

1 Distinct gene regulatory signatures of dominance rank and social bond
2 strength in wild baboons

3
4 Jordan A. Anderson¹, Amanda J. Lea^{2,3,4}, Tawni N. Voyles¹, Mercy Y. Akinyi⁵, Ruth Nyakundi⁵,
5 Lucy Ochola⁵, Martin Omondi⁵, Fred Nyundo⁵, Yingying Zhang¹, Fernando A. Campos⁶, Susan
6 C. Alberts^{1,2}, Elizabeth A. Archie⁷, and Jenny Tung^{1,2,8,9}

7
8 ¹Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708,
9 USA

10 ²Department of Biology, Duke University, Durham, North Carolina 27708, USA

11 ³Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University,
12 Princeton, NJ 08544, USA

13 ⁴Department of Ecology and Evolution, Princeton University, Princeton, NJ 08544, USA

14 ⁵Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya

15 ⁶Department of Anthropology, University of Texas at San Antonio, San Antonio, TX 78249, USA

16 ⁷Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556,
17 USA

18 ⁸Duke Population Research Institute, Duke University, Durham, NC 27708, USA

19 ⁹Canadian Institute for Advanced Research, Toronto, Canada M5G 1M1, Canada

20

21 *Correspondence: jt5@duke.edu

22

23 **Abstract:**

24 The social environment is a major determinant of morbidity, mortality, and Darwinian
25 fitness in social animals. Recent studies have begun to uncover the molecular processes
26 associated with these relationships, but the degree to which they vary across different
27 dimensions of the social environment remains unclear. Here, we draw on a long-term field study
28 of wild baboons to compare the signatures of affiliative and competitive aspects of the social
29 environment in white blood cell gene regulation, under both immune stimulated and non-
30 stimulated conditions. We find that the effects of dominance rank on gene expression are
31 directionally opposite in males versus females, such that high-ranking males resemble low-
32 ranking females, and vice-versa. Among females, rank and social bond strength are both
33 reflected in the activity of cellular metabolism and proliferation genes. However, pronounced
34 rank-related differences in baseline immune gene activity are near-absent for social bond
35 strength, while only bond strength predicts the fold-change response to immune
36 (lipopolysaccharide) stimulation. Together, our results indicate that the directionality and
37 magnitude of social effects on gene regulation depend on the aspect of the social environment
38 under study. This heterogeneity may help explain why social environmental effects on health
39 and longevity can also vary between measures.

40

41

42 **INTRODUCTION**

43 Many animal species, including humans, live the majority of their lives as part of a larger
44 group of conspecifics. Social group living provides a number of benefits, including protection
45 from predators, improved territory and resource defense, and access to potential mates [1–4].
46 At the same time, it also generates competition for resources among group members. For many
47 group-living species, the outcome of competitive interactions is at least partially predictable,
48 giving rise to an observable social dominance hierarchy in which high status animals are
49 consistently able to displace lower status animals [5–7]. Due to correlated differences in
50 resource access, energy expenditure, and/or psychosocial stress, high-ranking and low-ranking
51 animals are frequently behaviorally and physiologically distinct. For example, across social
52 mammals, low status individuals often have elevated glucocorticoid levels or exhibit signs of
53 glucocorticoid resistance [8–12].

54 However, correlations between social status and physiological measures are highly
55 heterogeneous across species or between sexes, and sometimes even directionally
56 inconsistent [8,13–18]. This heterogeneity is likely explained in part by differences in how status
57 is attained and maintained. In some cases social status depends on individual characteristics,
58 such as the ability to physically dominate competitors (e.g., male bottlenose dolphins, male red
59 deer, female meerkats: [19–21]). In contrast, other types of social hierarchies are determined
60 via nepotism, and do not strongly covary with individual phenotype (e.g., female spotted hyenas,
61 some female cercopithecine primates: [22,23]). Hierarchies that are largely determined by
62 physical condition are often dynamic, whereas nepotistic hierarchies can remain highly stable
63 over time, and even extend across generations [24–26]. Consequently, while rank is an
64 important predictor of fitness in both types of hierarchies [27–31], its physiological signatures
65 may differ. For example, while high rank predicts lower glucocorticoid levels in female blue
66 monkeys, female baboons, and naked mole-rats of both sexes [10,13,32,33], glucocorticoid
67 levels tend to be higher in high rank female ring-tailed lemurs, female meerkats, and male
68 chimpanzees [18,34,35].

69 In addition to the competitive interactions that structure social hierarchies, group-living
70 animals can also form individually differentiated, affiliative social bonds. The affiliative behaviors
71 that give rise to social bonds (e.g., proximity or contact in cetaceans and ungulates, grooming
72 and proximity in primates) are often patterned, at least in part, by social status [36–42]. For
73 example, in cooperatively breeding meerkats, dominant males groom dominant females more
74 often than they groom subordinate females [43]. Similarly, attraction to high-ranking individuals
75 commonly structures grooming patterns in social primates [40]. However, rank is not the sole
76 determinant of affiliative behavior and social bond formation. In female yellow baboons, for
77 instance, a measure of female social connectedness to other females is better predicted by the
78 presence of maternal kin than by rank (although rank, not the presence of maternal kin, predicts
79 female social connectedness to males; [44]). Recent evidence also indicates that the fitness
80 effects of affiliative social relationships are also partially independent of rank. Stronger social
81 relationships predict natural lifespan in members of at least five mammalian orders, and this
82 relationship often persists after controlling for variation in rank or other measures of social status
83 [38,45–51]. Indeed, in yellow baboons, social relationships predict lifespan even when rank
84 does not [45].

85 Social status and social integration are therefore connected dimensions of the social
86 environment that nevertheless can have distinct fitness consequences. This observation
87 presents a puzzle about the mechanisms that make their consequences for health, physiology,
88 and survival distinct. To date, far more work has focused on the physiological and molecular
89 correlates of social status than of affiliative social bonds in natural animal populations. However,
90 four lines of evidence argue that differences in affiliative social interactions should also be
91 reflected in physiological or molecular variation. First, such changes are implied by cross-taxon
92 support for an association between lifespan and social integration [52], suggesting at least a
93 partial basis in physical condition. Second, studies in a small set of natural populations have
94 already identified links between affiliative relationships and biomarkers of stress, especially
95 glucocorticoid levels. For example, urinary glucocorticoids are lower in chimpanzees sampled
96 while interacting with closely bonded social partners than in those interacting with non-bonded
97 partners [53], and male rhesus macaques and female chacma baboons with stronger social
98 bonds show reduced glucocorticoid responses to environmental stressors [54–56]. Third, social
99 isolation and loneliness are associated with changes in human biology, including increased
100 proinflammatory activity [57–59], hypothalamic-pituitary-adrenal axis activation [60,61], and risk
101 for cardiovascular disease [62,63]. Finally, studies in captive rodents show that manipulation of
102 social integration and social support can causally alter glucocorticoid regulation and increase
103 the risk of cancer metastasis [64,65].

104 Despite these findings, most studies consider either the physiological signature of social
105 status or of affiliative social relationships, not both. Further, those studies that incorporate both
106 dimensions often measure only a single outcome variable in one type of social status hierarchy
107 (i.e., physical competition-based or nepotistic). Because single measures vary along only one
108 dimension, they have limited ability to distinguish shared versus unique signatures of
109 competitive and affiliative interactions. Thus, it is possible that physiological changes in
110 response to the social environment converge on a generalized signature of stress and adversity,
111 in which low status and weak social bonds produce undifferentiable responses (e.g., the
112 “conserved transcriptional response to adversity”: [66]). Alternatively, different facets of the
113 social environment may be reflected in different biological pathways. If so, higher dimensional
114 measures of physiological or molecular state may be informative about multiple aspects of an
115 animal’s social experience, and help uncover why social status and social affiliation can be
116 related, yet have distinct effects on fitness.

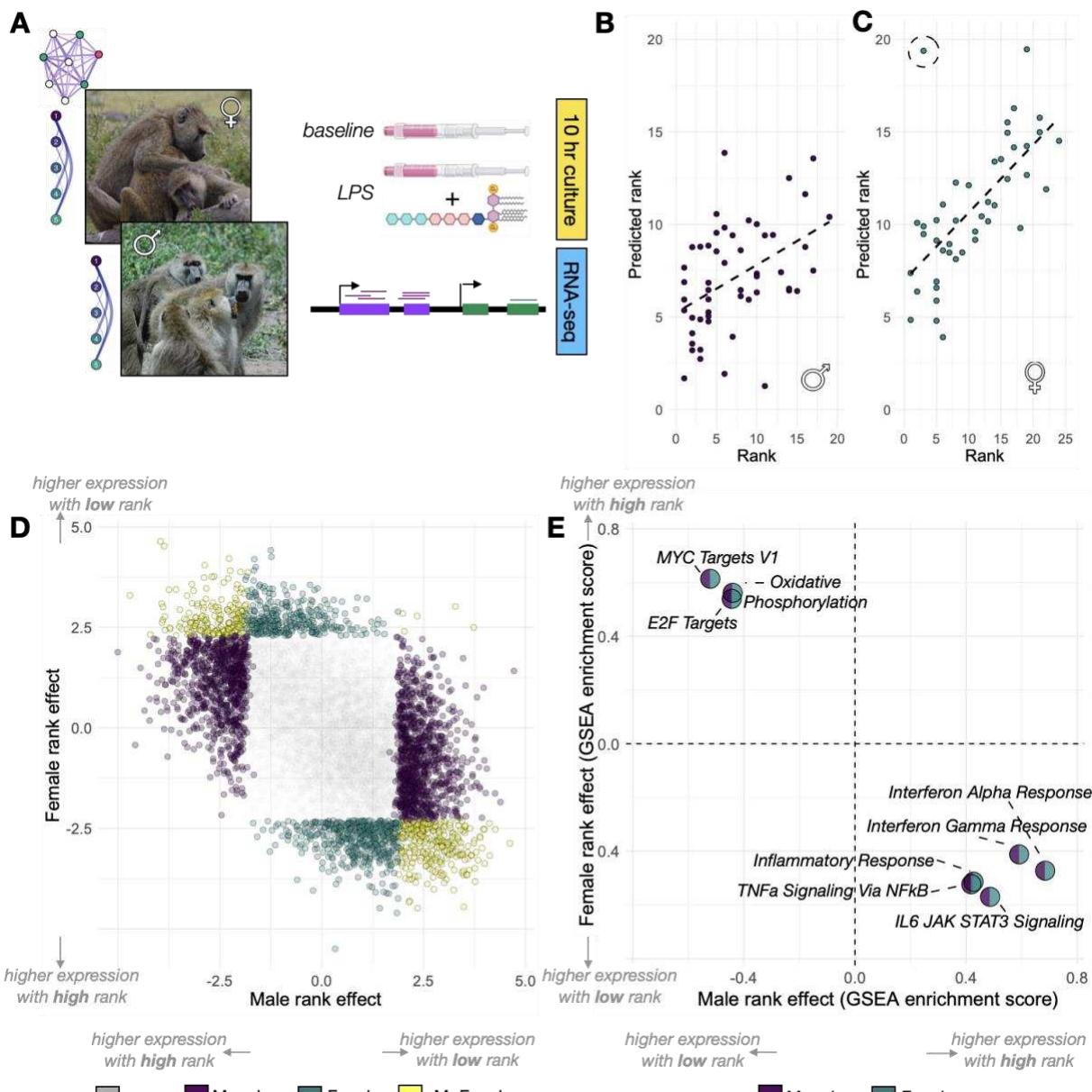
117 Functional genomic analyses of gene regulation provide an opportunity to differentiate
118 these hypotheses. Importantly, previous work demonstrates the sensitivity of gene regulation to
119 the social environment. For example, competitive interactions to establish dominance rapidly
120 alter DNA methylation, histone marks, and gene expression across multiple vertebrate and
121 social insect species [67–73]. Affiliative interactions can also be reflected in altered gene
122 expression patterns. For example, experimental social isolation in piglets results in increased
123 plasma cortisol and altered glucocorticoid and mineralocorticoid receptor expression in stress-
124 related regions of the brain [74]. However, the species that have been central to understanding
125 the genomic signatures of social status and social competition (e.g., cichlid fish, mice) tend not
126 to be the same ones developed as models for social affiliation (e.g., voles, titi monkeys).
127 Additionally, few studies of social interactions and gene regulation have focused on species that

128 establish both clear social dominance hierarchies and long-term social bonds outside the mating
129 pair-bond.

130 To begin addressing this gap, this study draws on data and samples from a five decade-
131 long field study of wild baboons in Kenya, in which the fitness consequences of both social
132 status and social relationships have been extensively investigated in prior work [29,44,45,75–
133 78]. Gene regulatory signatures of the social environment have also been detected in this
134 population [15,79]. Most relevant to this work, high-ranking baboon males exhibit elevated
135 expression of inflammation-related genes both at baseline and upon stimulation with
136 lipopolysaccharide (LPS; a pathogen-associated molecular pattern associated with gram-
137 negative bacteria, and a strong driver of the innate inflammatory response: [15]). In contrast,
138 little signature of rank was detectable in females [15]. This result is consistent with findings that
139 high rank in males (but not females) predicts accelerated epigenetic aging, elevated
140 glucocorticoid and testosterone levels, and, to a lesser extent, higher mortality rates [14,45,80].
141 However, it contrasts with the hypothesis of a highly consistent gene regulatory response to the
142 social environment [66].

143 Together, these observations raise key questions about the extent to which the links
144 between social experience and gene regulation are sex- and/or context-specific. To address
145 them here, we expand on our previous white blood cell gene expression data sets by 64% (from
146 n = 119 to n = 195 samples, including paired baseline and LPS-stimulated samples from nearly
147 all individuals; Table S1). We also generated ATAC-seq data on chromatin accessibility in
148 baseline and LPS-stimulated samples to infer the transcription factor binding events that explain
149 social environment associations with gene expression. Our results indicate even more
150 substantial sex differences in the signature of dominance rank than was apparent in previous
151 work. We also identify, for the first time in any natural vertebrate population, a strong signal of
152 social bond strength on gene regulation. Although several of the major pathways associated
153 with rank and social bond strength overlap, their signatures are clearly distinct, and only social
154 bond strength predicts the gene expression *response* to pathogen stimulation (i.e., the
155 difference between baseline and LPS-stimulated cells from the same individual). Together, this
156 work emphasizes the strong relationship between the social environment and gene regulation in
157 the immune system in wild social mammals. It thus deepens our understanding of how fitness-
158 relevant social experiences “get under the skin” to affect health and fitness outcomes.
159

160 RESULTS


161 ***Directionally opposite gene expression signatures of dominance rank in male and female*** 162 ***baboons***

163 We used RNA-seq to measure genome-wide gene expression levels in white blood cells
164 from 97 unique adult baboons (45 females, 52 males; Table S1). For each animal, we collected
165 RNA from paired baseline (unstimulated cells cultured in media) and LPS-stimulated samples
166 that were cultured in parallel for 10 hours (Fig 1A; following [15]). Following quality control, our
167 data set consisted of RNA-seq data from 195 samples (119 samples from previously published
168 work and an additional 76 samples that are newly reported here; 97 unique individuals total,
169 with 3 individuals represented by more than one blood draw; Table S1). Samples were
170 sequenced to a mean coverage of 17.4 million reads \pm 7.7 million s.d. (Table S1). After filtering

171 for genes that were detectably expressed in one or both conditions (median RPKM > 2 in either
172 condition), we retained 10,281 genes for downstream analysis.

173 We first investigated the signature of dominance rank separately in each sex. Consistent
174 with our earlier work [15], we found widespread associations between male ordinal dominance
175 rank and gene expression levels. 2,345 genes were significantly associated with male rank in
176 baseline samples and 2,996 in LPS-stimulated samples (22.8% and 29.1% of genes tested,
177 respectively; i.e., $\beta_{\text{rank}} \neq 0$ in a linear mixed effects model controlling for technical covariates,
178 age, and treatment effects, 10% FDR; Table S2. An elastic net model relating gene expression
179 to dominance rank thus predicted male rank with moderately high accuracy (Pearson's
180 R=0.449, p=8.46 $\times 10^{-4}$; Fig 1B; Fig S1). In females, gene expression data were also significant
181 predictors of dominance rank (Pearson's R= 0.656, p= 1.31 $\times 10^{-6}$; Fig 1C; Table S3). However,
182 the elastic net analysis for females revealed one female (AMB_2) who was high-ranking at the
183 time of sampling (ordinal rank 3) but was predicted to be very low-ranking in both baseline and
184 LPS samples (predicted ordinal rank 17.7 and 19.4, respectively; Fig S1). By substantially
185 increasing our sample size and excluding AMB_2, we were able to identify female dominance
186 rank-gene expression associations that were undetectable in previous work [15], including 1,285
187 rank-associated genes at baseline and 221 rank-associated genes after LPS stimulation (12.5%
188 and 2.1% of genes tested, respectively; 10% FDR; Table S2). Because AMB_2 was a clear
189 outlier in our sample, we report analyses excluding her in the remainder of our results; however,
190 our comparisons are qualitatively unchanged if AMB_2 is included (Fig S2).

191

192

193 **Figure 1. Strong, sex-specific signatures of dominance rank in white blood cell gene expression.** (A) Study
194 design: dominance rank (males and females) and social bond strength (females only) were evaluated for their
195 relationship with white blood cell gene expression, generated from samples cultured for 10 hours in the absence
196 (baseline) or presence of lipopolysaccharide (LPS). (B-C) A gene expression-based elastic net model accurately
197 predicts dominance rank for male (B; Pearson's $R=0.449$, $p=8.46 \times 10^{-4}$) and female (C; Pearson's $R=0.656$, $p=1.31$
198 $\times 10^{-6}$) baboons. (D) The effect estimates for the rank-gene expression association are negatively correlated in males
199 versus females (Pearson's $R=-0.544$, $p<10^{-50}$; colored dots are genes that pass a 10% false discovery rate
200 threshold). (E) Gene sets enriched for higher expression in high-ranking males are enriched for lower expression in
201 high-ranking females, and vice-versa. Enrichment in males is shown in purple; enrichment in females is shown in
202 green. For all gene sets, enrichment score Bonferroni-corrected p -values are <0.005 . Photo credits in (A): Elizabeth
203 Archie (females) and Courtney Fitzpatrick (males). Stock images of LPS and blood draw tubes courtesy of
204 BioRender.com.

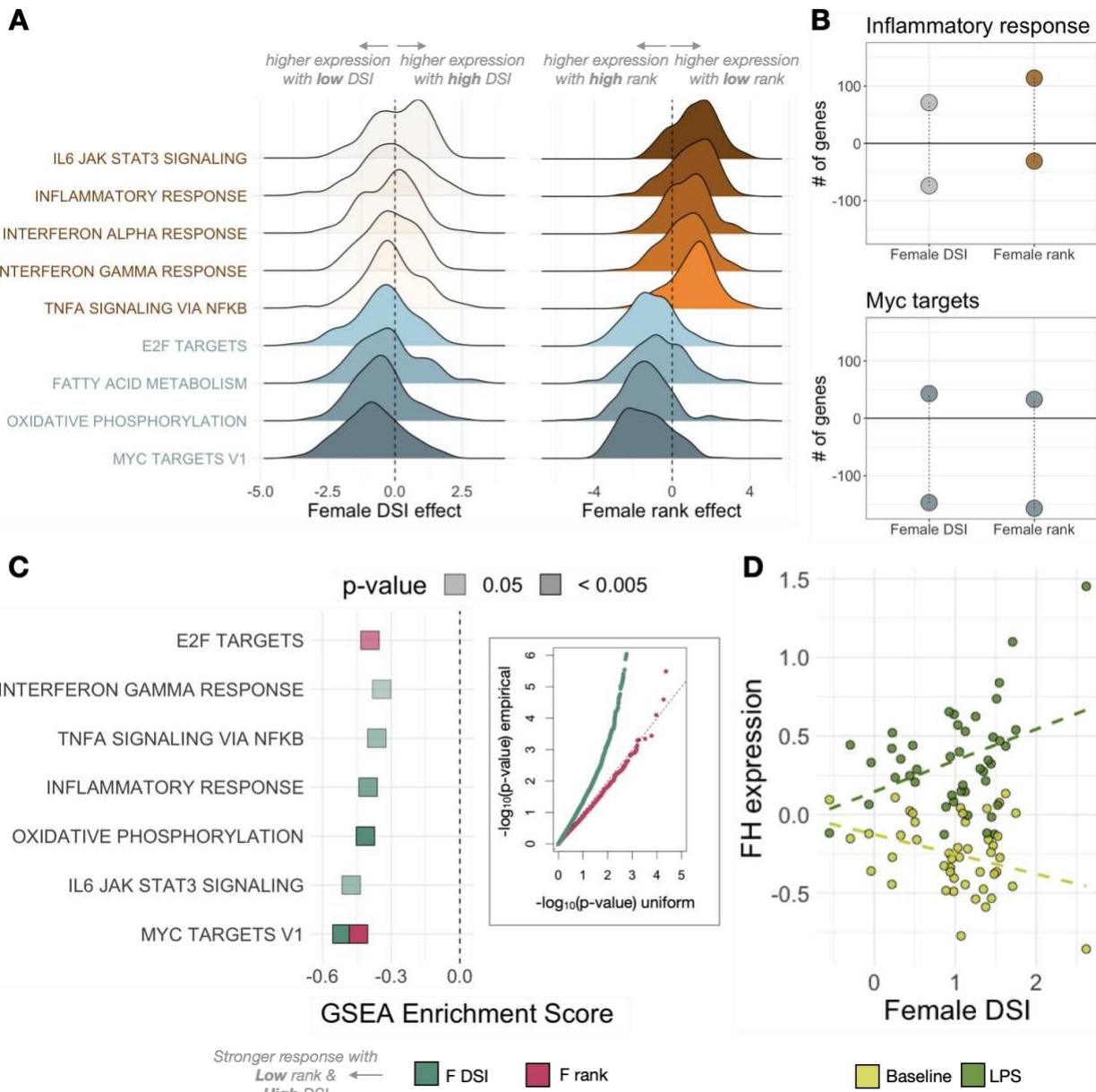
205

206 In both males and females, the second principal component (PC2) of the overall gene
207 expression data was correlated with rank (males: $p=1.68 \times 10^{-4}$; females: $p=0.013$; note that
208 PC1 splits baseline from LPS-stimulated cells). However, while high-ranking males tended to
209 project onto positive values of PC2, high-ranking females tended to project onto negative values
210 (Fig S3). Effect size estimates for individual genes were also anti-correlated by sex, such that
211 genes that were more highly expressed in high-ranking females tended to be more lowly
212 expressed in high-ranking males (Pearson's $R=-0.537$, $p<10^{-50}$; Fig 1D; Fig S4). As a result,
213 genes with increased activity in high-ranking males and low-ranking females were both enriched
214 for inflammatory and type I interferon pathways (all $p_{adj}<0.005$; Fig 1E; Table S4) [81].
215 Meanwhile, genes with increased activity in low-ranking males and high-ranking females were
216 both enriched for key metabolic and cell cycle-related pathways, including oxidative
217 phosphorylation and *myc* signaling (all $p_{adj}<0.005$; Table S4). Thus, the same genes and
218 pathways were sensitive to rank dynamics in males and females, but in opposing directions.
219 Indeed, when applying the predictive model trained for male rank to gene expression data from
220 females, the model predictions were negatively correlated with the observed female ranks
221 (Pearson's $R=-0.339$; $p=0.023$), and vice-versa (correlation between female-trained model
222 predictions and observed male rank: Pearson's $R=-0.339$, $p=0.014$). Similarly, accessible
223 binding sites for immune response-related transcription factors (e.g., ISL1, KLF3, defined based
224 on increased chromatin accessibility after LPS stimulation: see SI Methods; Tables S5-S6) were
225 over-represented near genes upregulated in high-ranking males and near genes upregulated in
226 low-ranking females (all $p < 0.05$; Fig S6; Table S7).
227

228 ***Distinct signatures of dominance rank and social bond strength in female baboons***

229 To investigate whether genes that are sensitive to dominance rank (regardless of effect
230 direction) also carry a signature of other aspects of the social environment, we next assessed
231 the relationship between social bond strength and gene expression in the same sample. We
232 focused exclusively on females ($n=88$ samples from $n=44$ unique individuals), using the "dyadic
233 sociality index" (DSI), a strong predictor of lifespan in our study population that captures an
234 annual measure of the strength of a female's bonds with her top three female partners [45].
235 Female-to-female DSI is uncorrelated with dominance rank in this data set (Pearson's $R = 0.11$,
236 $p = 0.468$), allowing us to assess the overlap between DSI and rank associations with gene
237 expression independently of a correlation between the predictor variables themselves. While
238 male social bonds to females also predict male survival [45], our DSI data set for males ($n=30$
239 unique individuals) was too small to support a parallel analysis.

240 Controlling for dominance rank and other biological and technical sources of variance,
241 we identified 529 DSI-associated genes (5.1% of genes tested) in female Amboseli baboons
242 ($\beta_{DSI} \neq 0$ in a linear mixed effects model; 10% FDR; Table S2). The vast majority of cases (522
243 genes, 98.6%) were specifically identified in the LPS-stimulated condition, although gene-level
244 DSI effect sizes are correlated between conditions (Pearson's $R=0.524$, $p<10^{-50}$). Surprisingly,
245 genes that were more highly expressed in females with strong social bonds (high DSI) also
246 tended to be more highly expressed in low-ranking females, and vice versa, resulting in a
247 positive correlation between the parameter estimates for rank and DSI (at baseline: Pearson's
248 $R=0.516$; in LPS-stimulated samples: $R= 0.351$; Fig S5; note that the positive correlation arises


249 because low ordinal rank values reflect high rank: i.e., the top-ranked female has an ordinal
250 rank of 1 and lower ranked females have ranks >1).

251 This result was counterintuitive to us because strong social bonds predict longer lifespan
252 in Amboseli baboon females [45], but the inflammation-related pathways associated with low
253 female rank in this population are commonly thought to be costly to health [82,83]. We therefore
254 investigated the pathways that account for the correlation in rank and DSI effect sizes at
255 baseline. We found that this correlation is not, in fact, driven by immune process and
256 inflammation-related genes: social environmental effects on these genes are specific to rank,
257 and absent for social bond strength (Fig 2A). Specifically, genes involved in the inflammatory
258 response are highly enriched for upregulated expression in low-ranking females at baseline
259 ($p_{adj} < 0.005$) and the majority of genes in this set exhibit a positive effect size (i.e., increased
260 expression with lower rank: binomial test $p = 2.35 \times 10^{-12}$). In contrast, there is no enrichment of
261 inflammation-related genes for DSI ($p_{adj} > .05$), nor any bias in the sign of the DSI effect ($p =$
262 0.868). Consistent with these observations, accessible binding sites for TFs active in the
263 immune response (e.g., STAT5, Smad3, STAT3) are not enriched in or near DSI-upregulated
264 genes (all $p > 0.5$; Table S7). Instead, the overall correlation in rank and DSI effect sizes is
265 driven by genes involved in cellular metabolism and cell cycle control, particularly targets of the
266 transcription factor *myc* and genes that function in fatty acid metabolism and oxidative
267 phosphorylation (both $p_{adj} < 0.005$; Fig 2A-B).

268 Notably, while genes involved in immune defense are not associated with DSI at
269 baseline, a number of immune-related gene sets are significantly enriched for large DSI effects
270 in the LPS-stimulated condition. After LPS stimulation, high social bond strength predicts higher
271 expression of genes involved in the inflammatory response ($p_{adj} = 2.0 \times 10^{-3}$). Because these
272 genes are not detectably associated with DSI in baseline samples, this observation suggests a
273 potential interaction between social bond strength and the cellular environment after bacterial
274 exposure. In support of this possibility, DSI predicts the magnitude of the *response* to LPS (i.e.,
275 the foldchange difference between LPS and baseline samples, within females) for 200 genes
276 (10% FDR; Fig 2C; Table S8). Females with strong social bonds nearly always exhibit a more
277 dynamic response to LPS than those with weaker social bonds (binomial test for LPS-
278 upregulated genes: $p = 1.55 \times 10^{-10}$; binomial test for LPS-downregulated genes: $p = 3.12 \times 10^{-12}$). In contrast, because dominance rank effects are highly consistent between baseline and
279 LPS conditions, rank does not predict the magnitude of the response to LPS (1 rank-associated
280 gene; 10% FDR; Table S8). While many of the associations between DSI and the LPS response
281 occur in immune pathways (Fig. 2C), females with stronger social bonds also exhibit markedly
282 stronger responses to LPS in key cellular metabolism genes, including a key enzyme that
283 catalyzes transitions through the Krebs cycle (*FH*: $q = 0.024$; Fig 2D).

285
286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

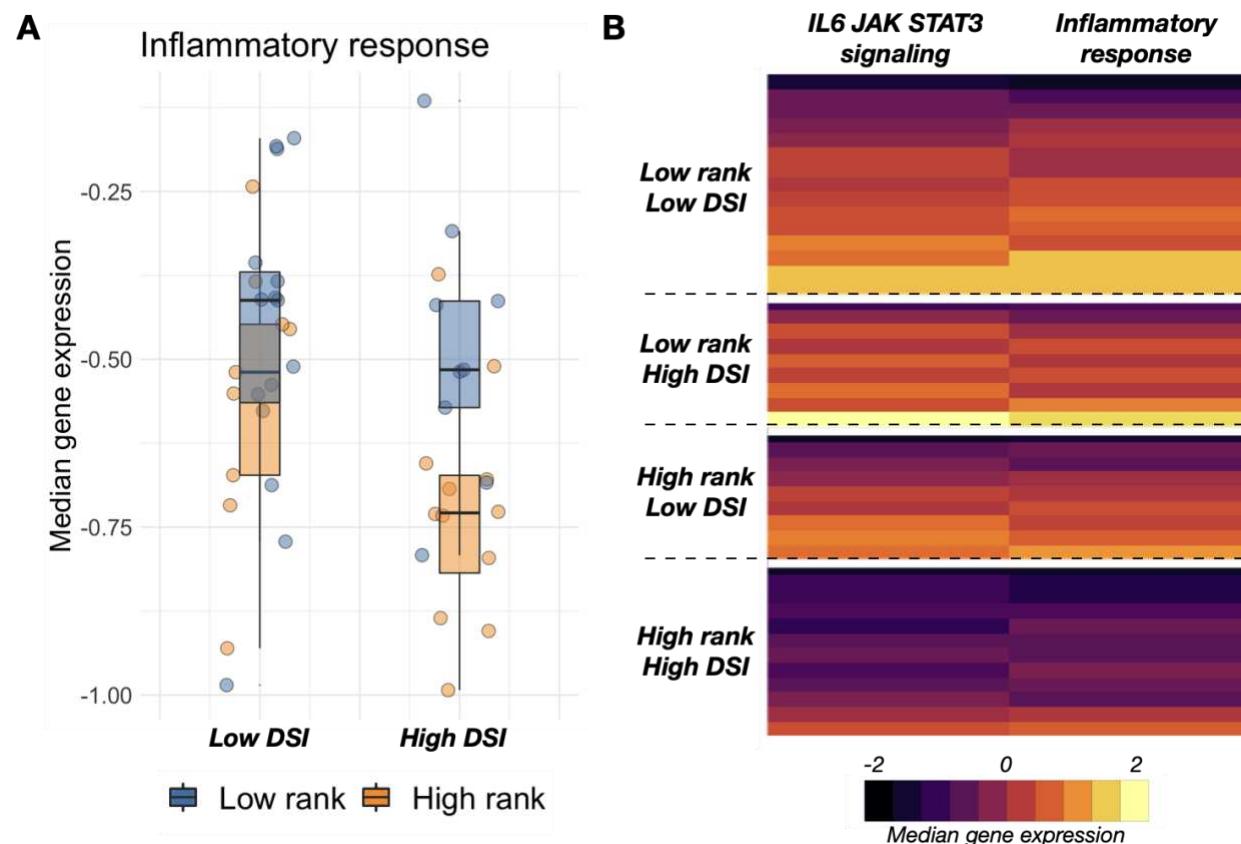

301

Figure 2. Social status and social bond strength predict distinct patterns of gene expression. (A) Distribution of DSI effects (left) and rank effects (right) on gene expression at baseline for genes within the MolSigDB Hallmark gene sets labeled at left. Genes within immune-related pathways (red/orange) are polarized towards higher expression in low-ranking females (positive effect sizes, because low rank is represented by high ordinal rank values). In contrast, genes in the same pathways show no pattern for association with DSI (small effect sizes centered on zero). Cellular metabolism and cell cycle-related gene sets (blue) tended to be more highly expressed with high rank (negative effect sizes) and low DSI (negative effect sizes). Translucent density plots indicate no significant bias in the direction of effects (binomial test $p > 0.05$). (B) Effect size bias for genes in the Hallmark inflammatory response and myc (v1) target gene sets, for DSI and rank respectively. (C) Gene set enrichment analysis results for female DSI (green) and rank (pink) effects on the foldchange response to LPS stimulation. Inset: QQ-plot of the $-\log_{10}(p\text{-value})$ for DSI and rank effects on the LPS response, relative to a uniform null distribution. We observe strong evidence for associations between DSI and the LPS response, but not for rank. (D) Example of FH, a key enzyme in the Krebs cycle that responds more strongly to LPS in high DSI females than low DSI females.

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

Gene expression patterns and multidimensional social advantage

To investigate the combined signatures of social status and social bond strength, we asked whether females that were relatively advantaged in both respects—and who therefore experienced advantages to both fertility and survival [44,45,75,84]—appeared physiologically distinct from other females. To do so, we binned females into four categories, corresponding to high rank/high DSI, high rank/low DSI, low rank/high DSI, and low rank/low DSI (stratified based on median rank and median DSI values in our sample). This classification reveals that, at baseline, high rank/high DSI females exhibited the lowest median expression values of genes in the Hallmark inflammatory response and IL6 signaling via JAK/STAT3 gene sets ($p < 0.05$ for Wilcoxon summed ranks test of high rank/high DSI females against all three other categories, for both gene sets; Fig 3). Thus, females with social capital in both dimensions—status and affiliation—present a distinct, potentially advantageous gene regulatory profile as well.

317
318
319
320
321
322
323
324
325

Figure 3. The gene expression signature of multidimensional social advantage. (A) Median gene expression for genes in the inflammatory response gene set illustrates that high ranking animals exhibit lower inflammation-related gene expression regardless of social bond strength (main effect of rank = -0.15 , $p = 0.019$). There is no main effect of DSI ($p = 0.166$), but the difference between high- and low-ranking females is greater when high-ranking females also have strong social bonds. (B) Median, rescaled gene expression per individual in the Hallmark IL6 signaling via JAK/STAT3 and the inflammatory response gene sets. Each row represents a different female, with rows stratified by median dominance rank and median DSI.

326 **DISCUSSION**

327 Social interactions, both affiliative and competitive, determine much about the daily
328 experience of group-living animals. Over the life course, these experiences compound to
329 powerfully predict health, survival, and reproductive success. Our findings reinforce that the
330 signature of the social environment is not only observable at the whole-organism level, but also
331 in widespread differences in gene expression. They therefore contribute to a modest but
332 expanding body of work linking gene expression variation to social experience in natural animal
333 populations, in both the brain and the periphery [15,70]. Together, this work generalizes
334 extensive research on social interactions and gene regulation in laboratory models [67,85–87] to
335 freely interacting animals in the wild. It also argues that correlations between gene expression,
336 social status, and social integration in humans capture a broader pattern of molecular sensitivity
337 to the social environment that predates the evolution of our own lineage [66,88].

338 Our findings converge with much of the previous work in humans and captive primates
339 to indicate that innate immune defense and cellular metabolism-related pathways are closely
340 entwined with social experience [15,57,89–92]. However, the signature of social bond strength
341 is much more apparent after immune stimulation than at baseline, and the signature of
342 dominance rank is substantially stronger in male versus female baboons. Thus, the functional
343 genomic signatures of different aspects of the social environment are themselves distinct. Our
344 results are consistent with observations that the fertility and survival consequences of male
345 rank, female rank, and female social bond strength also differ in this population [29,44,45,75–
346 78]. They thus call the hypothesis of a strongly conserved signature of social disadvantage into
347 question [66]. Tests for such a signature have particularly emphasized social disadvantage-
348 linked increases in the expression of inflammation and interferon signaling-related genes. This
349 prediction is supported for low rank in females but not for low social bond strength—and
350 strikingly, is directionally reversed in male baboons.

351 Consequently, only female social status-related differences in gene expression
352 recapitulate the pattern reported in studies of socioeconomic status, loneliness, and social
353 integration in humans and experimental studies of dominance rank in captive female rhesus
354 macaques [57,89,91,93–97]. Our results suggest that low social status in female baboons may
355 therefore be a better model for social disadvantage in humans than low social status in male
356 baboons—perhaps because social status in male baboons is driven almost entirely by fighting
357 ability, which is not the primary determinant of social status in modern human societies. Indeed,
358 social environment-associated gene expression signatures in humans are often interpreted
359 through the lens of chronic psychosocial stress [88,96,98]. While the importance of chronic
360 stress in natural animal populations remains an open question [11], low ranking females in both
361 this study population, wild blue monkeys, and captive rhesus macaques do exhibit higher
362 glucocorticoid levels and/or a blunted diurnal rhythm [12,13,32,99]. Psychosocial stress may
363 therefore be the common explanatory factor underlying conserved signatures of social
364 adversity, when they are observed. In contrast, high rank in baboon males imposes energetic
365 stress due to competition with other males and the demands of mate-guarding [29,100],
366 although males may experience forms of psychosocial stress as well. And while the stability of
367 social hierarchies and experimental work in captive primates suggests that rank precedes the
368 gene expression patterns we observe in females, males that achieve high rank may already be
369 physiologically distinct [15].

370 This explanation does not, however, account for why social bond strength does not
371 follow the same pattern as female dominance rank. Weak social bond strength in Amboseli
372 baboon females is also correlated with elevated glucocorticoid levels, although this effect is
373 modest in comparison to other predictors (e.g., early life adversity [101]). If glucocorticoids are a
374 major determinant of social environment-associated variation in immune pathway gene
375 expression, these observations may account for why (unlike rank) we did not observe a strong
376 signature of social bond strength in immune genes at baseline. Instead, social bond strength is
377 most consistently linked to oxidative phosphorylation and *myc* signaling (a key regulator of cell
378 growth, metabolism, and apoptosis). Intriguingly, *myc* activity has also been implicated in social
379 regulation of brain gene expression in mice and as a mediator of social isolation-induced cancer
380 susceptibility in mice and rats [64,102]. These observations suggest that social bond strength
381 may be involved in altered energy metabolism and energetics in the baboons, as suggested in
382 other studies of chronic and/or psychosocial stress [103].

383 Together, our findings emphasize substantial complexity in how the social environment
384 is reflected at the molecular level. If we had focused only on an *a priori* subset of genes in the
385 genome, we could have concluded that social interactions do not predict gene expression levels
386 at all; that social status, but not social affiliation, predicts gene expression; or that social status
387 and social affiliation generate highly similar gene expression signatures. Similarly, if we had
388 focused only on one sex, we would have missed the shared sensitivity, but reversed
389 directionality, of status-related pathways in males versus females. Finally, if we had only
390 measured gene expression levels at baseline, we would have inferred that social bond strength
391 has little relevance to immune gene regulation, when in fact it is a much better predictor of
392 variation in the response to immune stimulation than dominance rank. While this complexity
393 presents a challenge—additional dimensions we did not explore, including developmental,
394 tissue, and cell type differences, are also likely to be important—it also illustrates the potential
395 for high-dimensional genomic data to capture heterogeneity in the signature of social
396 relationships that is impossible to infer from single measures. Indeed, our results suggest that,
397 even in the blood, social regulation of gene expression must be the consequence of multiple
398 upstream signaling pathways. Future studies thus have the opportunity both to test existing
399 hypotheses about the role of glucocorticoids in social environment-associated gene regulation,
400 and to identify alternative pathways that may also play an important role.

401

402 **Methods:**

403 *Study subjects and samples*

404 Study subjects were 97 adult baboons (52 males; 45 females) sampled from an
405 intensively monitored population of hybrid yellow baboons (*Papio cynocephalus*) and anubis
406 baboons (*Papio anubis*) in the Amboseli ecosystem of southern Kenya [104,105]. Genome-wide
407 gene expression measures were generated from blood samples collected during opportunistic
408 dartings from 2013 – 2018. Data from samples collected in 2013 – 2016 were previously
409 reported in [15], while the remaining 76 samples are newly reported here (Table S1). For all
410 sampling efforts, subjects were anesthetized using Telazol-loaded darts and safely removed
411 from their social groups for sample collection (as in [15,106,107]). Darted individuals were
412 allowed to recover from anesthesia and released to their social group the same day.

413 For each study subject, we drew 1 mL of blood directly into a sterile TruCulture tube
414 (Myriad RBM) containing cell media only (the baseline sample), and another 1 mL of blood into
415 a second TruCulture tube containing cell media plus 0.1 ug/mL lipopolysaccharide (LPS; Fig
416 1A). Samples were incubated for 10 hours at 37 C. Following incubation, white blood cells were
417 extracted and stored in RNALater at -20 C until further processing. To control for cell type
418 composition, we also measured peripheral blood mononuclear cell type proportions for five
419 major cell types, for each individual. To do so, we purified peripheral blood mononuclear cells
420 (PBMCs) from blood drawn into Cell Preparation Tubes (CPT tubes; BD Biosciences) and
421 stained the PBMCs using fluorophore-conjugated antibodies to the cell surface markers CD3,
422 CD14, CD16, CD8, and CD20, which together differentiate classical monocytes (CD3⁻/CD14⁺/
423 CD16⁻), natural killer cells (CD3⁻/CD14⁻ CD16⁺), B-cells (CD3⁻/CD20⁺), helper T-cells
424 (CD3⁺/CD4⁺ CD8⁻), and cytotoxic T-cells (CD3⁺/CD4⁻ CD8⁺) [15]. PBMC composition was then
425 profiled on a BD FacsCalibur flow cytometer and analyzed in FlowJo 10.7.1 (Table S1 with
426 additional cell type discrimination based on cell size and granularity).

427 To measure chromatin accessibility, 50 mL of blood was drawn from three male anubis
428 baboons housed at Texas Biomedical Research Institute's Southwest National Primate
429 Research Center into CPT tubes (BD Biosciences), spun for 30 minutes at 1800 rcf, and
430 shipped to Duke University for PBMC isolation. 50,000 PBMCs from each individual were
431 incubated for 10 hours at 37C and 5% CO₂ in either the presence or absence of LPS (0.1
432 ug/mL, Invivogen ultrapure LPS from *E. coli* strain 055:B5). We then generated ATAC-seq
433 libraries from 50,000 cells per sample (n=6 baseline and LPS-stimulated samples total from the
434 3 baboons; see SI Methods; [108]).

435

436 *Dominance rank and social bond strength*

437 Sex-specific dominance ranks are assigned each month for each social group in the
438 study population based on the outcomes of dyadic agonistic interactions observed on a near-
439 daily basis [104,109]. Dominance rank assignments produce a hierarchy structure that
440 minimizes the number of cases in which higher ranking individuals lose interactions to lower
441 ranking ones [110]. To investigate rank-gene expression associations, we extracted ordinal
442 dominance rank values concurrent with blood sample collection, which represent rank as integer
443 values where rank 1 denotes the top-ranking individual, rank 2 denotes the second highest-
444 ranking individual, and so on. We note that previous analyses in this and other social mammals
445 show that alternative rank metrics sometimes confer improved predictive power [110,111]. In the
446 Amboseli baboon population, this is especially observable in females, where proportional rank
447 (i.e., ordinal rank scaled by group size) is more closely associated with fecal glucocorticoid
448 levels and injury risk than ordinal rank [110]. In this data set, substituting ordinal rank for
449 proportional rank produces highly concordant effect size estimates (R² for baseline male, LPS
450 male, baseline female, and LPS female rank effects = 0.75, 0.79, 0.88, 0.85, respectively), so
451 we reported the results for ordinal rank for both sexes.

452 To measure social bond strength, we used the dyadic sociality index (DSI, as in
453 [45,80,101]). The DSI calculates the mean grooming-based bond strength between a focal
454 female and her top three grooming partners in the year prior to sample collection, controlling for
455 observer effort and dyad co-residency times (see details in the Supplementary Methods). High

456 DSI values thus correspond to strong social bonds, and low DSI values correspond to weak
457 social bonds.

458

459 *Genomic data generation*

460 For gene expression measurements, RNA was extracted from each sample (n=195 from
461 n=97 unique baboons) using the Qiagen RNeasy kit, following manufacturer's instructions
462 (mean RIN=9.19 in a random subset of n=21 samples). We constructed indexed RNA-seq
463 libraries using the NEBNext Ultra I or II library prep kits, followed by paired-end sequencing on
464 an Illumina HiSeq 2500 (for samples collected from 2013 – 2016) or single-end on a HiSeq
465 4000 (for samples collected after 2016) to a mean depth of 17.4 million reads (\pm 7.7 million SD;
466 Table S1). Trimmed reads were mapped to the *Panubis 1.0* genome (GCA_008728515.1) using
467 the STAR 2-pass aligner [112,113]. Finally, we generated gene-level counts using *HTSeq* and
468 the *Panubis 1.0* annotation (GCF_008728515.1) [114]. We retained genes with median RPKM >
469 2 in the baseline samples, LPS samples, or both for downstream analysis (n=10,281 genes).

470 For chromatin accessibility estimates, ATAC-seq libraries were sequenced on a HiSeq
471 2500 to a mean depth of 40.0 million paired-end reads (\pm 13.7 million SD; Table S5). Trimmed
472 reads were mapped to the *Panubis 1.0* genome using *BWA* [115]. We then combined mapped
473 reads across samples in the same condition (baseline or LPS) and called chromatin
474 accessibility peaks for each condition separately using *MACS2* (see Supplementary Methods;
475 [116]).

476

477 *Gene expression analysis*

478 To identify social environment associations with gene expression, we first normalized the
479 gene expression data set using *voom* [117] and regressed out year of sampling (the primary
480 source of batch effects in our data set), sequencing depth, and the first three principal
481 components summarizing cell type composition using *limma* [118]. For each gene, we then
482 modeled the resulting residuals as the response variable in a sex-specific linear mixed model
483 including the fixed effects of treatment (LPS or baseline), dominance rank, DSI (for females
484 only), age, and a random effect that controls for kinship and population structure [119]. We
485 nested age, rank, and DSI within treatment condition to evaluate condition-specific versus
486 shared effects. To estimate genetic covariance between individuals, which is required for the
487 random effect estimates, we genotyped samples from the RNA-seq data using the Genome
488 Analysis Toolkit (see Supplementary Methods; [120]). To control for multiple hypothesis testing,
489 we calculated false discovery rates using the R package *qvalue* after verifying the empirical null
490 was uniformly distributed [121].

491 To investigate how social interactions influence the *response* to LPS treatment, we
492 calculated an equivalent to the fold-change in residual gene expression between paired LPS
493 and baseline samples in the 44 females with both samples available. We then modeled this
494 response using a mixed effects model, with fixed effects of age, dominance rank, and DSI, and
495 a random effect to control for genetic relatedness/population structure. To test for enrichment of
496 specific gene sets among rank- or DSI-associated genes, we used Gene Set Enrichment
497 Analysis (GSEA; [122]), across the 50 Hallmark gene sets in the Molecular Signatures
498 Database (MolSigDB; [81]). We assessed the significance of pathway enrichment scores via

499 comparison to 10,000 random permutations of gene labels across pathways, and controlled for
500 multiple hypothesis testing using a Bonferroni correction.

501 All statistical analyses in this section and below were performed in R (R version 3.6.1;
502 [123]).

503

504 *Elastic net rank predictions*

505 To generate predictive models for rank, we used the elastic net approach implemented
506 in the R package *glmnet* [124]. For within-sex predictions, samples from the same treatment
507 condition (baseline or LPS) were iteratively removed from the training set. An elastic net model
508 was then trained using N-fold internal cross-validation on the remaining samples, and rank was
509 predicted from the normalized gene expression data for the left-out test sample (see
510 Supplementary Methods). To predict across sex, we trained a single model on all samples from
511 a single treatment-sex combination, and used the model to predict rank for all samples from
512 animals of the other sex, collected in the same treatment condition.

513

514 *Transcription factor binding motif enrichment*

515 To investigate transcription factor binding motif (TFBM) enrichment, we focused on the 5
516 kb sequence upstream of rank or DSI-associated genes. We intersected these regions with
517 areas of open chromatin called from the ATAC-seq samples, merged within treatment (e.g. the
518 combined baseline or combined LPS samples). We then performed TFBM enrichment analysis
519 in these regions for rank- or DSI-associated genes relative to the background set of all
520 expressed genes using *Homer* (see Supplementary Methods) [125].

521

522 *Data accessibility*

523 The sequencing data analyzed here have been deposited in the NCBI Short Read
524 Archive under BioProject (PRJNA480672) for previously published data, PRJNA731520 for
525 newly generated RNA-seq data, and PRJNA731674 for baboon PBMC ATAC-seq data. Data
526 analysis and figure code is deposited at

527 https://github.com/janderson94/Anderson_et_al_distinct_social_signatures.

528

529 *Funding*

530 We gratefully acknowledge the support provided by the National Science Foundation
531 and the National Institutes of Health for the majority of the data represented here, currently
532 through NSF IOS 1456832, NIH R01AG053308, R01AG053330, R01HD088558, and
533 P01AG031719. J.A.A. was supported by a Triangle Center for Evolutionary Medicine Graduate
534 Student Award and by National Science Foundation Graduate Research Fellowship Program
535 #2018264636. AJL was supported by a postdoctoral fellowship from the Helen Hay Whitney
536 Foundation. LO is funded by the African Research Network for Neglected Tropical Diseases
537 (ARNTD) SGPIII/0210/351. We also acknowledge support from Duke University (including an
538 Undergraduate Research Support grant to YZ) and the Canadian Institute of Advanced
539 Research (Child & Brain Development Program) and support for high-performance computing
540 resources from the North Carolina Biotechnology Center (Grant Number 2016-IDG-1013).

541

542 **Acknowledgements**

543 We thank members of the Amboseli Baboon Research Project for collecting the data
544 presented here, especially J. Altmann for her foundational role in establishing the study
545 population and these data sets. We also thank J. Gordon, N. Learn, and K. Pinc for managing
546 the database, R.S. Mututua, S. Sayialel, I.L. Siodi, and J.K. Warutere for data collection in the
547 field, and T. Wango and V. Oudu for their assistance in Nairobi. Our research was approved by
548 the Kenya Wildlife Service (KWS), the National Commission for Science, Technology, and
549 Innovation (NACOSTI), and the National Environmental Management Authority (NEMA) in
550 Kenya. We also thank the University of Nairobi, the Institute of Primate Research (IPR), the
551 National Museums of Kenya, the members of the Amboseli-Longido pastoralist communities,
552 the Enduimet Wildlife Management Area, Ker & Downey Safaris, Air Kenya, and Safarilink for
553 their cooperation and assistance in the field. This research was approved by the IACUC at Duke
554 University and University of Notre Dame, and adhered to all the laws and guidelines of Kenya.
555 For a complete set of acknowledgments of funding sources, logistical assistance, and data
556 collection and management, please visit <http://amboselibaboons.nd.edu/acknowledgements/>.
557

558 **References**

- 559 1. Rubenstein DI. On predation, competition, and the advantages of group living. In: Social
560 behavior. Springer; 1978. p. 205–31.
- 561 2. Wilson EO. Sociobiology: The new synthesis. Harvard University Press; 2000.
- 562 3. Krause J, Ruxton GD, Ruxton G, Ruxton IG. Living in groups. Oxford University Press;
563 2002.
- 564 4. Van Schaik CP. Why are diurnal primates living in groups? *Behaviour*. 1983;87(1–
565 2):120–44.
- 566 5. Schjelderup-Ebbe T. Contributions to the social psychology of the domestic chicken. Repr
567 from *Zeitschrift fuer Psychol.* 1922;88:225–52.
- 568 6. Sapolsky RM. Social status and health in humans and other animals. *Annu Rev Anthr.*
569 2004;33:393–418.
- 570 7. Holekamp KE, Strauss ED. Aggression and dominance: an interdisciplinary overview.
571 *Curr Opin Behav Sci.* 2016;12:44–51.
- 572 8. Abbott DH, Keverne EB, Bercovitch FB, Shively CA, Mendoza SP, Saltzman W, et al. Are
573 subordinates always stressed? A comparative analysis of rank differences in cortisol
574 levels among primates. *Horm Behav.* 2003;43(1):67–82.
- 575 9. Cavigelli SA, Caruso MJ. Sex, social status and physiological stress in primates: the
576 importance of social and glucocorticoid dynamics. *Philos Trans R Soc B Biol Sci.*
577 2015;370(1669):20140103.
- 578 10. Creel S. Dominance, aggression, and glucocorticoid levels in social carnivores. *J
579 Mammal.* 2005;86(2):255–64.
- 580 11. Beehner JC, Bergman TJ. The next step for stress research in primates: To identify
581 relationships between glucocorticoid secretion and fitness. *Horm Behav.* 2017;91:68–83.
- 582 12. Kohn JN, Snyder-Mackler N, Barreiro LB, Johnson ZP, Tung J, Wilson ME. Dominance
583 rank causally affects personality and glucocorticoid regulation in female rhesus
584 macaques. *Psychoneuroendocrinology.* 2016;74:179–88.
- 585 13. Levy EJ, Gesquiere LR, McLean E, Franz M, Warutere JK, Sayialel SN, et al. Higher
586 dominance rank is associated with lower glucocorticoids in wild female baboons: a rank
587 metric comparison. *Horm Behav.* 2020;125:104826.
- 588 14. Gesquiere LR, Learn NH, Simao MCM, Onyango PO, Alberts SC, Altmann J. Life at the
589 top: rank and stress in wild male baboons. *Science (80-).* 2011;333(6040):357–60.
- 590 15. Lea AJ, Akinyi MY, Nyakundi R, Mareri P, Nyundo F, Kariuki T, et al. Dominance rank-

591 associated gene expression is widespread, sex-specific, and a precursor to high social
592 status in wild male baboons. *Proc Natl Acad Sci.* 2018;115(52):E12163–71.

593 16. Bergman TJ, Beehner JC, Cheney DL, Seyfarth RM, Whitten PL. Correlates of stress in
594 free-ranging male chacma baboons, *Papio hamadryas ursinus*. *Anim Behav.* 2005;70(3):703–13.

595 17. Rubenstein DR, Shen S-F. Reproductive conflict and the costs of social status in
596 cooperatively breeding vertebrates. *Am Nat.* 2009;173(5):650–61.

597 18. Carlson AA, Young AJ, Russell AF, Bennett NC, McNeilly AS, Clutton-Brock T. Hormonal
598 correlates of dominance in meerkats (*Suricata suricatta*). *Horm Behav.* 2004;46(2):141–
599 50.

600 19. Kruuk LEB, Slate J, Pemberton JM, Brotherstone S, Guinness F, Clutton-Brock T. Antler
601 size in red deer: heritability and selection but no evolution. *Evolution (N Y).*
602 2002;56(8):1683–95.

603 20. Samuels A, Gifford T. A quantitative assessment of dominance relations among
604 bottlenose dolphins. *Mar Mammal Sci.* 1997;13(1):70–99.

605 21. Hodge SJ, Manica A, Flower TP, Clutton-Brock TH. Determinants of reproductive
606 success in dominant female meerkats. *J Anim Ecol.* 2008;77(1):92–102.

607 22. Strauss ED, Holekamp KE. Social alliances improve rank and fitness in convention-based
608 societies. *Proc Natl Acad Sci.* 2019;116(18):8919–24.

609 23. Lea AJ, Learn NH, Theus MJ, Altmann J, Alberts SC. Complex sources of variance in
610 female dominance rank in a nepotistic society. *Anim Behav.* 2014;94:87–99.

611 24. Hausfater G, Altmann J, Altmann S. Long-term consistency of dominance relations
612 among female baboons (*Papio cynocephalus*). *Science (80-).* 1982;217(4561):752–5.

613 25. Holekamp KE, Smale L. Dominance acquisition during mammalian social development:
614 the “inheritance” of maternal rank. *Am Zool.* 1991;31(2):306–17.

615 26. Holekamp KE, Smith JE, Strelioff CC, Van Horn RC, Watts HE. Society, demography and
616 genetic structure in the spotted hyena. *Mol Ecol.* 2012;21(3):613–32.

617 27. Wrblewski EE, Murray CM, Keele BF, Schumacher-Stankey JC, Hahn BH, Pusey AE.
618 Male dominance rank and reproductive success in chimpanzees, *Pan troglodytes*
619 *schweinfurthii*. *Anim Behav.* 2009;77(4):873–85.

620 28. Altmann J, Alberts SC. Variability in reproductive success viewed from a life-history
621 perspective in baboons. *Am J Hum Biol.* 2003;15(3):401–9.

622 29. Alberts SC, Watts HE, Altmann J. Queuing and queue-jumping: long-term patterns of
623 reproductive skew in male savannah baboons, *Papio cynocephalus*. *Anim Behav.*
624 2003;65(4):821–40.

625 30. Cowlishaw G, Dunbar RIM. Dominance rank and mating success in male primates. *Anim*
626 *Behav.* 1991;41(6):1045–56.

627 31. Clutton-Brock T. *Mammal societies*. John Wiley & Sons; 2016.

628 32. Foerster S, Cords M, Monfort SL. Social behavior, foraging strategies, and fecal
629 glucocorticoids in female blue monkeys (*Cercopithecus mitis*): potential fitness benefits of
630 high rank in a forest guenon. *Am J Primatol.* 2011;73(9):870–82.

631 33. Solomon NG, French JA. *Cooperative breeding in mammals*. Cambridge University
632 Press; 1997.

633 34. Cavigelli SA, Dubovick T, Levash W, Jolly A, Pitts A. Female dominance status and fecal
634 corticoids in a cooperative breeder with low reproductive skew: ring-tailed lemurs (*Lemur*
635 *catta*). *Horm Behav.* 2003;43(1):166–79.

636 35. Muller MN, Enigk DK, Fox SA, Lucore J, Machanda ZP, Wrangham RW, et al.
637 Aggression, glucocorticoids, and the chronic costs of status competition for wild male
638 chimpanzees. *Horm Behav.* 2021;130:104965.

639 36. Dunbar RIM. Functional significance of social grooming in primates. *Folia Primatol.*
640 1991;57(3):121–31.

641

642 37. Mann J. Behavioral sampling methods for cetaceans: a review and critique. *Mar mammal*
643 *Sci.* 1999;15(1):102–22.

644 38. Stanton MA, Mann J. Early social networks predict survival in wild bottlenose dolphins.
645 *PLoS One.* 2012;7(10):e47508.

646 39. Sundaresan SR, Fischhoff IR, Dushoff J, Rubenstein DI. Network metrics reveal
647 differences in social organization between two fission–fusion species, Grevy's zebra and
648 onager. *Oecologia.* 2007;151(1):140–9.

649 40. Schino G. Grooming and agonistic support: a meta-analysis of primate reciprocal
650 altruism. *Behav Ecol.* 2007;18(1):115–20.

651 41. Seyfarth RM, Cheney DL. Grooming, alliances and reciprocal altruism in vervet monkeys.
652 *Nature.* 1984;308(5959):541–3.

653 42. Snyder-Mackler N, Kohn JN, Barreiro LB, Johnson ZP, Wilson ME, Tung J. Social status
654 drives social relationships in groups of unrelated female rhesus macaques. *Anim Behav.*
655 2016;111:307–17.

656 43. Kutsukake N, Clutton-Brock TH. Grooming and the value of social relationships in
657 cooperatively breeding meerkats. *Anim Behav.* 2010;79(2):271–9.

658 44. Archie EA, Tung J, Clark M, Altmann J, Alberts SC. Social affiliation matters: both same-
659 sex and opposite-sex relationships predict survival in wild female baboons. In: *Proc R*
660 *Soc B. The Royal Society;* 2014. p. 20141261.

661 45. Campos FA, Villavicencio F, Archie EA, Colchero F, Alberts SC. Social bonds, social
662 status and survival in wild baboons: a tale of two sexes. *Philos Trans R Soc B.*
663 2020;375(1811):20190621.

664 46. Barocas A, Ilany A, Koren L, Kam M, Geffen E. Variance in centrality within rock hyrax
665 social networks predicts adult longevity. *PLoS One.* 2011;6(7):e22375.

666 47. Nuñez CM V, Adelman JS, Rubenstein DI. Sociality increases juvenile survival after a
667 catastrophic event in the feral horse (*Equus caballus*). *Behav Ecol.* 2015;26(1):138–47.

668 48. Ellis S, Franks DW, Natrass S, Cant MA, Weiss MN, Giles D, et al. Mortality risk and
669 social network position in resident killer whales: sex differences and the importance of
670 resource abundance. *Proc R Soc B Biol Sci.* 2017;284(1865):20171313.

671 49. Holt-Lunstad J, Smith TB, Layton JB. Social relationships and mortality risk: a meta-
672 analytic review. *PLoS Med.* 2010;7(7):e1000316.

673 50. Vander Wal E, Festa-Bianchet M, Réale D, Coltman DW, Pelletier F. Sex-based
674 differences in the adaptive value of social behavior contrasted against morphology and
675 environment. *Ecology.* 2015;96(3):631–41.

676 51. Silk JB, Beehner JC, Bergman TJ, Crockford C, Engh AL, Moscovice LR, et al. Strong
677 and consistent social bonds enhance the longevity of female baboons. *Curr Biol.*
678 2010;20(15):1359–61.

679 52. Snyder-Mackler N, Burger JR, Gaydosh L, Belsky DW, Noppert GA, Campos FA, et al.
680 Social determinants of health and survival in humans and other animals. *Science.*
681 2020;368(6493).

682 53. Wittig RM, Crockford C, Weltring A, Langergraber KE, Deschner T, Zuberbühler K. Social
683 support reduces stress hormone levels in wild chimpanzees across stressful events and
684 everyday affiliations. *Nat Commun.* 2016;7(1):1–8.

685 54. Crockford C, Wittig RM, Whitten PL, Seyfarth RM, Cheney DL. Social stressors and
686 coping mechanisms in wild female baboons (*Papio hamadryas ursinus*). *Horm Behav.*
687 2008;53(1):254–65.

688 55. Wittig RM, Crockford C, Lehmann J, Whitten PL, Seyfarth RM, Cheney DL. Focused
689 grooming networks and stress alleviation in wild female baboons. *Horm Behav.*
690 2008;54(1):170–7.

691 56. Young C, Majolo B, Heistermann M, Schülke O, Ostner J. Responses to social and
692 environmental stress are attenuated by strong male bonds in wild macaques. *Proc Natl*

693 57. Acad Sci. 2014;111(51):18195–200.

694 58. Cole SW, Hawkley LC, Arevalo JM, Sung CY, Rose RM, Cacioppo JT. Social regulation
695 of gene expression in human leukocytes. *Genome Biol.* 2007;8(9):1–13.

696 59. Yang YC, McClintock MK, Kozloski M, Li T. Social isolation and adult mortality: the role of
697 chronic inflammation and sex differences. *J Health Soc Behav.* 2013;54(2):183–203.

698 60. Smith KJ, Gavey S, Riddell NE, Kontari P, Victor C. The association between loneliness,
699 social isolation and inflammation: A systematic review and meta-analysis. *Neurosci
700 Biobehav Rev.* 2020;112:519–41.

701 61. Adam EK, Hawkley LC, Kudielka BM, Cacioppo JT. Day-to-day dynamics of experience–
702 cortisol associations in a population-based sample of older adults. *Proc Natl Acad Sci.
703* 2006;103(45):17058–63.

704 62. Steptoe A, Owen N, Kunz-Ebrecht SR, Brydon L. Loneliness and neuroendocrine,
705 cardiovascular, and inflammatory stress responses in middle-aged men and women.
706 *Psychoneuroendocrinology.* 2004;29(5):593–611.

707 63. Valtorta NK, Kanaan M, Gilbody S, Ronzi S, Hanratty B. Loneliness and social isolation
708 as risk factors for coronary heart disease and stroke: systematic review and meta-
709 analysis of longitudinal observational studies. *Heart.* 2016;102(13):1009–16.

710 64. Reynolds P, Kaplan GA. Social connections and risk for cancer: prospective evidence
711 from the Alameda County Study. *Behav Med.* 1990;16(3):101–10.

712 65. Hermes GL, Delgado B, Tretiakova M, Cavigelli SA, Krausz T, Conzen SD, et al. Social
713 isolation dysregulates endocrine and behavioral stress while increasing malignant burden
714 of spontaneous mammary tumors. *Proc Natl Acad Sci.* 2009;106(52):22393–8.

715 66. Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, et al. The
716 sympathetic nervous system induces a metastatic switch in primary breast cancer.
717 *Cancer Res.* 2010;70(18):7042–52.

718 67. Cole SW. The conserved transcriptional response to adversity. *Curr Opin Behav Sci.*
719 2019;28:31–7.

720 68. Renn SCP, Aubin-Horth N, Hofmann HA. Fish and chips: functional genomics of social
721 plasticity in an African cichlid fish. *J Exp Biol.* 2008;211(18):3041–56.

722 69. Schumer M, Krishnakant K, Renn SCP. Comparative gene expression profiles for highly
723 similar aggressive phenotypes in male and female cichlid fishes (*Julidochromis*). *J Exp
724 Biol.* 2011;214(19):3269–78.

725 70. Renn SCP, O'Rourke CF, Aubin-Horth N, Fraser EJ, Hofmann HA. Dissecting the
726 transcriptional patterns of social dominance across teleosts. *Integr Comp Biol.*
727 2016;56(6):1250–65.

728 71. Bentz AB, George EM, Wolf SE, Rusch DB, Podicheti R, Buechlein A, et al. Experimental
729 competition induces immediate and lasting effects on the neurogenome in free-living
730 female birds. *Proc Natl Acad Sci.* 2021;118(13).

731 72. Greenwood AK, Wark AR, Fernald RD, Hofmann HA. Expression of arginine vasotocin in
732 distinct preoptic regions is associated with dominant and subordinate behaviour in an
733 African cichlid fish. *Proc R Soc B Biol Sci.* 2008;275(1649):2393–402.

734 73. Rittschof CC, Bukhari SA, Sloofman LG, Troy JM, Caetano-Anollés D, Cash-Ahmed A, et
735 al. Neuromolecular responses to social challenge: Common mechanisms across mouse,
736 stickleback fish, and honey bee. *Proc Natl Acad Sci.* 2014;111(50):17929–34.

737 74. Saul MC, Blatti C, Yang W, Bukhari SA, Shpigler HY, Troy JM, et al. Cross-species
738 systems analysis of evolutionary toolkits of neurogenomic response to social challenge.
739 *Genes, Brain Behav.* 2019;18(1):e12502.

740 75. Kanitz E, Puppe B, Tuchscherer M, Heberer M, Viergutz T, Tuchscherer A. A single
741 exposure to social isolation in domestic piglets activates behavioural arousal,
742 neuroendocrine stress hormones, and stress-related gene expression in the brain.
743 *Physiol Behav.* 2009;98(1–2):176–85.

744 75. Lea AJ, Altmann J, Alberts SC, Tung J. Developmental Constraints in a Wild Primate. *Am
745 Nat* [Internet]. 2015 Jun 7;185(6):809–21. Available from:
746 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541805/>

747 76. Altmann J, Alberts SC. Growth rates in a wild primate population: ecological influences
748 and maternal effects. *Behav Ecol Sociobiol*. 2005;57(5):490–501.

749 77. Onyango PO, Gesquiere LR, Altmann J, Alberts SC. Puberty and dispersal in a wild
750 primate population. *Horm Behav*. 2013;64(2):240–9.

751 78. Charpentier MJE, Tung J, Altmann J, Alberts SC. Age at maturity in wild baboons:
752 genetic, environmental and demographic influences. *Mol Ecol*. 2008;17(8):2026–40.

753 79. Runcie DE, Wiedmann RT, Archie EA, Altmann J, Wray GA, Alberts SC, et al. Social
754 environment influences the relationship between genotype and gene expression in wild
755 baboons. *Philos Trans R Soc B Biol Sci*. 2013;368(1618):20120345.

756 80. Anderson JA, Johnston RA, Lea AJ, Campos FA, Voyles TN, Akinyi MY, et al. High social
757 status males experience accelerated epigenetic aging in wild baboons. Perry GH, editor.
758 *Elife* [Internet]. 2021;10:e66128. Available from: <https://doi.org/10.7554/eLife.66128>

759 81. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular
760 signatures database hallmark gene set collection. *Cell Syst*. 2015;1(6):417–25.

761 82. Medzhitov R. Origin and physiological roles of inflammation. *Nature*.
762 2008;454(7203):428–35.

763 83. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential
764 contribution to age-associated diseases. *Journals Gerontol Ser A Biomed Sci Med Sci*.
765 2014;69(Suppl_1):S4–9.

766 84. Gesquiere LR, Altmann J, Archie EA, Alberts SC. Interbirth intervals in wild baboons:
767 Environmental predictors and hormonal correlates. *Am J Phys Anthropol*.
768 2018;166(1):107–26.

769 85. Hammels C, Pishva E, De Vry J, van den Hove DLA, Prickaerts J, van Winkel R, et al.
770 Defeat stress in rodents: from behavior to molecules. *Neurosci Biobehav Rev*.
771 2015;59:111–40.

772 86. Alaux C, Sinha S, Hasadsri L, Hunt GJ, Guzmán-Novoa E, DeGrandi-Hoffman G, et al.
773 Honey bee aggression supports a link between gene regulation and behavioral evolution.
774 *Proc Natl Acad Sci*. 2009;106(36):15400–5.

775 87. Robinson GE, Grozinger CM, Whitfield CW. Sociogenomics: social life in molecular
776 terms. *Nat Rev Genet*. 2005;6(4):257–70.

777 88. Cole SW. Human social genomics. *PLoS Genet*. 2014;10(8):e1004601.

778 89. Sanz J, Maurizio PL, Snyder-Mackler N, Simons ND, Voyles T, Kohn J, et al. Social
779 history and exposure to pathogen signals modulate social status effects on gene
780 regulation in rhesus macaques. *Proc Natl Acad Sci* [Internet]. 2019 Oct 14;201820846.
781 Available from: <http://www.pnas.org/content/early/2019/10/11/1820846116.abstract>

782 90. Snyder-Mackler N, Sanz J, Kohn JN, Voyles T, Pique-Regi R, Wilson ME, et al. Social
783 status alters chromatin accessibility and the gene regulatory response to glucocorticoid
784 stimulation in rhesus macaques. *Proc Natl Acad Sci U S A* [Internet]. 2019;116(4):1219–
785 28. Available from:
786 <http://www.ncbi.nlm.nih.gov/pubmed/30538209%0Ahttp://www.ncbi.nlm.nih.gov/entrez.fcgi?artid=PMC6347725>

788 91. Snyder-Mackler N, Sanz J, Kohn JN, Brinkworth JF, Morrow S, Shaver AO, et al. Social
789 status alters immune regulation and response to infection in macaques. *Science* (80-)
790 [Internet]. 2016 Nov 25;354(6315):1041 LP – 1045. Available from:
791 <http://science.sciencemag.org/content/354/6315/1041.abstract>

792 92. Bartolomucci A. Social stress, immune functions and disease in rodents. *Front
793 Neuroendocrinol*. 2007;28(1):28–49.

794 93. Tung J, Barreiro LB, Johnson ZP, Hansen KD, Michopoulos V, Toufexis D, et al. Social

795 environment is associated with gene regulatory variation in the rhesus macaque immune
796 system. *Proc Natl Acad Sci* [Internet]. 2012 Apr 24;109(17):6490 LP – 6495. Available
797 from: <http://www.pnas.org/content/109/17/6490.abstract>

798 94. Stringhini S, Polidoro S, Sacerdote C, Kelly RS, Van Veldhoven K, Agnoli C, et al. Life-
799 course socioeconomic status and DNA methylation of genes regulating inflammation. *Int
800 J Epidemiol.* 2015;44(4):1320–30.

801 95. Miller GE, Chen E, Fok AK, Walker H, Lim A, Nicholls EF, et al. Low early-life social class
802 leaves a biological residue manifested by decreased glucocorticoid and increased
803 proinflammatory signaling. *Proc Natl Acad Sci* [Internet]. 2009 Aug 25;106(34):14716–
804 21. Available from: <http://www.pnas.org/content/106/34/14716.abstract>

805 96. Powell ND, Sloan EK, Bailey MT, Arevalo JMG, Miller GE, Chen E, et al. Social stress
806 up-regulates inflammatory gene expression in the leukocyte transcriptome via β -
807 adrenergic induction of myelopoiesis. *Proc Natl Acad Sci.* 2013;110(41):16574–9.

808 97. Cole SW, Conti G, Arevalo JMG, Ruggiero AM, Heckman JJ, Suomi SJ. Transcriptional
809 modulation of the developing immune system by early life social adversity. *Proc Natl
810 Acad Sci.* 2012;109(50):20578–83.

811 98. Thamés AD, Irwin MR, Breen EC, Cole SW. Experienced discrimination and racial
812 differences in leukocyte gene expression. *Psychoneuroendocrinology.* 2019;106:277–83.

813 99. Qin D-D, Rizak JD, Feng X-L, Chu X-X, Yang S-C, Li C-L, et al. Social rank and cortisol
814 among female rhesus macaques (*Macaca mulatta*). 2013;

815 100. Hausfater G. Dominance and reproduction in Baboons (*Papio cynocephalus*). *Contrib
816 Primatol.* 1975;7:1–150.

817 101. Rosenbaum S, Zeng S, Campos FA, Gesquiere LR, Altmann J, Alberts SC, et al. Social
818 bonds do not mediate the relationship between early adversity and adult glucocorticoids
819 in wild baboons. *Proc Natl Acad Sci.* 2020;117(33):20052–62.

820 102. Resende LS, Amaral CE, Soares RBS, Alves AS, Alves-Dos-Santos L, Britto LRG, et al.
821 Social stress in adolescents induces depression and brain-region-specific modulation of
822 the transcription factor MAX. *Transl Psychiatry.* 2016;6(10):e914–e914.

823 103. Picard M, McEwen BS, Epel ES, Sandi C. An energetic view of stress: focus on
824 mitochondria. *Front Neuroendocrinol.* 2018;49:72–85.

825 104. Alberts SC, Altmann J. The Amboseli Baboon Research Project: 40 years of continuity
826 and change. In: *Long-term field studies of primates*. Springer; 2012. p. 261–87.

827 105. Wall JD, Schlebusch SA, Alberts SC, Cox LA, Snyder-Mackler N, Neponen KA, et al.
828 Genomewide ancestry and divergence patterns from low-coverage sequencing data
829 reveal a complex history of admixture in wild baboons. *Mol Ecol.* 2016;25(14):3469–83.

830 106. Tung J, Zhou X, Alberts SC, Stephens M, Gilad Y. The genetic architecture of gene
831 expression levels in wild baboons. *Elife.* 2015;4:e04729 %@ 2050-084X.

832 107. Altmann J, Alberts SC, Haines SA, Dubach J, Muruthi P, Coote T, et al. Behavior predicts
833 genes structure in a wild primate group. *Proc Natl Acad Sci.* 1996;93(12):5797–801.

834 108. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native
835 chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding
836 proteins and nucleosome position. *Nat Methods.* 2013;10(12):1213.

837 109. Altmann J. Observational study of behavior: sampling methods. *Behaviour.* 1974;49(3–
838 4):227–66.

839 110. Levy EJ, Zipple MN, McLean E, Campos FA, Dasari M, Fogel AS, et al. A comparison of
840 dominance rank metrics reveals multiple competitive landscapes in an animal society.
841 *Proc R Soc B.* 2020;287(1934):20201013.

842 111. Strauss ED, Holekamp KE. Inferring longitudinal hierarchies: Framework and methods for
843 studying the dynamics of dominance. *J Anim Ecol.* 2019;88(4):521–36.

844 112. Dobin A, Gingeras TR. Mapping RNA-seq Reads with STAR. *Curr Protoc Bioinforma
845 [Internet].* 2015 Sep 1;51(1):11.14.1-11.14.19. Available from:

846 https://doi.org/10.1002/0471250953.bi1114s51
847 113. Batra SS, Levy-Sakin M, Robinson J, Guillory J, Durinck S, Vilgalys TP, et al. Accurate
848 assembly of the olive baboon (*Papio anubis*) genome using long-read and Hi-C data.
849 *Gigascience*. 2020;9(12):giaa134.
850 114. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput
851 sequencing data. *Bioinformatics*. 2015;31(2):166–9.
852 115. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
853 *arXiv Prepr arXiv13033997*. 2013;
854 116. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based
855 analysis of ChIP-Seq (MACS). *Genome Biol*. 2008;9(9):1–9.
856 117. Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model
857 analysis tools for RNA-seq read counts. *Genome Biol [Internet]*. 2014;15(2):R29.
858 Available from:
859 <http://www.ncbi.nlm.nih.gov/pubmed/24485249%0Ahttp://www.ncbi.nlm.nih.gov/entrez.fcgi?artid=PMC4053721>
860 118. Ritchie ME, Phipson B, Wu DI, Hu Y, Law CW, Shi W, et al. limma powers differential
861 expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res*.
862 2015;43(7):e47–e47.
863 119. Akdemir D, Okeke UG. EMMREML: Fitting mixed models with known covariance
864 structures. R Packag version. 2015;3(1).
865 120. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA,
866 et al. Scaling accurate genetic variant discovery to tens of thousands of samples.
867 *BioRxiv*. 2018;201178.
868 121. Dabney A, Storey JD, Warnes GR. qvalue: Q-value estimation for false discovery rate
869 control. R Packag version. 2010;1(0).
870 122. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene
871 set enrichment analysis: a knowledge-based approach for interpreting genome-wide
872 expression profiles. *Proc Natl Acad Sci*. 2005;102(43):15545–50.
873 123. Team RC. R: A language and environment for statistical computing. 2013;
874 124. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via
875 coordinate descent. *J Stat Softw*. 2010;33(1):1.
876 125. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of
877 lineage-determining transcription factors prime cis-regulatory elements required for
878 macrophage and B cell identities. *Mol Cell*. 2010;38(4):576–89.
879
880