

Title: Evolutionary velocity with protein language models

Authors: Brian L. Hie^{1,2*}, Kevin K. Yang³, and Peter S. Kim^{1,2,4*}

Affiliations: ¹Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; ²Stanford ChEM-H, Stanford University, Stanford, CA 94305; ³Microsoft Research New England, Cambridge, MA 02142, USA; ⁴Chan Zuckerberg Biohub, San Francisco, CA 94158, USA. *Corresponding author: B.L.H. (brianhie@stanford.edu), P.S.K. (kimpeter@stanford.edu).

Abstract: Predicting the order of biological homologs is a fundamental task in evolutionary biology. For protein evolution, this order is often determined by first arranging sequences into a phylogenetic tree, which has limiting assumptions and can suffer from substantial ambiguity. Here, we demonstrate how machine learning algorithms called language models can learn mutational likelihoods that predict the directionality of evolution, thereby enabling phylogenetic analysis that addresses key limitations of existing methods. Our main conceptual advance is to construct a “vector field” of protein evolution through local evolutionary predictions that we refer to as evolutionary velocity (evo-velocity). We show that evo-velocity can successfully predict evolutionary order at vastly different timescales, from viral proteins evolving over years to eukaryotic proteins evolving over geologic eons. Evo-velocity also yields new evolutionary insights, predicting strategies of viral-host immune escape, resolving conflicting theories on the evolution of serpins, and revealing a key role of horizontal gene transfer in the evolution of eukaryotic glycolysis. In doing so, our work suggests that language models can learn sufficient rules of natural protein evolution to enable evolutionary predictability.

1 **Introduction**

2 Predicting evolutionary order has diverse applications that range from tracing the
3 progression of viral outbreaks to understanding the history of life on earth [1]–[6]. For protein
4 evolution, this prediction is often based on reconstructing and rooting phylogenetic trees of
5 protein sequences [7]. While useful, ordering sequences based on a phylogenetic tree has a
6 number of limiting assumptions; for example, determining the root of the tree can drastically
7 alter the predicted order [8], but beyond the strictest assumptions, determining this root requires
8 manual expertise or external evidence (for example, based on known sampling times or the fossil
9 record), which may not always be available [8], [9].

10 Here, we propose a novel approach to analyzing and ordering the trajectories of protein
11 evolution that we refer to as “evolutionary velocity,” or “evo-velocity.” Evo-velocity is
12 conceptually inspired by work in theoretical biology that understands evolution as a path that
13 traverses a “fitness landscape” based on locally optimal decisions [2]–[4], [10]–[12]. Our key
14 conceptual advance is that by learning the rules underlying *local* evolution, we can construct a
15 *global* evolutionary “vector field” that we can then use to: (i) predict the root (or potentially
16 multiple roots) of observed evolutionary trajectories, (ii) order protein sequences in evolutionary
17 time, and (iii) identify the mutational strategies that drive these trajectories.

18 To make local evolutionary predictions, we leverage recent advances in the ability of
19 machine learning algorithms called language models to predict the effects of single-residue
20 mutations on biological fitness when trained on natural sequence variation alone [13]–[16]. Thus
21 far, however, language models have only been applied to modeling local evolution, such as
22 single-residue mutations, rather than more complex changes that occur over long evolutionary
23 trajectories.

24 Evo-velocity is aimed at closing the gap between landscape-based evolutionary theory
25 [2], [3], [10] and the analysis of evolutionary trajectories observed in nature. Our algorithm is
26 general (we use a single model for all proteins), does not have many of the assumptions typical
27 of phylogenetic methods (for example, evo-velocity can produce multiple roots or model
28 convergent evolution), and requires sequence data alone. We use evo-velocity to analyze protein
29 evolution across a breadth of organisms and evolutionary timescales—from the evolution of viral
30 proteins over the course of years to the evolution of enzymes across all three domains of life—
31 suggesting how we might expand our ability to understand and predict evolution.

32 **Results**

33 *Overview of language models and evo-velocity*

34 Our approach is based on the premise that evolution occurs through locally optimal
35 changes that preserve or enhance evolutionary fitness, which has theoretical precedent in the
36 concept of a path through a fitness landscape [2], [10]. In theory, predicting local evolution
37 should therefore provide insight into global evolution as well (**Figure 1A**).

38 To predict the local rules of evolution, we leverage protein language models, which learn
39 the likelihood that a particular amino acid residue appears within a given sequence context
40 (**Figure 1B**). When trained on large corpuses of natural sequences, this language model
41 likelihood is a strong correlate of the effects of mutations on various notions of protein fitness.
42 For example, the ESM-1b language model [15], trained on ~3 million sequences in the UniRef50
43 database [17] (**Table S1**), can predict the effects of single-residue mutations as quantified by
44 deep mutational scanning (DMS) of diverse proteins [18], [19] (**Figure 1C and Data S1**;
45 **Methods**). Surprisingly, this correlation is comparable to that of a state-of-the-art mutational
46 effect predictor [20] that was specially trained on sequence variation within individual protein

47 families (**Figure 1C**); in contrast, ESM-1b is trained on a dataset that removes most intra-family
48 sequence variation [17].

49 Our key hypothesis is that the likelihoods learned by these large-scale protein language
50 models can be used to provide a notion of directionality within evolutionary trajectories. In our
51 approach, which we call evo-velocity, we first model the “landscape” or the “manifold” [21] of
52 sequence variation by constructing a sequence similarity network [22] in which each node
53 represents a protein sequence and edges connect similar sequences (**Figure 1D**). We quantify
54 sequence similarity as the Euclidean distance in language model embedding space, which can
55 encode complex functional relationships [13]–[16], and we construct the network by connecting
56 a sequence to its k -nearest neighbors (KNN), which has been useful in modeling biological
57 landscapes in many genomics applications [23]–[25].

58 Then, language models assign a directionality to each edge in the KNN network based on
59 the change in language model likelihood between the two sequences in that edge (**Figure 1D**).
60 We hypothesize that evolution moves toward higher likelihoods, which are correlated with
61 higher fitness (**Figure 1C**). Across the entire network, we can then analyze the “flow” of
62 evolution, which includes estimating the root sequences in the network (equivalent to finding the
63 “valleys” of the landscape), ordering sequences in pseudotime (a continuous score that enables
64 rank-based comparison among sequences) [26], visualizing the trajectory in two dimensions
65 [24], and identifying mutations that correlate with the direction of evo-velocity (**Figure 1D**); we
66 provide detailed methodology in **Methods**. Intuitively, the local predictions of language models
67 assign a “velocity” to pairs of sequences that we assemble into an evolutionary “vector field”
68 [27]. In this paper, we implement evo-velocity with a *single* masked language model, ESM-1b,
69 but our framework can readily generalize to other implementations as well.

70 *Evo-velocity of influenza A nucleoprotein*

71 As initial validation, we used evo-velocity to reconstruct the evolution of the
72 nucleoprotein (NP) of influenza A virus. NP is an excellent evolutionary test case since its
73 sequence evolution is densely sampled through influenza viral surveillance and it undergoes
74 natural selection in the form of host immune pressure, but is less mutable than other viral
75 proteins with a mutation rate of about one amino-acid residue per year [28]. We obtained 3,304
76 complete NP sequences sampled from human hosts, constructed the sequence similarity network,
77 and computed evo-velocity scores. When we visualized this network in two dimensions [24], we
78 observed phylogenetic structure corresponding to both the sampling year and influenza subtype
79 (**Figures 2A and S1A**). Strikingly, the evo-velocity flow through the network (**Methods**)
80 corresponded to the known temporal evolution of NP (**Figure 2A**).

81 Since visualizing this flow in two dimensions can be prone to information loss or
82 distortion through dimensionality reduction [27], we sought to further quantify the relationship
83 between evo-velocity and NP evolution. We first verified that, on average, the evo-velocity
84 scores of the individual network edges increase along with greater differences in sampling time
85 (**Figure S1B**). We then quantified global evo-velocity patterns using a diffusion analysis to
86 estimate the network's roots (**Methods**). Interestingly, the evo-velocity-inferred root sequences
87 corresponded to the main species-crossover events in influenza history (**Figure 2B**), suggesting
88 that our analysis accurately inferred the evolutionary origins of NP as observed in human hosts.
89 We then used these roots to order sequences according to evo-velocity pseudotime (**Methods**)
90 and observed a significant correlation between pseudotime and known sampling date (Spearman
91 $r = 0.49$, two-sided t -distribution $P = 4 \times 10^{-197}$) (**Figure 2C**). We also observed that a well-
92 characterized phylogenetic path of NP [28] progressed, on average, in the same direction as the

93 evo-velocity gradient (**Figure 2A,C**) and agreed with simulated paths generated by random
94 walks across our evo-velocity landscape (**Figure 2D; Methods**).

95 When comparing our evo-velocity landscape to a standard phylogenetic tree, we observed
96 that evo-velocity can model more complex evolutionary relationships. For example, a midpoint-
97 rooted phylogenetic tree of all NP sequences (**Methods**) visually suggests that the H5N1- and
98 H7N9-subtype sequences branch off from H1N1 (**Figure 2E**). Instead, evo-velocity predicts an
99 independent origin of H5N1/H7N9 (**Figure 2C,F**), consistent with epidemiological data
100 indicating recent zoonotic crossover of H5 and H7 avian influenza [29]. Evo-velocity also
101 predicts that the observed similarity of H5N1/H7N9 and H1N1 NP sequences sampled in human
102 hosts is due to convergent evolution (**Figure 2F**), which is challenging to explicitly represent
103 with a phylogenetic tree.

104 We next sought to use our evo-velocity landscape to provide new insight into NP
105 evolution. We therefore identified the mutations that corresponded to the strongest changes in the
106 evo-velocity scores (**Methods**). Of the top five such mutations in NP, all are present in
107 experimentally-validated human T-cell epitopes and one of these mutations, M374I, is located in
108 the most well-characterized linear NP epitope in the Immune Epitope Research Database (IEDB)
109 [30] (**Figures 2G, S1C, and Table S2**). Moreover, all five mutations involve a single-nucleotide
110 substitution resulting in a methionine changed to a hydrophobic or polar-uncharged amino acid
111 residue, suggesting a possible T-cell escape strategy that has recurred in multiple NP epitopes
112 throughout history (**Figures 2G and S1C**).

113 All NP sequences in our analysis belong to a single UniRef50 sequence cluster [17] for
114 which the representative sequence is from a 1934 H1N1 virus (**Figure S1D**). We found that
115 similarity to sequences present in UniRef50, the ESM-1b training dataset, does not explain evo-

116 velocity pseudotime (**Table S3; Methods**). We also found that computing evo-velocity scores
117 with a smaller language model, TAPE [14], trained with a different model architecture on the
118 Pfam database of protein families [31], closely reproduced the ESM-1b evo-velocity results
119 (Spearman $r = 0.93$, two-sided t -distribution $P < 1 \times 10^{-308}$) (**Table S4** and **Figure S1E,F**). Using
120 simpler evolutionary scores to compute velocities or using binary sequence embeddings also
121 largely reproduced the ESM-1b results, though with weaker temporal correlation (**Figure S1G**
122 and **Table S5; Methods**). Together, these results suggest that our evo-velocity results are not
123 explained by trivial language model preference to UniRef50. We also found that evo-velocity
124 pseudotime was not explained by variation in sequence length (**Table S6**).
125

Evo-velocity was therefore able to reconstruct the direction of NP evolution without any
126 explicit knowledge of influenza subtype or when the NP sequences were sampled. Moreover, we
127 found that the generic rules learned by large language models were sufficient to predict the
128 evolution of a specific protein.

129 *Evo-velocity of viral proteins*

130 Given the promising results for NP, we were therefore interested in seeing if evo-velocity
131 could generalize to other viral proteins as well. We next analyzed the evolution of influenza A
132 hemagglutinin (HA), a more variable protein on the viral surface responsible for viral-host
133 membrane fusion [32]. As with NP, evo-velocity analysis of 8,115 HA sequences recovered
134 roots corresponding to the known origins of HA H1 in humans from 1918 and 2009 H1N1
135 pandemics, and evo-velocity pseudotime was strongly correlated with sampling date (Spearman r
136 $= 0.63$, two-sided t -distribution $P < 1 \times 10^{-308}$) (**Figure 3A,B**). Despite the higher sequence
137 variability of HA than NP, evo-velocity was still able to reconstruct the trajectory and
138 directionality of HA evolution.

139 As with NP, our HA pseudotime results were not explained by sequence similarity to the
140 training dataset (**Figure S2A** and **Table S3**). We were also able to use TAPE-based velocities to
141 identify similar root regions in the post-2009 pandemic trajectory, but TAPE had a more difficult
142 time identifying the 1918 sequences as oldest, most likely due to TAPE's smaller model size and
143 less capable mutational effect predictions (**Figures 1C, S2B-D, and Table S4**).

144 We next analyzed the evolution of the group specific antigen (Gag) polyprotein of human
145 immunodeficiency virus type 1 (HIV-1) using 18,018 sequences. Visualizing the sequence
146 similarity network overlaid with evo-velocity reveals a flow corresponding to the known subtype
147 branching history of HIV-1, with circulating recombinant forms (for example, subtypes AE and
148 BC) branching off of the main subtypes and occurring later in pseudotime (**Figure 3C,D**). HIV-1
149 Gag sequences also had strong positive velocities compared to phylogenetically-similar Gag
150 sequences from chimpanzee simian immunodeficiency virus (SIVcpz) (**Figure S2E**), consistent
151 with a SIVcpz origin preceding the evolution of pandemic HIV-1 [33]. We observed much
152 weaker correlation between pseudotime and sampling date (Spearman $r = 0.093$, two-sided t -
153 distribution $P = 5 \times 10^{-32}$) (**Figure S2F**) compared to influenza proteins, consistent with the
154 much weaker population-level immune pressure on Gag evolution. Gag pseudotime was not
155 explained by sequence similarity to UniRef50 (**Table S3**) and was also reproducible using
156 TAPE-based velocities (**Figure S2G** and **Table S4**).

157 We next applied our algorithm to analyze 46,986 sequences of the Spike glycoprotein of
158 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) across a much shorter historical
159 timescale of around eighteen months. The sequence similarity network reconstructs the overall
160 trajectory of Spike evolution, and evo-velocity analysis identifies the sequence clusters
161 associated with later sequences, including the B.1.1.7, B.1.351, B.1.617.1, B.1.617.2, and P.1

162 variants-of-concern [34], as later in pseudotime (**Figures 3E-G**). Despite a shorter evolutionary
163 timescale, evo-velocity pseudotime and sampling date still had a Spearman correlation of 0.41
164 (two-sided t -distribution $P < 1 \times 10^{-308}$). We also note that SARS-CoV-2 Spike evolution
165 occurred outside of the temporal range associated with both language model training datasets and
166 we were also able to reproduce the results with TAPE-based evo-velocity (**Figure S2H** and
167 **Table S4**).

168 Across these four viral proteins, therefore, evo-velocity was able to reconstruct the
169 directionality of evolution consistent with known trajectories. Importantly, all of our analysis
170 was based on a single model that was trained without explicit knowledge of viral sampling date,
171 subtype, or protein-specific sequence variation.

172 *Evo-velocity of eukaryotic proteins*

173 After validating our approach with known viral trajectories, we wanted to see if evo-
174 velocity could generalize to longer trajectories, such as protein evolution that spans multiple
175 species. Though we have access only to extant sequences, we hypothesized that evo-velocity
176 might still provide useful orderings if some extant sequences are closer to the ancestral sequence
177 than others. As an initial test case, we analyzed the globin protein family due to its extensive
178 phylogenetic characterization [35], including laboratory reconstruction of ancestral
179 intermediates, that we can use to validate our model (**Figure 4A**).

180 The landscape of 6,097 eukaryotic globin sequences forms a branching trajectory with
181 three major divisions corresponding to myoglobin, alpha hemoglobin, and beta hemoglobin
182 (**Figure 4B**). The predicted root region lies in the part of the landscape closest to neuroglobin
183 and cytoglobin (**Figure S3A,B**). Of the major classes of globins, neuroglobin is estimated to be
184 earliest in pseudotime while the alpha (Hb α) and beta (Hb β) subunits of hemoglobin occur last in

185 pseudotime (**Figure 4C**), consistent with a previous analysis of globin phylogeny by Pillai et al.
186 [35] (**Figure 4A**). These results are also reproducible when using TAPE to compute the evo-
187 velocity scores (**Figure S3C,D** and **Table S4**) and when controlling for sequence similarity to
188 the training dataset (**Figure S3D** and **Table S3**; **Methods**).

189 Previous work [35] has also reconstructed ancestral globins that are confirmed to be
190 viable oxygen binders and that progress from a monomeric myoglobin/hemoglobin ancestor
191 (AncMH) to a dimeric alpha/beta hemoglobin ancestor (Anc α / β) to a tetramer formed by
192 separate alpha and beta hemoglobin ancestors (Anc α and Anc β , respectively) (**Figure 4A**).
193 Consistent with evo-velocity increasing over evolutionary time, the ESM-1b language model
194 likelihood, on average, increases from AncMH to extant myoglobin and hemoglobin sequences,
195 but this improvement diminishes for more proximal ancestors (**Figure S3E**). Together, our
196 globin results suggest that evo-velocity pseudotime within a protein family can recover ordering
197 relationships over longer evolutionary timescales.

198 To further test this hypothesis, we analyzed 2,128 sequences of cytochrome c, a well-
199 studied protein in evolutionary biology due to its high sequence conservation among most
200 eukaryotes [36]. When visualized, the sequence similarity network combined with evo-velocity
201 reflects the taxonomic diversification of the eukaryota (**Figure 4D**). The ordering of the median
202 pseudotimes of different taxonomic classes also recapitulates their known ordering in geologic
203 time based on estimates from the fossil record and molecular clocks [37] (**Figures 4E,F** and
204 **S4A,B**), and the variation in pseudotime enables a notion of uncertainty in the form of
205 pseudotemporal confidence intervals. We were also able to reproduce pseudotemporal orderings
206 when using TAPE to compute the evo-velocity scores (**Figure S4C,D** and **Table S4**) and when
207 controlling for sequence similarity to the training dataset (**Figure S4D** and **Table S3**). In total,

208 therefore, our analysis of well-studied eukaryotic protein families demonstrates that evo-velocity
209 can generalize to protein evolution at much longer timescales.

210 *Evo-velocity of ancient evolution*

211 After validating that evo-velocity could reconstruct longer trajectories of protein
212 evolution, we applied evo-velocity to highly-conserved proteins, which often have substantial
213 evolutionary uncertainty [6], to yield new insight into ancient evolution. A protein family with
214 considerable evolutionary uncertainty is that of the serine protease inhibitors, or serpins [38],
215 [39]. Unlike most highly-conserved families, in which most of the diversity is bacterial, most of
216 the diversity among serpins is eukaryotic, which we likewise observe in our landscape of 22,737
217 serpin sequences (**Figure 5A,B**). This has led to conflicting theories as to whether serpins indeed
218 have a phylogenetic root in eukaryotes, with prokaryotes acquiring serpins via horizontal gene
219 transfer (HGT), or if this root is an artifact of greater eukaryotic diversity biasing phylogenetic
220 root estimation [38]–[40]. Since evo-velocity is not prone to the same bias when estimating
221 roots, we used evo-velocity to order serpin sequences in pseudotime and found that the main
222 predicted root region was located among the prokaryotes (**Figures 5B,C** and **S5A**). These results,
223 along with the uncertain mechanism of eukaryotic-to-prokaryotic HGT [40], provide strong
224 evidence that serpin evolution follows a more canonical trajectory.

225 We next analyzed two of the most conserved glycolytic enzymes, enolase and
226 phosphoglycerate kinase (PGK) [41]–[43]. The landscape of 31,901 sequences from the enolase
227 family shows a clear evo-velocity-predicted root region located in bacterial and archaeal
228 sequences (**Figures 5D** and **S5B,C**). Archaea are also oldest in pseudotime and eukaryota are
229 newest, with bacteria showing considerable pseudotemporal variation (**Figures 5E** and **S5C**).
230 The landscape of 30,455 PGK sequences has a similar origin in a region with bacterial and

231 archaeal sequences (**Figures 5F** and **S5D,E**), though with more pseudotemporal variation among
232 archaeal PGK (**Figures 5G** and **S5E**).

233 The largest difference between the enolase and PGK landscapes lies in the location of
234 eukaryota: while both estimate eukaryota to be recent in pseudotime, eukaryotic sequences
235 branch off of archaeal enolase but branch off of bacterial PGK (**Figures 5D,F**); similar patterns
236 are also observed when visualizing the unrooted phylogenetic trees of both proteins (**Figures**
237 **S5F,G**). These results suggest an archaeal origin of eukaryotic enolase and a bacterial origin of
238 eukaryotic PGK (**Figure 5H**) and are consistent with HGT contributing to a mixture of archaeal
239 and bacterial genes in the last eukaryotic common ancestor [6]. These results are also consistent
240 with a component-wise evolution of glycolysis [41], rather than the pathway being inherited in
241 totality from a single organism.

242 In all three highly conserved proteins that we tested, we were able to reproduce evo-
243 velocity pseudotime even when explicitly controlling for sequence similarity to the training
244 dataset (**Figure S5A,H** and **Table S3**) and when using TAPE to compute the evo-velocity scores
245 (**Figure S5A,H** and **Table S4**). Variability in sequence length did not explain evo-velocity
246 pseudotime (**Table S6**). Moreover, the direction of the evo-velocity gradient is not explained by
247 trivial training set bias toward eukaryotes, as most of the sequences in UniRef50 are bacterial
248 (**Table S1**), and we emphasize that no explicit taxonomic information was provided to our
249 algorithm. Rather, our results suggest that evo-velocity can provide insight into evolution at the
250 longest evolutionary timescales.

251 **Discussion**

252 The degree to which evolution is predictable has been a longstanding debate [3], [4],
253 [44], [45]. Here we show that large-scale protein language models can learn evolutionary rules

254 well enough to predict the ordering of sequences in evolutionary time. While the phylogenetic
255 tree is the oldest conceptual model of evolution [1] and has had wide application to natural
256 sequence variation [7], we show that landscape-based theory [3], [10]–[12] combined with
257 modern algorithms can also provide novel evolutionary insight that is complementary to existing
258 approaches.

259 Evo-velocity has a number of distinctives with respect to phylogenetic tree
260 reconstruction. Evo-velocity is especially suitable for analyzing large (~1000 or more)
261 collections of sequences. We currently limit our analysis to extant sequences, rather than
262 artificially reconstructing ancestral sequences, though these could be incorporated into the
263 analysis as well. In viewing evolution as a landscape, evo-velocity admits multiple “valleys” that
264 we refer to as roots. Because we predict the directionality of edges in the network, evo-velocity
265 roots are also better mathematically determined than phylogenetic roots [9], [46] (though users
266 could manually specify root sequences as well). Evo-velocity landscapes can also better model
267 phenomena like convergent evolution (**Figure 2F**).

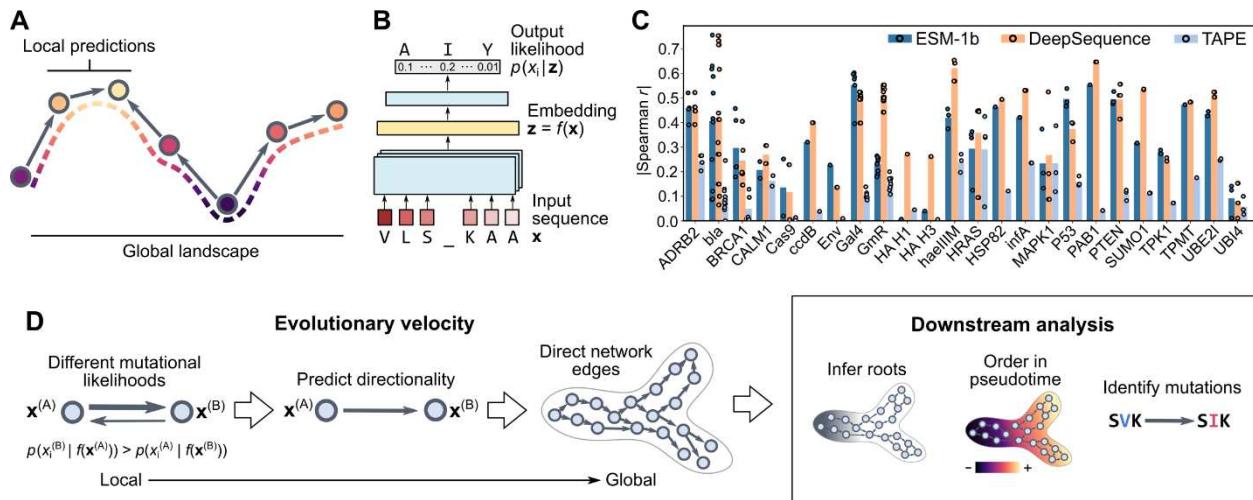
268 We also find that evo-velocity provides a helpful notion of uncertainty in its predictions
269 that is less natural to obtain from standard phylogenetic methods. For example, evo-velocity
270 reports multiple roots, indicating evolutionary ambiguity regarding the oldest sequences or
271 reflecting discontinuous trajectories due to missing evolutionary ancestors. Similarly, the most
272 robust ordering relationships are at the level of groups of sequences, providing pseudotemporal
273 confidence intervals.

274 Computationally, our results are striking in that a single language model trained on
275 diverse, natural protein sequences seems to learn generic evolutionary rules. This is corroborated
276 by our finding that two independently-trained language models, ESM-1b and TAPE, can produce

277 very similar pseudotemporal ordering results (**Table S4**), even though TAPE is a much weaker
278 mutational effect predictor than ESM-1b (**Figure 1C**). The robustness of evo-velocity
279 pseudotime to language model implementation may be because, in our framework, language
280 models only need to consider natural sequence changes [11], rather than the artificial mutations
281 introduced in deep mutational scanning (DMS) experiments; evo-velocity therefore benefits by
282 considering both the language model likelihood and semantic similarity [16]. Language models
283 may provide successful evo-velocity predictions because their conditional likelihoods capture
284 evolutionary contingency, which is a strong driver of natural sequence variation [47]. Our
285 findings raise a number of interesting computational questions, including the degree to which the
286 rules learned by language models are biologically interpretable (for example, in terms of
287 thermostability or evolvability [28], [48]) and whether better protein language models could
288 improve the performance and resolution of evo-velocity.

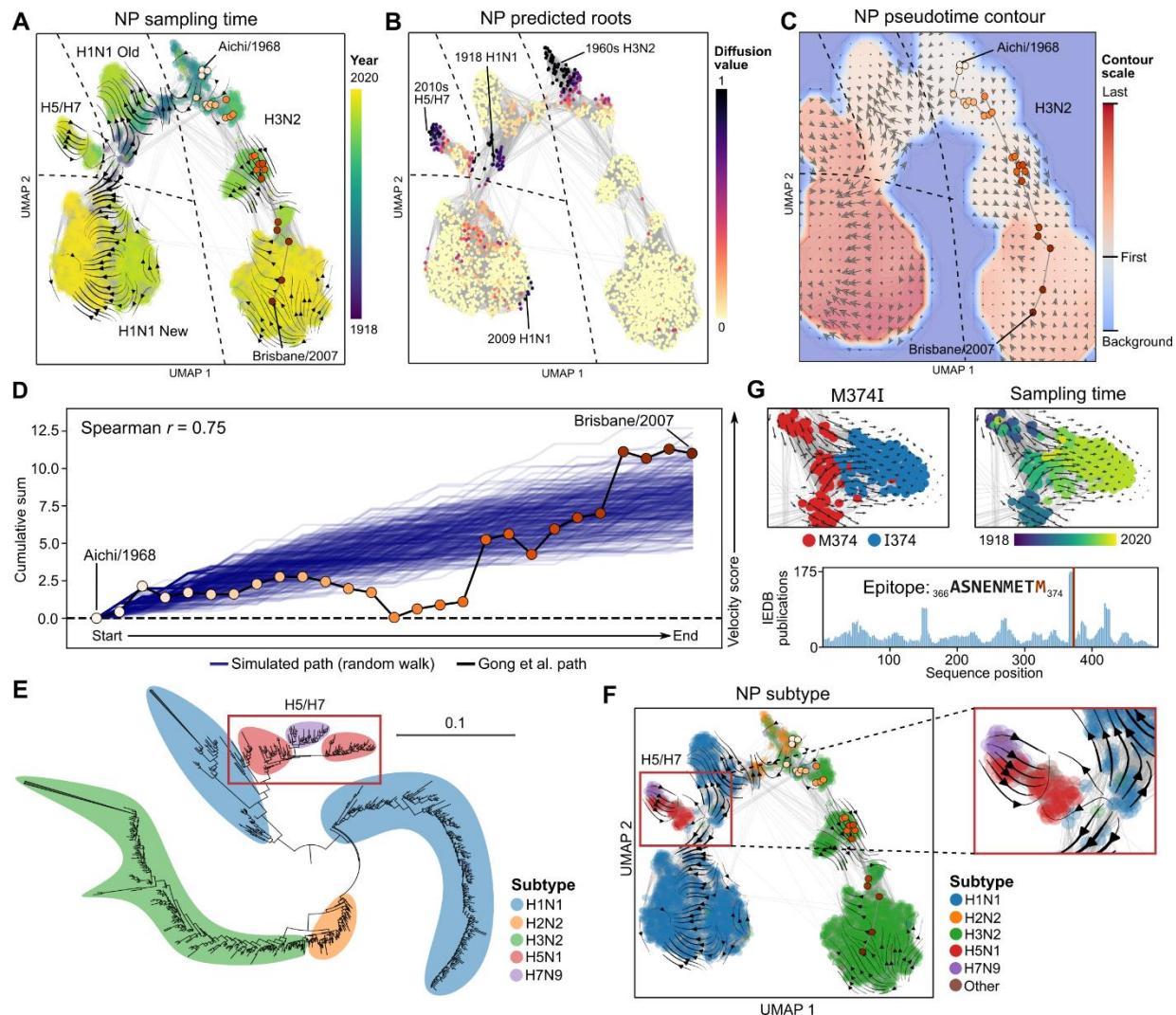
289 Promisingly, evo-velocity offers a new approach through which to reevaluate current
290 evolutionary hypotheses. For example, when evaluating a potential hypothesis of eukaryote-to-
291 prokaryote HGT among serpins [38], [39], evo-velocity instead predicted a more canonical
292 evolutionary trajectory (**Figure 5**). While we mostly take a gene-centric approach to evolution
293 [49], trajectories could also be integrated across multiple genes to provide insight into evolution
294 at the level of pathways (as done for our analysis of glycolytic enzymes), gene modules, or even
295 whole genomes. This might enable calibrating evo-velocity pseudotime to historical or geologic
296 time, providing an additional method for dating evolutionary events. Evo-velocity also suggests a
297 way to predict future evolution and to design novel protein sequences.

298 **Figures and figure captions**



299 **Figure 1: Constructing an evolutionary vector field by predicting local evolution.**

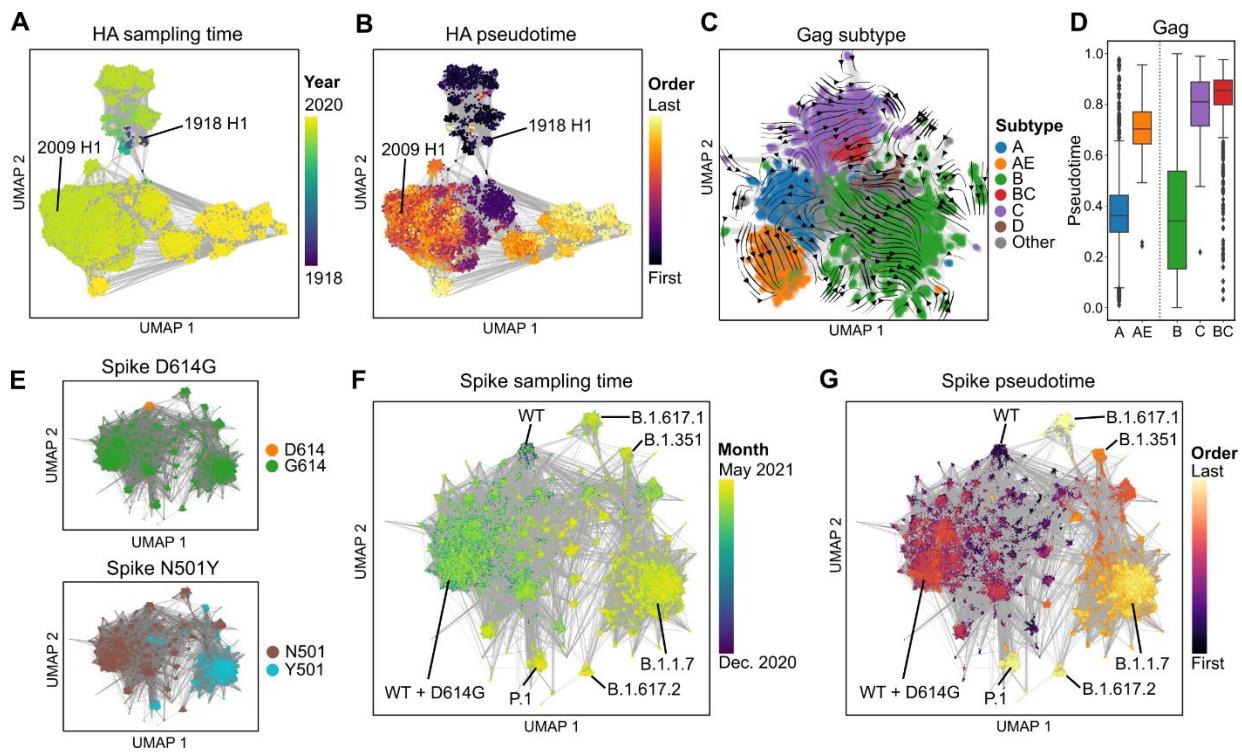
300 (A) A global evolutionary landscape can be approximated by a composition of local evolutionary
301 predictions. (B) To make these predictions, we can leverage language models that learn the
302 likelihood of an amino acid occurring within some sequence context. (C) The pseudolikelihoods
303 learned by language models correlate with DMS-based measurements of various notions of
304 protein fitness without the language models being explicitly trained on this data (**Methods**).
305 While DeepSequence trains a separate model for each protein family, ESM-1b and TAPE are
306 general language models each trained on a single, non-redundant dataset. Circles indicate
307 correlations of different DMS profiles within the same study (**Data S1**); bar height indicates the
308 mean across these profiles. (D) Evo-velocity uses language model likelihoods to assign a
309 directionality to edges in a sequence similarity network, enabling downstream analysis like
310 predicting root nodes, ordering nodes in pseudotime, and identifying mutations associated with
311 the largest changes in evo-velocity (**Methods**).



312 **Figure 2: Evo-velocity of influenza A nucleoprotein.**

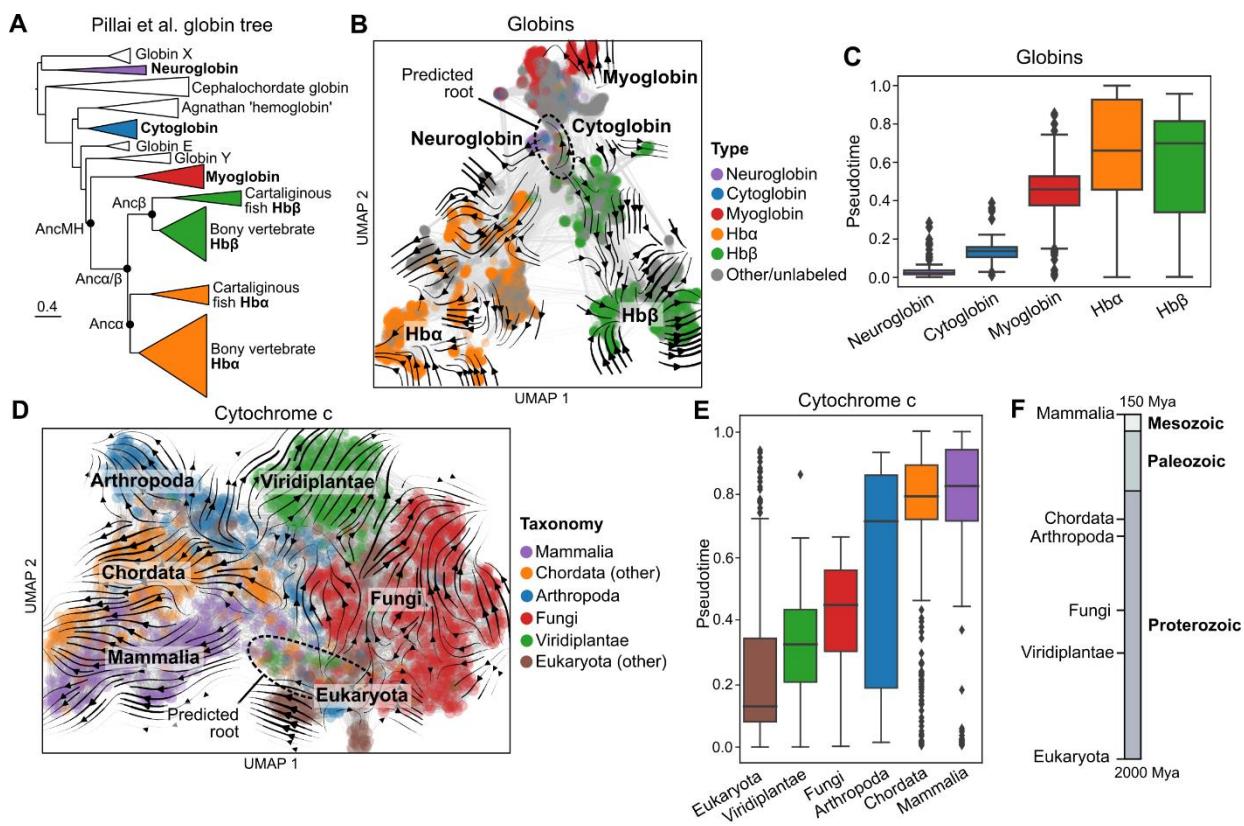
313 (A) The landscape of NP sequences, represented as a KNN sequence similarity network, shows
 314 structure corresponding to temporal evolution of various subtypes of influenza (Figure S1A);
 315 gray lines indicate network edges. Overlaying evo-velocity on the visualization as a streamplot
 316 shows a visual correlation between the flow of evo-velocity and known sampling time. A known
 317 phylogenetic path (orange circles) from Gong et al. [28] starting with Aichi/1968 and ending
 318 with Brisbane/2007 moves in the direction of evo-velocity. (B) Using the evo-velocity
 319 directionality to predict roots reveals four main root regions corresponding to the beginnings of
 320 different influenza pandemic events throughout history. (C) Ordering sequences in pseudotime

321 and visualizing pseudotime values in a two-dimensional contour plot shows pseudotime increase
322 in the direction of evo-velocity, which here is visualized as a two-dimensional field of evo-
323 velocity vectors. **(D)** On average, the Gong et al. path visualized in **(A)** and **(C)** has positive
324 changes in evo-velocity scores over time and largely resembles simulated paths generated by
325 performing random walks across our evo-velocity landscape (**Methods**). A portion of the Gong
326 et al. path with negative evo-velocity scores may be due to ordering ambiguities that are better
327 resolved by considering evo-velocity. **(E)** A maximum-likelihood, midpoint-rooted phylogenetic
328 tree of all NP sequences conveys that H5N1 and H7N9 subtype sequences branch off from H1N1
329 sequences. **(F)** In contrast, evo-velocity predicts an independent origin of H5N1/H7N9 influenza
330 [29] (see **B**) and sequence similarity with H1N1 due to convergent evolution. **(G)** The M374I
331 mutation to NP has the second strongest magnitude change in evo-velocity (**Methods**) and is
332 located in the most well-studied human T-cell epitope on NP (**Table S2**).



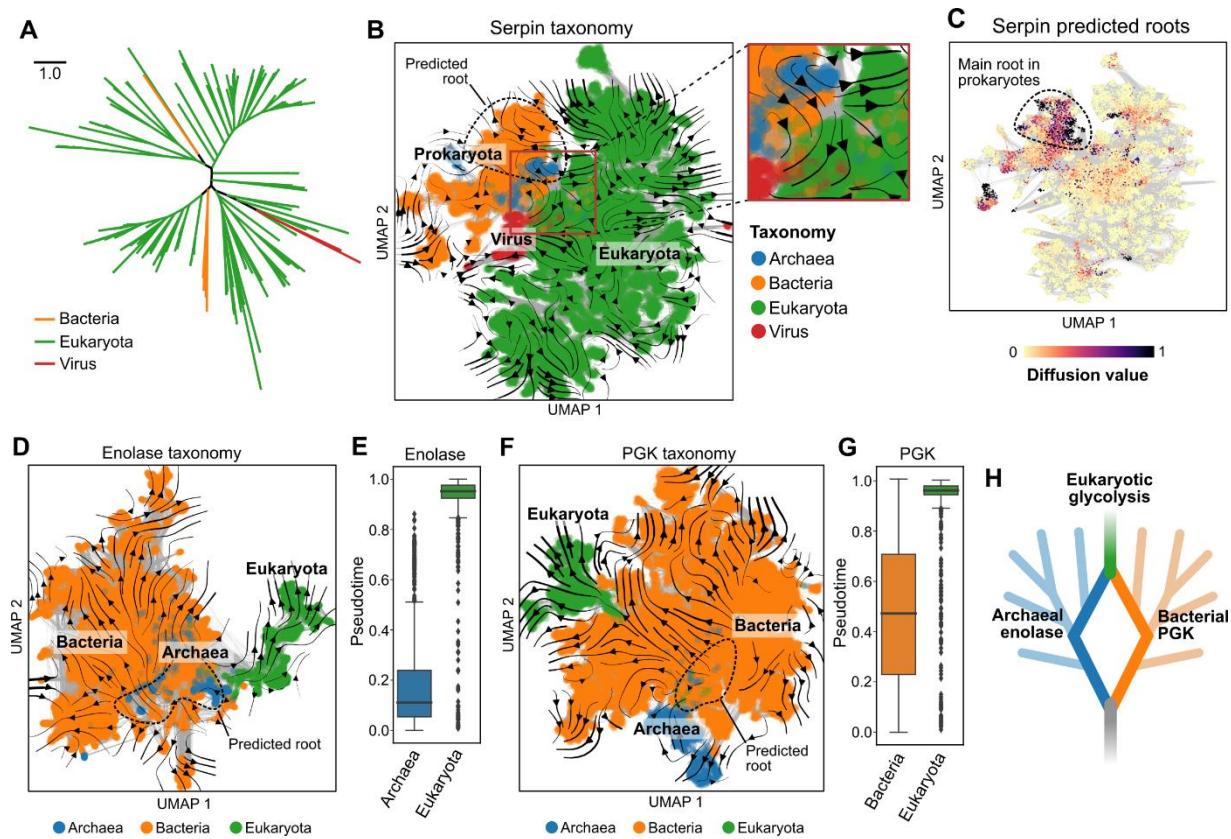
333 **Figure 3: Evo-velocity of viral proteins.**

334 (A, B) Temporal evolution of HA H1 evolution is captured in the UMAP landscape and is also
335 predicted by evo-velocity pseudotime. Two main clusters correspond to the two main pandemic
336 trajectories of H1N1, the first beginning in the early twentieth century and the second beginning
337 in the early twenty-first century. (C, D) An evo-velocity streamplot of Gag evolution illustrates
338 the branching trajectories of HIV-1 subtypes, including major subtypes like A, B, and C
339 preceding circulating recombinant forms like AE and BC. Box extends from first to third quartile
340 with line at the median, whiskers extend to 1.5 times the interquartile range, and diamonds
341 indicate outlier points. (E-G) Variants of Spike (identified using characteristic mutations like
342 D614G and N501Y) that emerge in later portions of the COVID-19 pandemic are also predicted
343 to be later in evo-velocity pseudotime.



344 **Figure 4: Evo-velocity of eukaryotic proteins.**

345 (A) The maximum likelihood phylogenetic tree determined by Pillai et al. [35] is rooted in globin
 346 X and neuroglobin with the longest branches extending to Hb α and Hb β . (B) The landscape of
 347 globin sequences shows a branching trajectory with the predicted root also closest to neuroglobin
 348 (Figure S3A). (C) Computing pseudotime from this predicted root places Hb α and Hb β as most
 349 recent in evolution, consistent with the tree of Pillai et al. (D) The landscape of cytochrome c
 350 sequences shows clustering structure corresponding to known taxonomic labels, with the evo-
 351 velocity gradient beginning among single-celled eukaryotes and plants (Figure S4A). (E, F) The
 352 ordering of the median evo-velocity pseudotimes of various taxonomic labels corresponds to the
 353 evolutionary orderings in geologic time determined by molecular clocks and the fossil record
 354 [37]. For all boxplots: box extends from first to third quartile with line at the median, whiskers
 355 extend to 1.5 times the interquartile range, and diamonds indicate outlier points.



356 **Figure 5: Evo-velocity of ancient evolution.**

357 (A) The unrooted maximum likelihood phylogenetic tree of serpins shows substantially more
 358 eukaryotic than prokaryotic diversity, leading some to hypothesize a eukaryotic root [38], [39].
 359 (B, C) Despite lower prokaryotic diversity, evo-velocity still identifies the root of serpins within
 360 the prokaryotes, and eukaryotes are the last domain in evo-velocity pseudotime (Figure S5A),
 361 suggesting that prokaryotic serpins were not acquired from eukaryotes via HGT [38], [39]. (D,
 362 E) The evo-velocity-predicted root of the enolase landscape begins in a region of archaea and
 363 some bacteria, with eukaryotic enolase as the most recent in pseudotime and directly proximal to
 364 archaeal enolase on the sequence landscape (Figure S5B,C,F). (F, G) The evo-velocity-
 365 predicted root of the PGK landscape begins in a mostly bacterial region with some archaea, with
 366 eukaryotic PGK also very recent in pseudotime and directly proximal to bacterial PGK (Figure
 367 S5D,E,G). (H) The sequence landscapes and evo-velocity-predicted roots suggest that the

368 component enzymes of eukaryotic glycolysis were acquired through different evolutionary paths
369 via HGT; figure adapted from Figure 1 of Weiss et al. [6]. For all boxplots: box extends from
370 first to third quartile with line at the median, whiskers extend to 1.5 times the interquartile range,
371 and diamonds indicate outlier points.

372 **Methods**

373 *Language models*

374 In this paper, we implement evo-velocity with masked language models, which are
375 trained by masking certain residues in the input and predicting these residues in the output. For a
376 sequence $\mathbf{x} \in \mathcal{X}^N$, where \mathcal{X} is the set of amino acids and N is the sequence length, the masked
377 language modeling objective implicitly models a distribution over sequences through conditional
378 likelihoods $p(x_i | \mathbf{x}_{[N] \setminus \{i\}})$ where $\mathbf{x}_{[N] \setminus \{i\}}$ denotes the sequence without the residue at position i ,
379 sometimes referred to as the sequence context. Typically, these language models also learn a
380 latent variable $\mathbf{z}_i \in \mathbb{R}^D$ by learning a function $f: \mathcal{X}^{N-1} \rightarrow \mathbb{R}^D$ where $\mathbf{z}_i \stackrel{\text{def}}{=} f(\mathbf{x}_{[N] \setminus \{i\}})$ such that
381 $p(x_i | \mathbf{x}_{[N] \setminus \{i\}}, \mathbf{z}_i) = p(x_i | \mathbf{z}_i)$.

382 We use two large-scale language models trained with a masked objective. We used the
383 ESM-1b model [15] (obtained from <https://github.com/facebookresearch/esm>) trained on the
384 March 2018 release of UniRef50 [17]. We also used the TAPE transformer model [14] (obtained
385 from <https://github.com/songlab-cal/tape>) trained on the Pfam database release 32.0 [31]. Unless
386 otherwise stated, we used ESM-1b as the default model for our experiments.

387 *Evo-velocity score computation*

388 We compute an evo-velocity score that compares two sequences $\mathbf{x}^{(a)}$ and $\mathbf{x}^{(b)}$ as

$$389 v_{ab} \stackrel{\text{def}}{=} \frac{1}{|\mathcal{M}|} \sum_{i \in \mathcal{M}} [\log p(x_i^{(b)} | \mathbf{z}_i^{(a)}) - \log p(x_i^{(a)} | \mathbf{z}_i^{(b)})],$$

390 where $\mathcal{M} \stackrel{\text{def}}{=} \{i : x_i^{(a)} \neq x_i^{(b)}\}$ is the set of positions at which the amino acid residues disagree.

391 We designed the evo-velocity score based on masked-language-model pseudolikelihoods [19] to
392 efficiently approximate the change in likelihood of mutating sequence $\mathbf{x}^{(a)}$ to $\mathbf{x}^{(b)}$ and vice

393 versa. The evo-velocity score is positive if moving from $\mathbf{x}^{(a)}$ to $\mathbf{x}^{(b)}$ is more favorable and
394 negative if moving from $\mathbf{x}^{(b)}$ to $\mathbf{x}^{(a)}$ is more favorable, so that $v_{ab} = -v_{ba}$.

395 In practice, $\mathbf{x}^{(a)}$ and $\mathbf{x}^{(b)}$ can disagree in length, so we first perform a global pairwise
396 sequence alignment using the pairwise2 module in the Biopython Python package version 1.76
397 with a uniform substitution matrix and alignment parameters meant to discourage the
398 introduction of sequence gaps (following the Biopython recommendations, we use a match score
399 of 5, a mismatch penalty of -4, a gap-open penalty of -4, and a gap-extension penalty of -0.1).
400 We ignore positions involving alignment gaps when computing the evo-velocity score, i.e., the
401 evo-velocity score is only based on substitutions, since modeling the effect of an insertion or a
402 deletion is less well defined when using a masked language model to predict mutations. We do
403 not include gap characters when computing language model likelihoods.

404 *Constructing the sequence similarity network and evo-velocity transition matrix*

405 To construct the sequence similarity network, we first use the language model to obtain a
406 sequence embedding $\mathbf{z}^{(a)} \stackrel{\text{def}}{=} \frac{1}{N} \sum_{i=1}^N \mathbf{z}_i^{(a)}$ for each sequence $\mathbf{x}^{(a)}$ in the set of sequences-of-
407 interest (for example, proteins within the same family) of size M . We use ESM-1b to compute
408 the embeddings for each sequence as the 1,280-dimensional output of the last (i.e., the 33rd)
409 hidden layer of the language model.

410 We then construct a directed graph where each node corresponds to a sequence and we
411 connect a node to its k -nearest neighbors based on the Euclidean distance in the language model
412 embedding space in \mathbb{R}^D . We can then use the evo-velocity scores and the KNN graph to
413 construct a transition matrix $\mathbf{Q} \in \mathbb{R}^{M \times M}$, where

414
$$q_{ab} \stackrel{\text{def}}{=} \frac{\exp(v_{ab})}{\sum_{b' \in \mathcal{N}(\mathbf{x}_a)} \exp(v_{ab'})}$$

415 is the entry in the a th row and b th column of \mathbf{Q} and $\mathcal{N}(\cdot)$ denotes the set of the neighbors in the
416 KNN graph. Note that $\sum_{b \in [M]} q_{ab} = 1$.

417 In all our experiments, we use the embedding function learned by the ESM-1b language
418 model. To construct the KNN graph, we use the functionality provided by the Scanpy Python
419 package version 1.6.1 [23]. In practice, higher values of k result in smoother, less noisy
420 landscapes at the cost of higher computational effort. We find that values of k around 30 to 50
421 (our package defaults to 50) provide a good balance between robustness to noise and
422 computational efficiency (though analyses involving less sequences overall or more
423 homogeneous sequences can also tolerate lower values of k to speed up analysis); the 30-50
424 range has also shown good empirical performance in other KNN-based analyses that require
425 robust estimation of the biological landscape [50]. In this paper, we use the values $k = 30$ for our
426 cytochrome c and Spike experiments, $k = 40$ for our NP and Gag experiments, and $k = 50$ for our
427 HA, globin, enolase, PGK, and serpin experiments.

428 *Network diffusion analysis and predicting roots*

429 To find the root nodes, we can use the fixed points of a diffusion process based on the
430 transition matrix \mathbf{Q} [46], [51]. Given a diffusion probability vector $\boldsymbol{\mu}^{(t)}$, we can find roots by
431 running a diffusion process until a fixed point, i.e., $\boldsymbol{\mu}^{(\infty)} = \mathbf{Q}^T \boldsymbol{\mu}^{(\infty)}$ (note that we take the
432 transpose of the transition matrix to “reverse” the diffusion process, since our goal is to find the
433 root nodes). We take the highest values of $\boldsymbol{\mu}^{(\infty)}$ to identify the root nodes, where we obtain $\boldsymbol{\mu}^{(\infty)}$
434 as the eigenvector of \mathbf{Q}^T corresponding to an eigenvalue of 1. By default, we use a cutoff at the
435 98th percentile of values in $\boldsymbol{\mu}^{(\infty)}$ to define the set of root nodes, as has been done previously [51].
436 We assume \mathbf{Q} corresponds to a strongly connected directed graph, which is true if the KNN
437 network consists of a single connected component (and which was true for all of our analyses); if

438 the graph is strongly connected, then there is a unique value of $\mu^{(\infty)}$ [46]. We scale the final
439 values of the diffusion vector $\mu^{(\infty)}$ to take values between 0 and 1, inclusive, and use the
440 diffusion-based root estimation procedure implemented by the scVelo Python package version
441 0.2.2 [51].

442 *Diffusion pseudotime computation*

443 We use diffusion pseudotime (DPT) to order sequences in evolutionary time. DPT is
444 described in detail by Haghverdi et al. [26] and is closely related to the geodesic distance
445 between two nodes in a graph. As done by Haghverdi et al., we denote the DPT score between a
446 root node $\mathbf{x}^{(\text{root})}$ and a node \mathbf{x} as $\text{dpt}(\mathbf{x}^{(\text{root})}, \mathbf{x})$, which takes scaled values between 0 and 1,
447 inclusive. We use the graph encoded by the transition matrix \mathbf{Q} . Since the root-prediction
448 analysis described above can yield potentially multiple roots, we define evo-velocity pseudotime
449 as the average of DPT scores across the set of all root nodes \mathcal{R} , i.e.,

450
$$\text{pseudotime}(\mathbf{x}) \stackrel{\text{def}}{=} \frac{1}{|\mathcal{R}|} \sum_{\mathbf{x}^{(\text{root})} \in \mathcal{R}} \text{dpt}(\mathbf{x}^{(\text{root})}, \mathbf{x}).$$

451 We use the DPT implementation provided by the Scanpy Python package.

452 *Plotting, data visualization, and statistical analysis*

453 We used the UMAP algorithm [24] to visualize the KNN graph in two dimensions. All
454 UMAP visualizations were obtained using the umap-learn Python package version 0.4.6 as
455 wrapped by Scanpy. We generated boxplots using the seaborn Python package version 0.11.1; in
456 all of our boxplots, the box extends from the first to third quartile, a horizontal line is drawn at
457 the median, and whiskers extend to 1.5 times the interquartile range. We used the scipy version
458 1.4.1 Python package to compute correlations and statistical tests. A P value of less than 1×10^{-308}
459 indicates a value that was below the floating-point precision of our computer.

460 *Embedding transfer*

461 We can project evo-velocity, as encoded by the transition matrix \mathbf{Q} , into an arbitrary
462 embedding space (assuming that embeddings are available for all sequences) as done previously
463 [51]. For a sequence $\mathbf{x}^{(a)}$ and $\mathbf{x}^{(b)}$, we denote the respective embeddings as $\mathbf{z}^{(a)}$ and $\mathbf{z}^{(b)}$. We
464 then first compute the cosine-normalized translation vector separating sequences connected in
465 the KNN graph, i.e.,

$$466 \quad \boldsymbol{\delta}_{ab} \stackrel{\text{def}}{=} \frac{\mathbf{z}_b - \mathbf{z}_a}{\|\mathbf{z}_b - \mathbf{z}_a\|_2}$$

467 and we obtain the velocity projections as the expected displacement with respect to \mathbf{Q} , i.e.,

$$468 \quad \tilde{\mathbf{v}}_a \stackrel{\text{def}}{=} \sum_{b \neq a} \left(q_{ab} - \frac{1}{M} \right) \boldsymbol{\delta}_{ab}.$$

469 We use two main interpretable embedding spaces in our downstream analysis. The first is
470 two-dimensional UMAP space, in which evo-velocity can be visualized as two-dimensional
471 vectors. Once these vectors are computed, we use the streamplot and quiver plot functionality of
472 the matplotlib Python package version 3.3.3 to visualize evo-velocity. The second interpretable
473 embedding space we consider is one-hot-encoded sequence space, which we use to identify
474 mutations that are associated with large changes in evo-velocity. To project evo-velocity into
475 sequence space, we first construct a multiple sequence alignment of all M sequences using
476 MAFFT version 7.475. A sequence \mathbf{x} is then embedded into a one-hot-encoded vector $\tilde{\mathbf{z}} \in$
477 $\{0,1\}^{\tilde{N}|\mathcal{X}|}$, where \tilde{N} is the length of the alignment. The velocity projections take values in $\mathbb{R}^{\tilde{N}|\mathcal{X}|}$,
478 where we interpret each dimension as corresponding to a given residue in \mathcal{X} at a given site in
479 $[\tilde{N}]$.

480 *Deep mutational scan benchmarking*

481 We obtained DMS values, all involving single-residue substitutions, and the
482 corresponding DeepSequence [20] mutational effect predictions from Livesey and Marsh [18].
483 To compute mutational effect predictions for ESM-1b and TAPE, we used the evo-velocity score
484 between the wildtype and mutant sequence as described above. As done by Livesey and March,
485 we evaluated the performance of the mutational effect prediction as the absolute value of the
486 Spearman correlation between the algorithm's predicted mutational effect and the value reported
487 by the original DMS study, restricting only to mutants considered by the original DMS studies.
488 We used all DMS studies from Livesey and Marsh for which there were DeepSequence results
489 available.

490 *UniRef50 sequence similarity computational control*

491 We wanted to quantify if our evo-velocity results, including evo-velocity pseudotime,
492 could be explained by sequence similarity to the training set. We obtained this training set from
493 ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2018_03/uniref/. We
494 identified representative sequences in UniRef50 by searching for the literal presence of the
495 sequence within UniRef50 or by mapping the protein accession information to UniProt IDs, if
496 available, and then mapping the UniProt IDs to the corresponding UniRef50 cluster
497 representative. Then, for each sequence in our evo-velocity analysis, we computed the sequence
498 similarity score to each representative sequence in UniRef50 and took the maximum of these
499 scores. To compute the sequence similarity score, we used the similarity ratio implemented by
500 the fuzzywuzzy Python package version 0.18.0, which is based on the Levenshtein distance
501 between two sequences and is normalized to take values between 0% and 100%, inclusive.

502 To perform the control experiment, we filtered out sequences with 80% or less sequence
503 similarity to the training set, thereby excluding sequences that are far from the sequences

504 considered by ESM-1b. We then evaluated the Spearman correlation between the similarity
505 scores and pseudotime, both in terms of the directionality of the correlation (e.g., a positive
506 correlation indicates that similarity to UniRef50 could be explaining pseudotime) and also in
507 terms of the change in this correlation compared to the correlation obtained on the full set of
508 sequences (**Table S3**). We also evaluated the ability for the overall pseudotemporal patterns (for
509 example, correlation with sampling time or ordering of taxonomic classes) to reproduce those
510 found when analyzing the full set of sequences.

511 *TAPE reproducibility computational control*

512 We also wanted to see how robust our evo-velocity results were to the language model
513 used to estimate the mutational likelihoods. We therefore obtained the TAPE transformer model
514 as described above. We performed the evo-velocity analysis by keeping the KNN graph structure
515 the same as in the ESM-1b analysis but using the evo-velocity scores obtained by the TAPE
516 likelihoods. All other downstream analyses, including root prediction and pseudotime
517 computation, were also kept the same. We then evaluated the ability for the final pseudotime
518 output to reproduce the output obtained by performing the same analysis except with ESM-1b
519 velocities.

520 *Influenza A NP evo-velocity analysis*

521 We obtained 3,304 unique NP sequences from the NIAID Influenza Research Database
522 (<https://www.fludb.org>) [52]. We restricted our analysis to sequences that were sampled from
523 human hosts. Metadata included the year the sequences were sampled and the influenza subtype
524 of the original virus. We performed KNN graph construction, evo-velocity computation, root
525 prediction, diffusion pseudotime estimation, and UMAP velocity projection as described
526 previously.

527 We obtained an ordered phylogenetic path from Gong et al. [28] of H3N2-subtype NP
528 evolution from 1968 to 2007. We computed the ESM-1b evo-velocity score comparing adjacent
529 sequences along this path and plotted the cumulative sum of these scores versus the order in the
530 path (**Figure 2D**). We also compared the improvement in evo-velocity of this path to that of
531 simulated paths. To simulate paths across our evo-velocity landscape, we began at the same
532 starting sequence, used the same number of steps as the path of Gong et al., and only considered
533 paths that ended in the same cluster of sequences as the end sequence of Gong et al.'s path. We
534 used the transition matrix \mathbf{Q} to define the probability of moving from node to node and we
535 performed 30,000 random walks.

536 We obtained a phylogenetic tree of all NP sequences considered in the evo-velocity
537 analysis by first aligning sequences with MAFFT followed by approximate maximum-likelihood
538 tree construction using FastTree version 2.1 using a JTT+CAT model. The midpoint-rooted tree
539 was visualized using the iTOL web tool (<https://itol.embl.de/>) [53].

540 We also projected evo-velocity into one-hot-encoding space to compute a $N|\mathcal{X}|$ -
541 dimensional vector $\tilde{\mathbf{v}}_a$ for each sequence as described previously; we then averaged these vectors
542 across all sequences and inspected the top five mutations with the greatest magnitude change in
543 the resulting average. We then located these mutations onto a reference sequence from 1934
544 H1N1 NP (UniProt ID: P03466), for which linear T-cell epitope data is available through the
545 Immune Epitope Database (<https://www.iedb.org/>) [30]. We restricted our consideration to linear
546 epitopes of influenza NP with positive validation in a T-cell assay.

547 We also conducted an ablation study to test the robustness of evo-velocity results when
548 using simpler methods for computing sequence embeddings or evo-velocity scores. We
549 recomputed the KNN graph based on $N|\mathcal{X}|$ -dimensional one-hot embeddings followed by

550 dimensionality reduction based on the top-100 principal components to enable more efficient
551 estimation of nearest-neighbor relationships. We recomputed evo-velocity scores based on the
552 BLOSUM62 amino-acid substitution scores averaged across the set of differing positions, i.e.,
553 \mathcal{M} , for each edge (obtained via global pairwise alignment with a uniform substitution matrix).
554 We reran analysis using binary embeddings or BLOSUM62 velocities or both, while holding all
555 other parts of the pipeline constant. As a negative control, we also computed velocities by
556 sampling from a Gaussian distribution with zero mean and unit variance and reran analysis with
557 all other parts of the pipeline constant.

558 *Influenza A HA evo-velocity analysis*

559 We obtained 8,115 unique HA H1 sequences from the NIAID Influenza Research
560 Database (<https://www.fludb.org>) [52]. We restricted our analysis to sequences that were
561 sampled from human hosts. Metadata included the year the sequences were sampled and the
562 influenza subtype of the original virus. We performed KNN graph construction, evo-velocity
563 computation, root prediction, diffusion pseudotime estimation, and UMAP velocity projection as
564 described previously.

565 *HIV-1 Gag evo-velocity analysis*

566 We obtained 18,018 unique Gag sequences from the Los Alamos National Laboratory
567 HIV sequence database (<https://www.hiv.lanl.gov>). Metadata included the year the sequences
568 were sampled and the HIV subtype of the original virus. We performed KNN graph construction,
569 evo-velocity computation, root prediction, diffusion pseudotime estimation, and UMAP velocity
570 projection as described previously. We obtained four SIVcpz Gag sequences with high-quality,
571 manual annotation from UniProt (<https://www.uniprot.org/>) [54]. These sequences were obtained

572 from SIVcpz isolates MB66 (UniProt ID: Q1A268), EK505 (UniProt ID: Q1A250), TAN1
573 (UniProt ID: Q8AII2), and GAB1 (UniProt ID: P17282).

574 *SARS-CoV-2 Spike evo-velocity analysis*

575 We obtained 46,986 unique, full-length Spike sequences from the May 27, 2021 GISAID
576 release (<https://www.gisaid.org/>) [55]. Metadata included the date the sequences were sampled.
577 We performed KNN graph construction, evo-velocity computation, root prediction, diffusion
578 pseudotime estimation, and UMAP velocity projection as described previously. We determined
579 the location of clusters corresponding to known variants-of-concern based on known marker
580 mutations including D614G, N501Y (for B.1.1.7, B.1.351, and P.1), K417N (for B.1.351),
581 P681H (for B.1.1.7), E154K (for B.1.617.1), and T478K (for B.1.617.2) [34].

582 *Globins evo-velocity analysis*

583 We obtained 6,097 globin sequences from UniProt. We restricted our analysis to
584 eukaryotic sequences within the “globin” family and to sequences between 135 and 155 residues
585 in length, inclusive, which was done based on a clear mode in the distribution of sequence
586 lengths and was meant to preserve mostly homologous sequences in our analysis. Metadata
587 included the taxonomic lineage of each sequence and, for some of the sequences, annotations
588 indicating the type of globin. We performed KNN graph construction, evo-velocity computation,
589 root prediction, diffusion pseudotime estimation, and UMAP velocity projection as described
590 previously. We obtained the rooted phylogenetic tree of globins and the inferred ancestral
591 sequences from Pillai et al. [35].

592 *Cytochrome c evo-velocity analysis*

593 We obtained 2,128 cytochrome c sequences from UniProt. We restricted our analysis to
594 eukaryotic sequences within the “cytochrome c” family and to sequences between 100 and 115
595 residues in length, inclusive, which was done based on a clear mode in the distribution of
596 sequence lengths and was meant to preserve mostly homologous sequences in our analysis.
597 Metadata included the taxonomic lineage of each sequence. We performed KNN graph
598 construction, evo-velocity computation, root prediction, diffusion pseudotime estimation, and
599 UMAP velocity projection as described previously. We obtained the approximate dates and
600 geologic eons of the emergences of different organisms from Hedges et al. [37].

601 *Enolase evo-velocity analysis*

602 We obtained 31,901 enolase sequences from UniProt. We restricted our analysis to
603 sequences within the “enolase” family and to sequences between 412 and 448 residues in length,
604 inclusive, which was done based on a clear mode in the distribution of sequence lengths and was
605 meant to preserve mostly homologous sequences in our analysis. Metadata included the
606 taxonomic lineage of each sequence. We performed KNN graph construction, evo-velocity
607 computation, root prediction, diffusion pseudotime estimation, and UMAP velocity projection as
608 described previously.

609 We obtained unrooted phylogenetic trees of enolase based on the subset of our UniProt
610 sequences with high-quality, manual annotation. We then performed a multiple sequence
611 alignment with MAFFT and performed phylogenetic reconstruction on the alignment with
612 PhyML version 3.3.20200621 using a JTT model with gamma-distributed among-site rate
613 variation and empirical state frequencies [56]. The unrooted tree was visualized using the iTOL
614 web tool.

615 *PGK evo-velocity analysis*

616 We obtained 30,455 PGK sequences from UniProt. We restricted our analysis to
617 sequences within the “phosphoglycerate kinase” family and to sequences between 385 and 420
618 residues in length, inclusive, which was done based on a clear mode in the distribution of
619 sequence lengths and was meant to preserve mostly homologous sequences in our analysis.
620 Metadata included the taxonomic lineage of each sequence. We performed KNN graph
621 construction, evo-velocity computation, root prediction, diffusion pseudotime estimation, and
622 UMAP velocity projection as described previously.

623 We obtained unrooted phylogenetic trees of enolase based on the subset of our UniProt
624 sequences with high-quality, manual annotation. We then performed a multiple sequence
625 alignment with MAFFT and performed phylogenetic reconstruction on the alignment with
626 PhyML using a JTT model with gamma-distributed among-site rate variation and empirical state
627 frequencies. The unrooted tree was visualized using the iTOL web tool.

628 *Serpins evo-velocity analysis*

629 We obtained 22,737 serpin sequences from UniProt. We restricted our analysis to
630 sequences within the “serpin” family and to sequences between 300 and 525 residues in length,
631 inclusive, which was done based on a clear mode in the distribution of sequence lengths and was
632 meant to preserve mostly homologous sequences in our analysis. Metadata included the
633 taxonomic lineage of each sequence. We performed KNN graph construction, evo-velocity
634 computation, root prediction, diffusion pseudotime estimation, and UMAP velocity projection as
635 described previously.

636 We obtained unrooted phylogenetic trees of enolase based on the subset of our UniProt
637 sequences with high-quality, manual annotation. We then performed a multiple sequence
638 alignment with MAFFT and performed phylogenetic reconstruction on the alignment with

639 PhyML using a JTT model with gamma-distributed among-site rate variation and empirical state
640 frequencies. The unrooted tree was visualized using the iTOL web tool.

Data and code availability

Data used in our analysis has been deposited to Zenodo at doi:10.5281/zenodo.4891758.

Code used in our analysis has been deposited to Zenodo at doi:10.5281/zenodo.4891819. Our code and links to data are also available on GitHub at <https://github.com/brianhie/evolocity>.

Acknowledgements

We thank Nicholas Bhattacharya, Anne Dekas, Bennett Kapili, Michael Kim, Adam Lerer, Hanon McShea, Joshua Meier, Paula Welander, Ellen Zhong, and members of the Peter Kim Laboratory for helpful comments and discussion. We thank the Stanford Research Computing Center for providing computational resources and support through the Sherlock cluster. B.L.H. acknowledges the support of the Stanford Science Fellows program. This work was supported by the Chan Zuckerberg Biohub (P.S.K.).

Author contributions

All authors were involved in project conceptualization and investigation. B.L.H. wrote the software, performed the computational experiments, and wrote the initial paper draft. All authors interpreted the results and wrote the final paper.

Competing interests

The authors declare no competing interests.

Supplemental data

Data S1: Mutational effect prediction benchmarking results (CSV file is included).

References

- [1] C. Darwin, *On the Origin of Species*. 1909.
- [2] J. Maynard Smith, “Natural selection and the concept of a protein space,” *Nature*, vol. 225, no. 5232, pp. 563–564, 1970.
- [3] J. A. G. M. De Visser and J. Krug, “Empirical fitness landscapes and the predictability of evolution,” *Nature Reviews Genetics*, vol. 15, no. 7. pp. 480–490, 2014.
- [4] M. Lässig, V. Mustonen, and A. M. Walczak, “Predicting evolution,” *Nat. Ecol. Evol.*, vol. 1, no. 3, pp. 1–9, 2017.
- [5] M. Łuksza and M. Lässig, “A predictive fitness model for influenza,” *Nature*, vol. 507, no. 7490, pp. 57–61, 2014.
- [6] M. C. Weiss *et al.*, “The physiology and habitat of the last universal common ancestor,” *Nat. Microbiol.*, vol. 1, no. 9, pp. 1–8, 2016.
- [7] S. Guindon and O. Gascuel, “A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood,” *Syst. Biol.*, vol. 52, no. 5, pp. 696–704, 2003.
- [8] J. P. Huelsenbeck, J. P. Bollback, and A. M. Levine, “Inferring the root of a phylogenetic tree,” *Syst. Biol.*, vol. 51, no. 1, pp. 32–43, 2002.
- [9] Y. Kim, F. Koehler, A. Moitra, E. Mossel, and G. Ramnarayan, “How Many Subpopulations Is Too Many? Exponential Lower Bounds for Inferring Population Histories,” *J. Comput. Biol.*, vol. 27, no. 4, pp. 136–157, 2020.
- [10] S. Wright, “The roles of mutation, inbreeding, crossbreeding and selection in evolution,” *Sixth Int. Congr. Genet.*, vol. 1, no. 6, pp. 355–366, 1932.
- [11] D. M. Weinreich, N. F. Delaney, M. A. DePristo, and D. L. Hartl, “Darwinian evolution can follow only very few mutational paths to fitter proteins,” *Science*, vol. 312, no. 5770,

pp. 111–114, 2006.

- [12] R. Dawkins, *Climbing Mount Improbable*. 1997.
- [13] T. Bepler and B. Berger, “Learning protein sequence embeddings using information from structure,” in *7th International Conference on Learning Representations*, 2019, arXiv, cs.LG:1902.08661.
- [14] R. Rao *et al.*, “Evaluating Protein Transfer Learning with TAPE,” *Adv. Neural Inf. Process. Syst.*, vol. 32, pp. 9686–9698, 2019.
- [15] A. Rives *et al.*, “Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences,” *Proc. Natl. Acad. Sci.*, vol. 118, no. 15, p. e2016239118, 2021.
- [16] B. Hie, E. Zhong, B. Berger, and B. Bryson, “Learning the language of viral evolution and escape,” *Science*, vol. 371, no. 6526, pp. 284–288, 2021.
- [17] B. E. Suzek, H. Huang, P. McGarvey, R. Mazumder, and C. H. Wu, “UniRef: Comprehensive and non-redundant UniProt reference clusters,” *Bioinformatics*, vol. 23, no. 10, pp. 1282–1288, 2007.
- [18] B. J. Livesey and J. A. Marsh, “Using deep mutational scanning to benchmark variant effect predictors and identify disease mutations,” *Mol. Syst. Biol.*, vol. 16, no. 7, p. e9380, 2020.
- [19] C. Hsu, H. Nisonoff, C. Fannjiang, and J. Listgarten, “Combining evolutionary and assay-labelled data for protein fitness prediction,” *bioRxiv*, 10.1101/2021.03.28.437402, 2021.
- [20] A. J. Riesselman, J. B. Ingraham, and D. S. Marks, “Deep generative models of genetic variation capture the effects of mutations,” *Nat. Methods*, vol. 15, no. 10, pp. 816–822, 2018.

- [21] Y. W. Yu, N. M. Daniels, D. C. Danko, and B. Berger, “Entropy-Scaling Search of Massive Biological Data,” *Cell Syst.*, vol. 1, no. 2, pp. 130–140, 2015.
- [22] D. M. McCandlish, “Visualizing fitness landscapes,” *Evolution*, vol. 65, no. 6, pp. 1544–1558, 2011.
- [23] F. A. Wolf, P. Angerer, and F. J. Theis, “SCANPY: Large-scale single-cell gene expression data analysis,” *Genome Biol.*, vol. 19, no. 1, p. 15, 2018.
- [24] L. McInnes and J. Healy, “UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction,” *arXiv*, stat.ML:1802.03426, 2018.
- [25] A. L. Barabási, N. Gulbahce, and J. Loscalzo, “Network medicine: A network-based approach to human disease,” *Nature Reviews Genetics*, vol. 12, no. 1, pp. 56–68, 2011.
- [26] L. Haghverdi, M. Büttner, F. A. Wolf, F. Buettner, and F. J. Theis, “Diffusion pseudotime robustly reconstructs lineage branching,” *Nat. Methods*, vol. 13, pp. 845–848, 2016.
- [27] G. La Manno *et al.*, “RNA velocity of single cells,” *Nature*, vol. 560, no. 7719, pp. 494–498, 2018.
- [28] L. I. Gong, M. A. Suchard, and J. D. Bloom, “Stability-mediated epistasis constrains the evolution of an influenza protein,” *eLife*, vol. 2013, no. 2, p. e00631, 2013.
- [29] T. C. Sutton, “The pandemic threat of emerging H5 and H7 avian influenza viruses,” *Viruses*, vol. 10, no. 9, p. 461, 2018.
- [30] R. Vita *et al.*, “The immune epitope database (IEDB) 3.0,” *Nucleic Acids Res.*, vol. 43, no. D1, pp. D405–D412, 2015.
- [31] S. El-Gebali *et al.*, “The Pfam protein families database in 2019,” *Nucleic Acids Res.*, vol. 47, no. D1, 2019.
- [32] D. M. Eckert and P. S. Kim, “Mechanisms of Viral Membrane Fusion and Its Inhibition,”

Annu. Rev. Biochem., vol. 70, no. 1, pp. 777–810, 2001.

[33] P. M. Sharp and B. H. Hahn, “Origins of HIV and the AIDS pandemic,” *Cold Spring Harb. Perspect. Med.*, vol. 1, no. 1, p. a006841, 2011.

[34] R. P. Walensky, H. T. Walke, and A. S. Fauci, “SARS-CoV-2 Variants of Concern in the United States-Challenges and Opportunities,” *JAMA - Journal of the American Medical Association*, vol. 325, no. 11. pp. 1037–1038, 2021.

[35] A. S. Pillai *et al.*, “Origin of complexity in haemoglobin evolution,” *Nature*, vol. 581, no. 7809, pp. 480–485, 2020.

[36] P. J. McLaughlin and M. O. Dayhoff, “Eukaryote evolution: A view based on cytochrome c sequence data,” *J. Mol. Evol.*, vol. 2, no. 2–3, pp. 99–116, 1973.

[37] S. B. Hedges, J. Marin, M. Suleski, M. Paymer, and S. Kumar, “Tree of life reveals clock-like speciation and diversification,” *Mol. Biol. Evol.*, vol. 32, no. 4, pp. 835–845, 2015.

[38] J. A. Irving, P. J. M. Steenbakkers, A. M. Lesk, H. J. M. Op den Camp, R. N. Pike, and J. C. Whisstock, “Serpins in prokaryotes,” *Mol. Biol. Evol.*, vol. 19, no. 11, pp. 1881–1890, 2002.

[39] T. H. Roberts, J. Hejgaard, N. F. W. Saunders, R. Cavicchioli, and P. M. G. Curmi, “Serpins in unicellular Eukarya, Archaea, and Bacteria: Sequence analysis and evolution,” *J. Mol. Evol.*, vol. 59, no. 4, pp. 437–447, 2004.

[40] M. A. Spence, M. D. Mortimer, A. M. Buckle, B. Q. Minh, and C. J. Jackson, “A comprehensive phylogenetic analysis of the serpin superfamily,” *Mol. Biol. Evol.*, p. msab081, 2021.

[41] S. Potter and L. A. Fothergill-Gilmore, “Molecular evolution: The origin of glycolysis,” *Biochem. Educ.*, vol. 21, no. 1, pp. 45–48, 1993.

- [42] M. Piast, I. Kustrzeba-Wójcicka, M. Matusiewicz, and T. Banaś, “Molecular evolution of enolase,” *Acta Biochim. Pol.*, vol. 52, no. 2, pp. 507–513, 2005.
- [43] M. Rojas-Pirela *et al.*, “Phosphoglycerate kinase: Structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea: Phosphoglycerate Kinase,” *Open Biology*, vol. 10, no. 11. p. 200302, 2020.
- [44] S. J. Gould, *Wonderful Life: The Burgess Shale and the Nature of History*. WW Norton & Company, 1990.
- [45] S. C. Morris, *Life’s solution: Inevitable humans in a lonely universe*. 2003.
- [46] N. Masuda, M. A. Porter, and R. Lambiotte, “Random walks and diffusion on networks,” *Physics Reports*, vol. 716–717. pp. 1–58, 2017.
- [47] V. C. Xie, J. Pu, B. P. Metzger, J. W. Thornton, and B. C. Dickinson, “Contingency and chance erase necessity in the experimental evolution of ancestral proteins,” *eLife*, vol. 10, p. e67336, 2021.
- [48] J. D. Bloom, S. T. Labthavikul, C. R. Otey, and F. H. Arnold, “Protein stability promotes evolvability,” *Proc. Natl. Acad. Sci. U. S. A.*, vol. 103, no. 15, pp. 5869–5874, 2006.
- [49] R. Dawkins, *The Selfish Gene*. 1976.
- [50] A. Narayan, B. Berger, and H. Cho, “Assessing single-cell transcriptomic variability through density-preserving data visualization,” *Nat. Biotechnol.*, 2021.
- [51] V. Bergen, M. Lange, S. Peidli, F. A. Wolf, and F. J. Theis, “Generalizing RNA velocity to transient cell states through dynamical modeling,” *Nat. Biotechnol.*, vol. 38, no. 12, pp. 1408–1414, 2020.
- [52] Y. Zhang *et al.*, “Influenza Research Database: An integrated bioinformatics resource for influenza virus research,” *Nucleic Acids Res.*, vol. 45, no. D1, pp. D466–D474, 2017.

- [53] I. Letunic and P. Bork, “Interactive Tree of Life (iTOL) v4: Recent updates and new developments,” *Nucleic Acids Res.*, vol. 47, no. W1, pp. W256–W259, 2019.
- [54] UniProt Consortium, “UniProt: A worldwide hub of protein knowledge,” *Nucleic Acids Res.*, vol. 47, no. D1, pp. D506–D515, 2019.
- [55] Y. Shu and J. McCauley, “GISAID: Global initiative on sharing all influenza data – from vision to reality,” *Eurosurveillance*, vol. 22, no. 13. p. 30494, 2017.
- [56] S. Guindon, J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel, “New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0,” *Syst. Biol.*, vol. 59, no. 3, pp. 307–321, 2010.

Supplementary figures and figure captions

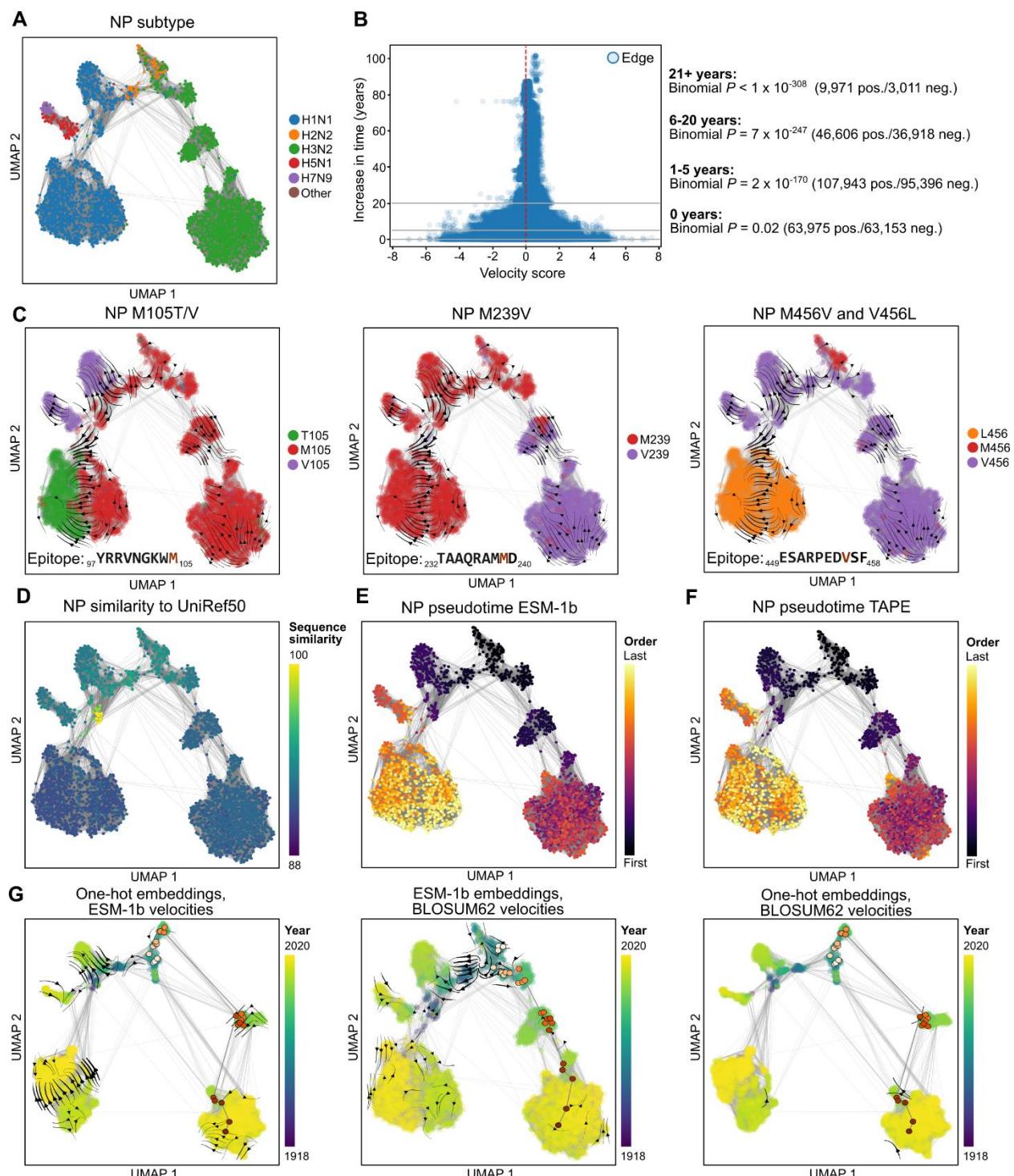


Figure S1: Additional figures for nucleoprotein evo-velocity analysis.

(A) The NP sequence landscape shows structure corresponding to influenza subtype. **(B)** By stratifying edges based on the sampling time difference between their two corresponding sequences and quantifying bias toward positive or negative evo-velocity scores using a binomial test, we found that the bias toward positive evo-velocity scores increases as time increases. **(C)** Mutations with strong magnitude changes in evo-velocity are also located in experimentally-validated T-cell epitopes (**Table S2**). **(D)** All NP sequences belong to a single UniRef50 cluster, which has as its representative a sequence from 1934 H1N1. **(E, F)** Evo-velocity pseudotime of NP based on ESM-1b- or TAPE-based evo-velocity scores have high correlation (**Table S4**). **(G)** Replacing ESM-1b embeddings with one-hot sequence embeddings removes some of the known evolutionary continuity relationships from the visualization, especially in the well-studied trajectory of H3N2 NP evolution. Replacing ESM-1b evo-velocity scores with BLOSUM62 scores results in much weaker and more ambiguous evo-velocity flows when visualized.

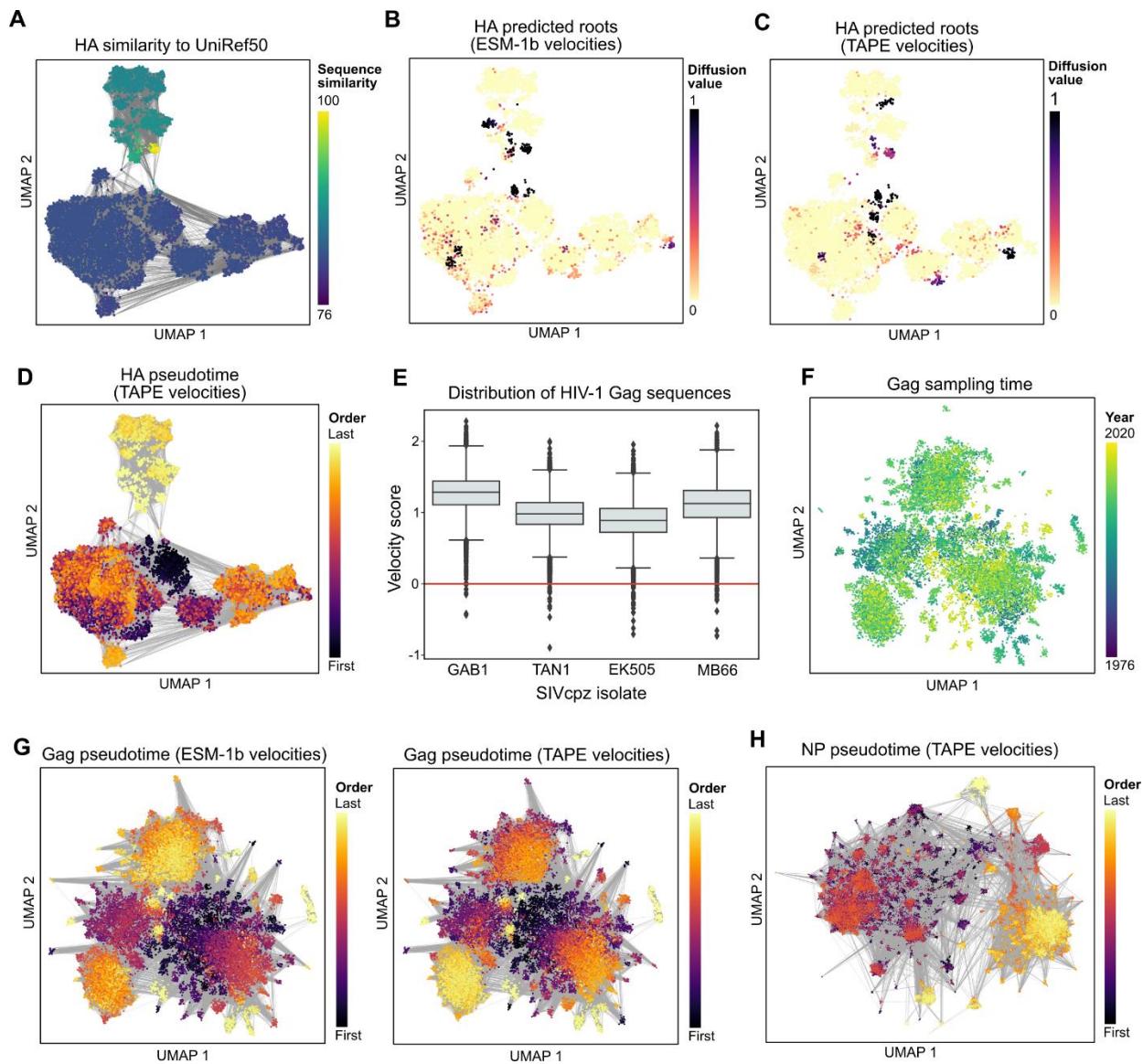


Figure S2: Additional figures for viral protein evo-velocity analyses.

(A) Influenza A HA H1 sequences map to a single UniRef50 cluster, where the representative sequence is from a 1934 H1N1 strain. **(B)** Using ESM-1b-based evo-velocity scores, the inferred roots correspond to early twentieth-century H1N1 sequences, including 1918 influenza, as well as twenty-first-century 2009 H1N1 pandemic influenza. **(C, D)** In contrast, with TAPE-based velocities, the 2009 pandemic roots are identified but not the earlier 1918 pandemic roots, leading to evo-velocity pseudotimes that are higher for twentieth-century influenza. **(E)** Each

boxplot visualizes the distribution of velocity scores for all HIV-1 Gag sequences in our analysis compared to a SIVcpz Gag sequence from a given isolate. On average, HIV-1 Gag sequences have strong positive evo-velocity scores compared to the four SIVcpz Gag sequences. Box extends from first to third quartile with line at the median, whiskers extend to 1.5 times the interquartile range, and diamonds indicate outlier points. **(F)** There is less temporal structure in the sequence landscape of HIV-1 Gag, reflecting the lack of immune pressure on HIV-1. **(G)** Evo-velocity pseudotime of Gag based on ESM-1b- or TAPE-based evo-velocity scores have high correlation (**Table S4**). **(H)** Evo-velocity pseudotime of SARS-CoV-2 Spike based on ESM-1b- or TAPE-based evo-velocity scores have high correlation (**Table S4**); compare to

Figure 3G.

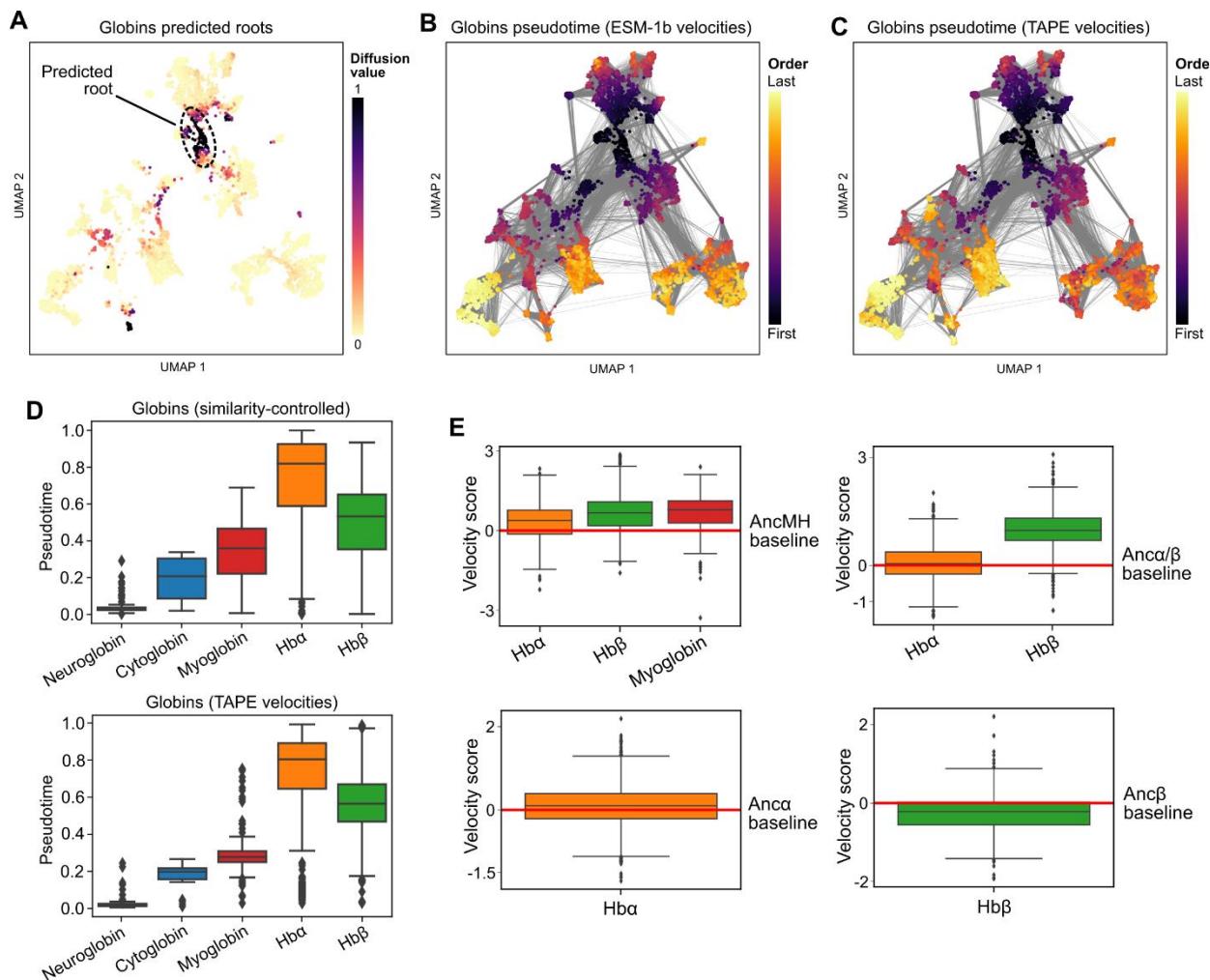


Figure S3: Additional figures for globin evo-velocity analysis.

(A) The main root region predicted for globin evolution is closest to (and includes) neuroglobin (Figure 4B). (B) Evo-velocity pseudotime is therefore lowest for neuroglobin and increases radiating outward from that portion of the graph, with Hb α and Hb β predicted to be most recent in pseudotime. (C) TAPE-based evo-velocity scores lead to pseudotime values that strongly correlate with those based on ESM-1b evo-velocity scores (Table S4). (D) Pseudotemporal relationships when controlling for similarity to UniRef50 or when using TAPE-based evo-velocity computation reproduce those in our main analysis; compare to Figure 4C. (E) Extant Hb α , Hb β , and myoglobin sequences have positive evo-velocity scores, on average, compared to

a reconstructed myoglobin/hemoglobin ancestor (AncMH) as the baseline sequence, consistent with AncMH preceding extant globins in evolutionary time. Extant Hb β sequences also have positive velocities with respect to a reconstructed Hb α /Hb β ancestor (An α / β), but this is not observed for extant Hb α sequences, predicting that extant Hb α s are more similar to An α / β than extant Hb β s and corroborated by the phylogeny of Pillai et al. [35] (**Figure 4A**). Evo-velocity also predicts extant Hb α s and Hb β s show little improvement in evo-velocity from their respective most proximal ancestors. Together, these results are consistent with evo-velocity scores increasing over greater stretches of evolutionary time. For all boxplots: box extends from first to third quartile with line at the median, whiskers extend to 1.5 times the interquartile range, and diamonds indicate outlier points.

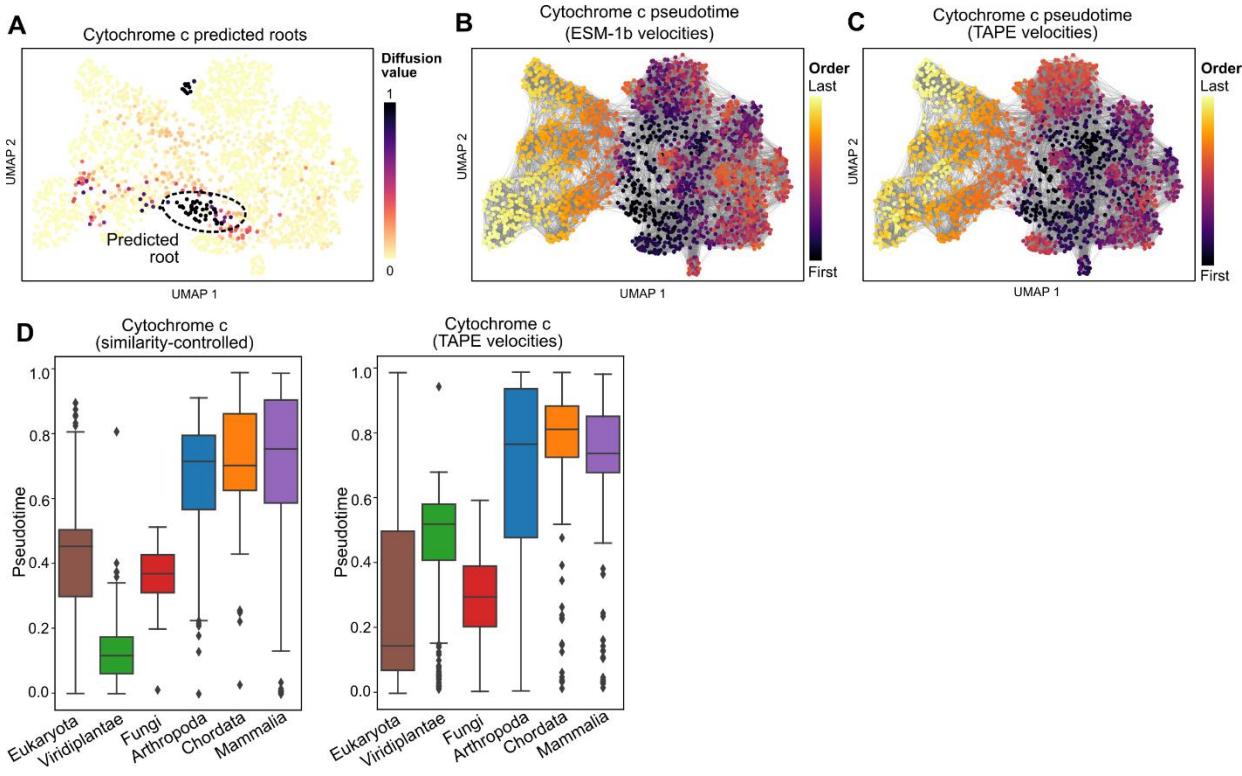


Figure S4: Additional figures for evo-velocity analysis of cytochrome c.

(A) Evo-velocity predicts root regions in the extant sequence landscape among single-celled eukaryotes and green algae. (B, C) Evo-velocity pseudotime of cytochrome c based on ESM-1b or TAPE velocities have high correlation (Table S4). (D) Pseudotemporal relationships when controlling for similarity to UniRef50 or when using TAPE-based evo-velocity computation largely reproduce those in our main analysis (compare to Figure 4E) especially when comparing the “lower-order” and “higher-order” taxonomic labels, although TAPE places viridiplantae after fungi in pseudotime and filtering based on sequence similarity to UniRef50 removes many of the earliest eukaryotes in pseudotime when analyzing the full dataset. Box extends from first to third quartile with line at the median, whiskers extend to 1.5 times the interquartile range, and diamonds indicate outlier points.

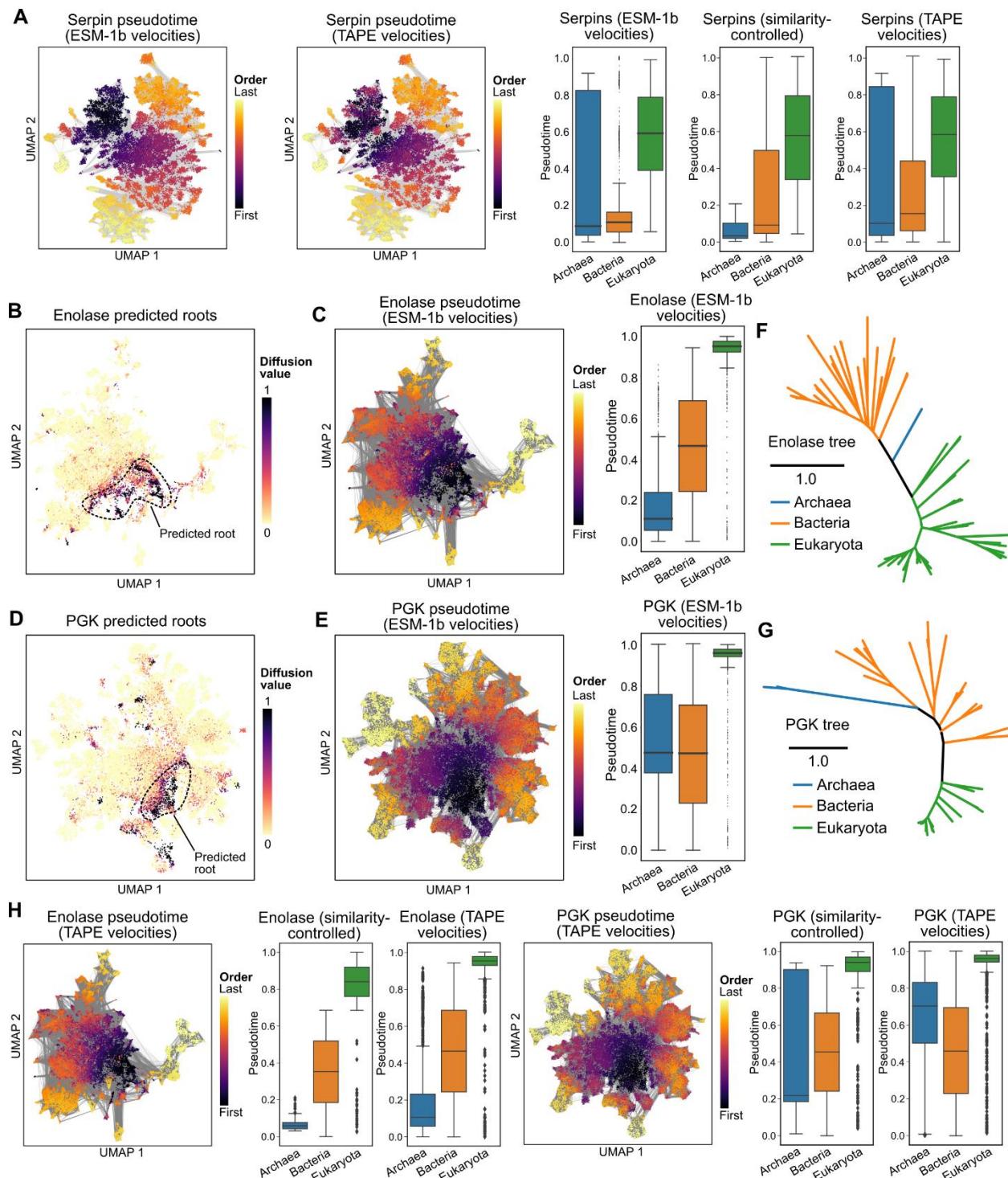


Figure S5: Additional figures for highly conserved protein evo-velocity analyses.

(A) For the family of serpins, pseudotemporal orderings of the three domains of life were reproducible when using TAPE-based evo-velocity computation and when filtering based on

similarity to UniRef50. In all cases, prokaryotes precede eukaryotes in evo-velocity pseudotime.

(B, C) Enolase is predicted to be rooted in a region with archaeal and some bacterial sequences, with eukaryota occurring last in evo-velocity pseudotime. **(D, E)** PGK is predicted to be rooted in a region with archaeal and bacterial sequences, with eukaryota occurring last in evo-velocity pseudotime. **(F)** The unrooted phylogenetic tree of manually curated enolase sequences shows archaeal sequences as more proximal to the eukaryota than bacterial sequences. **(G)** In contrast, the unrooted phylogenetic tree of manually curated PGK sequences shows bacterial sequences as more proximal to the eukaryota than archaeal sequences. **(H)** For both enolase and PGK, pseudotemporal orderings of the three domains of life were reproducible when using TAPE-based evo-velocity computation and when filtering based on similarity to UniRef50 (compare to **C** and **E**). For all boxplots: box extends from first to third quartile with line at the median, whiskers extend to 1.5 times the interquartile range, and diamonds indicate outlier points.

Supplementary Tables

Taxonomy		# Sequences	%
Archaea		776,374	2.57%
Bacteria		18,032,582	59.79%
Eukaryota	Primate	160,932	0.53%
	Other mammalia	341,837	1.13%
	Other chordata	950,939	3.15%
	Arthropoda	1,521,727	5.05%
	Viridiplantae	2,037,089	6.75%
	Fungi	2,880,452	9.55%
	Other eukaryotes	2,783,754	9.23%
Metagenome		637,280	2.11%
Other/unclassified		39,121	0.13%
Total		30,162,087	100%

Table S1: Taxonomic composition of UniRef50.

The number of sequences in UniRef50 that belong to different taxonomic categories. Most sequences in UniRef50 are bacterial, though we note that ESM-1b had no access to these taxonomic labels at training time.

Rank	Mutations	Epitope	# publications in IEDB
1	M105V	YRRVNGK <u>M</u>	5
2	M374I	ASNENMET <u>M</u>	105
3	M481I, M481V	SPIVPSF <u>D</u> M	5
4	M239V	TAA <u>Q</u> RAM <u>M</u> D	3
5	M456V, V456L	ESARPED <u>V</u> SF	6

Table S2: Top five mutations by evo-velocity rank and corresponding IEDB epitopes.

Mutations were ranked by the magnitude of the average evo-velocity vector obtained by projecting the velocities into sequence space (**Methods**) and the top five were further investigated for location in T-cell epitopes. All involve single-nucleotide mutations from a methionine to a hydrophobic or a polar-uncharged amino acid residue. Also see **Figures 2G** and **S1C**.

Protein	Pseudotime and UniRef50 similarity correlation (Spearman r , two-sided t -distribution P)	
	Full dataset	Similarity-controlled (>80%)
Influenza A NP	$r = -0.676, P < 1 \times 10^{-308}$	$r = -0.676, P < 1 \times 10^{-308}$
Influenza A HA	$r = -0.526, P < 1 \times 10^{-308}$	$r = -0.528, P < 1 \times 10^{-308}$
HIV-1 Gag	$r = -0.392, P < 1 \times 10^{-308}$	$r = -0.247, P = 1 \times 10^{-247}$
Globins	$r = 0.031, P = 0.01$	$r = -0.281, P = 2 \times 10^{-40}$
Cytochrome c	$r = 0.467, P = 1 \times 10^{-115}$	$r = 0.282, P = 3 \times 10^{-28}$
Enolase	$r = 0.597, P < 1 \times 10^{-308}$	$r = -0.044, P = 3 \times 10^{-4}$
PGK	$r = 0.304, P < 1 \times 10^{-308}$	$r = -0.267, P = 1 \times 10^{-120}$
Serpins	$r = 0.017, P = 0.01$	$r = -0.357, P < 1 \times 10^{-308}$

Table S3: Correlation between evo-velocity pseudotime and sequence similarity to UniRef50.

There is no consistent pattern in the directionality of the correlation between evo-velocity pseudotime and sequence similarity to UniRef50, indicating that sequence similarity does not trivially explain pseudotime. “Full dataset” indicates the results from analyzing all sequences while “similarity-controlled” indicates the results from restricting analysis to the sequences with greater than 80% sequence similarity to UniRef50 (**Methods**). In this latter setting, for all proteins, we were able to reproduce the results obtained from running evo-velocity on the full dataset.

Protein	ESM-1b and TAPE pseudotime correlation (Spearman r , two-sided t -distribution P)
Influenza A NP	$r = 0.926, P < 1 \times 10^{-308}$
Influenza A HA	$r = -0.028, P = 0.01$
HIV-1 Gag	$r = 0.814, P < 1 \times 10^{-308}$
SARS-CoV-2 Spike	$r = 0.902, P < 1 \times 10^{-308}$
Globins	$r = 0.893, P < 1 \times 10^{-308}$
Cytochrome c	$r = 0.811, P < 1 \times 10^{-308}$
Enolase	$r = 0.932, P < 1 \times 10^{-308}$
PGK	$r = 0.948, P < 1 \times 10^{-308}$
Serpins	$r = 0.955, P < 1 \times 10^{-308}$

Table S4: Pseudotime reproducibility with TAPE velocities.

The correlation between computed pseudotime using ESM-1b or TAPE to determine the evolutionary velocity scores. Cells shaded in light blue indicate correlations greater than 0.8. HA pseudotimes were not correlated between ESM-1b and TAPE due to the inability of TAPE to identify roots among the twentieth-century trajectory of HA evolution (Figure S2B-D). All other proteins had strong pseudotime reproducibility between the two language models.

Embedding	Velocity	Correlation with ESM-1b embeddings and velocities	Correlation with sampling year
ESM-1b	ESM-1b	N/A	0.49
One-hot + PCA	ESM-1b	0.89	0.47
ESM-1b	BLOSUM62	0.80	0.40
One-hot + PCA	BLOSUM62	0.51	0.31
ESM-1b	Random	-0.09	-0.01

Table S5: Evo-velocity ablation results for influenza A NP.

We obtained comparable, if slightly weaker, pseudotime correlation when either using binary sequence embeddings to construct the KNN graph or using BLOSUM62 scores to compute velocities (or both). Replacing velocity scores with random, Gaussian noise resulted in loss of correlation between pseudotime and sampling year. PCA: Principal component analysis.

Protein	Pseudotime and sequence length correlation (Spearman r , two-sided t -distribution P)
Influenza A NP	$r = 0.030, P = 0.08$
Influenza A HA	$r = 0.534, P < 1 \times 10^{-308}$
HIV-1 Gag	$r = -0.352, P < 1 \times 10^{-308}$
SARS-CoV-2 Spike	$r = -0.681, P < 1 \times 10^{-308}$
Globins	$r = -0.166, P = 4 \times 10^{-39}$
Cytochrome c	$r = -0.414, P = 6 \times 10^{-89}$
Enolase	$r = 0.273, P < 1 \times 10^{-308}$
PGK	$r = 0.099, P = 2 \times 10^{-67}$
Serpins	$r = -0.087, P = 4 \times 10^{-39}$

Table S6: Correlation between pseudotime and sequence length.

We observed no consistent pattern in the correlation between pseudotime and the length of sequences, suggesting that differing sequences lengths across a landscape does not explain evolution velocity patterns.