relationships [13]-[16], and we construct the network by connecting
56  asequence to its k-nearest neighbors (KNN), which has been useful in modeling biological

57  landscapes in many genomics applications [23]-[25].

58 Then, language models assign a directionality to each edge in the KNN network based on
59  the change in language model likelihood between the two sequences in that edge (Figure 1D).
60  We hypothesize that evolution moves toward higher likelihoods, which are correlated with

61  higher fitness (Figure 1C). Across the entire network, we can then analyze the “flow” of

62  evolution, which includes estimating the root sequences in the network (equivalent to finding the
63 “valleys” of the landscape), ordering sequences in pseudotime (a continuous score that enables
64  rank-based comparison among sequences) [26], visualizing the trajectory in two dimensions

65  [24], and identifying mutations that correlate with the direction of evo-velocity (Figure 1D); we
66  provide detailed methodology in Methods. Intuitively, the local predictions of language models
67  assign a “velocity” to pairs of sequences that we assemble into an evolutionary “vector field”

68  [27]. In this paper, we implement evo-velocity with a single masked language model, ESM-1b,

69  but our framework can readily generalize to other implementations as well.
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70 Evo-velocity of influenza A nucleoprotein

71 As initial validation, we used evo-velocity to reconstruct the evolution of the

72 nucleoprotein (NP) of influenza A virus. NP is an excellent evolutionary test case since its

73 sequence evolution is densely sampled through influenza viral surveillance and it undergoes

74 natural selection in the form of host immune pressure, but is less mutable than other viral

75  proteins with a mutation rate of about one amino-acid residue per year [28]. We obtained 3,304
76 complete NP sequences sampled from human hosts, constructed the sequence similarity network,
77 and computed evo-velocity scores. When we visualized this network in two dimensions [24], we
78  observed phylogenetic structure corresponding to both the sampling year and influenza subtype
79 (Figures 2A and S1A). Strikingly, the evo-velocity flow through the network (Methods)

80  corresponded to the known temporal evolution of NP (Figure 2A).

81 Since visualizing this flow in two dimensions can be prone to information loss or

82 distortion through dimensionality reduction [27], we sought to further quantify the relationship
83 between evo-velocity and NP evolution. We first verified that, on average, the evo-velocity

84 scores of the individual network edges increase along with greater differences in sampling time
85  (Figure S1B). We then quantified global evo-velocity patterns using a diffusion analysis to

86 estimate the network’s roots (Methods). Interestingly, the evo-velocity-inferred root sequences
87  corresponded to the main species-crossover events in influenza history (Figure 2B), suggesting
88 that our analysis accurately inferred the evolutionary origins of NP as observed in human hosts.
89 We then used these roots to order sequences according to evo-velocity pseudotime (Methods)
90  and observed a significant correlation between pseudotime and known sampling date (Spearman
91 r=0.49, two-sided t-distribution P = 4 x 10"°7) (Figure 2C). We also observed that a well-

92 characterized phylogenetic path of NP [28] progressed, on average, in the same direction as the
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evo-velocity gradient (Figure 2A,C) and agreed with simulated paths generated by random
walks across our evo-velocity landscape (Figure 2D; Methods).

When comparing our evo-velocity landscape to a standard phylogenetic tree, we observed
that evo-velocity can model more complex evolutionary relationships. For example, a midpoint-
rooted phylogenetic tree of all NP sequences (Methods) visually suggests that the HSN1- and
H7N9-subtype sequences branch off from HINT1 (Figure 2E). Instead, evo-velocity predicts an
independent origin of HSN1/H7N9 (Figure 2C,F), consistent with epidemiological data
indicating recent zoonotic crossover of H5 and H7 avian influenza [29]. Evo-velocity also
predicts that the observed similarity of HSN1/H7N9 and HIN1 NP sequences sampled in human
hosts is due to convergent evolution (Figure 2F), which is challenging to explicitly represent
with a phylogenetic tree.

We next sought to use our evo-velocity landscape to provide new insight into NP
evolution. We therefore identified the mutations that corresponded to the strongest changes in the
evo-velocity scores (Methods). Of the top five such mutations in NP, all are present in
experimentally-validated human T-cell epitopes and one of these mutations, M3741, is located in
the most well-characterized linear NP epitope in the Immune Epitope Research Database (IEDB)
[30] (Figures 2G, S1C, and Table S2). Moreover, all five mutations involve a single-nucleotide
substitution resulting in a methionine changed to a hydrophobic or polar-uncharged amino acid
residue, suggesting a possible T-cell escape strategy that has recurred in multiple NP epitopes
throughout history (Figures 2G and S1C).

All NP sequences in our analysis belong to a single UniRef50 sequence cluster [17] for
which the representative sequence is from a 1934 HIN1 virus (Figure S1D). We found that

similarity to sequences present in UniRef50, the ESM-1b training dataset, does not explain evo-
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116 velocity pseudotime (Table S3; Methods). We also found that computing evo-velocity scores
117 with a smaller language model, TAPE [14], trained with a different model architecture on the

118  Pfam database of protein families [31], closely reproduced the ESM-1b evo-velocity results

119 (Spearman r = 0.93, two-sided t-distribution P < 1 x 103%) (Table S4 and Figure S1E,F). Using
120 simpler evolutionary scores to compute velocities or using binary sequence embeddings also

121 largely reproduced the ESM-1b results, though with weaker temporal correlation (Figure S1G
122 and Table S5; Methods). Together, these results suggest that our evo-velocity results are not

123 explained by trivial language model preference to UniRef50. We also found that evo-velocity
124 pseudotime was not explained by variation in sequence length (Table S6).

125 Evo-velocity was therefore able to reconstruct the direction of NP evolution without any
126 explicit knowledge of influenza subtype or when the NP sequences were sampled. Moreover, we
127 found that the generic rules learned by large language models were sufficient to predict the

128 evolution of a specific protein.

129 Evo-velocity of viral proteins

130 Given the promising results for NP, we were therefore interested in seeing if evo-velocity
131 could generalize to other viral proteins as well. We next analyzed the evolution of influenza A
132 hemagglutinin (HA), a more variable protein on the viral surface responsible for viral-host

133 membrane fusion [32]. As with NP, evo-velocity analysis of 8,115 HA sequences recovered

134 roots corresponding to the known origins of HA H1 in humans from 1918 and 2009 HIN1

135 pandemics, and evo-velocity pseudotime was strongly correlated with sampling date (Spearman r
136 =0.63, two-sided t-distribution P < 1 x 10%) (Figure 3A,B). Despite the higher sequence

137 variability of HA than NP, evo-velocity was still able to reconstruct the trajectory and

138 directionality of HA evolution.
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As with NP, our HA pseudotime results were not explained by sequence similarity to the
training dataset (Figure S2A and Table S3). We were also able to use TAPE-based velocities to
identify similar root regions in the post-2009 pandemic trajectory, but TAPE had a more difficult
time identifying the 1918 sequences as oldest, most likely due to TAPE’s smaller model size and
less capable mutational effect predictions (Figures 1C, S2B-D, and Table S4).

We next analyzed the evolution of the group specific antigen (Gag) polyprotein of human
immunodeficiency virus type 1 (HIV-1) using 18,018 sequences. Visualizing the sequence
similarity network overlaid with evo-velocity reveals a flow corresponding to the known subtype
branching history of HIV-1, with circulating recombinant forms (for example, subtypes AE and
BC) branching off of the main subtypes and occurring later in pseudotime (Figure 3C,D). HIV-1
Gag sequences also had strong positive velocities compared to phylogenetically-similar Gag
sequences from chimpanzee simian immunodeficiency virus (SIVcpz) (Figure S2E), consistent
with a SIVcpz origin preceding the evolution of pandemic HIV-1 [33]. We observed much
weaker correlation between pseudotime and sampling date (Spearman r = 0.093, two-sided #-
distribution P = 5 x 107?) (Figure S2F) compared to influenza proteins, consistent with the
much weaker population-level immune pressure on Gag evolution. Gag pseudotime was not
explained by sequence similarity to UniRef50 (Table S3) and was also reproducible using
TAPE-based velocities (Figure S2G and Table S4).

We next applied our algorithm to analyze 46,986 sequences of the Spike glycoprotein of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) across a much shorter historical
timescale of around eighteen months. The sequence similarity network reconstructs the overall
trajectory of Spike evolution, and evo-velocity analysis identifies the sequence clusters

associated with later sequences, including the B.1.1.7, B.1.351, B.1.617.1, B.1.617.2, and P.1
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variants-of-concern [34], as later in pseudotime (Figures 3E-G). Despite a shorter evolutionary
timescale, evo-velocity pseudotime and sampling date still had a Spearman correlation of 0.41
(two-sided -distribution P < 1 x 103%). We also note that SARS-CoV-2 Spike evolution
occurred outside of the temporal range associated with both language model training datasets and
we were also able to reproduce the results with TAPE-based evo-velocity (Figure S2H and
Table S4).

Across these four viral proteins, therefore, evo-velocity was able to reconstruct the
directionality of evolution consistent with known trajectories. Importantly, all of our analysis
was based on a single model that was trained without explicit knowledge of viral sampling date,

subtype, or protein-specific sequence variation.

Evo-velocity of eukaryotic proteins

After validating our approach with known viral trajectories, we wanted to see if evo-
velocity could generalize to longer trajectories, such as protein evolution that spans multiple
species. Though we have access only to extant sequences, we hypothesized that evo-velocity
might still provide useful orderings if some extant sequences are closer to the ancestral sequence
than others. As an initial test case, we analyzed the globin protein family due to its extensive
phylogenetic characterization [35], including laboratory reconstruction of ancestral
intermediates, that we can use to validate our model (Figure 4A).

The landscape of 6,097 eukaryotic globin sequences forms a branching trajectory with
three major divisions corresponding to myoglobin, alpha hemoglobin, and beta hemoglobin
(Figure 4B). The predicted root region lies in the part of the landscape closest to neuroglobin
and cytoglobin (Figure S3A,B). Of the major classes of globins, neuroglobin is estimated to be

earliest in pseudotime while the alpha (Hba)) and beta (Hbf) subunits of hemoglobin occur last in
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pseudotime (Figure 4C), consistent with a previous analysis of globin phylogeny by Pillai et al.
[35] (Figure 4A). These results are also reproducible when using TAPE to compute the evo-
velocity scores (Figure S3C,D and Table S4) and when controlling for sequence similarity to
the training dataset (Figure S3D and Table S3; Methods).

Previous work [35] has also reconstructed ancestral globins that are confirmed to be
viable oxygen binders and that progress from a monomeric myoglobin/hemoglobin ancestor
(AncMH) to a dimeric alpha/beta hemoglobin ancestor (Anca/p) to a tetramer formed by
separate alpha and beta hemoglobin ancestors (Anca and Ancp, respectively) (Figure 4A).
Consistent with evo-velocity increasing over evolutionary time, the ESM-1b language model
likelihood, on average, increases from AncMH to extant myoglobin and hemoglobin sequences,
but this improvement diminishes for more proximal ancestors (Figure S3E). Together, our
globin results suggest that evo-velocity pseudotime within a protein family can recover ordering
relationships over longer evolutionary timescales.

To further test this hypothesis, we analyzed 2,128 sequences of cytochrome c, a well-
studied protein in evolutionary biology due to its high sequence conservation among most
eukaryotes [36]. When visualized, the sequence similarity network combined with evo-velocity
reflects the taxonomic diversification of the eukaryota (Figure 4D). The ordering of the median
pseudotimes of different taxonomic classes also recapitulates their known ordering in geologic
time based on estimates from the fossil record and molecular clocks [37] (Figures 4E,F and
S4A,B), and the variation in pseudotime enables a notion of uncertainty in the form of
pseudotemporal confidence intervals. We were also able to reproduce pseudotemporal orderings
when using TAPE to compute the evo-velocity scores (Figure S4C,D and Table S4) and when

controlling for sequence similarity to the training dataset (Figure S4D and Table S3). In total,

10
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therefore, our analysis of well-studied eukaryotic protein families demonstrates that evo-velocity

can generalize to protein evolution at much longer timescales.

Evo-velocity of ancient evolution

After validating that evo-velocity could reconstruct longer trajectories of protein
evolution, we applied evo-velocity to highly-conserved proteins, which often have substantial
evolutionary uncertainty [6], to yield new insight into ancient evolution. A protein family with
considerable evolutionary uncertainty is that of the serine protease inhibitors, or serpins [38],
[39]. Unlike most highly-conserved families, in which most of the diversity is bacterial, most of
the diversity among serpins is eukaryotic, which we likewise observe in our landscape of 22,737
serpin sequences (Figure SA,B). This has led to conflicting theories as to whether serpins indeed
have a phylogenetic root in eukaryotes, with prokaryotes acquiring serpins via horizontal gene
transfer (HGT), or if this root is an artifact of greater eukaryotic diversity biasing phylogenetic
root estimation [38]-[40]. Since evo-velocity is not prone to the same bias when estimating
roots, we used evo-velocity to order serpin sequences in pseudotime and found that the main
predicted root region was located among the prokaryotes (Figures SB,C and SSA). These results,
along with the uncertain mechanism of eukaryotic-to-prokaryotic HGT [40], provide strong
evidence that serpin evolution follows a more canonical trajectory.

We next analyzed two of the most conserved glycolytic enzymes, enolase and
phosphoglycerate kinase (PGK) [41]-[43]. The landscape of 31,901 sequences from the enolase
family shows a clear evo-velocity-predicted root region located in bacterial and archaeal
sequences (Figures SD and S5B,C). Archaea are also oldest in pseudotime and eukaryota are
newest, with bacteria showing considerable pseudotemporal variation (Figures SE and S5C).

The landscape of 30,455 PGK sequences has a similar origin in a region with bacterial and

11
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231 archaeal sequences (Figures SF and SSD,E), though with more pseudotemporal variation among
232 archaeal PGK (Figures 5G and SSE).

233 The largest difference between the enolase and PGK landscapes lies in the location of
234 eukaryota: while both estimate eukaryota to be recent in pseudotime, eukaryotic sequences

235  branch off of archaeal enolase but branch off of bacterial PGK (Figures SD,F); similar patterns
236 are also observed when visualizing the unrooted phylogenetic trees of both proteins (Figures

237 SSF,G). These results suggest an archaeal origin of eukaryotic enolase and a bacterial origin of
238 eukaryotic PGK (Figure SH) and are consistent with HGT contributing to a mixture of archaeal
239 and bacterial genes in the last eukaryotic common ancestor [6]. These results are also consistent
240 with a component-wise evolution of glycolysis [41], rather than the pathway being inherited in
241 totality from a single organism.

242 In all three highly conserved proteins that we tested, we were able to reproduce evo-

243 velocity pseudotime even when explicitly controlling for sequence similarity to the training

244 dataset (Figure SS5A,H and Table S3) and when using TAPE to compute the evo-velocity scores
245 (Figure S5A,H and Table S4). Variability in sequence length did not explain evo-velocity

246 pseudotime (Table S6). Moreover, the direction of the evo-velocity gradient is not explained by
247 trivial training set bias toward eukaryotes, as most of the sequences in UniRef50 are bacterial
248 (Table S1), and we emphasize that no explicit taxonomic information was provided to our

249 algorithm. Rather, our results suggest that evo-velocity can provide insight into evolution at the

250  longest evolutionary timescales.

251 Discussion
252 The degree to which evolution is predictable has been a longstanding debate [3], [4],

253 [44], [45]. Here we show that large-scale protein language models can learn evolutionary rules

12
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well enough to predict the ordering of sequences in evolutionary time. While the phylogenetic
tree is the oldest conceptual model of evolution [1] and has had wide application to natural
sequence variation [7], we show that landscape-based theory [3], [10]-[12] combined with
modern algorithms can also provide novel evolutionary insight that is complementary to existing
approaches.

Evo-velocity has a number of distinctives with respect to phylogenetic tree
reconstruction. Evo-velocity is especially suitable for analyzing large (~1000 or more)
collections of sequences. We currently limit our analysis to extant sequences, rather than
artificially reconstructing ancestral sequences, though these could be incorporated into the
analysis as well. In viewing evolution as a landscape, evo-velocity admits multiple “valleys” that
we refer to as roots. Because we predict the directionality of edges in the network, evo-velocity
roots are also better mathematically determined than phylogenetic roots [9], [46] (though users
could manually specify root sequences as well). Evo-velocity landscapes can also better model
phenomena like convergent evolution (Figure 2F).

We also find that evo-velocity provides a helpful notion of uncertainty in its predictions
that is less natural to obtain from standard phylogenetic methods. For example, evo-velocity
reports multiple roots, indicating evolutionary ambiguity regarding the oldest sequences or
reflecting discontinuous trajectories due to missing evolutionary ancestors. Similarly, the most
robust ordering relationships are at the level of groups of sequences, providing pseudotemporal
confidence intervals.

Computationally, our results are striking in that a single language model trained on
diverse, natural protein sequences seems to learn generic evolutionary rules. This is corroborated

by our finding that two independently-trained language models, ESM-1b and TAPE, can produce
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very similar pseudotemporal ordering results (Table S4), even though TAPE is a much weaker
mutational effect predictor than ESM-1b (Figure 1C). The robustness of evo-velocity
pseudotime to language model implementation may be because, in our framework, language
models only need to consider natural sequence changes [11], rather than the artificial mutations
introduced in deep mutational scanning (DMS) experiments; evo-velocity therefore benefits by
considering both the language model likelihood and semantic similarity [16]. Language models
may provide successful evo-velocity predictions because their conditional likelihoods capture
evolutionary contingency, which is a strong driver of natural sequence variation [47]. Our
findings raise a number of interesting computational questions, including the degree to which the
rules learned by language models are biologically interpretable (for example, in terms of
thermostability or evolvability [28], [48]) and whether better protein language models could
improve the performance and resolution of evo-velocity.

Promisingly, evo-velocity offers a new approach through which to reevaluate current
evolutionary hypotheses. For example, when evaluating a potential hypothesis of eukaryote-to-
prokaryote HGT among serpins [38], [39], evo-velocity instead predicted a more canonical
evolutionary trajectory (Figure 5). While we mostly take a gene-centric approach to evolution
[49], trajectories could also be integrated across multiple genes to provide insight into evolution
at the level of pathways (as done for our analysis of glycolytic enzymes), gene modules, or even
whole genomes. This might enable calibrating evo-velocity pseudotime to historical or geologic
time, providing an additional method for dating evolutionary events. Evo-velocity also suggests a

way to predict future evolution and to design novel protein sequences.

14


https://doi.org/10.1101/2021.06.07.447389
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447389; this version posted June 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

298

300

301

302

303

304

305

306

307

308

309

310

311

Figures and figure captions

A B Output c . m=ESM-1b o DeepSequence o TAPE
Local predictions Y likelihood 0.7 8 P q
i POt 06| ' H
(e) f
o = osle
O Embedding & B 5 H
/ \ O/O Ii—l z = f(x) g oaflc @ - 9
4 ’ 0.3 o °
’ e " m skl « -
e b ’ B ool é i
s \‘ ¢ o 1% | © E
e, Input oy gl I I | .
e’ sequence 0.0 gee o o N e ',b & % 5 o
VLS _KAAX ARSI % w‘-‘?‘\\ \H: <</ fo%\
Global landscape ?g)QL Q,Q-OOVE’ F& S, \*“\‘@\Q\Q\ ‘qu £ &
D Evolutionary velocity Downstream analysis

Direct network
edges

Different mutational
likelihoods Predict directionality

X® Q= O x® |:> XA ——= Ox® |:1J>

P | 7)) > p(x® | Ax®))

Local

Global

Infer roots

33?0
&,

Order in
pseudotime Identify mutations
SVK = STK
- + ;

Figure 1: Constructing an evolutionary vector field by predicting local evolution.

(A) A global evolutionary landscape can be approximated by a composition of local evolutionary

predictions. (B) To make these predictions, we can leverage language models that learn the

likelihood of an amino acid occurring within some sequence context. (C) The pseudolikelihoods

learned by language models correlate with DMS-based measurements of various notions of

protein fitness without the language models being explicitly trained on this data (Methods).

While DeepSequence trains a separate model for each protein family, ESM-1b and TAPE are

general language models each trained on a single, non-redundant dataset. Circles indicate

correlations of different DMS profiles within the same study (Data S1); bar height indicates the

mean across these profiles. (D) Evo-velocity uses language model likelihoods to assign a

directionality to edges in a sequence similarity network, enabling downstream analysis like

predicting root nodes, ordering nodes in pseudotime, and identifying mutations associated with

the largest changes in evo-velocity (Methods).
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Figure 2: Evo-velocity of influenza A nucleoprotein.

UMAP 1

(A) The landscape of NP sequences, represented as a KNN sequence similarity network, shows

structure corresponding to temporal evolution of various subtypes of influenza (Figure S1A);

gray lines indicate network edges. Overlaying evo-velocity on the visualization as a streamplot

shows a visual correlation between the flow of evo-velocity and known sampling time. A known

16

phylogenetic path (orange circles) from Gong et al. [28] starting with Aichi/1968 and ending

with Brisbane/2007 moves in the direction of evo-velocity. (B) Using the evo-velocity
directionality to predict roots reveals four main root regions corresponding to the beginnings of

different influenza pandemic events throughout history. (C) Ordering sequences in pseudotime
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and visualizing pseudotime values in a two-dimensional contour plot shows pseudotime increase
in the direction of evo-velocity, which here is visualized as a two-dimensional field of evo-
velocity vectors. (D) On average, the Gong et al. path visualized in (A) and (C) has positive
changes in evo-velocity scores over time and largely resembles simulated paths generated by
performing random walks across our evo-velocity landscape (Methods). A portion of the Gong
et al. path with negative evo-velocity scores may be due to ordering ambiguities that are better
resolved by considering evo-velocity. (E) A maximum-likelihood, midpoint-rooted phylogenetic
tree of all NP sequences conveys that HSN1 and H7NO subtype sequences branch off from HIN1
sequences. (F) In contrast, evo-velocity predicts an independent origin of HSN1/H7NO influenza
[29] (see B) and sequence similarity with HIN1 due to convergent evolution. (G) The M3741
mutation to NP has the second strongest magnitude change in evo-velocity (Methods) and is

located in the most well-studied human T-cell epitope on NP (Table S2).
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3 Figure 3: Evo-velocity of viral proteins.

4 (A, B) Temporal evolution of HA H1 evolution is captured in the UMAP landscape and is also
5  predicted by evo-velocity pseudotime. Two main clusters correspond to the two main pandemic
6  trajectories of HINI, the first beginning in the early twentieth century and the second beginning
7 in the early twenty-first century. (C, D) An evo-velocity streamplot of Gag evolution illustrates
8  the branching trajectories of HIV-1 subtypes, including major subtypes like A, B, and C

39 preceding circulating recombinant forms like AE and BC. Box extends from first to third quartile

340 with line at the median, whiskers extend to 1.5 times the interquartile range, and diamonds

indicate outlier points. (E-G) Variants of Spike (identified using characteristic mutations like

342 D614G and N501Y) that emerge in later portions of the COVID-19 pandemic are also predicted

W

W

to be later in evo-velocity pseudotime.
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Figure 4: Evo-velocity of eukaryotic proteins.

(A) The maximum likelihood phylogenetic tree determined by Pillai et al. [35] is rooted in globin
X and neuroglobin with the longest branches extending to Hba and Hbf. (B) The landscape of
globin sequences shows a branching trajectory with the predicted root also closest to neuroglobin
(Figure S3A). (C) Computing pseudotime from this predicted root places Hba and Hbf as most
recent in evolution, consistent with the tree of Pillai et al. (D) The landscape of cytochrome ¢
sequences shows clustering structure corresponding to known taxonomic labels, with the evo-
velocity gradient beginning among single-celled eukaryotes and plants (Figure S4A). (E, F) The
ordering of the median evo-velocity pseudotimes of various taxonomic labels corresponds to the
evolutionary orderings in geologic time determined by molecular clocks and the fossil record
[37]. For all boxplots: box extends from first to third quartile with line at the median, whiskers

extend to 1.5 times the interquartile range, and diamonds indicate outlier points.
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356  Figure 5: Evo-velocity of ancient evolution.

357 (A) The unrooted maximum likelihood phylogenetic tree of serpins shows substantially more
358 eukaryotic than prokaryotic diversity, leading some to hypothesize a eukaryotic root [38], [39].
359 (B, C) Despite lower prokaryotic diversity, evo-velocity still identifies the root of serpins within
360  the prokaryotes, and eukaryotes are the last domain in evo-velocity pseudotime (Figure SS5A),
361 suggesting that prokaryotic serpins were not acquired from eukaryotes via HGT [38], [39]. (D,
362 E) The evo-velocity-predicted root of the enolase landscape begins in a region of archaea and
363 some bacteria, with eukaryotic enolase as the most recent in pseudotime and directly proximal to
364 archaeal enolase on the sequence landscape (Figure S5B,C,F). (F, G) The evo-velocity-

365  predicted root of the PGK landscape begins in a mostly bacterial region with some archaea, with
366 eukaryotic PGK also very recent in pseudotime and directly proximal to bacterial PGK (Figure

367 SSD,E,G). (H) The sequence landscapes and evo-velocity-predicted roots suggest that the
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368 component enzymes of eukaryotic glycolysis were acquired through different evolutionary paths
369 via HGT; figure adapted from Figure 1 of Weiss et al. [6]. For all boxplots: box extends from
370 first to third quartile with line at the median, whiskers extend to 1.5 times the interquartile range,

371 and diamonds indicate outlier points.
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372 Methods

373 Language models

374 In this paper, we implement evo-velocity with masked language models, which are

375  trained by masking certain residues in the input and predicting these residues in the output. For a
376  sequence X € X'V, where X is the set of amino acids and N is the sequence length, the masked
377 language modeling objective implicitly models a distribution over sequences through conditional
378 likelihoods p(xl- |X[N]\{i}) where X[y}\;; denotes the sequence without the residue at position i,
379 sometimes referred to as the sequence context. Typically, these language models also learn a

380 latent variable z; € RP by learning a function f: XXV~ —» R? where z; & f(X[y)\3) such that
381 p(o Xy 2:) = p(xilz).

382 We use two large-scale language models trained with a masked objective. We used the

383  ESM-1b model [15] (obtained from https://github.com/facebookresearch/esm) trained on the

384  March 2018 release of UniRef50 [17]. We also used the TAPE transformer model [14] (obtained

385  from https://github.com/songlab-cal/tape) trained on the Pfam database release 32.0 [31]. Unless

386 otherwise stated, we used ESM-1b as the default model for our experiments.

387 Evo-velocity score computation

388 We compute an evo-velocity score that compares two sequences X® and x® as
1 b b
389 Vab def M Z [logp(xl( )lzi(a)) — logp(xi(a)|zi( ))]’
ieM
390  where M & {i : xl.(a) * xl.(b)} is the set of positions at which the amino acid residues disagree.

391 We designed the evo-velocity score based on masked-language-model pseudolikelihoods [19] to

392 efficiently approximate the change in likelihood of mutating sequence x® to x®) and vice
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393 versa. The evo-velocity score is positive if moving from x(® to x®) is more favorable and
394 negative if moving from x® to x(@ is more favorable, so that vy, = —vp,.

395 In practice, Xx(®) and x® can disagree in length, so we first perform a global pairwise

396  sequence alignment using the pairwise2 module in the Biopython Python package version 1.76
397  with a uniform substitution matrix and alignment parameters meant to discourage the

398 introduction of sequence gaps (following the Biopython recommendations, we use a match score
399 of 5, a mismatch penalty of -4, a gap-open penalty of -4, and a gap-extension penalty of -0.1).
400  We ignore positions involving alignment gaps when computing the evo-velocity score, i.e., the
401 evo-velocity score is only based on substitutions, since modeling the effect of an insertion or a
402 deletion is less well defined when using a masked language model to predict mutations. We do

403 not include gap characters when computing language model likelihoods.

404 Constructing the sequence similarity network and evo-velocity transition matrix

405 To construct the sequence similarity network, we first use the language model to obtain a
. 1 .
406 sequence embedding z(@) g ¥ N zi(a) for each sequence x@ in the set of sequences-of-

407 1interest (for example, proteins within the same family) of size M. We use ESM-1b to compute
408  the embeddings for each sequence as the 1,280-dimensional output of the last (i.e., the 33rd)

409 hidden layer of the language model.

410 We then construct a directed graph where each node corresponds to a sequence and we
411 connect a node to its k-nearest neighbors based on the Euclidean distance in the language model
412 embedding space in RP. We can then use the evo-velocity scores and the KNN graph to

413 construct a transition matrix Q € RM*M  where

exp(Vap)
Zb’EN(xa) exp(vgp')

414 Qap &
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415 s the entry in the ath row and bth column of Q and V() denotes the set of the neighbors in the
416 KNN graph. Note that ¥ ,ep) qap = 1.

417 In all our experiments, we use the embedding function learned by the ESM-1b language
418 model. To construct the KNN graph, we use the functionality provided by the Scanpy Python
419 package version 1.6.1 [23]. In practice, higher values of k result in smoother, less noisy

420 landscapes at the cost of higher computational effort. We find that values of k around 30 to 50
421 (our package defaults to 50) provide a good balance between robustness to noise and

422 computational efficiency (though analyses involving less sequences overall or more

423 homogeneous sequences can also tolerate lower values of k to speed up analysis); the 30-50

424 range has also shown good empirical performance in other KNN-based analyses that require

425 robust estimation of the biological landscape [50]. In this paper, we use the values k = 30 for our
426 cytochrome c and Spike experiments, k = 40 for our NP and Gag experiments, and k = 50 for our

427 HA, globin, enolase, PGK, and serpin experiments.

428 Network diffusion analysis and predicting roots

429 To find the root nodes, we can use the fixed points of a diffusion process based on the
430 transition matrix Q [46], [S1]. Given a diffusion probability vector u(t), we can find roots by

431 running a diffusion process until a fixed point, 1.e., uC) = QTu*™ (note that we take the

432 transpose of the transition matrix to “reverse” the diffusion process, since our goal is to find the
433 root nodes). We take the highest values of n to identify the root nodes, where we obtain pu(*
434 as the eigenvector of QT corresponding to an eigenvalue of 1. By default, we use a cutoff at the
435 98" percentile of values in n(® to define the set of root nodes, as has been done previously [51].
436 We assume Q corresponds to a strongly connected directed graph, which is true if the KNN

437  network consists of a single connected component (and which was true for all of our analyses); if
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438 the graph is strongly connected, then there is a unique value of n(*) [46]. We scale the final

439 values of the diffusion vector u(°°) to take values between O and 1, inclusive, and use the

440 diffusion-based root estimation procedure implemented by the scVelo Python package version

441 0.2.2 [51].

442 Diffusion pseudotime computation

443 We use diffusion pseudotime (DPT) to order sequences in evolutionary time. DPT is

444 described in detail by Haghverdi et al. [26] and is closely related to the geodesic distance

445  between two nodes in a graph. As done by Haghverdi et al., we denote the DPT score between a
446 root node X and a node x as dpt(x Y, x), which takes scaled values between 0 and 1,

447  inclusive. We use the graph encoded by the transition matrix Q. Since the root-prediction

448 analysis described above can yield potentially multiple roots, we define evo-velocity pseudotime

449 as the average of DPT scores across the set of all root nodes R, i.e.,

450 doti def i (root)
: pseudotime(x) R dpt(x o, x).

x(root) ¢ R

451 We use the DPT implementation provided by the Scanpy Python package.

452 Plotting, data visualization, and statistical analysis

453 We used the UMAP algorithm [24] to visualize the KNN graph in two dimensions. All
454 UMAP visualizations were obtained using the umap-learn Python package version 0.4.6 as

455 wrapped by Scanpy. We generated boxplots using the seaborn Python package version 0.11.1; in
456 all of our boxplots, the box extends from the first to third quartile, a horizontal line is drawn at
457  the median, and whiskers extend to 1.5 times the interquartile range. We used the scipy version
458 1.4.1 Python package to compute correlations and statistical tests. A P value of less than 1 x 10

459 3% indicates a value that was below the floating-point precision of our computer.
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460  Embedding transfer

461 We can project evo-velocity, as encoded by the transition matrix Q, into an arbitrary

462 embedding space (assuming that embeddings are available for all sequences) as done previously
463 [51]. For a sequence x@ and x®, we denote the respective embeddings as z@ and z®). We
464 then first compute the cosine-normalized translation vector separating sequences connected in

465  the KNN graph, i.e.,

466 P b def M
“ ”Zb _Zallz

467  and we obtain the velocity projections as the expected displacement with respect to Q, i.e.,

5 1
468 vV, & Z (qab - M) S.p-

b+a

469 We use two main interpretable embedding spaces in our downstream analysis. The first is
470 two-dimensional UMAP space, in which evo-velocity can be visualized as two-dimensional

471 vectors. Once these vectors are computed, we use the streamplot and quiver plot functionality of
472 the matplotlib Python package version 3.3.3 to visualize evo-velocity. The second interpretable
473 embedding space we consider is one-hot-encoded sequence space, which we use to identify

474 mutations that are associated with large changes in evo-velocity. To project evo-velocity into

475  sequence space, we first construct a multiple sequence alignment of all M sequences using

476 MAFFT version 7.475. A sequence X is then embedded into a one-hot-encoded vector Z €

477 {0,131 where N is the length of the alignment. The velocity projections take values in RV X1,
478 where we interpret each dimension as corresponding to a given residue in X at a given site in

479 [N].

480  Deep mutational scan benchmarking
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481 We obtained DMS values, all involving single-residue substitutions, and the

482 corresponding DeepSequence [20] mutational effect predictions from Livesey and Marsh [18].
483 To compute mutational effect predictions for ESM-1b and TAPE, we used the evo-velocity score
484 between the wildtype and mutant sequence as described above. As done by Livesey and March,
485  we evaluated the performance of the mutational effect prediction as the absolute value of the

486 Spearman correlation between the algorithm’s predicted mutational effect and the value reported
487 by the original DMS study, restricting only to mutants considered by the original DMS studies.
488 We used all DMS studies from Livesey and Marsh for which there were DeepSequence results

489 available.

490  UniRef50 sequence similarity computational control
491 We wanted to quantify if our evo-velocity results, including evo-velocity pseudotime,
492 could be explained by sequence similarity to the training set. We obtained this training set from

493 ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2018 03/uniref/. We

494 1identified representative sequences in UniRef50 by searching for the literal presence of the

495 sequence within UniRef50 or by mapping the protein accession information to UniProt IDs, if
496 available, and then mapping the UniProt IDs to the corresponding UniRef50 cluster

497  representative. Then, for each sequence in our evo-velocity analysis, we computed the sequence
498  similarity score to each representative sequence in UniRef50 and took the maximum of these
499  scores. To compute the sequence similarity score, we used the similarity ratio implemented by

500  the fuzzywuzzy Python package version 0.18.0, which is based on the Levenshtein distance

501 between two sequences and is normalized to take values between 0% and 100%, inclusive.
502 To perform the control experiment, we filtered out sequences with 80% or less sequence
503 similarity to the training set, thereby excluding sequences that are far from the sequences

27


ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2018_03/uniref/
https://doi.org/10.1101/2021.06.07.447389
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447389; this version posted June 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

504 considered by ESM-1b. We then evaluated the Spearman correlation between the similarity

505  scores and pseudotime, both in terms of the directionality of the correlation (e.g., a positive

506 correlation indicates that similarity to UniRef50 could be explaining pseudotime) and also in
507  terms of the change in this correlation compared to the correlation obtained on the full set of

508  sequences (Table S3). We also evaluated the ability for the overall pseudotemporal patterns (for
509  example, correlation with sampling time or ordering of taxonomic classes) to reproduce those

510  found when analyzing the full set of sequences.

511 TAPE reproducibility computational control

512 We also wanted to see how robust our evo-velocity results were to the language model
513 used to estimate the mutational likelihoods. We therefore obtained the TAPE transformer model
514 as described above. We performed the evo-velocity analysis by keeping the KNN graph structure
515  the same as in the ESM-1b analysis but using the evo-velocity scores obtained by the TAPE

516  likelihoods. All other downstream analyses, including root prediction and pseudotime

517  computation, were also kept the same. We then evaluated the ability for the final pseudotime

518  output to reproduce the output obtained by performing the same analysis except with ESM-1b

519  velocities.

520 Influenza A NP evo-velocity analysis
521 We obtained 3,304 unique NP sequences from the NIAID Influenza Research Database

522 (https://www.fludb.org) [52]. We restricted our analysis to sequences that were sampled from

523 human hosts. Metadata included the year the sequences were sampled and the influenza subtype
524 of the original virus. We performed KNN graph construction, evo-velocity computation, root
525  prediction, diffusion pseudotime estimation, and UMAP velocity projection as described

526 previously.
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We obtained an ordered phylogenetic path from Gong et al. [28] of H3N2-subtype NP
evolution from 1968 to 2007. We computed the ESM-1b evo-velocity score comparing adjacent
sequences along this path and plotted the cumulative sum of these scores versus the order in the
path (Figure 2D). We also compared the improvement in evo-velocity of this path to that of
simulated paths. To simulate paths across our evo-velocity landscape, we began at the same
starting sequence, used the same number of steps as the path of Gong et al., and only considered
paths that ended in the same cluster of sequences as the end sequence of Gong et al.’s path. We
used the transition matrix Q to define the probability of moving from node to node and we
performed 30,000 random walks.

We obtained a phylogenetic tree of all NP sequences considered in the evo-velocity
analysis by first aligning sequences with MAFFT followed by approximate maximum-likelihood
tree construction using FastTree version 2.1 using a JTT+CAT model. The midpoint-rooted tree

was visualized using the iTOL web tool (https://itol.embl.de/) [53].

We also projected evo-velocity into one-hot-encoding space to compute a N|X|-
dimensional vector V, for each sequence as described previously; we then averaged these vectors
across all sequences and inspected the top five mutations with the greatest magnitude change in
the resulting average. We then located these mutations onto a reference sequence from 1934
HI1N1 NP (UniProt ID: P03466), for which linear T-cell epitope data is available through the

Immune Epitope Database (https://www.iedb.org/) [30]. We restricted our consideration to linear

epitopes of influenza NP with positive validation in a T-cell assay.
We also conducted an ablation study to test the robustness of evo-velocity results when
using simpler methods for computing sequence embeddings or evo-velocity scores. We

recomputed the KNN graph based on N|X |-dimensional one-hot embeddings followed by
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dimensionality reduction based on the top-100 principal components to enable more efficient
estimation of nearest-neighbor relationships. We recomputed evo-velocity scores based on the
BLOSUMSG62 amino-acid substitution scores averaged across the set of differing positions, i.e.,
M, for each edge (obtained via global pairwise alignment with a uniform substitution matrix).
We reran analysis using binary embeddings or BLOSUMS62 velocities or both, while holding all
other parts of the pipeline constant. As a negative control, we also computed velocities by
sampling from a Gaussian distribution with zero mean and unit variance and reran analysis with

all other parts of the pipeline constant.

Influenza A HA evo-velocity analysis
We obtained 8,115 unique HA H1 sequences from the NIAID Influenza Research

Database (https://www.fludb.org) [52]. We restricted our analysis to sequences that were

sampled from human hosts. Metadata included the year the sequences were sampled and the
influenza subtype of the original virus. We performed KNN graph construction, evo-velocity
computation, root prediction, diffusion pseudotime estimation, and UMAP velocity projection as

described previously.

HIV-1 Gag evo-velocity analysis
We obtained 18,018 unique Gag sequences from the Los Alamos National Laboratory

HIV sequence database (https://www.hiv.lanl.gov). Metadata included the year the sequences

were sampled and the HIV subtype of the original virus. We performed KNN graph construction,
evo-velocity computation, root prediction, diffusion pseudotime estimation, and UMAP velocity
projection as described previously. We obtained four SIVcpz Gag sequences with high-quality,

manual annotation from UniProt (https://www.uniprot.org/) [54]. These sequences were obtained
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from SIVcpz isolates MB66 (UniProt ID: Q1A268), EK505 (UniProt ID: Q1A250), TAN1

(UniProt ID: Q8AII2), and GAB1 (UniProt ID: P17282).

SARS-CoV-2 Spike evo-velocity analysis
We obtained 46,986 unique, full-length Spike sequences from the May 27, 2021 GISAID

release (https://www.gisaid.org/) [55]. Metadata included the date the sequences were sampled.

We performed KNN graph construction, evo-velocity computation, root prediction, diffusion
pseudotime estimation, and UMAP velocity projection as described previously. We determined
the location of clusters corresponding to known variants-of-concern based on known marker
mutations including D614G, N501Y (for B.1.1.7, B.1.351, and P.1), K417N (for B.1.351),

P681H (for B.1.1.7), E154K (for B.1.617.1), and T478K (for B.1.617.2) [34].

Globins evo-velocity analysis

We obtained 6,097 globin sequences from UniProt. We restricted our analysis to
eukaryotic sequences within the “globin” family and to sequences between 135 and 155 residues
in length, inclusive, which was done based on a clear mode in the distribution of sequence
lengths and was meant to preserve mostly homologous sequences in our analysis. Metadata
included the taxonomic lineage of each sequence and, for some of the sequences, annotations
indicating the type of globin. We performed KNN graph construction, evo-velocity computation,
root prediction, diffusion pseudotime estimation, and UMAP velocity projection as described
previously. We obtained the rooted phylogenetic tree of globins and the inferred ancestral

sequences from Pillai et al. [35].

Cytochrome c evo-velocity analysis
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We obtained 2,128 cytochrome ¢ sequences from UniProt. We restricted our analysis to
eukaryotic sequences within the “cytochrome ¢” family and to sequences between 100 and 115
residues in length, inclusive, which was done based on a clear mode in the distribution of
sequence lengths and was meant to preserve mostly homologous sequences in our analysis.
Metadata included the taxonomic lineage of each sequence. We performed KNN graph
construction, evo-velocity computation, root prediction, diffusion pseudotime estimation, and
UMAP velocity projection as described previously. We obtained the approximate dates and

geologic eons of the emergences of different organisms from Hedges et al. [37].

Enolase evo-velocity analysis

We obtained 31,901 enolase sequences from UniProt. We restricted our analysis to
sequences within the “enolase” family and to sequences between 412 and 448 residues in length,
inclusive, which was done based on a clear mode in the distribution of sequence lengths and was
meant to preserve mostly homologous sequences in our analysis. Metadata included the
taxonomic lineage of each sequence. We performed KNN graph construction, evo-velocity
computation, root prediction, diffusion pseudotime estimation, and UMAP velocity projection as
described previously.

We obtained unrooted phylogenetic trees of enolase based on the subset of our UniProt
sequences with high-quality, manual annotation. We then performed a multiple sequence
alignment with MAFFT and performed phylogenetic reconstruction on the alignment with
PhyML version 3.3.20200621 using a JTT model with gamma-distributed among-site rate
variation and empirical state frequencies [56]. The unrooted tree was visualized using the iTOL

web tool.

PGK evo-velocity analysis
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We obtained 30,455 PGK sequences from UniProt. We restricted our analysis to
sequences within the “phosphoglycerate kinase” family and to sequences between 385 and 420
residues in length, inclusive, which was done based on a clear mode in the distribution of
sequence lengths and was meant to preserve mostly homologous sequences in our analysis.
Metadata included the taxonomic lineage of each sequence. We performed KNN graph
construction, evo-velocity computation, root prediction, diffusion pseudotime estimation, and
UMAP velocity projection as described previously.

We obtained unrooted phylogenetic trees of enolase based on the subset of our UniProt
sequences with high-quality, manual annotation. We then performed a multiple sequence
alignment with MAFFT and performed phylogenetic reconstruction on the alignment with
PhyML using a JTT model with gamma-distributed among-site rate variation and empirical state

frequencies. The unrooted tree was visualized using the iTOL web tool.

Serpins evo-velocity analysis

We obtained 22,737 serpin sequences from UniProt. We restricted our analysis to
sequences within the “serpin” family and to sequences between 300 and 525 residues in length,
inclusive, which was done based on a clear mode in the distribution of sequence lengths and was
meant to preserve mostly homologous sequences in our analysis. Metadata included the
taxonomic lineage of each sequence. We performed KNN graph construction, evo-velocity
computation, root prediction, diffusion pseudotime estimation, and UMAP velocity projection as
described previously.

We obtained unrooted phylogenetic trees of enolase based on the subset of our UniProt
sequences with high-quality, manual annotation. We then performed a multiple sequence

alignment with MAFFT and performed phylogenetic reconstruction on the alignment with
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639  PhyML using a JTT model with gamma-distributed among-site rate variation and empirical state

640  frequencies. The unrooted tree was visualized using the iTOL web tool.
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Data and code availability
Data used in our analysis has been deposited to Zenodo at doi:10.5281/zenodo.4891758.
Code used in our analysis has been deposited to Zenodo at doi:10.5281/zenodo.4891819. Our

code and links to data are also available on GitHub at https://github.com/brianhie/evolocity.
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Figure S1: Additional figures for nucleoprotein evo-velocity analysis.
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(A) The NP sequence landscape shows structure corresponding to influenza subtype. (B) By
stratifying edges based on the sampling time difference between their two corresponding
sequences and quantifying bias toward positive or negative evo-velocity scores using a binomial
test, we found that the bias toward positive evo-velocity scores increases as time increases. (C)
Mutations with strong magnitude changes in evo-velocity are also located in experimentally-
validated T-cell epitopes (Table S2). (D) All NP sequences belong to a single UniRef50 cluster,
which has as its representative a sequence from 1934 HINI1. (E, F) Evo-velocity pseudotime of
NP based on ESM-1b- or TAPE-based evo-velocity scores have high correlation (Table S4). (G)
Replacing ESM-1b embeddings with one-hot sequence embeddings removes some of the known
evolutionary continuity relationships from the visualization, especially in the well-studied
trajectory of H3N2 NP evolution. Replacing ESM-1b evo-velocity scores with BLOSUM62

scores results in much weaker and more ambiguous evo-velocity flows when visualized.
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Figure S2: Additional figures for viral protein evo-velocity analyses.

First

(A) Influenza A HA H1 sequences map to a single UniRef50 cluster, where the representative

sequence is from a 1934 HINT strain. (B) Using ESM-1b-based evo-velocity scores, the inferred

roots correspond to early twentieth-century HIN1 sequences, including 1918 influenza, as well

as twenty-first-century 2009 H1N1 pandemic influenza. (C, D) In contrast, with TAPE-based

velocities, the 2009 pandemic roots are identified but not the earlier 1918 pandemic roots,

leading to evo-velocity pseudotimes that are higher for twentieth-century influenza. (E) Each
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boxplot visualizes the distribution of velocity scores for all HIV-1 Gag sequences in our analysis
compared to a SIVcpz Gag sequence from a given isolate. On average, HIV-1 Gag sequences
have strong positive evo-velocity scores compared to the four SIVcpz Gag sequences. Box
extends from first to third quartile with line at the median, whiskers extend to 1.5 times the
interquartile range, and diamonds indicate outlier points. (F) There is less temporal structure in
the sequence landscape of HIV-1 Gag, reflecting the lack of immune pressure on HIV-1. (G)
Evo-velocity pseudotime of Gag based on ESM-1b- or TAPE-based evo-velocity scores have
high correlation (Table S4). (H) Evo-velocity pseudotime of SARS-CoV-2 Spike based on
ESM-1b- or TAPE-based evo-velocity scores have high correlation (Table S4); compare to

Figure 3G.
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Figure S3: Additional figures for globin evo-velocity analysis.

(A) The main root region predicted for globin evolution is closest to (and includes) neuroglobin
(Figure 4B). (B) Evo-velocity pseudotime is therefore lowest for neuroglobin and increases
radiating outward from that portion of the graph, with Hba and Hbf predicted to be most recent
in pseudotime. (C) TAPE-based evo-velocity scores lead to pseudotime values that strongly
correlate with those based on ESM-1b evo-velocity scores (Table S4). (D) Pseudotemporal
relationships when controlling for similarity to UniRef50 or when using TAPE-based evo-
velocity computation reproduce those in our main analysis; compare to Figure 4C. (E) Extant

Hba, Hbp, and myoglobin sequences have positive evo-velocity scores, on average, compared to
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a reconstructed myoglobin/hemoglobin ancestor (AncMH) as the baseline sequence, consistent
with AncMH preceding extant globins in evolutionary time. Extant HbP sequences also have
positive velocities with respect to a reconstructed Hbo/Hb ancestor (Anca/f), but this is not
observed for extant Hba sequences, predicting that extant Hbas are more similar to Anco/f3 than
extant HbBs and corroborated by the phylogeny of Pillai et al. [35] (Figure 4A). Evo-velocity
also predicts extant Hbas and HbBs show little improvement in evo-velocity from their
respective most proximal ancestors. Together, these results are consistent with evo-velocity
scores increasing over greater stretches of evolutionary time. For all boxplots: box extends from
first to third quartile with line at the median, whiskers extend to 1.5 times the interquartile range,

and diamonds indicate outlier points.
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Figure S4: Additional figures for evo-velocity analysis of cytochrome c.

(A) Evo-velocity predicts root regions in the extant sequence landscape among single-celled
eukaryotes and green algae. (B, C) Evo-velocity pseudotime of cytochrome ¢ based on ESM-1b
or TAPE velocities have high correlation (Table S4). (D) Pseudotemporal relationships when
controlling for similarity to UniRef50 or when using TAPE-based evo-velocity computation
largely reproduce those in our main analysis (compare to Figure 4E) especially when comparing
the “lower-order” and “higher-order” taxonomic labels, although TAPE places viridiplantae after
fungi in pseudotime and filtering based on sequence similarity to UniRef50 removes many of the
earliest eukaryotes in pseudotime when analyzing the full dataset. Box extends from first to third
quartile with line at the median, whiskers extend to 1.5 times the interquartile range, and

diamonds indicate outlier points.
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Figure S5: Additional figures for highly conserved protein evo-velocity analyses.
(A) For the family of serpins, pseudotemporal orderings of the three domains of life were

reproducible when using TAPE-based evo-velocity computation and when filtering based on
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similarity to UniRef50. In all cases, prokaryotes precede eukaryotes in evo-velocity pseudotime.
(B, C) Enolase is predicted to be rooted in a region with archaeal and some bacterial sequences,
with eukaryota occurring last in evo-velocity pseudotime. (D, E) PGK is predicted to be rooted
in a region with archaeal and bacterial sequences, with eukaryota occurring last in evo-velocity
pseudotime. (F) The unrooted phylogenetic tree of manually curated enolase sequences shows
archaeal sequences as more proximal to the eukaryota than bacterial sequences. (G) In contrast,
the unrooted phylogenetic tree of manually curated PGK sequences shows bacterial sequences as
more proximal to the eukaryota than archaeal sequences. (H) For both enolase and PGK,
pseudotemporal orderings of the three domains of life were reproducible when using TAPE-
based evo-velocity computation and when filtering based on similarity to UniRef50 (compare to
C and E). For all boxplots: box extends from first to third quartile with line at the median,

whiskers extend to 1.5 times the interquartile range, and diamonds indicate outlier points.
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Supplementary Tables
Taxonomy # Sequences %
Archaea 776,374 2.57%
Bacteria 18,032,582 59.79%
Primate 160,932 0.53%
Other mammalia 341,837 1.13%
Other chordata 950,939 3.15%
Eukaryota Arthropoda 1,521,727 5.05%
Viridiplantae 2,037,089 6.75%
Fungi 2,880,452 9.55%
Other eukaryotes 2,783,754 9.23%
Metagenome 637,280 2.11%
Other/unclassified 39,121 0.13%
Total 30,162,087 100%

Table S1: Taxonomic composition of UniRef50.
The number of sequences in UniRef50 that belong to different taxonomic categories. Most
sequences in UniRef50 are bacterial, though we note that ESM-1b had no access to these

taxonomic labels at training time.
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# publications

Rank Mutations Epitope in IEDB
1 M105V YRRVNGKWM 5
2 M3741 ASNENMETM 105
3 M4811, M481V SPIVPSFDM 5
4 M239V TAAQRAMMD 3
5 M456V, V456L ESARPEDVSF 6

Table S2: Top five mutations by evo-velocity rank and corresponding IEDB epitopes.

Mutations were ranked by the magnitude of the average evo-velocity vector obtained by

projecting the velocities into sequence space (Methods) and the top five were further

investigated for location in T-cell epitopes. All involve single-nucleotide mutations from a

methionine to a hydrophobic or a polar-uncharged amino acid residue. Also see Figures 2G and

S1C.
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Pseudotime and UniRef50 similarity correlation
(Spearman r, two-sided ¢-distribution P)

Protein
Full dataset Similarity-controlled (>80%)
Influenza A NP r=-0.676, P <1 x 103" r=-0.676, P <1 x 103"
Influenza A HA r=-0.526,P <1 x 103" r=-0.528,P<1x103%
HIV-1 Gag r=-0392,P<1x103% r=-0247,P=1x 102
Globins r=0.031, P=0.01 r=-0281,P=2x10%

Cytochrome c
Enolase
PGK

Serpins

r=0467,P=1x 1013
r=0.597, P < 1x 1039
r=0.304, P <1x 10730

r=0.017, P=0.01

r=0282,P=3x10%
r=-0.044, P=3x10*
r=-0.267,P=1x10"°

r=-0.357,P<1x103%

Table S3: Correlation between evo-velocity pseudotime and sequence similarity to

UniRef50.

There is no consistent pattern in the directionality of the correlation between evo-velocity

pseudotime and sequence similarity to UniRef50, indicating that sequence similarity does not

trivially explain pseudotime. “Full dataset” indicates the results from analyzing all sequences

while “similarity-controlled” indicates the results from restricting analysis to the sequences with

greater than 80% sequence similarity to UniRef50 (Methods). In this latter setting, for all

proteins, we were able to reproduce the results obtained from running evo-velocity on the full

dataset.
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B OtEin ESM-1b and TAPE pseudotime correlation
(Spearman r, two-sided z-distribution P)
Influenza A NP r=0.926,P <1x103%
Influenza A HA r=-0.028, P =0.01

HIV-1 Gag r=0.814, P < 1x 1073%
SARS-CoV-2 Spike r=0.902, P<1x103%
Globins r=0.893, P <1x1073%
Cytochrome ¢ r=0811,P<1x 107"
Enolase r=0932,P<1x 1038
PGK r=0.948, P <1x1073%
Serpins r=0.955,P <1x103%

Table S4: Pseudotime reproducibility with TAPE velocities.

The correlation between computed pseudotime using ESM-1b or TAPE to determine the evo-
velocity scores. Cells shaded in light blue indicate correlations greater than 0.8. HA pseudotimes
were not correlated between ESM-1b and TAPE due to the inability of TAPE to identify roots
among the twentieth-century trajectory of HA evolution (Figure S2B-D). All other proteins had

strong pseudotime reproducibility between the two language models.
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Correlation with

Rubeddin: VEICED embfgtll\;ll;;: and Cs(:ll:li:figgl;:::h
velocities
ESM-1b ESM-1b N/A 0.49
One-hot + PCA ESM-1b 0.89 0.47
ESM-1b BLOSUMG62 0.80 0.40
One-hot + PCA BLOSUMG62 0.51 0.31
ESM-1b Random -0.09 -0.01

Table S5: Evo-velocity ablation results for influenza A NP.

We obtained comparable, if slightly weaker, pseudotime correlation when either using binary

sequence embeddings to construct the KNN graph or using BLOSUMS62 scores to compute

velocities (or both). Replacing velocity scores with random, Gaussian noise resulted in loss of

correlation between pseudotime and sampling year. PCA: Principal component analysis.
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Protein Pseudotime and sequence length correlation
(Spearman r, two-sided ¢-distribution P)
Influenza A NP r=0.030, P =0.08

Influenza A HA r=0.534, P <1x103%
HIV-1 Gag r=-0.352,P<1x103%
SARS-CoV-2 Spike r=-0.681,P<1x 103
Globins r=-0.166, P =4 x 10’
Cytochrome ¢ r=-0414P=6x 10"
Enolase r=0273,P<1x10308
PGK r=0.099, P=2x10%
Serpins r=-0.087, P =4 x 10

Table S6: Correlation between pseudotime and sequence length.
We observed no consistent pattern in the correlation between pseudotime and the length of
sequences, suggesting that differing sequences lengths across a landscape does not explain evo-

velocity patterns.
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