

1 **Genetic and chemotherapeutic causes of germline hypermutation**

2
3 **Authors:** Joanna Kaplanis¹, Benjamin Ide², Rashed Sanghvi¹, Matthew Neville¹, Petr
4 Danecek¹, Tim Coorens¹, Elena Prigmore¹, Patrick Short¹, Giuseppe Gallone¹, Jeremy
5 McRae¹, Chris Odhams³, Loukas Moutsianas³, Genomics England Research Consortium,
6 Jenny Carmichael⁴, Angela Barnicoat⁵, Helen Firth^{1,4}, Patrick O'Brien², Raheleh Rahbari¹,
7 Matthew Hurles¹

8 **Affiliations:**

9 ¹ Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK

10 ² Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan USA

11 ³ Genomics England, London, UK

12 ⁴ East Anglian Medical Genetics Service, Cambridge University Hospitals, Cambridge, UK

13 ⁵ North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK

14
15 **Summary:**

16 Mutation in the germline is the source of all evolutionary genetic variation and a cause of
17 genetic disease. Previous studies have shown parental age to be the primary determinant of
18 the number of new germline mutations seen in an individual's genome. Here we analysed
19 the genome-wide sequences of 21,879 families with rare genetic diseases and identified 12
20 hypermutated individuals with between two and seven times more *de novo* single nucleotide
21 variants (dnSNVs) than expected. In most of these families (8/12) the excess mutations
22 could be attributed to the father. We determined that two of these families had genetic
23 drivers of germline hypermutation, with the fathers carrying damaging genetic variation in
24 known DNA repair genes, causing distinctive mutational signatures. For five families, by
25 analysing clinical records and mutational signatures, we determined that paternal exposure
26 to chemotherapeutic agents prior to conception was a key driver of hypermutation. Our
27 results suggest that the germline is well protected from mutagenic effects, hypermutation is
28 rare and relatively modest in degree and that most hypermutated individuals will not have a
29 genetic disease.

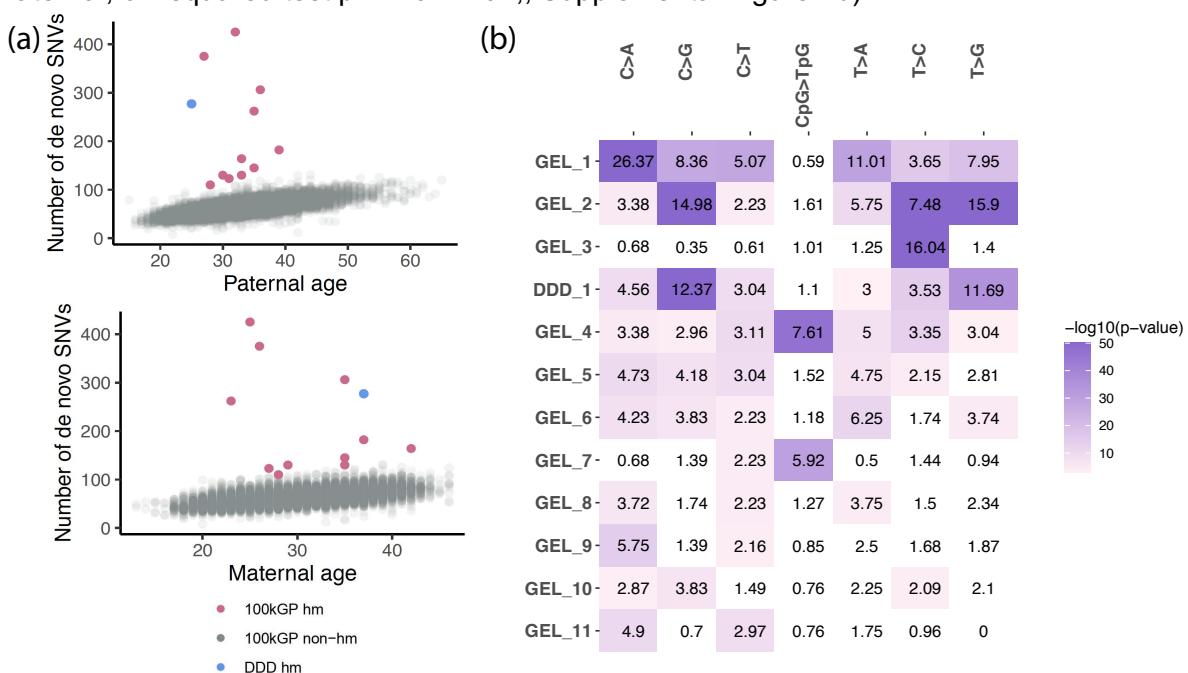
30 **Introduction**

31 Germline mutagenesis is the source of all genetic variation which drives evolution and
32 generates disease-causing variants. The average number of *de novo* mutations (DNMs)
33 generating single nucleotide variants (SNVs) is estimated to be 60-70 per human genome
34 per generation, but little is known about germline hypermutated individuals with unusually
35 large numbers of DNMs¹⁻³. The human germline mutation rate is not a constant, but varies
36 between individuals, families and populations and has evolved over time just like any other
37 phenotype⁴⁻⁸. Parental age explains a large proportion of variance for single nucleotide
38 variants (SNVs), indels and short tandem repeats (STRs)^{3,9,10}. It has been estimated that
39 there is an increase of ~2 DNMs for every additional year in father's age and a more subtle
40 increase of ~0.5 DNMs for every additional year in mother's age^{3,11}. Subtle differences have
41 also been observed between the maternal and paternal mutational spectra and may be
42 indicative of different mutagenic processes¹²⁻¹⁵. Different mutational mechanisms can leave
43 distinct mutational patterns. These combinations of mutation types can be decomposed from
44 mutational spectra into 'mutational signatures'^{16,17}. There are currently >100 somatic
45 mutational signatures that have been identified across a wide variety of cancers of which half
46 have been attributed to endogenous mutagenic processes or specific mutagens^{18,19}. The
47 majority of germline mutation can be explained by two of these signatures, termed signature

48 1 (SBS1), likely due to deamination of 5-methylcytosine²⁰, and signature 5 (SBS5), thought
49 to be a pervasive and relatively clock-like endogenous process. Both signatures are
50 ubiquitous among normal and cancer cell types^{21,22} and have been reported previously in
51 trio-studies¹³. The impact of environmental mutagens has been well established in the soma
52 but is not as well understood in the germline^{23,24}. Environmental exposures in parents, such
53 as ionising radiation, can influence the number of mutations transmitted to offspring²⁵⁻²⁷.
54 Individual mutation rates can also be influenced by genetic background. With regards to
55 somatic mutation, thousands of inherited germline variants have been shown to increase
56 cancer risk²⁸⁻³⁰. Many of these variants are in genes encoding components of DNA repair
57 pathways which, when impaired, lead to an increased number of somatic mutations.
58 However it is not known whether variants in known somatic mutator genes can influence
59 germline mutation rates. There are a handful of examples where genetic background has
60 been shown to impact the germline mutation rate of STRs, minisatellites and translocations,
61 often in cis, rather than genome-wide^{31-34,35}.

62 An elevated germline mutation rate can have a significant impact on the health of
63 subsequent generations. Increasing germline mutation rate results in an increased risk of
64 offspring being born with a genetic disorder caused by a DNM³⁶. Long-term effects of
65 mutation rate differences as a result of mutation accumulation have been demonstrated in
66 mice to have effects on reproduction and survival rates and there may be a similar impact in
67 humans^{37,38}.

68 While we have started to explain the general properties of germline mutations, little is
69 known about rare outliers with extreme mutation rates. *De novo* mutations are a substantial
70 cause of rare genetic disorders and cohorts of patients with such disorders are enriched for
71 DNMs overall and are more likely to include germline hypermutated individuals^{11,39}. To this
72 end we sought to identify germline hypermutated individuals in ~20,000 sequenced parent
73 offspring trios from two rare disease cohorts. We identified genetic or environmental causes
74 of this hypermutation and estimated how much variation in germline mutation rate this may
75 explain.

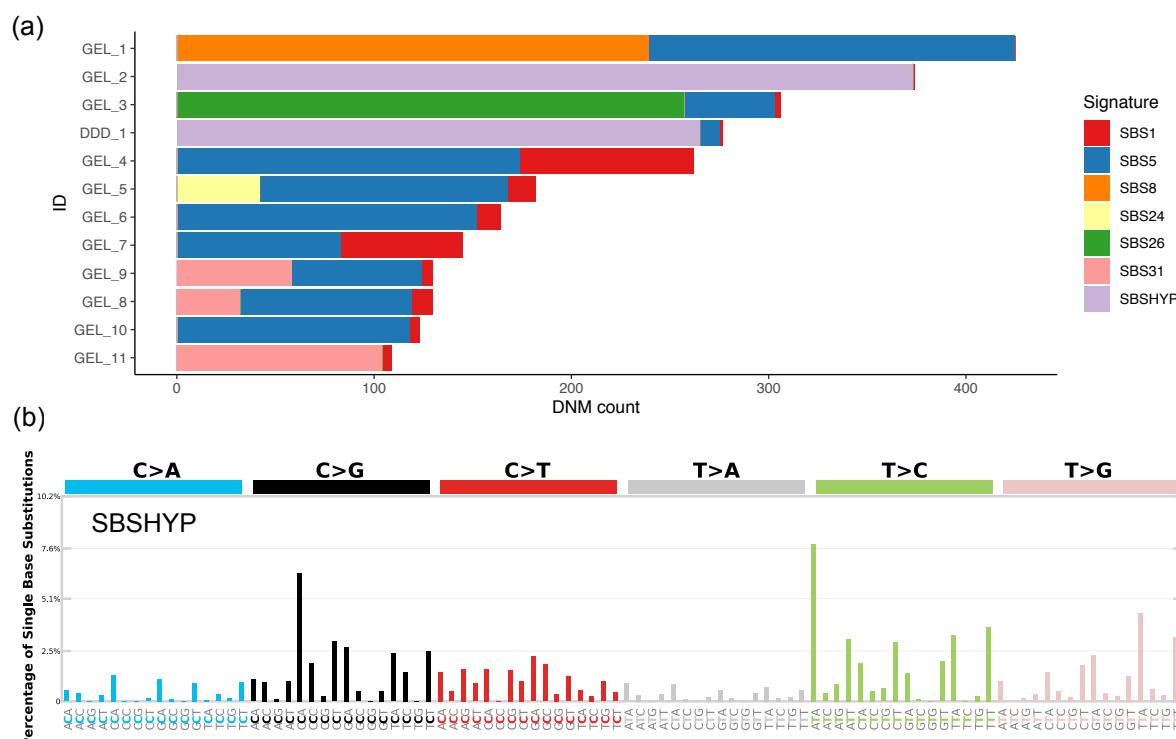

76 Results

77 Identifying germline hypermutated individuals in rare disease cohorts

78 We sought to identify germline hypermutated individuals in two separate cohorts: 7,930
79 exome-sequenced parent offspring trios from the Deciphering Developmental Disorders
80 (DDD) Study and 13,949 whole-genome sequenced parent offspring trios in the rare disease
81 arm of the 100,000 Genome Project (100kGP). We selected nine trios from the DDD study
82 with the largest number of exonic DNMs in the offspring, given their parental ages, which
83 were subsequently whole genome sequenced at >30X coverage to characterise DNMs
84 genome-wide. In the 100kGP cohort, we performed extensive filtering of the DNMs which
85 resulted in a total of 903,525 *de novo* SNVs (dnSNVs) and 72,110 *de novo* indels (dnIndels).
86 The median number of DNMs per individual was 62 for dnSNVs and 5 for dnIndels (median
87 paternal and maternal ages of 33 and 30) (Supplemental Figure 1).

88 Parental age explains the majority of variance in numbers of germline mutations
89 observed in offspring and is important to control for when examining additional sources of
90 variation³. We observed an increase in total number of dnSNVs of 1.28 dnSNVs/year of
91 paternal age (CI: 1.24-1.32, $p < 10^{-300}$, Negative binomial regression) and an increase of 0.35
92 dnSNVs/year of maternal age (CI: 0.30-0.39, $p = 3.0 \times 10^{-49}$, Negative Binomial regression)
93 (Figure 1a). We were able to phase 241,063 dnSNVs and found that 77% of phased DNMs
94 were paternal in origin, which agrees with previous estimates¹²⁻¹⁴. Estimates of the parental

95 age effect in the phased mutations were not significantly different to the unphased results:
96 1.23 paternal dnSNVs/year of paternal age (CI: 1.14-1.32, $p = 1.6 \times 10^{-158}$) and 0.38 maternal
97 dnSNVs/year of maternal age (CI: 0.35,0.41, $p = 6.6 \times 10^{-120}$) (Supplemental Figure 2b).
98 Paternal and maternal age were also significantly associated with the number of dnIndels:
99 an increase of 0.071 dnIndels/year of paternal age (CI: 0.062-0.080, $p = 8.3 \times 10^{-56}$,
100 Supplemental Figure 2a) and a smaller increase of 0.019 dnIndels/year of maternal age (CI:
101 0.0085-0.029 $p = 3.4 \times 10^{-4}$, Supplemental Figure 2a). The ratio of paternal to maternal
102 mutation increases for SNVs and indels were very similar, 3.7 for SNVs and 3.8 for indels.
103 The proportion of *de novo* mutations that phased paternally increased by 0.0017 for every
104 year of paternal age ($p = 3.37 \times 10^{-38}$, Binomial regression, Supplemental Figure 3).
105 However, the effect size is small and the proportion of DNM that phase paternally in the
106 youngest fathers is ~0.75 and so the paternal age effect alone does not fully explain the
107 strong paternal bias¹⁴. We compared the mutational spectra of the phased DNM and found
108 that maternally derived DNM have a significantly higher proportion of C>T mutations (0.27
109 maternal vs 0.22 paternal, $p = 3.24 \times 10^{-80}$, Binomial test) , while paternally derived DNM
110 have a significantly higher proportion of C>A, T>G and T>C mutations (C>A: 0.08 maternal
111 vs 0.10 paternal, $p = 4.6 \times 10^{-23}$; T>G 0.06 vs 0.7, $p = 6.8 \times 10^{-28}$; T>C 0.25 vs 0.26, $p =$
112 1.6×10^{-5} ; Binomial test, Supplemental Figure 4a). These mostly agree with previous studies
113 although the difference in T>C mutations was not previously significant¹². The majority of
114 both paternal and maternal mutations could be explained by Signature 1 and 5, with a
115 slightly higher contribution of signature 1 in paternal mutations (0.16 paternal vs 0.15
116 maternal, chi-squared test $p = 2.0 \times 10^{-5}$, Supplemental Figure 4b).



117
118 **Figure 1: Identification of germline hypermutated individuals** (a) Paternal and maternal
119 age vs number of dnSNVs, 100kGP hypermutated individuals are highlighted in pink and
120 DDD hypermutated individual is highlighted in blue (b) Enrichment (observed/expected) of
121 mutation type for hypermutated individuals. Sample names on the y-axis, mutation type on
122 the x-axis. The enrichment is colored by the -log10(enrichment p-value) which was
123 calculated using a Poisson test comparing the average number of mutations in each type
124 across all individuals in the 100kGP cohort. White coloring indicates no statistically
125 significant enrichment ($p\text{-value} < 0.05/12^*7$).

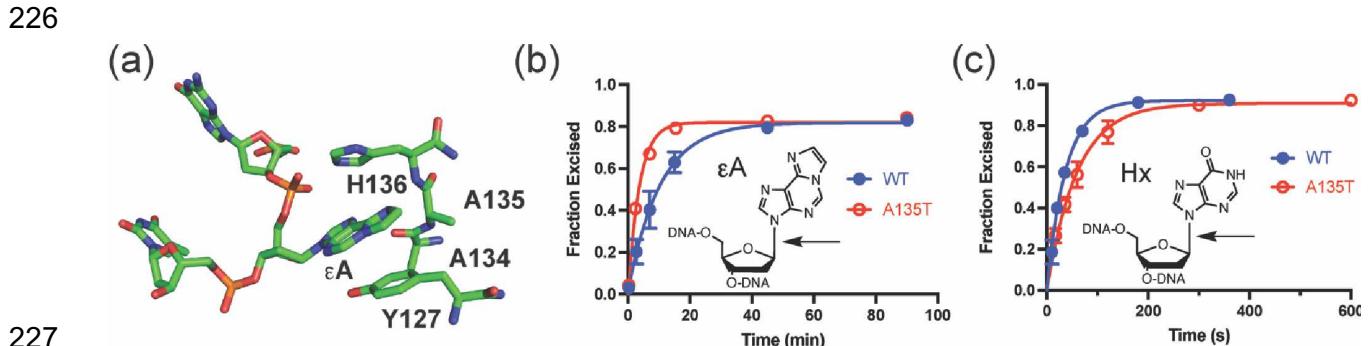
ID	Number of dnSNVs/ dnIndels	Child age	Paternal age	Maternal age	SNV p-value	Indel p-value	TS bias	Phase (P,M)	Potential source of hypermutation
GEL_1	425/16	5-10	30-35	20-25	4.2e-90	9.4e-05	2.1e-40	129,1***	Paternal DNA repair defect; homozygous stop-gain XPC variant
GEL_2	375/5	10-15	25-30	25-30	2.3e-83	0.43	0.22	106,7***	Paternal chemotherapy; Nephrotic syndrome: Cyclophosphamide, Chlorambucil
GEL_3	306/4	0-5	35-40	30-35	2.5e-44	0.73	0.86	87,5***	Paternal DNA repair defect; homozygous missense MPG variant
DDD_1	277/6	6	25	37	NA	NA	3.3e-03	72,4***	Paternal chemotherapy; Hodgkins Lymphoma: ABVD, IVE
GEL_4	262/12	10-15	30-35	20-25	1.7e-37	0.007	0.070	36,32***	Post-zygotic hypermutation
GEL_5	182/8	0-5	35-40	35-40	8.4e-14	0.19	0.15	63,4***	Paternal chemotherapy; SLE: drugs unknown
GEL_6	164/7	0-5	30-35	40-45	9.8e-13	0.25	0.066	38,3*	Unknown
GEL_7	145/9	0-5	30-35	30-35	2.4e-09	0.08	0.02	24,16*	Post-zygotic hypermutation
GEL_8	130/6	20-25	25-30	25-30	2.1e-09	0.31	1.00	31,11	Paternal chemotherapy; Testicular cancer: drugs unknown
GEL_9	130/5	5-10	30-35	30-35	1.2e-07	0.53	0.016	46,2**	Paternal chemotherapy; Testicular cancer: BEP
GEL_10	123/5	10-15	30-35	25-30	5.3e-08	0.48	0.082	38,0***	Unknown
GEL_11	110/5	10-15	25-30	25-30	8.2e-07	0.44	6.9e-06	28,1*	Paternal chemotherapy; Cancer of long bones, intestinal tract, lung (secondary): Drugs unknown

126 **Table 1: Properties and possible hypermutation sources for 12 germline**
127 **hyperpermuted individuals.** Eleven individuals were identified in 100kGP as having a
128 significantly large number of dnSNVs (GEL_1-GEL_11) and one individual identified in the
129 DDD study (DDD_1). The DNM counts are for autosomal DNMs. Child age refers to age
130 when sample was taken. Paternal and maternal age refer to age at child's birth. All ages are
131 given as 5 year ranges for 100kGP individuals and the exact age for the DDD individuals.
132 SNV and indel p-value is from testing the number of dnSNVs and dnIndels compared to
133 what we would expect after accounting for parental age. TS bias: transcriptional strand bias
134 p-value for dnSNVs. Phase (P,M): the number of dnSNVs that phase paternally (P) and
135 maternally (M) with significance indicator for how different this ratio is compared to the
136 observed proportion across all DNMs that phase paternally in 100kGP (0.77) using a
137 Binomial test (*p<0.1, **p<0.01, ***p<0.001). We have detailed the parental cancer and
138 chemotherapy drugs received when relevant. Treatments abbreviations: BEP (Bleomycin,
139 etoposide and platinum), ABVD (Bleomycin-Dacarbazine-Doxorubicin-Vinblastine) and IVE
140 (Iphosphamide, epirubicin and etoposide).
141

142 We identified 12 germline hypermutated individuals after accounting for parental age
143 (see Methods): 11 from the 100kGP cohort and 1 from the DDD cohort (Figure 1a, Table 1).
144 The number of DNMs genome-wide for each of the 12 hypermutated individuals ranged from
145 110-425 dnSNVs, which corresponds to a fold increase of 1.7-6.5 compared to the median
146 number of dnSNVs per individual across the 100kGP cohort. Two of these individuals also
147 had a significantly increased number of dnIndels (Table 1). The mutational spectra across
148 these hypermutated individuals varied dramatically (Figure 1b, Supplemental Figure 5,
149 Supplemental Table 1) and after extracting mutational signatures we found that while many
150 of the mutations mapped onto several known somatic signatures (from the Catalogue of
151 Somatic Mutations in Cancer (COSMIC)⁴⁰), a novel mutational signature, termed SBSHYP,
152 was also extracted (Figure 2a,b, Supplemental Table 2). In addition to mutational spectra,
153 we evaluated the parental phase, transcriptional strand bias (Supplemental Figure 6) and the
154 distribution of the variant allele fraction (VAF) for these mutations (Supplemental Figure 7).
155 Upon examining these properties, we identified three potential sources of germline
156 hypermutation: paternal defects in DNA repair genes, paternal exposure to
157 chemotherapeutics and post-zygotic mutational factors.

158
159 **Figure 2: Mutational signatures in 12 germline hypermutated individuals (a)**
160 Contributions of mutational signatures extracted using SigProfiler and decomposed on to
161 known somatic mutational signatures as well as the novel signature (SBSHYP) identified in
162 both DDD_1 and GEL_2. Summary of signatures: SBS1 and SBS5 are known germline
163 signatures; SBS8 associated with TC-NER; SBS26 associated with defective MMR; SBS31
164 associated with platinum drug treatment; SBS24 is associated with aflatoxin exposure. (b)
165 Trinucleotide context mutational profile of novel extracted mutational signature SBSHYP

166 **Paternal defects in DNA repair**


167 For eight of the twelve individuals, the DNMs phased paternally significantly more than
168 expected given the overall ratio of paternal:maternal mutation in the 100kGP cohort
169 ($p < 0.05/12$, Binomial test, Table 1). This implicates the paternal germline as the source of
170 the hypermutation. Two of these fathers carry rare homozygous nonsynonymous variants in

172 known DNA repair genes (Supplemental Table 3). Defects in DNA repair are known to
173 increase the mutation rate in the soma and may have a similar effect in the germline. GEL_1
174 has the largest number of DNMs of all individuals, a 6.5-fold enrichment, and a significantly
175 increased number of dnIndels. The mutational spectra demonstrates a high enrichment of
176 C>A and T>A mutations (Figure 1b) and we observed a large contribution from Somatic
177 Mutational Signature 8 (Figure 2a). This signature is associated with transcription-coupled
178 nucleotide excision repair (TC-NER) and typically presents with transcriptional strand bias.
179 This agrees with the strong transcriptional strand bias observed in GEL_1 ($p = 2.1 \times 10^{-40}$,
180 Poisson test, Supplemental Figure 6). The father has a rare homozygous nonsense variant
181 in the gene *XPC* (Table 1, Supplemental Table 3) which is involved in the early stages of the
182 nucleotide-excission repair (NER) pathway. The paternal variant is annotated as pathogenic
183 for xeroderma pigmentosum in ClinVar and clinical follow-up confirmed that the father had
184 already been diagnosed with this disorder. Patients with xeroderma pigmentosum have a
185 high risk of developing skin cancer due to their impaired ability to repair UV damage and are
186 also known to be at a higher risk of developing other cancers^{41,42}. *XPC* deficiency has been
187 associated with a similar mutational spectrum to the one we observe in GEL_1⁴³ and *xpc*
188 deficiency in mice has been shown to increase the germline mutation rate at two STR loci⁴⁴.

189 GEL_3 has a ~5-fold enrichment of the number of dnSNVs. These dnSNVs exhibit a
190 very distinct mutational spectrum with a ~17-fold increase in T>C mutations but no
191 significant enrichment for any other mutation type (Figure 2b, Supplemental Figure 5d).
192 Extraction of mutational signatures revealed that the majority of mutations mapped onto
193 Somatic Mutational Signature 26 which has been associated with defective mismatch repair.
194 The father has a rare homozygous missense variant in the gene *MPG* (Table 1,
195 Supplemental Table 4). *MPG* encodes N-methylpurine DNA glycosylase (also known as
196 alkyladenine-DNA glycosylase - AAG) which is involved in the recognition of base lesions,
197 including alkylated and deaminated purines, and initiation of the base-excision repair (BER)
198 pathway. The *MPG* variant is rare in gnomAD (allele frequency = 9.8×10^{-5} , no observed
199 homozygotes) and is predicted to be pathogenic by the Combined Annotation Dependent
200 Depletion (CADD) score (CADD score = 27.9) and the amino acid residue is fully conserved
201 across 172 aligned protein sequences from VarSite^{45,46}. In the context of the protein, the
202 variant amino-acid forms part of the substrate binding pocket and likely affects substrate
203 specificity (Figure 3a). *MPG* has not yet been described as a cancer susceptibility gene, but
204 studies in yeast and mice have demonstrated variants in this gene, and specifically the
205 substrate binding pocket, can lead to a mutator phenotype^{47,48}. We explored the functional
206 impact of the observed A135T variant using *in vitro* assays (Methods, Supplemental Figures
207 8, 9). The A135T variant caused a two-fold decrease in excision efficiency of the
208 deamination product hypoxanthine (Hx) in both the T and C contexts (Figure 3c,
209 Supplemental Figure 9), with a small increase in excision efficiency of an alkylated adduct
210 1,N6-ethenoadenine (ϵ A) in both the T and C contexts (Figure 3b, Supplemental Figure 9).
211 The maximal rate of excision is increased by 2-fold for ϵ A which is among the largest
212 increases that have been observed for 15 reported *MPG* variants (Supplemental Table 4).
213 Another variant, N169S, which also shows an increase in N-glycosidic bond cleavage with
214 the ϵ A substrate has been established as a mutator in yeast^{48,49}. These assays confirm that
215 the A135T substitution alters the *MPG* binding pocket and changes the activity towards
216 different DNA adducts. *MPG* acts on a wide variety of DNA adducts and further functional
217 characterisation and mechanistic studies are required to link the observed T>C germline
218 mutational signature to the aberrant processing of a specific class of DNA adducts.

219 GEL_6 has 164 dnSNVs and has a larger contribution of paternally phased mutations
220 than expected (38:3 paternal:maternal, $p = 0.022$, Binomial test) however the father does not

221 have any nonsynonymous variants in DNA repair genes nor has undergone any
222 chemotherapeutic treatment. This unexplained cause of hypermutation could be due to a
223 paternal variant in a gene currently not associated with DNA repair, a paternal mutator
224 variant that is only present in the germline and not the blood, or a rare gene-by-environment
225 interaction.

227
228 **Figure 3. A135T substitution alters the DNA glycosylase activity of MPG.** (a) Active site
229 view of MPG bound to ε A-DNA from pdb 1EWN. A135 and H136 form the binding pocket for
230 the flipped-out base lesion, which is bracketed by Y127 on the opposing face. (b) Single
231 turnover excision of ε A from ε A•T is 2 fold faster for A135T (red) than for WT (blue) MPG. (c)
232 Single turnover excision of Hx from Hx•T is slower for A135T (red) as compared to WT (blue)
233 MPG. Arrows indicate the N-glycosidic bond that is cleaved by MPG. Each data point is the
234 mean \pm SD (N \geq 3) (see Supplemental Figure 9 for complete kinetic analysis).

235 Parental treatment with chemotherapy prior to conception

236 Three hypermutated individuals (GEL_8, GEL_9 and GEL_11) have a contribution from
237 somatic mutational signature 31 (SBS31) (Figure 2a), which has been associated with
238 treatment with platinum-based drugs such as cisplatin¹⁶. The phased dnSNVs in GEL_9 and
239 GEL_11 are paternally biased (46 paternal: 2 maternal, p = 0.0014; 28 paternal:1 maternal,
240 p = 0.012; Binomial test, Table 1), and the dnSNVs in GEL_11, which has the largest
241 contribution of SBS31, exhibit a significant transcriptional strand bias, as expected for this
242 signature (p = 6.9 \times 10⁻⁶, Table 1, Supplemental Figure 6). All three fathers have a history
243 of cancer and chemotherapeutic treatment prior to conception as recorded in their available
244 hospital episode records. The father of GEL_11 was diagnosed and received
245 chemotherapeutic treatment for osteosarcoma, lung cancer, and cancer of the intestinal tract
246 within 5 years prior to conception. Cisplatin is a commonly used chemotherapeutic for
247 osteosarcoma and lung cancer. Platinum-based drugs damage DNA by causing covalent
248 adducts. Cisplatin mainly reacts with purine bases, forming intrastrand crosslinks which can
249 be repaired by NER or bypassed by translesion synthesis which may, in turn, induce single
250 base substitutions⁵⁰. The fathers of GEL_8 and GEL_9 both have a history of testicular
251 cancer where cisplatin is the most commonly administered chemotherapeutic.

252 GEL_2 and DDD_1 have a similar number of dnSNVs, which are significantly
253 paternally biased (Table 1). The mutational spectra of the DNMs in these individuals are very
254 similar and share a novel mutational signature (SBSHYP) that is characterised by an
255 enrichment of C>G and T>G mutations (Figure 2a,b) and does not map on to any previously
256 described signature observed in somatic mutations (as described in COSMIC) or in
257 response to mutagenic exposure^{24,51,52} (Supplemental Figure 10a). The fathers of these
258 individuals do not have putative damaging variants in any DNA repair genes and do not
259 share rare nonsynonymous variants in any other gene. Both fathers received
260 chemotherapeutic treatment prior to conception including nitrogen mustard alkylating agents
261 (Supplemental Table 4), although with different members of this class of chemotherapies,

263 therefore we strongly suspect this class of chemotherapies to be the cause of this novel
264 mutational signature. Experimental studies of a subset of alkylating agents have shown them
265 to have diverse mutational signatures^{24,51,52} (Supplemental Figure 10b).

266 GEL_5 has 182 dnSNVs and a significant paternal bias in the phased dnSNVs ($p =$
267 5.8×10^{-4} , Binomial Test, Table 1). The father of GEL_5 has a diagnosis of Systemic Lupus
268 Erythematosus (SLE) and received a course of chemotherapy nine years prior to the
269 conception of the child however the dnSNVs do not map onto any known chemotherapeutic
270 mutational signatures (Figure 1b, Figure 2a). There is a contribution of SBS24 which is
271 associated with aflatoxin exposure in cancer blood samples, however there is no evidence of
272 exposure in the father's hospital records²²

273 We assessed how parental cancer and exposure to chemotherapy might impact
274 germline mutation rate more generally by systematically examining hospital episode
275 statistics across the 100kGP cohort for ICD10 codes related to cancer and chemotherapy
276 that were recorded prior to the conception of the child. We identified 27 fathers (0.9%) who
277 had a history of cancer, 7 of which had testicular cancer (Supplemental Table 6). The
278 offspring of these 27 fathers did not have a significantly increased number of dnSNVs after
279 correcting for parental age ($p = 0.73$, Wilcox test). This is a small number of fathers so this is
280 not well powered and it is not known definitively how many of these fathers were treated with
281 chemotherapy (6 of the 27 had chemotherapy-related ICD10 codes). Treatment exposure
282 may predate the availability of digitised hospital records and there was limited information on
283 whether conception may have been achieved using sperm stored prior to treatment. While
284 the total number of dnSNVs across all the children is not significantly increased, two of the
285 27 fathers had hypermutated children which is a significant enrichment compared to those
286 fathers who do not have a recorded history of cancer (2/27 vs 9/2891, $p = 0.0043$, Fisher
287 exact test). This is likely a conservative p-value as we know that two other hypermutated
288 individuals have fathers who have been treated with chemotherapy however did not fall into
289 this group due to the filtering criteria as we only considered fathers who had at least one ICD
290 10 code recorded prior to the child's conception (see Methods). A possible confounder could
291 be that fathers who had cancer prior to conception are older and may be more likely to have
292 been exposed to other germline mutagens however these two groups had the same median
293 paternal age ($p = 0.77$, Wilcoxon test).

294 We performed the same analysis across 5,508 mothers in the 100kGP cohort who
295 had hospital episode records entered prior to the conception of their child and identified 27
296 mothers (0.5%) who had a history of cancer, 9 of whom also had recorded chemotherapy
297 codes. Children whose mothers had a history of cancer had a nominally significant increase
298 of dnSNVs after correcting for parental age and data quality ($p = 0.03$, Wilcox Test). Mothers
299 who had been diagnosed with cancer were significantly older at the birth of the child
300 compared to those who were not ($p = 0.003$, Wilcoxon test). Matching on parental age,
301 mothers who had a cancer diagnosis prior to conception had a median increase of 9
302 dnSNVs. Overall there is not an excess of maternally phased DNMs across these individuals
303 ($p = 0.44$, Binomial test) however there is one individual with nominal significance
304 (MatCancer_23, 22 paternal:14 maternal, $p = 0.02$, Binomial test, Supplemental Table 5).

305 We extracted mutational signatures for all these offspring with a maternal or paternal
306 history of cancer that were not hypermutated and found that only one individual had unusual
307 mutational signatures (Supplemental Figure 11). This individual (PatCancer_10) has a
308 contribution of mutational signature SBS31 which is associated with treatment with platinum-
309 based drugs (Supplemental Figure 11). Their father was treated for testicular cancer prior to
310 conception and the child has 94 dnSNVs ($p = 0.005$, SNV p-value after correcting for

311 parental age) of which 89% phased paternally ($p = 0.12$, Binomial test, Supplemental Figure
312 11, Supplemental Table 6).

313

314 **Post-zygotic hypermutation**

315 The two hypermutated individuals, GEL_4 and GEL_7, have a ~4 fold and ~2 fold increase
316 in dnSNVs respectively that phase equally between the maternal and paternal
317 chromosomes. The allele balance of the dnSNVs in these individuals was shifted below 0.5
318 (Supplemental Figure 7). In both individuals, the proportion of DNM with variant allele
319 fraction (VAF) <0.4 was significantly higher compared to all DNM across all individuals
320 (GEL_4: $p = 3.9 \times 10^{-59}$, GEL_7: $p = 8.3 \times 10^{-4}$, Binomial test). These observations indicate
321 that these mutations most likely occurred post-zygotically and are less likely due to a
322 parental hypermutator. Both individuals have a large contribution of mutations from Somatic
323 Mutational Signature 1 (Figure 2a)⁴⁰. The observations in GEL_4 are likely due to clonal
324 haematopoiesis leading to a large number of somatic mutations in the child's blood. The
325 mutational signature associated with haematopoietic stem cells is similar to SBS1 and we
326 identified a mosaic *de novo* missense mutation in the gene *ETV6*. Mutations in *ETV6* are
327 associated with Leukemia and Thrombocytopenia⁵³. GEL_4 has several blood related
328 clinical phenotypes such as abnormality of blood and blood-forming tissues and
329 myelodysplasia. We do not observe similar phenotypes in GEL_7, nor did we identify a
330 possible genetic driver of clonal haematopoiesis, and the child was one year old at
331 recruitment. For this individual we considered the possibility that a maternal mutator variant
332 protein may be impacting the mutation rate in the first few cell divisions. We identified a
333 maternal mosaic missense variant in *TP53* which is annotated as pathogenic in ClinVar for
334 Li-Fraumeni syndrome which is characterised by a predisposition to cancer however it is
335 unknown if this variant is also present in the maternal germline and, if present, whether it
336 would be likely to have a germline mutagenic effect⁵⁴. This variant is not observed in the
337 child.

338

339 **Fraction of germline mutation rate variation explained**

340 We investigated the factors influencing the number of dnSNVs per individual in a subset of
341 7,700 100kGP trios filtered more stringently for data quality (Methods). Using a negative
342 binomial model, accounting for the underlying Poisson variation in germline mutation rate,
343 we estimated that parental age accounts for 69.7% and data quality metrics (eg. read depth,
344 proportion of mapped reads) explain 1.3% of the variance. The variance explained by
345 parental age is smaller than a previous estimate of 95% based on a sample of 78 families³.
346 To assess whether this could be due to uncertainty in the previous estimate, we performed
347 repeated sampling of 78 trios from the 100kGP and refit the model and found that the
348 estimates of the variance explained by parental age can vary dramatically with this smaller
349 sample size (median of 79%, 95% interval [52-100%]) and that 7% of our simulations had an
350 estimate as or more extreme than 95%.

351 We extended this model to account for germline hypermutation by including a
352 variable for the number of excess dnSNVs in the 11 hypermutated individuals in this cohort.
353 We found this explained an additional 7.1% of variance. This leaves 21.9% (19.7% , 23.8%,
354 Bootstrap 95% confidence interval) of variance for numbers of dnSNV per individual
355 unaccounted for. Both mutagenic exposures and genetic variation in DNA repair genes are
356 implicated here as causes of hypermutation, therefore they may also play a more subtle role
357 in the remaining germline mutation rate variation. In addition, polygenic effects and gene by
358 environment interactions may also contribute.

359 To assess whether rare variants in genes known to be involved in DNA repair
360 pathways impact germline mutation rate more generally, we looked across the whole
361 100kGP cohort. We curated three sets of rare nonsynonymous variants that have increasing
362 likelihoods of impacting germline mutation rate: (i) variants in all DNA repair genes (N=186),
363 (ii) variants in genes encoding components of the DNA repair pathways most likely to create
364 SNVs (N=66) and (iii) a subset of these variants that had previously been associated with
365 cancer (see Methods). We focused primarily on the effect of heterozygous variants (MAF<
366 0.001). In the first set of genes we also considered the impact of rare homozygous variants
367 (MAF<0.01) (the counts were too small to assess in the subsequent groups). There was no
368 statistically significant effect in any of these groups of variants after Bonferroni correction
369 (Supplemental Figure 12, Supplemental Table 7). We examined heterozygous protein-
370 truncating variants (PTVs) in the known cancer mutator gene MBD4 which are associated
371 with a three-fold elevated CpG>TpG mutation rate in tumours. We identified and whole-
372 genome sequenced 13 paternal carriers of MBD4 PTVs from the DDD cohort. We found that
373 these individuals did not have a significant increased number of overall DNM^s and there was
374 no significant increase in the number of CpG>TpG mutations ($p = 0.56$, chi-squared test,
375 Supplemental Figure 13). Power modelling suggested there is unlikely to be more than a
376 22% increase in the CpG mutation rate. This further demonstrates that heterozygous PTVs
377 in known somatic mutator genes may not always have a similar effect in the germline.

378 To explore the polygenic contribution to germline mutation rate, we estimated the
379 residual variation in the number of dnSNVs in offspring that was explained by germline
380 variants after correcting for parental age, data quality and hypermutation status. We
381 estimated this separately for fathers and mothers in the 100kGP cohort using GREML-LDMS
382⁵⁵ stratified by minor allele frequency and LD. We found that maternal germline variation
383 (MAF>0.001) did not explain any residual variation ($h^2 = 0.07$, $p = 0.21$, GCTA reported
384 results, Supplemental Table 8). We found that paternal variation may contribute a substantial
385 fraction of residual variation ($h^2 = 0.53$ [0.20,0.85], $p = 0.09$) however this is concentrated
386 exclusively in low frequency variants (0.001<MAF<0.01, $h^2 = 0.52$ [0.01,0.94]) rather than
387 more common variants (MAF> 0.01, $h^2 = 0.008$ [0,0.38], Supplemental Table 7). This will
388 need further investigation with larger sample sizes.

389 Discussion

390 Germline hypermutation is an uncommon but important phenomenon. We identified 12
391 hypermutated individuals from over 20,000 parent offspring sequenced trios in the DDD and
392 100kGP cohorts with a 2-7 fold increased number of dnSNVs. It is likely that there are
393 additional, currently undetected, germline hypermutated individuals in the DDD cohort. The
394 stringent strategy we adopted to screen this exome-sequenced cohort for potential
395 hypermutated individuals for subsequent confirmation by genome sequencing will have
396 missed some individuals with hypermutation of 2-7 fold.

397 In two of the 12 hypermutated individuals, the excess mutations appeared to have
398 occurred post-zygotically, however for the majority (n=8) of these hypermutated individuals,
399 the excess dnSNVs phased paternally implicating the father as the source of this
400 hypermutation. For five of these fathers, characteristic mutational signatures and clinical
401 records of cancer treatment prior to conception strongly implicated the mutagenic influence
402 of two different classes of chemotherapeutics: platinum-based drugs (3 families) and
403 mustard-derived alkylating agents (2 families). We also identified likely paternal mutator
404 variants in two hypermutated families. These were rare homozygous missense variants in

405 two known DNA repair genes: *XPC* and *MPG*. Functional and clinical data strongly
406 supported the mutagenic nature of these variants.

407 It is well established that defects in DNA repair genes can increase somatic mutation
408 rates and elevate cancer risk⁵⁶. Our findings imply that germline mutation rates can be
409 similarly affected. However, defects in DNA repair pathways do not always behave similarly
410 in the soma and the germline. We interrogated PTVs in an established somatic mutator
411 gene, *MBD4*, and found they did not have a detectable effect in the germline⁵⁷. We also
412 examined the impact of parental rare nonsynonymous variants in DNA repair genes on the
413 number of DNMs in offspring and did not find a significant difference. To detect more subtle
414 effects of these variants other analytical approaches will need to be explored. Paternal
415 variants that have previously been associated with a cancer phenotype were nominally
416 significant but having one of these variants only amounted to an estimated average increase
417 of ~2 DNMs in the child. If only a subset of these variants have an impact in the germline this
418 would dilute the power to detect a mutagenic effect and it is likely that both larger sample
419 sizes and additional variant curation will be needed to investigate this further. There may
420 also be genes and pathways that impact mutation in the germline more than the soma;
421 uncovering the genes and associated variants in these genes will be more challenging.

422 Germline hypermutation accounted for 7% of the variance in germline mutation rate
423 in the 100kGP rare disease cohort. The ascertainment in this cohort for rare disease in the
424 offspring, together with the causal contribution that germline mutation plays in rare diseases,
425 means that germline hypermutated individuals are likely enriched in this cohort relative to the
426 general population. As a consequence, our estimate of the contribution of germline
427 hypermutation to the variance in numbers of dnSNVs per individual is likely inflated.
428 However, the absolute risk of a germline hypermutator having a child with a genetic disease
429 is still low. The population average risk for having a child with a severe developmental
430 disorder caused by a *de novo* mutation has been estimated to be 1 in 300 births¹¹ and so a
431 4-fold increase in DNMs in a child would only elevate this absolute risk to just over 1%.
432 Therefore, we anticipate that most germline hypermutated individuals will not have a rare
433 genetic disease, and germline hypermutation will also be observed in healthy population
434 cohorts.

435 The two genetic causes of germline hypermutation that we identified were both
436 recessive in action. Similarly, most DNA repair disorders act recessively in their cellular
437 mutagenic effects. This implies that genetic causes of germline hypermutation are likely to
438 arise at substantially higher frequencies in populations with high rates of parental
439 consanguinity. In such populations, the overall incidence of germline hypermutation may be
440 higher and the proportion of the variance in the number of dnSNVs per offspring accounted
441 for genetic effects will be higher. We anticipate that studies focused on these populations are
442 likely to identify additional mutations that affect germline mutation rate.

443 We found that, among 7,700 100kGP families, parental age only explained ~70% of
444 the variance in numbers of dnSNVs per offspring, which is substantially smaller than a
445 previous estimate of 95% based on a sample of 78 families³. Repeated sampling of 78 trios
446 from the 100kGP showed that estimates of the variance explained by parental age can vary
447 dramatically stochastically and we regard our estimate based on two orders of magnitude
448 more trios to be more reliable, although other differences between the studies such as
449 measurement error and criteria for ascertainment of families might be having a subtle
450 influence. The residual ~20% of variation in numbers of germline dnSNVs per individual
451 remains unexplained by parental age, data quality and hypermutation. We found that rare
452 variants in known DNA repair genes are unlikely to account for a large proportion of this
453 unexplained variance. Heritability analyses suggested that polygenic contributions from

454 common variants (MAF>1%) are unlikely to make a substantive contribution to this variance;
455 however, we observed some evidence that the polygenic contribution of intermediate
456 frequency paternal variants (0.001<MAF<0.01) could be more substantial although larger
457 sample sizes are required to confirm this observation. A limitation to these heritability
458 analyses is that we use DNM^s in offspring as a proxy for individual germline mutation rates.
459 Measuring germline mutation rates more directly by, for example, sequencing hundreds of
460 single gametes per individual, should facilitate better powered association studies and
461 heritability analyses.

462 Environmental exposures are also likely to contribute to germline mutation rate
463 variation. We have observed evidence that certain chemotherapeutics can affect germline
464 mutation rate and targeted studies on the germline mutagenic effects of different
465 chemotherapeutics (e.g. in cancer survivor cohorts) will be crucial in understanding this
466 further. We anticipate that these studies will identify considerable heterogeneity in the
467 germline mutagenic effects of different chemotherapeutics, in part due to differences in the
468 permeability of the blood-testis barrier to different agents⁵⁸, as well as variation in the
469 vulnerability to chemotherapeutic germline mutagenesis by sex and age. As so few
470 individuals are treated for cancer prior to reproduction, chemotherapeutic exposures will not
471 explain a large proportion of the remaining variation in germline mutation rates however
472 chemotherapeutic mutagenesis has important implications for cancer patients who plan to
473 have children, especially in whether they decide to store unexposed gametes for future use
474 of assisted reproductive technologies.

475 Unexplained hypermutation and additional variance in germline mutation rate may be
476 explained by other environmental exposures. A limitation of this study was the lack of data
477 on non-therapeutic environmental exposures. However, and somewhat reassuringly, the
478 relatively tight distribution of DNM^s per person in 100kGP suggests that there are unlikely to
479 be common environmental mutagen exposures in the UK (e.g. cigarette smoking) that
480 causes a substantive (e.g. >1.5 times) fold increase in mutation rates and concomitant
481 disease risk. The germline generally appears to be well protected from large increases in
482 mutation rate. However, including a broader spectrum of environmental exposures in future
483 studies would help to identify more subtle effects and may reveal gene-by-environment
484 interactions.

485

486 **Acknowledgments**

487 We thank the families and their clinicians for their participation and engagement, and our
488 colleagues who assisted in the generation and processing of data. We would like to thank
489 Mike Stratton, Peter Campbell, Emily Mitchell, Eleanor Dunstone, Hilary Martin, Kartik
490 Chundru, Molly Przeworski and Jan Korbel for helpful discussions and advice. This research
491 was made possible through access to the data and findings generated by the 100,000
492 Genomes Project. The 100,000 Genomes Project is managed by Genomics England Limited
493 (a wholly owned company of the Department of Health and Social Care). The 100,000
494 Genomes Project is funded by the National Institute for Health Research and NHS England.
495 The Wellcome Trust, Cancer Research UK and the Medical Research Council have also
496 funded research infrastructure. The 100,000 Genomes Project uses data provided by
497 patients and collected by the National Health Service as part of their care and support. The
498 DDD study presents independent research commissioned by the Health Innovation
499 Challenge Fund (grant number HICF-1009-003). The full acknowledgements can be found at
500 www.ddduk.org/access.html. This research was funded in part by the Wellcome Trust grant
501 [206194]. For the purpose of open access, the author has applied a CC BY public copyright
502 licence to any Author Accepted Manuscript version arising from this submission. This work

503 was supported by Health Data Research UK, which is funded by the UK Medical Research
504 Council, Engineering and Physical Sciences Research Council, Economic and Social
505 Research Council, Department of Health and Social Care (England), Chief Scientist Office of
506 the Scottish Government Health and Social Care Directorates, Health and Social Care
507 Research and Development Division (Welsh Government), Public Health Agency (Northern
508 Ireland), British Heart Foundation and Wellcome.

509

510

511

512

513

514

515

516

517 **Methods**

518

519 **DNM filtering in 100,000 Genomes Project**

520 We analysed DNMs called in 13,949 parent offspring trios from 12,609 families from the rare
521 disease programme of the 100,000 Genomes Project. The rare disease cohort includes
522 individuals with a wide array of diseases including neurodevelopmental disorders,
523 cardiovascular disorders, renal and urinary tract disorders, ophthalmological disorders,
524 tumour syndromes, ciliopathies and others. These are described in more detail in previous
525 publications^{59,60}. The cohort was whole genome sequenced at ~35X coverage and variant
526 calling for these families was performed via the Genomics England rare disease analysis
527 pipeline. The details of sequencing and variant calling have been previously described⁶⁰.
528 DNMs were called by the Genomics England Bioinformatics team using the Platypus variant
529 caller⁶¹. These were selected to optimise various properties including the number of DNMs
530 per person being approximately what we would expect, the distribution of the VAF of the
531 DNMs to be centered around 0.5 and the true positive rate of DNMs to be sufficiently high as
532 calculated from examining IGV plots. The filters applied were as follows:

- 533 • Genotype is heterozygous in child (1/0) and homozygous in both parents (0/0)
- 534 • Child RD >20, Mother RD>20, Father RD>20
- 535 • Remove variants with >1 alternative read in either parent
- 536 • VAF>0.3 and VAF<0.7 for child
- 537 • Remove SNVs within 20 bp of each other. While this is likely removing true MNVs,
538 the error mode was very high for clustered mutations.
- 539 • Removed DNMs if child RD >98¹³
- 540 • Removed DNMs that fell within known segmental duplication regions as defined by
541 UCSC (<http://humanparalogy.gs.washington.edu/build37/data/GRCh37GenomicSuperDup.tab>)
- 542 • Removed DNMs that fell in highly repetitive regions
(<http://humanparalogy.gs.washington.edu/build37/data/GRCh37simpleRepeat.txt>)
- 543 • For DNM calls that fell on the X chromosome these slightly modified filters were
544 used:
 - 545 ○ For DNMs that fell in PAR regions, the filters were unchanged from the
546 autosomal calls apart from allowing for both heterozygous (1/0) and
547 hemizygous (1) calls in males
 - 548 ○ For DNMs that fell in non-PAR regions the following filters were used:
 - 549 ■ For males: RD>20 in child, RD>20 in mother, no RD filter on father
 - 550 ■ For males: the genotype must be hemizygous (1) in child and
551 homozygous in mother (0/0)
 - 552 ■ For females: RD>20 in child, RD>20 in mother, RD>10 in father

553

554 **DNM filtering and identifying hypermutated individuals in DDD**

555 To identify hypermutated individuals in the DDD study we started with exome sequencing
556 data from the DDD study of families with a child with a severe, undiagnosed developmental
557 disorder. The recruitment of these families has been described previously⁶²: families were
558 recruited at 24 clinical genetics centers within the UK National Health Service and the
559 Republic of Ireland. Families gave informed consent to participate, and the study was
560

561

562

563 approved by the UK Research Ethics Committee (10/H0305/83, granted by the Cambridge
564 South Research Ethics Committee, and GEN/284/12, granted by the Republic of Ireland
565 Research Ethics Committee). Sequence alignment and variant calling of SNV and
566 insertions/deletions were conducted as previously described. De novo mutations were called
567 using DeNovoGear and filtered as previously^{63,11}. The analysis in this paper was conducted
568 on a subset (7,930 parent offspring trios) of the full current cohort which was not available at
569 the start of this research.

570
571 In the DDD study, we identified 9 individuals out of 7,930 parent-offspring trios with an
572 increased number of exome DNM s after accounting for parental age (7-17 exome DNM s
573 compared to an expected number of ~2). These were subsequently submitted along with
574 their parents for PCR-free whole-genome sequencing at >30x mean coverage using
575 Illumina 150bp paired end reads and in house WSI sequencing pipelines. Reads were
576 mapped with bwa (v0.7.15)⁶⁴. DNM s were called from these trios using DeNovoGear⁶³ and
577 were filtered as follows:

- 578 • Read depth (RD) of child > 10, mother RD > 10, father RD > 10
- 579 • Alternative allele read depth in child >2
- 580 • Filtered on strand bias across parents and child (p-value >0.001, Fisher's exact test)
- 581 • Removed DNM s that fell within known segmental duplication regions as defined by
- 582 • UCSC (<http://humanparalogy.gs.washington.edu/build37/data/GRCh37GenomicSuperDup.tab>)
- 583 • Removed DNM s that fell in highly repetitive regions
(<http://humanparalogy.gs.washington.edu/build37/data/GRCh37simpleRepeat.txt>)
- 584 • Allele frequency in gnomAD < 0.01
- 585 • VAF <0.1 for both parents
- 586 • Removed mutations if both parents have >1 read supporting the alternative allele
- 587 • Test to see if VAF in child is significantly greater than the error rate at that site as
- 588 • defined by error sites estimated using Shearwater⁶⁵.
- 589 • Posterior probability from DeNovoGear > 0.00781^{63,11}
- 590 • Removed DNM s if child RD >200.

591 After applying these filters, this resulted in 1,367 DNM s. All of these DNM s were inspected in
592 the Integrative Genome Viewer⁶⁶ and removed if they appeared to be false positives. This
593 resulted in a final set of 916 DNM s across the 9 trios. One of the 9 had 277 dnSNVs genome
594 wide while the remaining had expected numbers (median number of 81 dnSNVs).

595

596 **Parental phasing of de novo mutations**

597 To phase the DNM s in both 100kGP and DDD we used a custom script which used the
598 following read-based approach to phase a DNM. This first searches for heterozygous
599 variants within 500 bp of the DNM that was able to be phased to a parent (so not
600 heterozygous in both parents and offspring). We then examined the reads or read pairs
601 which included both the variant and the DNM and counted how many times we observed the
602 DNM on the same haplotype of each parent. If the DNM appears exclusively on the same
603 haplotype as a single parent then that was determined to originate from that parent. We
604 discarded DNM s that had conflicting evidence from both parents. This code is available on
605 GitHub (<https://github.com/queenjobo/PhaseMyDeNovo>).

606

607 **Analysis of effect of parental age on germline mutation rate**

608 To assess the effect of parental age on germline mutation rate we ran the following
609 regressions on autosomal DNM s. On all (unphased) DNM s we ran two separate regressions

612 for SNVs and indels. We chose a negative Binomial generalized linear model here as the
613 Poisson was found to be overdispersed. We fitted the following model using a negative
614 Binomial GLM with an identity link where Y is the number of DNM s for an individual:

615

$$616 \quad E(Y) = \beta_0 + \beta_1 \text{paternal_age} + \beta_2 \text{maternal_age}$$

617

618 For the phased DNM s we fit the following two models using a negative Binomial GLM with
619 an identity link where Y_{maternal} is the number of maternally derived DNM s and Y_{paternal} is the
620 number of paternally derived DNM s:

621

$$622 \quad E(Y_{\text{paternal}}) = \beta_0 + \beta_1 \text{paternal_age}$$
$$623 \quad E(Y_{\text{maternal}}) = \beta_0 + \beta_1 \text{maternal_age}$$

624

625

626 Identifying hypermutated individuals in 100kGP

627 To identify hypermutated individuals in the 100kGP cohort we first wanted to regress out the
628 effect of parental age as described in the parental age analysis. We then looked at the
629 distribution of the studentized residuals and then, assuming these followed a t distribution
630 with $N-3$ degrees of freedom, calculated a t-test p-value for each individual. We took the
631 same approach for the number of indels, except in this case Y would be the number of de
632 novo indels.

633

634 We identified 21 individuals out of 12,471 parent-offspring trios with significantly increased
635 number of dnSNVs genome wide ($p < 0.05/12471$). We performed multiple quality control
636 analyses which included examining the mutations in the Integrative Genomics Browser for
637 these individuals to examine DNM calling accuracy, looking at the relative position of the
638 DNM s across the genome and examining the mutational spectra of the DNM s to identify any
639 well known sequencing error mutation types. We identified 12 that were not truly
640 hypermutated. The majority of false positives (10) were due to a parental somatic deletion in
641 blood increasing the number of apparent DNM s (Supplemental Figure 14). These individuals
642 had some of the highest number of DNM s called (up to 1379 DNM s per individual). For each
643 of these 10 individuals, the DNM calls all clustered to a specific region in a single
644 chromosome. In this same corresponding region in the parent, we observed a loss of
645 heterozygosity when calculating the heterozygous/homozygous ratio. In addition, many of
646 these calls appeared to be low level mosaic in that same parent. This type of event has
647 previously been shown to create artifacts in CNV calls and is referred to as a 'Loss of
648 Transmitted Allele' event⁶⁷. The remaining 2 false positives were due to bad data quality in
649 either the offspring or one of the parents leading to poor DNM calls. The large number of
650 DNM s in these false positive individuals also led to significant underdispersion in the model
651 so after removing these 12 individuals we reran the regression model and subsequently
652 identified 11 individuals which appeared truly hypermutated ($p < 0.05/12,459$).

653

654 Extraction of mutational signatures

655 Mutational signatures were extracted from maternally and paternally phased autosomal
656 DNM s, 24 controls (randomly selected), 25 individuals (father with a cancer diagnosis prior
657 to conception), 27 individuals (mother with a cancer diagnosis prior to conception) and 12
658 hypermutated individuals that we identified. All DNM s were lifted over to GRCh37 prior to
659 signature extraction (100kGP samples are a mix of GRCh37 and GRCh38) and through the
660 liftover process a small number of 100kGP DNM s were lost (0.09% overall, 2 DNM s lost

661 across all hypermutated individuals). The mutation counts for all the samples can be found
662 in Supplemental Table 1. This was done using SigProfiler (v1.0.17) and these signatures are
663 extracted and subsequently mapped on to COSMIC mutational signatures (COSMIC v91,
664 Mutational Signature v3.1)^{19,40}. Sigprofiler defaults to selecting a solution with higher
665 specificity than sensitivity. A solution with 4 de-novo signatures was chosen as optimal by
666 SigProfiler for the 12 hypermutator samples. Another stable solution with five de-novo
667 signatures was also manually deconvoluted, which has been considered as the final
668 solution. The mutation probability for mutational signature SBSHYP can be found in
669 Supplemental Table 2.

670

671 **Signature comparison to external exposures**

672 We compared the extracted signatures from these hypermutated individuals to a compilation
673 of previously identified signatures caused by environmental mutagens from the literature. The
674 environmental signatures were compiled from Kucab et al (Cell 2019)²⁴, Pich et al (Nature
675 Genetics 2019)⁵¹ and Volkova et al (Nature Communications 2020)⁵². Comparison was
676 calculated as the cosine similarity between the different signatures.

677

678 **Defining set of genes involved in DNA repair**

679 We compiled a list of DNA repair genes which were taken from an updated version of the
680 table in Lange et al, Nature Reviews Cancer 2011
681 (<https://www.mdanderson.org/documents/Labs/Wood-Laboratory/human-dna-repair-genes.html>)⁶⁸. These can be found in Supplemental Table 3. These are annotated with the
682 pathways they are involved with (eg. nucleotide-excision repair, mismatch repair). A 'rare'
683 variant is defined as those with an allele frequency of <0.001 for heterozygous variants and
684 those with an allele frequency of <0.01 for homozygous variants in both 1000 Genomes as
685 well as across the 100kGP cohort.

686

687 **Kinetic characterization of MPG**

688 The A135T variant of MPG was generated by site-directed mutagenesis and confirmed by
689 sequencing both strands. The catalytic domain of WT and A135T MPG were expressed in
690 BL21(DE3) Rosetta2 *E. coli* and purified as described for the full-length protein⁶⁹. Protein
691 concentration was determined by absorbance at 280 nm. Active concentration was
692 determined by electrophoretic mobility shift assay with 5'FAM-labeled pyridine-DNA
693 (Supplemental Figure 8)⁴⁸. Glycosylase assays were performed with 50 mM NaMOPS, pH
694 7.3, 172 mM potassium acetate, 1 mM DTT, 1 mM EDTA, 0.1 mg/mL BSA at 37 °C. For
695 single turnover glycosylase activity, a 5'-FAM-labeled duplex was annealed by heating to 95
696 °C and slowly cooling to 4 °C (see Supplemental Figure 9). DNA substrate concentration
697 was varied between 10 and 50 nM and MPG concentration was maintained in at least 2-fold
698 excess over DNA from 25 to 10,000 nM. Timepoints were quenched in 0.2 M NaOH, heated
699 to 70 °C for 12.5 min, then mixed with formamide/EDTA loading buffer and analyzed by 15%
700 denaturing polyacrylamide gel electrophoresis. Fluorescence was quantified with a Typhoon
701 5 imager and ImageQuant software (GE). The fraction of product was fit by a single
702 exponential equation to determine the observed single turnover rate constant (k_{obs}). For Hx
703 excision, the concentration dependence was fit by the equation $k_{obs} = k_{max} [E]/(K_{1/2}+[E])$, in
704 which the $K_{1/2}$ is the concentration at which half the maximal rate constant (k_{max}) was
705 obtained and [E] is the concentration of enzyme. It was not possible to measure the $K_{1/2}$ for
706 εA excision using a fluorescence-based assay due to extremely tight binding⁷⁰. Multiple
707 turnover glycosylase assays were performed with 5 nM MPG and 10–40-fold excess of
708 substrate (Supplemental Figure 9).

710

711 Estimating the fraction of variance explained

712 To estimate the fraction of germline mutation variance explained by several factors, we fit
713 the

714 following negative Binomial GLMs with an identity link. Data quality is likely to correlate with
715 the number of DNM s detected so to reduce this variation we used a subset of the 100kGP
716 dataset which had been filtered on some base quality control (QC) metrics by the
717 Bioinformatics team at GEL:

- 718 • cross-contamination < 5%
- 719 • mapping rate > 75%
- 720 • mean sample coverage > 20
- 721 • insert size <250

722 We then included the following variables to try and capture as much of the residual
723 measurement error which may also be impacting DNM calling. In brackets are the
724 corresponding variable names used in the models below:

- 725 • Mean coverage for the child, mother and father (*child_mean_RD*, *mother_mean_RD*,
726 *father_mean_RD*)
- 727 • Proportion of aligned reads for the child, mother and father (*child_prop_aligned*,
728 *mother_prop_aligned*, *father_prop_aligned*)
- 729 • Number of SNVs called for child, mother and father (*child_snvs*, *mother_snvs*,
730 *father_snvs*)
- 731 • Median VAF of DNM s called in child (*median_VAF*)
- 732 • Median 'Bayes Factor' as outputted by Platypus for DNM s called in the child. This is
733 a metric of DNM quality (*median_BF*).

734

735 The first model only included parental age:

736

$$737 E(Y) = \beta_0 + \beta_1 \text{paternal_age} + \beta_2 \text{maternal_age}$$

738

739 The second model also included data quality variables as described above:

740

$$741 E(Y) = \beta_0 + \beta_1 \text{paternal_age} + \beta_2 \text{maternal_age} + \beta_3 \text{child_mean_RD} \\ 742 + \beta_4 \text{mother_mean_RD} + \beta_5 \text{father_mean_RD} + \beta_6 \text{child_prop_aligned} \\ 743 + \beta_7 \text{mother_prop_aligned} + \beta_8 \text{father_prop_aligned} + \beta_9 \text{child_snvs} \\ 744 + \beta_{10} \text{mother_snvs} + \beta_{11} \text{father_snvs} + \beta_{12} \text{median_VAF} + \beta_{13} \text{median_BF}$$

745

746

747 The third model included a variable for excess mutations in the 11 confirmed hypermutated
748 individuals (*hm_excess*) in the 100kGP dataset. This variable was the total number of
749 mutations subtracted by the median number of DNM s in the cohort (65), $Y_{\text{hypermutated}} -$
750 median(Y) for these 11 individuals and 0 for all other individuals.

751

$$752 E(Y) = \beta_0 + \beta_1 \text{paternal_age} + \beta_2 \text{maternal_age} + \beta_3 \text{child_mean_RD} \\ 753 + \beta_4 \text{mother_mean_RD} + \beta_5 \text{father_mean_RD} + \beta_6 \text{child_prop_aligned} \\ 754 + \beta_7 \text{mother_prop_aligned} + \beta_8 \text{father_prop_aligned} + \beta_9 \text{child_snvs} \\ 755 + \beta_{10} \text{mother_snvs} + \beta_{11} \text{father_snvs} + \beta_{12} \text{median_VAF} + \beta_{13} \text{median_BF} \\ 756 + \beta_{14} \text{hm_excess}$$

757

758 The fraction of variance (F) explained after accounting for Poisson variance in the mutation
759 rate was calculated in a similar way to Kong et al using the following formula³.

760
$$F = \text{pseudo}R^2 \frac{1 - \bar{Y}}{\text{Var}(Y)}$$

761
762 McFadden's pseudo R^2 was used here as a Negative binomial GLM was fitted. We repeated
763 these analyses fitting an ordinary least squares regression, as was done in Kong et al³,
764 using the R^2 and got comparable results. To calculate a 95% confidence interval we used a
765 bootstrapping approach. We sampled with replacement 1,000 times and extracted the 2.5%
766 and 97.5% percentiles.

767

768 **Analysis of contribution of rare variants in DNA repair genes**

769 We fit 8 separate regressions to assess the contribution of rare variants in DNA repair genes
770 (compiled as described previously). These were across three different sets of genes:
771 variants in all DNA repair genes, variants in a subset of DNA repair genes known to be
772 associated with BER, MMR, NER or a DNA polymerase and variants within this subset that
773 have also been associated with a cancer phenotype. For this we downloaded all ClinVar
774 entries as of October 2019 and searched for germline 'pathogenic' or 'likely pathogenic'
775 variants annotated with cancer⁵⁴. We tested both all nonsynonymous variants and just
776 protein truncating variants (PTVs) for each set. To assess the contribution of each of these
777 sets we created two binary variables per set indicating a presence or absence of a maternal
778 or paternal variant for each individual and then ran a negative binomial regression for each
779 subset including these as independent variables along with hypermutation status, parental
780 age and QC metrics as described in the previous section.

781

782 **Simulations to explore effect estimates of fraction of variance explained by paternal 783 age from downsampling**

784 To explore how the estimates of the fraction of variance of the number of DNM^s is explained
785 by paternal age varies with downsampling we first simulated a random sample as follows
786 10,000 times:

- 787 • Randomly sample 78 trios (the number of trios in Kong et al.³.)
- 788 • Fit OLS of $E(Y) = \beta_0 + \beta_1 \text{paternal_age}$
- 789 • Estimated fraction of variance (F) as described in Kong et al³.

790 We found that the median fraction explained was 0.77, sd of 0.13 and with 95% of
791 simulations fallings between 0.51 and 1.00.

792

793 **Identifying parents with cancer diagnosis prior to birth of offspring**

794 To identify parents who had received a cancer diagnosis prior to the conception of their child
795 we examined the admitted patient care hospital episode statistics of these parents. There
796 were no hospital episode statistics available prior to 1997 and many individuals did not have
797 any records until after the birth of the child. To ensure comparisons were not biased by this
798 we first subsetted to parents who had at least one episode statistic recorded at least two
799 years prior to the child's year of birth. Two years prior to the child's birth was our best
800 approximation for prior to conception without the exact child date of birth. This resulted in
801 2,891 fathers and 5,508 mothers. From this set we then extracted all entries with ICD10
802 codes with a "C" prefix which corresponds to malignant neoplasms and "Z85" which
803 corresponds to a personal history of malignant neoplasm. We defined a parent as having a
804 cancer diagnosis prior to conception if they had any of these codes recorded ≥ 2 years prior

805 to the child's year of birth. We also extracted all entries with ICD10 code "Z511" which codes
806 for an 'encounter for antineoplastic chemotherapy and immunotherapy'.

807 Two fathers of hypermutated individuals who we suspect had chemotherapy prior to
808 conception did not meet these criteria as the father of GEL_5 received chemotherapy for
809 treatment for SLE and not cancer and for the father of GEL_8 the hospital record 'personal
810 history of malignant neoplasm' were entered after the conception of the child (Supplemental
811 Table 4).

812 To compare the number of dnSNVs between the group of individuals with parents with and
813 without cancer diagnoses we used a Wilcoxon test on the residuals from the negative
814 binomial regression on dnSNVs correcting for parental age, hypermutation status and data
815 quality. To look at the effect of maternal cancer on dnSNVs we matched these individuals on
816 maternal and paternal age with sampling replacement with 20 controls for each of the 27
817 individuals. We found a significant increase in DNMs (74 compared to 65 median dnSNVs, p
818 = 0.001, Wilcoxon Test).

819

820 **SNP heritability analysis**

821 For this analysis we started with the same subset of the 100kGP dataset that had been
822 filtered as described in the analysis on the impact of rare variants in DNA repair genes
823 across the cohort (see above). To ensure variant quality we subsetted to variants that have
824 been observed in genomes from gnomAD (v3)⁷¹. These were then filtered by ancestry to
825 parent-offspring trios where both the parents and child mapped on to the 1000 Genomes
826 GBR subpopulations. The first 10 principal components were subsequently included in the
827 heritability analyses. To remove cryptic relatedness we removed individuals with estimated
828 relatedness >0.025 (using GCTA grm-cutoff 0.025). This resulted in a set of 6,352 fathers
829 and 6,329 mothers. The phenotype in this analysis was defined as the residual from the
830 negative binomial regression of the number of DNMs after accounting for parental age,
831 hypermutation status and several data quality variables as described when estimating the
832 fraction of DNM count variation explained (see Methods above). To estimate heritability we
833 ran GCTA's GREML-LDMS on two LD stratifications and three MAF bins (0.001-0.01, 0.01-
834 0.05, 0.05-1).⁵⁵ For mothers this was run with the --reml-no-constrain option because
835 otherwise it would not converge. (Supplemental Table 8)

836

837

- 838 1. Conrad, D. F. *et al.* Variation in genome-wide mutation rates within and between human
- 839 families. *Nat. Genet.* **43**, 712–714 (2011).
- 840 2. Roach, J. C. *et al.* Analysis of Genetic Inheritance in a Family Quartet by Whole-
- 841 Genome Sequencing. *Science* vol. 328 636–639 (2010).
- 842 3. Kong, A. *et al.* Rate of de novo mutations and the importance of father's age to disease
- 843 risk. *Nature* **488**, 471–475 (2012).
- 844 4. Sasani, T. A. *et al.* Large, three-generation human families reveal post-zygotic
- 845 mosaicism and variability in germline mutation accumulation. *Elife* **8**, (2019).
- 846 5. Lindsay, S. J., Rahbari, R., Kaplanis, J., Keane, T. & Hurles, M. E. Similarities and
- 847 differences in patterns of germline mutation between mice and humans. *Nat. Commun.*
- 848 **10**, 4053 (2019).
- 849 6. Harris, K. Evidence for recent, population-specific evolution of the human mutation rate.
- 850 *Proceedings of the National Academy of Sciences* vol. 112 3439–3444 (2015).
- 851 7. Yang, S. *et al.* Parent–progeny sequencing indicates higher mutation rates in
- 852 heterozygotes. *Nature* vol. 523 463–467 (2015).
- 853 8. Amos, W. Flanking heterozygosity influences the relative probability of different base
- 854 substitutions in humans. *R Soc Open Sci* **6**, 191018 (2019).
- 855 9. Girard, S. L. *et al.* Paternal Age Explains a Major Portion of De Novo Germline Mutation
- 856 Rate Variability in Healthy Individuals. *PLOS ONE* vol. 11 e0164212 (2016).
- 857 10. Mitra, I. *et al.* Genome-wide patterns of de novo tandem repeat mutations and their
- 858 contribution to autism spectrum disorders. doi:10.1101/2020.03.04.974170.
- 859 11. Study, Deciphering Developmental Disorders. Prevalence and Architecture of De Novo
- 860 Mutations in Developmental Disorders. *Nature* vol. 542 433–438 (2017).
- 861 12. Goldmann, J. M. *et al.* Parent-of-origin-specific signatures of de novo mutations. *Nat.*
- 862 *Genet.* **48**, 935–939 (2016).
- 863 13. Rahbari, R. *et al.* Timing, rates and spectra of human germline mutation. *Nat. Genet.*
- 864 **48**, 126–133 (2016).

865 14. Gao, Z. *et al.* Overlooked roles of DNA damage and maternal age in generating human
866 germline mutations. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 9491–9500 (2019).

867 15. Jónsson, H. *et al.* Parental influence on human germline de novo mutations in 1,548
868 trios from Iceland. *Nature* **549**, 519–522 (2017).

869 16. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R.
870 Deciphering Signatures of Mutational Processes Operative in Human Cancer. *Cell Reports* vol. 3 246–259 (2013).

872 17. Nik-Zainal, S. *et al.* 604 Cancer Genomics, Epigenetics and Genomic Instability.
873 Mutational Processes Shaping the Genomes of Twenty-one Breast Cancers. *European
874 Journal of Cancer* vol. 48 S144 (2012).

875 18. Phillips, D. H. Mutational spectra and mutational signatures: Insights into cancer
876 aetiology and mechanisms of DNA damage and repair. *DNA Repair* **71**, 6–11 (2018).

877 19. Alexandrov, L. B. *et al.* The repertoire of mutational signatures in human cancer. *Nature*
878 **578**, 94–101 (2020).

879 20. Demanelis, K. *et al.* Determinants of telomere length across human tissues. *Science*
880 **369**, (2020).

881 21. Moore, L., Cagan, A., Coorens, T., Neville, M. D. C. & Sanghvi, R. The mutational
882 landscape of human somatic and germline cells. *bioRxiv* (2020).

883 22. Alexandrov, L. B. *et al.* Clock-like mutational processes in human somatic cells. *Nat.
884 Genet.* **47**, 1402–1407 (2015).

885 23. Stratton, M. R., Campbell, P. J. & Andrew Futreal, P. The cancer genome. *Nature* vol.
886 458 719–724 (2009).

887 24. Kucab, J. E. *et al.* A Compendium of Mutational Signatures of Environmental Agents.
888 *Cell* **177**, 821–836.e16 (2019).

889 25. Tawn, E. J. & Janet Tawn, E. Hereditary Effects of Radiation: UNSCEAR 2001 Report
890 to the General Assembly, with Scientific Annex. *Journal of Radiological Protection* vol.
891 22 121–122 (2002).

892 26. Forster, L., Forster, P., Lutz-Bonengel, S., Willkomm, H. & Brinkmann, B. Natural

893 radioactivity and human mitochondrial DNA mutations. *Proc. Natl. Acad. Sci. U. S. A.*
894 **99**, 13950–13954 (2002).

895 27. Adewoye, A. B., Lindsay, S. J., Dubrova, Y. E. & Hurles, M. E. The genome-wide effects
896 of ionizing radiation on mutation induction in the mammalian germline. *Nat. Commun.* **6**,
897 6684 (2015).

898 28. Huang, K.-L. *et al.* Pathogenic Germline Variants in 10,389 Adult Cancers. *Cell* **173**,
899 355–370.e14 (2018).

900 29. Dutil, J. *et al.* Germline variants in cancer genes in high-risk non-BRCA patients from
901 Puerto Rico. *Sci. Rep.* **9**, 17769 (2019).

902 30. Hu, C. *et al.* Association Between Inherited Germline Mutations in Cancer
903 Predisposition Genes and Risk of Pancreatic Cancer. *JAMA* vol. 319 2401 (2018).

904 31. Huang, Q.-Y. *et al.* Mutation patterns at dinucleotide microsatellite loci in humans. *Am.*
905 *J. Hum. Genet.* **70**, 625–634 (2002).

906 32. Gymrek, M., Willems, T., Reich, D. & Erlich, Y. Interpreting short tandem repeat
907 variations in humans using mutational constraint. *Nat. Genet.* **49**, 1495–1501 (2017).

908 33. Sun, J. X. *et al.* A direct characterization of human mutation based on microsatellites.
909 *Nature Genetics* vol. 44 1161–1165 (2012).

910 34. Monckton, D. G. *et al.* Minisatellite mutation rate variation associated with a flanking
911 DNA sequence polymorphism. *Nat. Genet.* **8**, 162–170 (1994).

912 35. Crowley, J. J. *et al.* Common-variant associations with fragile X syndrome. *Mol.*
913 *Psychiatry* **24**, 338–344 (2019).

914 36. Kaplanis, J. *et al.* Evidence for 28 genetic disorders discovered by combining healthcare
915 and research data. *Nature* **586**, 757–762 (2020).

916 37. Uchimura, A. *et al.* Germline mutation rates and the long-term phenotypic effects of
917 mutation accumulation in wild-type laboratory mice and mutator mice. *Genome Res.* **25**,
918 1125–1134 (2015).

919 38. Cawthon, R. M. *et al.* Germline mutation rates in young adults predict longevity and
920 reproductive lifespan. *Sci. Rep.* **10**, 10001 (2020).

921 39. Liu, P. *et al.* An Organismal CNV Mutator Phenotype Restricted to Early Human
922 Development. *Cell* **168**, 830–842.e7 (2017).

923 40. Tate, J. G. *et al.* COSMIC: the Catalogue Of Somatic Mutations In Cancer. *Nucleic
924 Acids Res.* **47**, D941–D947 (2019).

925 41. Lehmann, A. R., McGibbon, D. & Stefanini, M. Xeroderma pigmentosum. *Orphanet J.
926 Rare Dis.* **6**, 70 (2011).

927 42. Pippard, E. C., Hall, A. J., Barker, D. J. & Bridges, B. A. Cancer in homozygotes and
928 heterozygotes of ataxia-telangiectasia and xeroderma pigmentosum in Britain. *Cancer
929 Res.* **48**, 2929–2932 (1988).

930 43. Jager, M. *et al.* Deficiency of nucleotide excision repair is associated with mutational
931 signature observed in cancer. *Genome Res.* **29**, 1067–1077 (2019).

932 44. Miccoli, L. *et al.* The combined effects of xeroderma pigmentosum C deficiency and
933 mutagens on mutation rates in the mouse germ line. *Cancer Res.* **67**, 4695–4699
934 (2007).

935 45. Laskowski, R. A., Stephenson, J. D., Sillitoe, I., Orengo, C. A. & Thornton, J. M. VarSite:
936 Disease variants and protein structure. *Protein Sci.* **29**, 111–119 (2020).

937 46. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting
938 the deleteriousness of variants throughout the human genome. *Nucleic Acids Res.* **47**,
939 D886–D894 (2019).

940 47. Glassner, B. J., Rasmussen, L. J., Najarian, M. T., Posnick, L. M. & Samson, L. D.
941 Generation of a strong mutator phenotype in yeast by imbalanced base excision repair.
942 *Proc. Natl. Acad. Sci. U. S. A.* **95**, 9997–10002 (1998).

943 48. Eyler, D. E., Burnham, K. A., Wilson, T. E. & O'Brien, P. J. Mechanisms of glycosylase
944 induced genomic instability. *PLoS One* **12**, e0174041 (2017).

945 49. Connor, E. E., Wilson, J. J. & Wyatt, M. D. Effects of substrate specificity on initiating
946 the base excision repair of N-methylpurines by variant human 3-methyladenine DNA
947 glycosylases. *Chem. Res. Toxicol.* **18**, 87–94 (2005).

948 50. Boot, A. *et al.* In-depth characterization of the cisplatin mutational signature in human

949 cell lines and in esophageal and liver tumors. *Genome Res.* **28**, 654–665 (2018).

950 51. Pich, O. *et al.* The mutational footprints of cancer therapies. *Nat. Genet.* **51**, 1732–1740
(2019).

951 52. Volkova, N. V. *et al.* Mutational signatures are jointly shaped by DNA damage and
952 repair. *Nat. Commun.* **11**, 2169 (2020).

953 53. Hock, H. & Shimamura, A. ETV6 in hematopoiesis and leukemia predisposition. *Semin.*
954 *Hematol.* **54**, 98–104 (2017).

955 54. Landrum, M. J. *et al.* ClinVar: public archive of interpretations of clinically relevant
956 variants. *Nucleic Acids Res.* **44**, D862–8 (2016).

957 55. Yang, J. *et al.* Genetic variance estimation with imputed variants finds negligible missing
958 heritability for human height and body mass index. *Nat. Genet.* **47**, 1114–1120 (2015).

959 56. Kilpivaara, O. & Aaltonen, L. A. Diagnostic cancer genome sequencing and the
960 contribution of germline variants. *Science* **339**, 1559–1562 (2013).

961 57. Wong, E. *et al.* Mbd4 inactivation increases C->T transition mutations and promotes
962 gastrointestinal tumor formation. *Proceedings of the National Academy of Sciences* vol.
963 99 14937–14942 (2002).

964 58. Bart, J. *et al.* An oncological view on the blood-testis barrier. *Lancet Oncol.* **3**, 357–363
965 (2002).

966 59. Wheway, G., Mitchison, H. M. & Genomics England Research Consortium.
967 Opportunities and Challenges for Molecular Understanding of Ciliopathies-The 100,000
968 Genomes Project. *Front. Genet.* **10**, 127 (2019).

969 60. Ouwehand, W. H., on behalf of the NIHR BioResource and the & 000 Genomes Project.
970 Whole-genome sequencing of rare disease patients in a national healthcare system.
971 doi:10.1101/507244.

972 61. Rimmer, A. *et al.* Integrating mapping-, assembly- and haplotype-based approaches for
973 calling variants in clinical sequencing applications. *Nat. Genet.* **46**, 912–918 (2014).

974 62. Wright, C. F. *et al.* Genetic diagnosis of developmental disorders in the DDD study: a
975 scalable analysis of genome-wide research data. *Lancet* **385**, 1305–1314 (2015).

976

977 63. Ramu, A. *et al.* DeNovoGear: de novo indel and point mutation discovery and phasing.

978 *Nat. Methods* **10**, 985–987 (2013).

979 64. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler

980 transform. *Bioinformatics* **25**, 1754–1760 (2009).

981 65. Gerstung, M., Papaemmanuil, E. & Campbell, P. J. Subclonal variant calling with

982 multiple samples and prior knowledge. *Bioinformatics* **30**, 1198–1204 (2014).

983 66. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV):

984 high-performance genomics data visualization and exploration. *Briefings in*

985 *Bioinformatics* vol. 14 178–192 (2013).

986 67. Redon, R. *et al.* Global variation in copy number in the human genome. *Nature* **444**,

987 444–454 (2006).

988 68. Lange, S. S., Takata, K.-I. & Wood, R. D. DNA polymerases and cancer. *Nat. Rev.*

989 *Cancer* **11**, 96–110 (2011).

990 69. Zhang, Y. & O'Brien, P. J. Repair of Alkylation Damage in Eukaryotic Chromatin

991 Depends on Searching Ability of Alkyladenine DNA Glycosylase. *ACS Chem. Biol.* **10**,

992 2606–2615 (2015).

993 70. Wolfe, A. E. & O'Brien, P. J. Kinetic mechanism for the flipping and excision of 1,N(6)-

994 ethenoadenine by human alkyladenine DNA glycosylase. *Biochemistry* **48**, 11357–

995 11369 (2009).

996 71. Karczewski, K. J. *et al.* The mutational constraint spectrum quantified from variation in

997 141,456 humans. *Nature* **581**, 434–443 (2020).

998