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Abstract:

The social environment is a major determinant of morbidity, mortality, and Darwinian
fithess in social animals. Recent studies have begun to uncover the molecular processes
associated with these relationships, but the degree to which they vary across different
dimensions of the social environment remains unclear. Here, we draw on a long-term field study
of wild baboons to compare the signatures of affiliative and competitive aspects of the social
environment in white blood cell gene regulation, under both immune stimulated and non-
stimulated conditions. We find that the effects of dominance rank on gene expression are
directionally opposite in males versus females, such that high-ranking males resemble low-
ranking females, and vice-versa. Among females, rank and social bond strength are both
reflected in the activity of cellular metabolism and proliferation genes. However, pronounced
rank-related differences in baseline immune gene activity are near-absent for social bond
strength, while only bond strength predicts the fold-change response to immune
(lipopolysaccharide) stimulation. Together, our results indicate that the directionality and
magnitude of social effects on gene regulation depend on the aspect of the social environment
under study. This heterogeneity may help explain why social environmental effects on health
and longevity can also vary between measures.
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INTRODUCTION

Many animal species, including humans, live the majority of their lives as part of a larger
group of conspecifics. Social group living provides a number of benefits, including protection
from predators, improved territory and resource defense, and access to potential mates [1-4].
At the same time, it also generates competition for resources among group members. For many
group-living species, the outcome of competitive interactions is at least partially predictable,
giving rise to an observable social dominance hierarchy in which high status animals are
consistently able to displace lower status animals [5-7]. Due to correlated differences in
resource access, energy expenditure, and/or psychosocial stress, high-ranking and low-ranking
animals are frequently behaviorally and physiologically distinct. For example, across social
mammals, low status individuals often have elevated glucocorticoid levels or exhibit signs of
glucocorticoid resistance [8—12].

However, correlations between social status and physiological measures are highly
heterogeneous across species or between sexes, and sometimes even directionally
inconsistent [8,13—18]. This heterogeneity is likely explained in part by differences in how status
is attained and maintained. In some cases social status depends on individual characteristics,
such as the ability to physically dominate competitors (e.g., male bottlenose dolphins, male red
deer, female meerkats: [19-21]). In contrast, other types of social hierarchies are determined
via nepotism, and do not strongly covary with individual phenotype (e.g., female spotted hyenas,
some female cercopithecine primates: [22,23]). Hierarchies that are largely determined by
physical condition are often dynamic, whereas nepotistic hierarchies can remain highly stable
over time, and even extend across generations [24—26]. Consequently, while rank is an
important predictor of fitness in both types of hierarchies [27-31], its physiological signatures
may differ. For example, while high rank predicts lower glucocorticoid levels in female blue
monkeys, female baboons, and naked mole-rats of both sexes [10,13,32,33], glucocorticoid
levels tend to be higher in high rank female ring-tailed lemurs, female meerkats, and male
chimpanzees [18,34,35].

In addition to the competitive interactions that structure social hierarchies, group-living
animals can also form individually differentiated, affiliative social bonds. The affiliative behaviors
that give rise to social bonds (e.g., proximity or contact in cetaceans and ungulates, grooming
and proximity in primates) are often patterned, at least in part, by social status [36—42]. For
example, in cooperatively breeding meerkats, dominant males groom dominant females more
often than they groom subordinate females [43]. Similarly, attraction to high-ranking individuals
commonly structures grooming patterns in social primates [40]. However, rank is not the sole
determinant of affiliative behavior and social bond formation. In female yellow baboons, for
instance, a measure of female social connectedness to other females is better predicted by the
presence of maternal kin than by rank (although rank, not the presence of maternal kin, predicts
female social connectedness to males; [44]). Recent evidence also indicates that the fitness
effects of affiliative social relationships are also partially independent of rank. Stronger social
relationships predict natural lifespan in members of at least five mammalian orders, and this
relationship often persists after controlling for variation in rank or other measures of social status
[38,45-51]. Indeed, in yellow baboons, social relationships predict lifespan even when rank
does not [45].
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Social status and social integration are therefore connected dimensions of the social
environment that nevertheless can have distinct fithess consequences. This observation
presents a puzzle about the mechanisms that make their consequences for health, physiology,
and survival distinct. To date, far more work has focused on the physiological and molecular
correlates of social status than of affiliative social bonds in natural animal populations. However,
four lines of evidence argue that differences in affiliative social interactions should also be
reflected in physiological or molecular variation. First, such changes are implied by cross-taxon
support for an association between lifespan and social integration [52], suggesting at least a
partial basis in physical condition. Second, studies in a small set of natural populations have
already identified links between affiliative relationships and biomarkers of stress, especially
glucocorticoid levels. For example, urinary glucocorticoids are lower in chimpanzees sampled
while interacting with closely bonded social partners than in those interacting with non-bonded
partners [53], and male rhesus macaques and female chacma baboons with stronger social
bonds show reduced glucocorticoid responses to environmental stressors [54-56]. Third, social
isolation and loneliness are associated with changes in human biology, including increased
proinflammatory activity [57-59], hypothalamic-pituitary-adrenal axis activation [60,61], and risk
for cardiovascular disease [62,63]. Finally, studies in captive rodents show that manipulation of
social integration and social support can causally alter glucocorticoid regulation and increase
the risk of cancer metastasis [64,65].

Despite these findings, most studies consider either the physiological signature of social
status or of affiliative social relationships, not both. Further, those studies that incorporate both
dimensions often measure only a single outcome variable in one type of social status hierarchy
(i.e., physical competition-based or nepotistic). Because single measures vary along only one
dimension, they have limited ability to distinguish shared versus unique signatures of
competitive and affiliative interactions. Thus, it is possible that physiological changes in
response to the social environment converge on a generalized signature of stress and adversity,
in which low status and weak social bonds produce undifferentiable responses (e.qg., the
“conserved transcriptional response to adversity”: [66]). Alternatively, different facets of the
social environment may be reflected in different biological pathways. If so, higher dimensional
measures of physiological or molecular state may be informative about multiple aspects of an
animal’s social experience, and help uncover why social status and social affiliation can be
related, yet have distinct effects on fitness.

Functional genomic analyses of gene regulation provide an opportunity to differentiate
these hypotheses. Importantly, previous work demonstrates the sensitivity of gene regulation to
the social environment. For example, competitive interactions to establish dominance rapidly
alter DNA methylation, histone marks, and gene expression across multiple vertebrate and
social insect species [67—73]. Affiliative interactions can also be reflected in altered gene
expression patterns. For example, experimental social isolation in piglets results in increased
plasma cortisol and altered glucocorticoid and mineralocorticoid receptor expression in stress-
related regions of the brain [74]. However, the species that have been central to understanding
the genomic signatures of social status and social competition (e.g., cichlid fish, mice) tend not
to be the same ones developed as models for social affiliation (e.g., voles, titi monkeys).
Additionally, few studies of social interactions and gene regulation have focused on species that
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establish both clear social dominance hierarchies and long-term social bonds outside the mating
pair-bond.

To begin addressing this gap, this study draws on data and samples from a five decade-
long field study of wild baboons in Kenya, in which the fithess consequences of both social
status and social relationships have been extensively investigated in prior work [29,44,45,75—
78]. Gene regulatory signatures of the social environment have also been detected in this
population [15,79]. Most relevant to this work, high-ranking baboon males exhibit elevated
expression of inflammation-related genes both at baseline and upon stimulation with
lipopolysaccharide (LPS; a pathogen-associated molecular pattern associated with gram-
negative bacteria, and a strong driver of the innate inflammatory response: [15]). In contrast,
little signature of rank was detectable in females [15]. This result is consistent with findings that
high rank in males (but not females) predicts accelerated epigenetic aging, elevated
glucocorticoid and testosterone levels, and, to a lesser extent, higher mortality rates [14,45,80].
However, it contrasts with the hypothesis of a highly consistent gene regulatory response to the
social environment [66].

Together, these observations raise key questions about the extent to which the links
between social experience and gene regulation are sex- and/or context-specific. To address
them here, we expand on our previous white blood cell gene expression data sets by 64% (from
n =119 to n = 195 samples, including paired baseline and LPS-stimulated samples from nearly
all individuals; Table S1). We also generated ATAC-seq data on chromatin accessibility in
baseline and LPS-stimulated samples to infer the transcription factor binding events that explain
social environment associations with gene expression. Our results indicate even more
substantial sex differences in the signature of dominance rank than was apparent in previous
work. We also identify, for the first time in any natural vertebrate population, a strong signal of
social bond strength on gene regulation. Although several of the major pathways associated
with rank and social bond strength overlap, their signatures are clearly distinct, and only social
bond strength predicts the gene expression response to pathogen stimulation (i.e., the
difference between baseline and LPS-stimulated cells from the same individual). Together, this
work emphasizes the strong relationship between the social environment and gene regulation in
the immune system in wild social mammals. It thus deepens our understanding of how fitness-
relevant social experiences “get under the skin” to affect health and fitness outcomes.

RESULTS
Directionally opposite gene expression signatures of dominance rank in male and female
baboons

We used RNA-seq to measure genome-wide gene expression levels in white blood cells
from 97 unique adult baboons (45 females, 52 males; Table S1). For each animal, we collected
RNA from paired baseline (unstimulated cells cultured in media) and LPS-stimulated samples
that were cultured in parallel for 10 hours (Fig 1A; following [15]). Following quality control, our
data set consisted of RNA-seq data from 195 samples (119 samples from previously published
work and an additional 76 samples that are newly reported here; 97 unique individuals total,
with 3 individuals represented by more than one blood draw; Table S1). Samples were
sequenced to a mean coverage of 17.4 million reads + 7.7 million s.d. (Table S1). After filtering


https://doi.org/10.1101/2021.05.31.446340
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.446340; this version posted May 31, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

171  for genes that were detectably expressed in one or both conditions (median RPKM > 2 in either
172  condition), we retained 10,281 genes for downstream analysis.

173 We first investigated the signature of dominance rank separately in each sex. Consistent
174 with our earlier work [15], we found widespread associations between male ordinal dominance
175  rank and gene expression levels. 2,345 genes were significantly associated with male rank in
176  baseline samples and 2,996 in LPS-stimulated samples (22.8% and 29.1% of genes tested,

177  respectively; i.e., Brank # 0 in a linear mixed effects model controlling for technical covariates,
178  age, and treatment effects, 10% FDR; Table S2. An elastic net model relating gene expression
179  to dominance rank thus predicted male rank with moderately high accuracy (Pearson’s

180 R=0.449, p=8.46 x 10*; Fig 1B; Fig S1). In females, gene expression data were also significant
181 predictors of dominance rank (Pearson’s R= 0.656, p= 1.31 x 10%; Fig 1C; Table S3). However,
182  the elastic net analysis for females revealed one female (AMB_2) who was high-ranking at the
183  time of sampling (ordinal rank 3) but was predicted to be very low-ranking in both baseline and
184  LPS samples (predicted ordinal rank 17.7 and 19.4, respectively; Fig S1). By substantially

185 increasing our sample size and excluding AMB_2, we were able to identify female dominance
186  rank-gene expression associations that were undetectable in previous work [15], including 1,285
187  rank-associated genes at baseline and 221 rank-associated genes after LPS stimulation (12.5%
188  and 2.1% of genes tested, respectively; 10% FDR; Table S2). Because AMB_2 was a clear

189  outlier in our sample, we report analyses excluding her in the remainder of our results; however,
190  our comparisons are qualitatively unchanged if AMB_2 is included (Fig S2).
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193 Figure 1. Strong, sex-specific signatures of dominance rank in white blood cell gene expression. (A) Study
194 design: dominance rank (males and females) and social bond strength (females only) were evaluated for their

195 relationship with white blood cell gene expression, generated from samples cultured for 10 hours in the absence
196 (baseline) or presence of lipopolysaccharide (LPS). (B-C) A gene expression-based elastic net model accurately
197 predicts dominance rank for male (B; Pearson’s R=0.449, p=8.46 x 10*#) and female (C; Pearson’s R= 0.656, p= 1.31
198 x 10%) baboons. (D) The effect estimates for the rank-gene expression association are negatively correlated in males
199 versus females (Pearson’s R=-0.544, p<10-5°; colored dots are genes that pass a 10% false discovery rate

200 threshold). (E) Gene sets enriched for higher expression in high-ranking males are enriched for lower expression in
201 high-ranking females, and vice-versa. Enrichment in males is shown in purple; enrichment in females is shown in
202 green. For all gene sets, enrichment score Bonferroni-corrected p-values are <0.005. Photo credits in (A): Elizabeth
203 Archie (females) and Courtney Fitzpatrick (males). Stock images of LPS and blood draw tubes courtesy of

204  BioRender.com.
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In both males and females, the second principal component (PC2) of the overall gene
expression data was correlated with rank (males: p=1.68 x 10#; females: p=0.013; note that
PC1 splits baseline from LPS-stimulated cells). However, while high-ranking males tended to
project onto positive values of PC2, high-ranking females tended to project onto negative values
(Fig S3). Effect size estimates for individual genes were also anti-correlated by sex, such that
genes that were more highly expressed in high-ranking females tended to be more lowly
expressed in high-ranking males (Pearson’s R=-0.537, p<10°°; Fig 1D; Fig S4). As a result,
genes with increased activity in high-ranking males and low-ranking females were both enriched
for inflammatory and type | interferon pathways (all pag<0.005; Fig 1E; Table S4) [81].
Meanwhile, genes with increased activity in low-ranking males and high-ranking females were
both enriched for key metabolic and cell cycle-related pathways, including oxidative
phosphorylation and myc signaling (all pag<0.005; Table S4). Thus, the same genes and
pathways were sensitive to rank dynamics in males and females, but in opposing directions.
Indeed, when applying the predictive model trained for male rank to gene expression data from
females, the model predictions were negatively correlated with the observed female ranks
(Pearson’s R=-0.339; p=0.023), and vice-versa (correlation between female-trained model
predictions and observed male rank: Pearson’s R=-0.339, p=0.014). Similarly, accessible
binding sites for immune response-related transcription factors (e.g., ISL1, KLF3, defined based
on increased chromatin accessibility after LPS stimulation: see S| Methods; Tables S5-S6) were
over-represented near genes upregulated in high-ranking males and near genes upregulated in
low-ranking females (all p < 0.05; Fig S6; Table S7).

Distinct signatures of dominance rank and social bond strength in female baboons

To investigate whether genes that are sensitive to dominance rank (regardless of effect
direction) also carry a signature of other aspects of the social environment, we next assessed
the relationship between social bond strength and gene expression in the same sample. We
focused exclusively on females (n=88 samples from n=44 unique individuals), using the “dyadic
sociality index” (DSI), a strong predictor of lifespan in our study population that captures an
annual measure of the strength of a female’s bonds with her top three female partners [45].
Female-to-female DSl is uncorrelated with dominance rank in this data set (Pearson’s R =0.11,
p = 0.468), allowing us to assess the overlap between DSI and rank associations with gene
expression independently of a correlation between the predictor variables themselves. While
male social bonds to females also predict male survival [45], our DSI data set for males (n=30
unique individuals) was too small to support a parallel analysis.

Controlling for dominance rank and other biological and technical sources of variance,
we identified 529 DSl-associated genes (5.1% of genes tested) in female Amboseli baboons
(Bosi = 0 in a linear mixed effects model; 10% FDR; Table S2). The vast majority of cases (522
genes, 98.6%) were specifically identified in the LPS-stimulated condition, although gene-level
DSl effect sizes are correlated between conditions (Pearson’s R=0.524, p<10-°). Surprisingly,
genes that were more highly expressed in females with strong social bonds (high DSI) also
tended to be more highly expressed in low-ranking females, and vice versa, resulting in a
positive correlation between the parameter estimates for rank and DSI (at baseline: Pearson’s
R=0.516; in LPS-stimulated samples: R= 0.351; Fig S5; note that the positive correlation arises
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249  because low ordinal rank values reflect high rank: i.e., the top-ranked female has an ordinal
250 rankof 1 and lower ranked females have ranks >1).

251 This result was counterintuitive to us because strong social bonds predict longer lifespan
252  in Amboseli baboon females [45], but the inflammation-related pathways associated with low
253 female rank in this population are commonly thought to be costly to health [82,83]. We therefore
254  investigated the pathways that account for the correlation in rank and DSI effect sizes at

255  Dbaseline. We found that this correlation is not, in fact, driven by immune process and

256 inflammation-related genes: social environmental effects on these genes are specific to rank,
257  and absent for social bond strength (Fig 2A). Specifically, genes involved in the inflammatory
258  response are highly enriched for upregulated expression in low-ranking females at baseline
259  (pagi<0.005) and the majority of genes in this set exhibit a positive effect size (i.e., increased
260  expression with lower rank: binomial test p=2.35 x 107'2). In contrast, there is no enrichment of
261 inflammation-related genes for DSI (pagj >.05), nor any bias in the sign of the DSI effect (p =
262  0.868). Consistent with these observations, accessible binding sites for TFs active in the

263 immune response (e.g., STAT5, Smad3, STAT3) are not enriched in or near DSI-upregulated
264  genes (all p > 0.5; Table S7). Instead, the overall correlation in rank and DSI effect sizes is

265  driven by genes involved in cellular metabolism and cell cycle control, particularly targets of the
266  transcription factor myc and genes that function in fatty acid metabolism and oxidative

267  phosphorylation (both pag<0.005; Fig 2A-B).

268 Notably, while genes involved in immune defense are not associated with DSI at

269  baseline, a number of immune-related gene sets are significantly enriched for large DSI effects
270 inthe LPS-stimulated condition. After LPS stimulation, high social bond strength predicts higher
271  expression of genes involved in the inflammatory response (paqj= 2.0 x 10-%). Because these
272  genes are not detectably associated with DSI in baseline samples, this observation suggests a
273  potential interaction between social bond strength and the cellular environment after bacterial
274  exposure. In support of this possibility, DSI predicts the magnitude of the response to LPS (i.e.,
275  the foldchange difference between LPS and baseline samples, within females) for 200 genes
276  (10% FDR; Fig 2C; Table S8). Females with strong social bonds nearly always exhibit a more
277  dynamic response to LPS than those with weaker social bonds (binomial test for LPS-

278  upregulated genes: p = 1.55 x 10°'%; binomial test for LPS-downregulated genes: p =3.12 x 10
279  '?). In contrast, because dominance rank effects are highly consistent between baseline and
280 LPS conditions, rank does not predict the magnitude of the response to LPS (1 rank-associated
281 gene; 10% FDR; Table S8). While many of the associations between DSI and the LPS response
282  occur in immune pathways (Fig. 2C), females with stronger social bonds also exhibit markedly
283  stronger responses to LPS in key cellular metabolism genes, including a key enzyme that

284  catalyzes transitions through the Krebs cycle (FH: g = 0.024; Fig 2D).

285

286
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291 gene sets labeled at left. Genes within immune-related pathways (red/orange) are polarized towards higher
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295 with high rank (negative effect sizes) and low DSI (negative effect sizes). Translucent density plots indicate no

296  significant bias in the direction of effects (binomial test p > 0.05). (B) Effect size bias for genes in the Hallmark

297 inflammatory response and myc (v1) target gene sets, for DSI and rank respectively. (C) Gene set enrichment

298 analysis results for female DSI (green) and rank (pink) effects on the foldchange response to LPS stimulation. Inset:
299 QQ-plot of the -log1o(p-value) for DSI and rank effects on the LPS response, relative to a uniform null distribution. We
300 observe strong evidence for associations between DSI and the LPS response, but not for rank. (D) Example of FH, a
301 key enzyme in the Krebs cycle that responds more strongly to LPS in high DSI females than low DSI females.
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302
303  Gene expression patterns and multidimensional social advantage
304 To investigate the combined signatures of social status and social bond strength, we

305 asked whether females that were relatively advantaged in both respects—and who therefore
306 experienced advantages to both fertility and survival [44,45,75,84] — appeared physiologically
307  distinct from other females. To do so, we binned females into four categories, corresponding to
308 high rank/high DSI, high rank/low DSI, low rank/high DSI, and low rank/low DSI (stratified based
309 on median rank and median DSI values in our sample). This classification reveals that, at

310 baseline, high rank/high DSI females exhibited the lowest median expression values of genes in
311 the Hallmark inflammatory response and IL6 signaling via JAK/STAT3 gene sets (p < 0.05 for
312  Wilcoxon summed ranks test of high rank/high DSI females against all three other categories,
313  for both gene sets; Fig 3). Thus, females with social capital in both dimensions—status and

314  affiliation—present a distinct, potentially advantageous gene regulatory profile as well.
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318 Figure 3. The gene expression signature of multidimensional social advantage. (A) Median gene expression for
319 genes in the inflammatory response gene set illustrates that high ranking animals exhibit lower inflammation-related
320 gene expression regardless of social bond strength (main effect of rank = -0.15, p = 0.019). There is no main effect of
321 DSI (p = 0.166), but the difference between high- and low-ranking females is greater when high-ranking females also
322  have strong social bonds. (B) Median, rescaled gene expression per individual in the Hallmark IL6 signaling via

323 JAK/STATS and the inflammatory response gene sets. Each row represents a different female, with rows stratified by
324  median dominance rank and median DSI.
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DISCUSSION

Social interactions, both affiliative and competitive, determine much about the daily
experience of group-living animals. Over the life course, these experiences compound to
powerfully predict health, survival, and reproductive success. Our findings reinforce that the
signature of the social environment is not only observable at the whole-organism level, but also
in widespread differences in gene expression. They therefore contribute to a modest but
expanding body of work linking gene expression variation to social experience in natural animal
populations, in both the brain and the periphery [15,70]. Together, this work generalizes
extensive research on social interactions and gene regulation in laboratory models [67,85-87] to
freely interacting animals in the wild. It also argues that correlations between gene expression,
social status, and social integration in humans capture a broader pattern of molecular sensitivity
to the social environment that predates the evolution of our own lineage [66,88].

Our findings converge with much of the previous work in humans and captive primates
to indicate that innate immune defense and cellular metabolism-related pathways are closely
entwined with social experience [15,57,89-92]. However, the signature of social bond strength
is much more apparent after immune stimulation than at baseline, and the signature of
dominance rank is substantially stronger in male versus female baboons. Thus, the functional
genomic signatures of different aspects of the social environment are themselves distinct. Our
results are consistent with observations that the fertility and survival consequences of male
rank, female rank, and female social bond strength also differ in this population [29,44,45,75—
78]. They thus call the hypothesis of a strongly conserved signature of social disadvantage into
question [66]. Tests for such a signature have particularly emphasized social disadvantage-
linked increases in the expression of inflammation and interferon signaling-related genes. This
prediction is supported for low rank in females but not for low social bond strength—and
strikingly, is directionally reversed in male baboons.

Consequently, only female social status-related differences in gene expression
recapitulate the pattern reported in studies of socioeconomic status, loneliness, and social
integration in humans and experimental studies of dominance rank in captive female rhesus
macaques [57,89,91,93-97]. Our results suggest that low social status in female baboons may
therefore be a better model for social disadvantage in humans than low social status in male
baboons—perhaps because social status in male baboons is driven almost entirely by fighting
ability, which is not the primary determinant of social status in modern human societies. Indeed,
social environment-associated gene expression signatures in humans are often interpreted
through the lens of chronic psychosocial stress [88,96,98]. While the importance of chronic
stress in natural animal populations remains an open question [11], low ranking females in both
this study population, wild blue monkeys, and captive rhesus macaques do exhibit higher
glucocorticoid levels and/or a blunted diurnal rhythm [12,13,32,99] . Psychosocial stress may
therefore be the common explanatory factor underlying conserved signatures of social
adversity, when they are observed. In contrast, high rank in baboon males imposes energetic
stress due to competition with other males and the demands of mate-guarding [29,100],
although males may experience forms of psychosocial stress as well. And while the stability of
social hierarchies and experimental work in captive primates suggests that rank precedes the
gene expression patterns we observe in females, males that achieve high rank may already be
physiologically distinct [15].
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This explanation does not, however, account for why social bond strength does not
follow the same pattern as female dominance rank. Weak social bond strength in Amboseli
baboon females is also correlated with elevated glucocorticoid levels, although this effect is
modest in comparison to other predictors (e.g., early life adversity [101]). If glucocorticoids are a
major determinant of social environment-associated variation in immune pathway gene
expression, these observations may account for why (unlike rank) we did not observe a strong
signature of social bond strength in immune genes at baseline. Instead, social bond strength is
most consistently linked to oxidative phosphorylation and myc signaling (a key regulator of cell
growth, metabolism, and apoptosis). Intriguingly, myc activity has also been implicated in social
regulation of brain gene expression in mice and as a mediator of social isolation-induced cancer
susceptibility in mice and rats [64,102]. These observations suggest that social bond strength
may be involved in altered energy metabolism and energetics in the baboons, as suggested in
other studies of chronic and/or psychosocial stress [103].

Together, our findings emphasize substantial complexity in how the social environment
is reflected at the molecular level. If we had focused only on an a priori subset of genes in the
genome, we could have concluded that social interactions do not predict gene expression levels
at all; that social status, but not social affiliation, predicts gene expression; or that social status
and social affiliation generate highly similar gene expression signatures. Similarly, if we had
focused only on one sex, we would have missed the shared sensitivity, but reversed
directionality, of status-related pathways in males versus females. Finally, if we had only
measured gene expression levels at baseline, we would have inferred that social bond strength
has little relevance to immune gene regulation, when in fact it is a much better predictor of
variation in the response to immune stimulation than dominance rank. While this complexity
presents a challenge—additional dimensions we did not explore, including developmental,
tissue, and cell type differences, are also likely to be important—it also illustrates the potential
for high-dimensional genomic data to capture heterogeneity in the signature of social
relationships that is impossible to infer from single measures. Indeed, our results suggest that,
even in the blood, social regulation of gene expression must be the consequence of multiple
upstream signaling pathways. Future studies thus have the opportunity both to test existing
hypotheses about the role of glucocorticoids in social environment-associated gene regulation,
and to identify alternative pathways that may also play an important role.

Methods:
Study subjects and samples

Study subjects were 97 adult baboons (52 males; 45 females) sampled from an
intensively monitored population of hybrid yellow baboons (Papio cynocephalus) and anubis
baboons (Papio anubis) in the Amboseli ecosystem of southern Kenya [104,105]. Genome-wide
gene expression measures were generated from blood samples collected during opportunistic
dartings from 2013 — 2018. Data from samples collected in 2013 — 2016 were previously
reported in [15], while the remaining 76 samples are newly reported here (Table S1). For all
sampling efforts, subjects were anesthetized using Telazol-loaded darts and safely removed
from their social groups for sample collection (as in [15,106,107]). Darted individuals were
allowed to recover from anesthesia and released to their social group the same day.
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For each study subject, we drew 1 mL of blood directly into a sterile TruCulture tube
(Myriad RBM) containing cell media only (the baseline sample), and another 1 mL of blood into
a second TruCulture tube containing cell media plus 0.1 ug/mL lipopolysaccharide (LPS; Fig
1A). Samples were incubated for 10 hours at 37 C. Following incubation, white blood cells were
extracted and stored in RNALater at -20 C until further processing. To control for cell type
composition, we also measured peripheral blood mononuclear cell type proportions for five
major cell types, for each individual. To do so, we purified peripheral blood mononuclear cells
(PBMCs) from blood drawn into Cell Preparation Tubes (CPT tubes; BD Biosciences) and
stained the PBMCs using fluorophore-conjugated antibodies to the cell surface markers CDS3,
CD14, CD16, CD8, and CD20, which together differentiate classical monocytes (CD3/CD14+/
CD16), natural killer cells (CD3/CD147/ CD16*), B-cells (CD3/CD20%), helper T-cells
(CD3*/CD4+* CD8"), and cytotoxic T-cells (CD3*/CD4/ CD8*) [15]. PBMC composition was then
profiled on a BD FacsCalibur flow cytometer and analyzed in FlowJo 10.7.1 (Table S1 with
additional cell type discrimination based on cell size and granularity).

To measure chromatin accessibility, 50 mL of blood was drawn from three male anubis
baboons housed at Texas Biomedical Research Institute’s Southwest National Primate
Research Center into CPT tubes (BD Biosciences), spun for 30 minutes at 1800 rcf, and
shipped to Duke University for PBMC isolation. 50,000 PBMCs from each individual were
incubated for 10 hours at 37C and 5% CO: in either the presence or absence of LPS (0.1
ug/mL, Invivogen ultrapure LPS from E. coli strain 055:B5). We then generated ATAC-seq
libraries from 50,000 cells per sample (n=6 baseline and LPS-stimulated samples total from the
3 baboons; see S| Methods; [108]).

Dominance rank and social bond strength

Sex-specific dominance ranks are assigned each month for each social group in the
study population based on the outcomes of dyadic agonistic interactions observed on a near-
daily basis [104,109]. Dominance rank assignments produce a hierarchy structure that
minimizes the number of cases in which higher ranking individuals lose interactions to lower
ranking ones [110]. To investigate rank-gene expression associations, we extracted ordinal
dominance rank values concurrent with blood sample collection, which represent rank as integer
values where rank 1 denotes the top-ranking individual, rank 2 denotes the second highest-
ranking individual, and so on. We note that previous analyses in this and other social mammals
show that alternative rank metrics sometimes confer improved predictive power [110,111]. In the
Amboseli baboon population, this is especially observable in females, where proportional rank
(i.e., ordinal rank scaled by group size) is more closely associated with fecal glucocorticoid
levels and injury risk than ordinal rank [110]. In this data set, substituting ordinal rank for
proportional rank produces highly concordant effect size estimates (R? for baseline male, LPS
male, baseline female, and LPS female rank effects = 0.75, 0.79, 0.88, 0.85, respectively), so
we reported the results for ordinal rank for both sexes.

To measure social bond strength, we used the dyadic sociality index (DSI, as in
[45,80,101]). The DSI calculates the mean grooming-based bond strength between a focal
female and her top three grooming partners in the year prior to sample collection, controlling for
observer effort and dyad co-residency times (see details in the Supplementary Methods). High
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DSl values thus correspond to strong social bonds, and low DSI values correspond to weak
social bonds.

Genomic data generation

For gene expression measurements, RNA was extracted from each sample (n=195 from
n=97 unique baboons) using the Qiagen RNeasy kit, following manufacturer’s instructions
(mean RIN=9.19 in a random subset of n=21 samples). We constructed indexed RNA-seq
libraries using the NEBNext Ultra | or Il library prep kits, followed by paired-end sequencing on
an lllumina HiSeq 2500 (for samples collected from 2013 — 2016) or single-end on a HiSeq
4000 (for samples collected after 2016) to a mean depth of 17.4 million reads (+ 7.7 million SD;
Table S1). Trimmed reads were mapped to the Panubis 1.0 genome (GCA_008728515.1) using
the STAR 2-pass aligner [112,113]. Finally, we generated gene-level counts using HTSeq and
the Panubis1.0 annotation (GCF_008728515.1) [114]. We retained genes with median RPKM >
2 in the baseline samples, LPS samples, or both for downstream analysis (n=10,281 genes).

For chromatin accessibility estimates, ATAC-seq libraries were sequenced on a HiSeq
2500 to a mean depth of 40.0 million paired-end reads (+ 13.7 million SD; Table S5). Trimmed
reads were mapped to the Panubis 1.0 genome using BWA [115]. We then combined mapped
reads across samples in the same condition (baseline or LPS) and called chromatin
accessibility peaks for each condition separately using MACSZ2 (see Supplementary Methods;
[116]).

Gene expression analysis

To identify social environment associations with gene expression, we first normalized the
gene expression data set using voom [117] and regressed out year of sampling (the primary
source of batch effects in our data set), sequencing depth, and the first three principal
components summarizing cell type composition using /imma [118]. For each gene, we then
modeled the resulting residuals as the response variable in a sex-specific linear mixed model
including the fixed effects of treatment (LPS or baseline), dominance rank, DSI (for females
only), age, and a random effect that controls for kinship and population structure [119]. We
nested age, rank, and DSI within treatment condition to evaluate condition-specific versus
shared effects. To estimate genetic covariance between individuals, which is required for the
random effect estimates, we genotyped samples from the RNA-seq data using the Genome
Analysis Toolkit (see Supplementary Methods; [120]). To control for multiple hypothesis testing,
we calculated false discovery rates using the R package qvalue after verifying the empirical null
was uniformly distributed [121].

To investigate how social interactions influence the response to LPS treatment, we
calculated an equivalent to the fold-change in residual gene expression between paired LPS
and baseline samples in the 44 females with both samples available. We then modeled this
response using a mixed effects model, with fixed effects of age, dominance rank, and DSI, and
a random effect to control for genetic relatedness/population structure. To test for enrichment of
specific gene sets among rank- or DSl-associated genes, we used Gene Set Enrichment
Analysis (GSEA; [122]), across the 50 Hallmark gene sets in the Molecular Signatures
Database (MolSigDB; [81]). We assessed the significance of pathway enrichment scores via
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comparison to 10,000 random permutations of gene labels across pathways, and controlled for
multiple hypothesis testing using a Bonferroni correction.

All statistical analyses in this section and below were performed in R (R version 3.6.1;
[123]).

Elastic net rank predictions

To generate predictive models for rank, we used the elastic net approach implemented
in the R package glmnet [124]. For within-sex predictions, samples from the same treatment
condition (baseline or LPS) were iteratively removed from the training set. An elastic net model
was then trained using N-fold internal cross-validation on the remaining samples, and rank was
predicted from the normalized gene expression data for the left-out test sample (see
Supplementary Methods). To predict across sex, we trained a single model on all samples from
a single treatment-sex combination, and used the model to predict rank for all samples from
animals of the other sex, collected in the same treatment condition.

Transcription factor binding motif enrichment

To investigate transcription factor binding motif (TFBM) enrichment, we focused on the 5
kb sequence upstream of rank or DSI-associated genes. We intersected these regions with
areas of open chromatin called from the ATAC-seq samples, merged within treatment (e.g. the
combined baseline or combined LPS samples). We then performed TFBM enrichment analysis
in these regions for rank- or DSI-associated genes relative to the background set of all
expressed genes using Homer (see Supplementary Methods) [125].

Data accessibility

The sequencing data analyzed here have been deposited in the NCBI Short Read
Archive under BioProject (PRJNA480672) for previously published data, PRINA731520 for
newly generated RNA-seq data, and PRJNA731674 for baboon PBMC ATAC-seq data. Data
analysis and figure code is deposited at
https://github.com/janderson94/Anderson et al distinct social signatures.
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