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Abstract

Spin-echo (SE) BOLD fMRI has high microvascular specificity, and thus provides a more reliable
means to localize neural activity compared to conventional gradient-echo BOLD fMRI. However, the most
common SE BOLD acquisition method, SE-EPI, is known to suffer from T,' contrast contamination with
undesirable draining vein bias. To address this, in this study, we extended a recently developed
distortion/blurring-free multi-shot EPI technique, Echo-Planar Time-resolved Imaging (EPTI), to cortical-
depth dependent SE-fMRI at 7T to test whether it could provide purer SE BOLD contrast with minimal T’
contamination for improved neuronal specificity. From the same acquisition, the time-resolved feature of
EPTI also provides a series of asymmetric SE (ASE) images with varying T’ weightings, and enables
extraction of data equivalent to conventional SE EPI with different echo train lengths (ETLs). This allows
us to systematically examine how T»'-contribution affects different SE acquisition strategies using a single
dataset. A low-rank spatiotemporal subspace reconstruction was implemented for the SE-EPTI acquisition,
which incorporates corrections for both shot-to-shot phase variations and dynamic By drifts. SE-EPTI was
used in a visual task fMRI experiment to demonstrate that i) the pure SE image provided by EPTI results
in the highest microvascular specificity; ii) the ASE EPTI series, with a graded introduction of T,
weightings at time points farther away from the pure SE, show a gradual sensitivity increase along with
increasing draining vein bias; iii) the longer ETL seen in conventional SE EPI acquisitions will induce more
draining vein bias. Consistent results were observed across multiple subjects, demonstrating the robustness

of the proposed technique for SE-BOLD fMRI with high specificity.

Key Words: high field, multi-echo, spin-echo, T, BOLD, microvascular specificity, laminar fMRI
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1. Introduction

Gradient-echo (GE) blood oxygenation level-dependent (BOLD) with T, weighting is one of the most
commonly used fMRI contrasts due to its high sensitivity and acquisition efficiency (Bandettini et al., 1992;
Kwong et al., 1992; Ogawa et al., 1990). However, the GE BOLD signal contains a mixture of contributions
from both large and small blood vessels. The macrovascular signals, such as those from large draining veins,
can be far from the site of neuronal activity (Havlicek and Uludag, 2020; Heinzle et al., 2016; Markuerkiaga
et al., 2016). Therefore, the inclusion of macrovascular signal in GE BOLD fMRI significantly limits its
effective resolution to detect brain activity, even at high spatial resolution at ultra-high-field.

Conversely, the microvascular signal can provide more specific and precise localization of the
neuronal activity (Dumoulin et al., 2018; Norris and Polimeni, 2019), therefore, a number of alternative
fMRI contrasts have been investigated that have the promise of achieving high neuronal specificity through
being sensitive to signal changes from the microvasculature while being insensitive to changes from the
macrovasculature (De Martino et al., 2018; Huber et al., 2019; Koopmans and Yacoub, 2019). Among those,
spin-echo (SE) or T, BOLD fMRI has shown great potential (Bandettini and Wong, 1995; Boxerman et al.,
1995; Ogawa et al., 1993) and has been demonstrated to provide superior specificity compared to GE BOLD
(Huber et al.,, 2017a). However, it is difficult to efficiently obtain pure T,-weighting without T,
contamination (Norris, 2012), which introduces unwanted sensitivity to the microvasculature and thus
compromises its achievable neuronal specificity.

This difficulty originates from the technical challenges in conventional MRI acquisition. For example,
the most commonly-used T> BOLD acquisition method, spin-echo EPI, uses a long echo-train-length (ETL)
that samples both T,- and T,'-weighted signals to generate an image, and therefore suffers from T,'
contamination with an undesirable sensitivity to large blood vessels (Bandettini et al., 1994; Birn and
Bandettini, 2002; Duyn, 2004; Goense and Logothetis, 2006; Koopmans and Yacoub, 2019; Norris, 2012;
Yacoub et al., 2003). In-plane acceleration with parallel imaging (Griswold et al., 2002; Pruessmann et al.,
1999a; Sodickson and Manning, 1997) or multi-shot EPI (ms-EPI) (Butts et al., 1996; Chen et al., 2013;
Dong et al., 2018; Jeong et al., 2013; Mani et al., 2017) can be used to address this issue by reducing the
effective echo spacing and thus the ETL. However, their abilities to reduce T contribution come at a cost
of higher noise amplification or image artifacts due to shot-to-shot phase variations, and residual T»'
contamination as well as distortion and blurring still remains. Other alternative sequences have been
proposed to provide T>» BOLD contrast (Barth et al., 2010; Bowen et al., 2005; Chamberlain et al., 2007;
Constable et al., 1994; Denolin and Metens, 2003; Goerke et al., 2011; Miller et al., 2003; Polimeni et al.,
2017; Poser and Norris, 2007; Scheffler et al., 2001). Among those, 3D-GRASE uses multiple refocusing
pulses with short echo trains in between, which significantly reduces the T>' weightings and offers higher

specificity than conventional SE-EPI (Beckett et al., 2020; De Martino et al., 2013; Feinberg et al., 2008;
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Kemper et al., 2015; Olman et al., 2012; Park et al., 2021). Recent works have demonstrated its specificity
for high-resolution SE BOLD fMRI at 7T (Beckett et al., 2020; Kemper et al., 2015), but challenges
including high SAR, relatively small achievable coverage and a mixture of T weightings from stimulated
echoes (Goerke et al., 2007) remain to be addressed or interpreted. In addition to SE BOLD fMRI, non-
BOLD contrasts such as cerebral blood volume (CBV) has shown promising results as well, such as using
the vascular space occupancy (VASO) methods (Chai et al., 2020; Huber et al., 2020; Huber et al., 2014;
Huber et al., 2019; Jin and Kim, 2006; Lu et al., 2003; Lu et al., 2004).

In this study, to address the T>'-contamination of SE-EPI and obtain higher neuronal specificity with
reduced draining vein effects, we extended a recently developed technique, Echo-Planar Time-resolved
Imaging (EPTI) (Wang et al., 2019; Wang et al., 2020; Wang et al., 2021b), to high-resolution SE-fMRI at
ultra-high-field for mapping laminar fMRI responses. EPTI is a novel multi-shot EPI approach that has
been previously developed for efficient multi-contrast and quantitative mapping. It employs a novel
spatiotemporal encoding strategy in the frequency-echo (k-f) domain, and is therefore able to resolve a
series of multi-contrast images across the readout with a small TE increment as short as an echo spacing
(~1 ms). The images are also distortion- and blurring-free, providing accurate anatomical information for
high-resolution imaging. In addition, the continuous signal readout scheme and the use of spatiotemporal
correlation to recover the k- undersampled data in EPTI result in high acquisition efficiency, allowing us
to acquire multi-echo images at submillimeter isotropic resolution within a few shots.

Here, we show that the time-resolved feature of EPTI can not only provide pure T, contrast images to
increase microvascular specificity, but can also simultaneously acquire T»'-weighted images to investigate
the macrovascular contribution across the spin-echo readout. Specifically, using a SE-EPTI acquisition, we
obtained a pure SE image with minimal T,' contamination, and a series of asymmetric SE (ASE) images
with varying T," weightings. We also developed a framework to extract conventional SE ms-EPI images
with different ETLs (therefore with different levels of T»'-contamination) from the same dataset, but without
any distortion. This ensures that all images concurrently acquired in a SE-EPTI acquisition, including the
pure SE, ASEs and the extracted conventional SE-EPIs are perfectly matched and aligned. A subspace
reconstruction (Dong et al., 2020; Guo et al., 2021; He et al., 2016; Lam and Liang, 2014; Liang, 2007,
Meng et al., 2021; Tamir et al., 2017) was further implemented for SE-EPTI datasets, which incorporates
corrections for both dynamic By drifts and shot-to-shot phase variations caused by respiration or other
physiological factors. A 3-shot SE-EPTI protocol was developed to acquire a thick slab that sufficiently
covers the visual cortex at submillimeter resolution (0.9 mm isotropic). Through cortical depth analyses,
we demonstrated that the pure SE BOLD data provided by EPTI results in the highest microvascular
specificity as expected, and the ASE EPTI image series, with a graded introduction of T,' weightings at

time points farther away from the pure SE, show gradually increased sensitivity, but larger and larger
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draining vein bias. Using the same dataset, we also experimentally confirmed that a longer ETL in the
conventional SE EPI acquisition will induce more draining vessel bias. We present consistent results across

multiple subjects, demonstrating the robustness of the proposed technique and framework.
2. Material and methods
2.1. EPTI for pure contrast multi-echo imaging

Conventional EPI acquires one phase encoding position per readout line through a fast continuous
bipolar readout, and forms a single image by combing all of these signals acquired at different time points.
Although its image contrast is mainly determined by the “effective” echo time (TE), the time when the
central PE line is acquired, signal decay occurs across the sampling window and contrast weightings from
other time points also contribute to the final image. For SE-EPI acquisition, the signal magnitude S(t) at
time ¢ after excitation in a mono-exponential model is:

S(0)e TEse Rz o= (Ra=R2)t = §((0)e(t-TEse) Ry g=Rat t < TEsg

S(0)eTEseR" o =(Ra+R:)t = §(0)e(TEse=1)Rs' g =Rat t > TEsg

S(t) = { (1)

where S(0) represents the initial signal intensity at t = 0, TEg is the echo time of the spin-echo, R, is the
T relaxation rate, R,’ = R; — R,, representing the difference between T,  and T, relaxation rates and
reflecting the susceptibility-induced recoverable intra-voxel dephasing, which is sensitive to extravascular
BOLD surrounding all vessels including large veins. As shown in the signal model, pure T,-weighted signal
can be obtained at TEgg, while all the other time points will be affected by R, -weighting with an extent
determined by the time interval between their acquisition time and the SE refocusing time. Signals acquired
at those time points with R, -weighting will therefore induce contrast contamination in SE-EPI when they
are combined to form an EPI image, leading to increased sensitivity to large vessels and compromised
neuronal specificity.

The main concept of SE-EPTI is to recover a series of images across the readout at all those time points
by recovering fully-sampled data across the k-f space (Dong et al., 2021a; Dong et al., 2020; Dong et al.,
2019; Wang et al., 2019; Wang et al., 2021a). Figure 1a shows the sequence diagram of SE-EPTI that is
used to achieve this goal, where an EPI-like continuous readout is used in a SE acquisition with different
Gy gradient blips applied to sample a ky-segment in k- space using a spatiotemporal CAIPI encoding pattern
(Fig. 1b). This sampling pattern not only ensures that the neighboring ky, points are sampled within a short
time interval with high temporal correlations, but also that they are interleaved and complementary along
the k, direction in an optimized pattern. It allows efficient use of temporal correlation and coil sensitivity
to achieve high undersampling, therefore only a few EPTI shots are needed to cover the desired k-¢ space
for imaging. After the full £-¢ space is recovered in the reconstruction, multi-contrast images with pure

contrast at all time points can be simply obtained by an inverse Fourier transform, including a pure T> SE
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image and a series of ASE images with varying T,” weighting, spaced at a TE increment of an echo-spacing
(~1 ms) as shown in Fig. 1b.These images are free from any distortion and blurring artifacts, which are
common in conventional EPI due to Bo-inhomogeneity-induced phase accumulation and signal decay across

the readout. This is because each EPTI image is recovered using signals with exactly the same phase and

magnitude.
a Echo Planar Time-resolved Imaging b Highly-accelerated ¢ R?:]Z\é?r:zdfokr ;ﬂ?;a'sgn;usngn;%us
90° 180° TE P spatiotemporal encoding , . SEEPIwith different ETLs
RE y y _ —
TV e oo e o0 oo e oo o ® ¢
Uﬂ Il UﬂUﬂUﬂUﬂ ﬂUﬂUﬂ 9\\9 eQee F’;\\e eRece "r‘ Re
LL 8 4 UA I u Shot 1 ° @ @/,&;\\9 e o @ ﬁvl,’e‘;\\@ ® ‘o @ © ©\¢
4 v M ot1 g e'e'e @ e/e @9 ® ¥ e Subspace ‘e e @
G O =l eeodee9eede e reconstuction o el
) 1D navigator R EEREEEEEEEX R —m p p , |
Signal eeceQececeqQee 9 "
I Qo epeoeecpees Qe ,‘l,\‘\. ] 5}
Shot 2 ‘!J\\\i' e Qe heoe Qe . P &
° @ w/w w\gnl/w Cv\ sa"lw wi\\\cg XY P
™ {y\\\tl,' eo deoeee e o @ o @ \5"’ ) (@ No
Distortion-free eedecooodeooe ole & @ « ; ) ¢
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Figure 1. Spatiotemporal CAIPI encoding of EPTI and generation of multi-contrast images. The recovered
k-t data after reconstruction can provide SE image with pure T, weighting (gray), asymmetric SE (ASE)
images with both T, and T,' weighting (orange), and extracted SE-EPI with different ETLs (green) to
investigate the effect of T>' contamination.

2.2. EPTl-extracted conventional EPI with different echo train lengths

In conventional SE-EPI acquisition, the reduction of ETL can help reduce the level of R,’
contamination, which can be achieved through in-plane acceleration using parallel imaging and/or through
multi-shot segmentation. However, a large reduction factor in ETL would lead to either large noise
amplification and aliasing artifacts in parallel imaging and/or a long acquisition time in multi-shot
acquisition. Therefore, it remains challenging to achieve short ETLs for SE-EPI especially at high spatial
resolution.

To investigate the benefit of reducing T," contamination by using a shorter ETL as well as comparing
the conventional SE-EPI with the pure SE images, data that are equivalent to a conventional EPI-like
acquisition with different ETLs can be extracted from the reconstructed 4-¢ data acquired by EPTL. Fig. 1c
shows a simplified illustration of such extraction, where reconstructed k-space signals at different time
points or TEs are extracted in a diagonal pattern in k-¢ space. To mimic an interleaved ms-EPI acquisition,
multiple adjacent PE lines are extracted at each time point depending on the shot number (e.g., 4 PE lines
for a 4-shot EPI), and the final ETL of the extracted SE ms-EPI is determined by the overall matrix size
along PE direction as well as the shot number. For example, for a 4-shot EPI acquisition with a matrix size

of 144, 4 PE lines are extracted at each time point, and the resultant ETL will be 36. Before the extraction,
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Bo-induced phase is removed from the 4-¢ data by removing the TE-dependent linear phase changes in the
image domain, so that the EPTI-extracted SE-EPI images are also free from any distortion. This ensures
that all the image contrasts obtained concurrently from a single EPTI dataset, including the pure SE, the
ASE series and the extracted SE-EPI, are geometrically matched, allowing for reliable evaluation of the

impact of T," contamination with different ETLs on the signal contributions.
2.3. Subspace image reconstruction

The reconstruction framework of EPTI used in this study is shown in Fig. 2. To reconstruct the image
series from the undersampled k-t data, a low-rank subspace method (Dong et al., 2020; Guo et al., 2021;
He et al., 2016; Lam and Liang, 2014; Liang, 2007; Meng et al., 2021; Tamir et al., 2017) is applied to
resolve signal evolutions across different TEs using signal model priors (Fig. 2¢). Here, the reconstruction
is performed to estimate a small number of coefficient maps of pre-calculated temporal subspace bases that
can accurately represent the signal evolution across echoes, rather than to estimate all of the echo images
directly. Such a reconstruction approach can achieve improved reconstruction conditioning and good
reconstruction accuracy by taking advantage of the high spatiotemporal correlation in the EPTI datasets. In
this work, we tailor this subspace reconstruction specifically to the SE-EPTI acquisition and further
incorporate corrections for phase variations due to By changes across different shots and dynamics,
increasing the robustness and accuracy of the reconstruction for fMRI experiments.

In the reconstruction, the first step is to use principal component analysis (PCA) to generate a group
of subspace bases ¢ from simulated signal evolutions across a range of possible T» and T, values. The
number of bases is selected to approximate all the simulated signal evolutions accurately with an error of
<0.2% (3 bases in this work). Then, the coefficient map of the basis, c, is estimated by:

min||UFSB¢pc — y||3 + AR(c), )
[

Here, B is the image phase evolutions across echoes caused by field inhomogeneity, S is the sensitivity map,
F denotes the Fourier transform, U represents an undersampling mask, and y is the acquired undersampled
data. R is the locally low-rank (LLR) constraint applied on the coefficients to further improve the
conditioning, and A is the control parameter. The image phase evolution B and coil sensitivity S are
estimated from a low-resolution &-¢ calibration scan acquired prior to the imaging scan. After estimating
the coefficients, multi-contrast echo images can be recovered by performing a temporal expansion (¢c) for

all the TEs in each volume TR.
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Figure 2. (a) EPTI reconstruction framework with dynamic By correction and shot-to-shot phase variation
correction. (b) Illustration of the estimation method for shot-to-shot By variation using multi-channel 1D
navigators. (¢) Subspace reconstruction to resolve multi-contrast images by solving a small number of
coefficient maps of the subspace bases.

2.4. Shot-to-shot phase variation correction using navigator

The Bo-inhomogeneity-induced phase accumulation could change temporally due to By drift and/or
respiratory motion. Instead of inducing aliasing artifacts as in the conventional interleaved ms-EPI, such
phase variations were shown to only cause minor local image smoothing on EPTI images due to the 4,
block-segmented sampling pattern used (Wang et al., 2019). To mitigate these smoothing effects and
improve the reconstruction accuracy, a method to estimate and correct for such shot-to-shot phase variations
is incorporated into the reconstruction framework as shown in Fig. 2.

One dimensional (1D) By changes along x between all of the EPTI-shots and temporal dynamics are
calculated first. Specifically, the phases of the 1** and 3™ echo of the standard 3-line EPI phase correction
navigator (acquired after the excitation pulse but before the refocusing) are subtracted and scaled based on
their TEs to obtain the By of every TR, and then the relative By changes to the first TR are calculated. The
1 and 3" echo are used in this calculation to avoid odd-even echo phase difference in the bipolar readout.
These 1D By changes are then extended to 2D by using the spatial information provided by the multi-
channel coil sensitivities (Splitthoff and Zaitsev, 2009; Versluis et al., 2012; Wallace et al., 2020). Since the
shot-to-shot By change varies smoothly in the spatial domain, the low-frequency spatial information
provided by the multi-channel coils should be sufficient in capturing and recovering its spatial distribution
along the PE direction. Specifically, the 2D By change, AB,, can be approximated by a weighted
combination of the 1D By changes from different coils using the magnitude of their coil sensitivities, similar

to a previous approach (Versluis et al., 2012). The estimation process is as follows:
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AB;p = % IiV:1AB1D,i|Si|» 3)
where AB;p; is the 1D By change estimated from the i-th coil, and [S;]| is the magnitude of the i-th coil’s
sensitivity map. Next, to correct for the shot-to-shot By changes in the reconstruction, the phase evolution
term B in Eq. 2 is updated to incorporate the above estimated Bo-induced phase into the forward model. A
simulation experiment was performed to evaluate the effectiveness of the above shot-to-shot phase variation
correction approach. The simulated data were generated using the imaging parameters and a set of
quantitative maps (T», T2, By map) obtained from EPTI data in the in-vivo experiments, with additional
smooth By changes (spatially 2" order) added to each shot as described below.

To account for higher-order By spatial changes, a pre-reconstruction process is also implemented to
update the By maps across different dynamics. It uses pre-reconstructed 2D phase maps to help better
estimate higher-frequency spatial variations of By changes, which can be used to adjust the forward model
to improve the final reconstruction accuracy. In the By update pre-reconstruction, a set of complex subspace
bases are first extracted from simulated signals with a range of By changes, which are then used in the pre-
reconstruction model to estimate higher order phase evolution and By. The estimated By changes are filtered
by a hamming filter to remove any noise and potential artifacts, and then incorporated into the final image
reconstruction by updating the phase term B (Eq. 2), similar to the approach described in (Dong et al.,
2021a). More number of bases were used in the By update pre-reconstruction than in the image
reconstruction (6 complex bases vs. 3 real bases) to provide additional degrees of freedom to model and

estimate large By phase evolution.
2.5. Data acquisition

Written informed consent was obtained from each participant before the experiment in accordance
with our institution’s Human Research Committee. All data were acquired on a Siemens Magnetom Terra
7T scanner (Siemens Healthineers, Erlangen, Germany), using a custom-built 64-channel receiver coil
(Mareyam et al., 2020) with a single RF transmission channel.

SE-EPTI data were acquired on 3 healthy volunteers using the following acquisition parameters: FOV
=218 x 130 x 25.2 (RO x PE x slice, HF-LR-AP) mm’, matrix size = 240 x 144 x 28, 0.9-mm isotropic
resolution, number of EPTI-shots (segmentation) = 3, number of echoes = 45, TEane. = 40—88 ms, TE of
SE = 64 ms, echo spacing (TE-increment) = 1.09 ms, volume TR = 3 s X 3-shot = 9 s, 43 dynamics,
acquisition time per run = 6 min 27 s, 14 runs were acquired for each subject. A standard block-design
“checkerboard” visual stimulus contrast-reversing at 8§ Hz was presented for the fMRI acquisitions. An
initial 27-s fixation period was performed followed by four 36 s-54 s on-and-off blocks. To assist with
fixation, a red dot with time-varying brightness was positioned at the center of the screen, and the subjects

were asked to press a button as soon as they detected a change in its brightness. Before the EPTI data
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acquisition in each run, a fast k- calibration scan was acquired in 54 s with a matrix size of 240 x 49 x 28
(RO x PE x slice) and 7 echoes. For each volunteer, a multi-echo magnetization-prepared rapid gradient
echo (MEMPRAGE) (van der Kouwe et al., 2008) image was acquired at 0.75-mm isotropic resolution as
an anatomical reference with a FOV of = 218 x 168 x 194 (AP-LR-HF) mm’.

Conventional single-shot SE-EPI and GE-EPI were also acquired for comparison on one of the healthy
volunteers. The acquisition parameters for SE-EPI were: FOV = 218 x 130 x 25.2 (RO x PE X slice, HF-
LR-AP) mm?®, matrix size = 240 x 145 x 28, 0.9-mm isotropic resolution, TE = 64 ms, GRAPPA factor =
3, ETL = 52 ms, echo spacing = 1.09 ms, TR = 3 s. The GRAPPA factor of 3 was used here to allow the
same TE to be achieved as the EPTI acquisition. The GE-EPI used the same FOV and resolution, and other
acquisition parameters were: TE = 28 ms, GRAPPA factor = 4, ETL = 39 ms, echo spacing = 1.09 ms, TR
=3 s. Noted that a GRAPPA factor of 3 or 4 used here is already high, considering the small FOV along PE
in our acquisition (i.e., ~ 1.6x zoomed compared to standard axial scan with PE along AP). 129 dynamics
were acquired per run for both GE- and SE-EPI in an acquisition time of 6 min 27 s. 4 runs were acquired
for both GE- and SE-EPI. In order to estimate field maps and correct for geometric distortions, PE-reversed
data were acquired for both GE- and SE-EPI with matched acquisition parameters prior to the fMRI
acquisitions. The standard GRAPPA (Griswold et al., 2002) reconstruction was performed followed by
complex coil combination (Pruessmann et al., 1999b). In addition, a turbo spin-echo (TSE) image was

acquired with the same FOV and matrix size as a distortion-free reference.
2.6. Image post-processing

To align all the volumes from different dynamics and runs, registration was performed using AFNI
(Cox, 1996). For EPTI, the motion parameters were estimated using the all-echo-averaged volumes with
higher SNR, which were then applied to different multi-echo volumes as well as the extracted ms-EPI
images. After registration, the multi-run data were averaged to a single dataset. For ss-EPI, distortion
correction was performed using the By maps estimated from ‘topup’ (Andersson et al., 2003) using the pre-
acquired PE-reversed data. The By maps were motion-corrected to account for the field map orientation
change due to subject motion, and then applied to each volume using the ‘FUGUE’ function in FSL
(Jenkinson et al., 2012; Smith et al., 2004).

For cortical surface-based analysis, cortical reconstructions were generated automatically using
Freesurfer (Desikan et al., 2006; Fischl, 2012; Fischl et al., 2002) on the MPRAGE images of each subject.
A total of 9 equi-volume (Waehnert et al., 2014; Waehnert et al., 2016) cortical layers were reconstructed,
and applied to the EPTI and EPI data to investigate the distribution of the z-score and the percent signal

change across different cortical depths.

10



15
16
17
18
19
20
21

3. Results

The effect of the shot-to-shot phase variations on the EPTI reconstruction and the performance of the
estimation and correction methods are evaluated in Fig. 3. Large temporal B, variations with a range of £10
Hz were used in this evaluation to simulate the effect at 7T. The estimated By variation maps (Fig. 3b) show
spatial distribution similar to the reference (Fig. 3a), demonstrating the effectiveness of the By variation
estimation method using multi-channel 1D navigators. The reconstructed images without and with
correction are compared and shown for the pure SE (Fig. 3c) and a selected ASE (Fig. 3d) image. The
images without any added variations are also shown in the left-most columns to illustrate baseline
reconstruction errors when compared to the ground truth simulated fully-sampled data. As shown in the
error maps, the pure SE image is less affected by the phase variations and presents with only a small increase
in RMSEs even without correction, while the ASE image shows higher errors resulted from the phase
variations due to its larger By phase accumulation. After correction, the errors are significantly mitigated,
especially for the ASE image, and similar reconstruction accuracy is observed as in the case without any

added phase variations, demonstrating the effectiveness of the proposed correction approach.

b Estimated B, variation using multi-
channel 1D navigators

@08 88

Shot-1 Shot-2 Shot-3 Shot-1 Shot-2 Shot-3

ad Simulated shot-to-shot By variation

C Spin echo (TE = 64 ms) d Asymmetric spin echo (TE = 82.5 ms)

w/o variation w/o correction Corrected Corrected

w/o variation  w/o correction

c
o
2
()
1 4
—
SE
7]
c
Q
)
Q
x

Error map

RMSE =2.48% RMSE =3.50% RMSE =2.49%

RMSE =2.01% RMSE =6.62% RMSE =2.16%

Figure 3. Evaluation of the shot-to-shot By variation estimation and correction method. (a) Simulated shot-
to-shot By variation maps of the 3-shot acquisition (spatially 2™ order). (b) Estimated B, variation maps
using multi-channel 1D navigators. (c) Reconstructed pure SE images (TE = 64 ms) and their corresponding
error maps (x5) without variations, with variations but without correction, and after correction. (d)
Reconstructed images and error maps for the ASE at TE = 82.5 ms. The RMSEs were listed at the bottom
of each error map.
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Figure 4 shows an example of the multi-echo images from a representative temporal dynamic acquired
by SE-EPTI in three orthogonal views, after averaging all the runs in the visual-task experiment at 7T. The
FOV of the acquisition was selected to cover the visual cortex as shown on the right. Figure 5a compares
the geometric distortion between conventional SE-EPI, EPTI and EPTI-extracted EPI. Two different slices
are presented with overlaid brain contours (red lines) extracted from the distortion-free TSE image collected
in the same scan session. The conventional EPI shows severe distortion at multiple areas highlighted by the
yellow arrows. In contrast, both EPTI and the EPTI-extracted EPI are free from such distortion artifacts

and provide identical contours as the TSE reference. Note that the EPTI-extracted EPI images were

O 0 9 O »n bk~ W

generated after removing the By phase in the full k- data (not possible with conventional EPI data), therefore

—
S

are free from the geometric distortion, similar to the EPTI images. In addition, EPTI is also robust to

—
—

dynamic Bo/susceptibility changes, and provides images free from distortion changes across time as

—
\S]

demonstrated in Fig. 5b. As shown in the zoom-in 1D signal profile along the PE direction (extracted from

—_
W

the locations indicated by the yellow dotted lines) across different dynamics and runs, conventional EPI

—_
N

suffers from dynamic changes in distortion that are hard to correct for, while the signal profiles of EPTI and

—
9]

EPTI-extracted EPI are almost static and consistent across time.

Selected multi-echo images FOV for visual area
Echo 16 Echo 23 (SE) Echo 30 Echo 37

0 e T 5] > 7
BN R OO AR
o R R R e

J-,':»

Coronal

Sagittal
Transverse

16

17  Figure 4. Examples of multi-echo EPTI images (left) acquired in the fMRI experiment covering the visual
18  cortex (right). The images are shown for each dynamic after averaging all the runs. Three orthogonal views
19  are presented for 5 selected echoes out of the total 45 echoes.
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EPTI Extracted EPI
(Bo phase removed)

a TSE Conventional EPI EPTI

Slice 1

Dynamics

Dynamics

Dynamics

Figure 5. (a) Distortion comparison between the TSE reference, conventional EPI, EPTI and EPTI-
extracted EPI. The image contours extracted from the TSE image are applied to all images (red lines).
Conventional EPI shows obvious distortions at multiple areas (yellow arrows), while EPTI and EPTI-
extracted EPI have almost identical image contours with the TSE image. (b) Evaluation of dynamic
distortion changes. The zoomed-in 1D PE profiles (extracted from the locations indicated by the yellow
dotted lines on the left) across different dynamics and runs are shown on the right to compare the level of
dynamic distortion in conventional EPI, EPTI and EPTI-extracted EPI.
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Figure 6. (a) Normalized z-score activation maps of different EPTI echo images. The white arrow shows

an example region where the activation in the CSF is reduced relative to that in the gray matter in echoes
with less T,' contributions. Normalization was performed based on the sum of the positive z-scores of each
echo to normalize the sensitivity differences and to better visualize activation pattern. (b) Cortical depth
dependent profiles of z-score and percent signal change of all the echoes (color-coded by echo indices
shown on the top) across V1. The profiles from different echoes are normalized to have the same value at
0.5 cortical depth of the SE (echo 23) to better compare the slope difference.

The varying T,' effect across the spin-echo readout was investigated using the time-resolved multi-
echo EPTI images as shown in Fig. 6. Fig. 6a shows the activation maps within visual cortex across different
echoes in normalized z-scores, where a scaling was performed across different echoes based on the sum of
the positive z-scores of each echo to normalize their sensitivity difference and to better compare the
activation patterns. As expected, with less T’ contrast in the images closer to the pure spin-echo (from echo
7 to echo 23, or from echo 39 backwards to echo 23), there is less activation in the CSF region (white
arrows) compared to the activation in the gray matter, with the peak of the activation gradually shifting
from centering in the CSF region towards the gray matter parenchyma on the side. This can also be seen in
the cortical depth dependence analysis shown in Fig. 6b, where the cortical profiles of the z-score and the

percent signal change across V1 of all the echoes (color-coded by echo indices, pure SE shown in green)

14
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are plotted. The profiles from different echoes were scaled to have the same value at 0.5 cortical depth as
the SE (echo 23) to better compare the difference in slope. The first few echoes in blue with large amount
of T»' weightings exhibit the expected bias to large veins, manifesting as depth profiles that peak at the pial
surface. As TE increases and moves closer to the SE from blue to green, lower and lower pial surface bias
were observed in flatter depth profiles with lower values at the pial surface. At the SE position (pure T»),
the smallest slope with minimal bias is observed. Then, as TE moves away from the SE position with more
T," weighting, the pial vessel bias returns and the slope increases. In summary, the slope of these cortical
profiles or the amount of large vessel bias across echoes show good correspondence to the amount of T»'
weighting in the theoretical signal model (Eq. 1), both of which are lowest at SE, and increase with the
distance away from SE. This observation suggests that, by experimentally reducing T,' weighting in the
image, the macrovascular effects can be effectively reduced. It also demonstrates that EPTI provides a
powerful tool to resolve all these multi-contrast images across the EPTI readout, and to investigate gradual
TE-dependent BOLD signal change at a TE increment as short as 1 ms using data acquired in a single scan.

6-shot SE-EPI
(ETL = 26 ms)

4-shot SE-EPI
(ETL = 39 ms)

(SE)

Echo 23 Echo 39

A1

Figure 7. Comparison of activation in unnormalized z-score between ASE images, pure SE image, and
extracted SE-EPI all obtained from EPTI. The pure SE image shows lower sensitivity than ASE echoes and
the conventional SE-EPI, but despite the sensitivity difference, we can still observe that the peak of the
activation map itself is more in the gray matter regions rather than centered in the CSF as indicated by the
white arrows.

Figure 7 compares unnormalized activation maps (z-score) calculated from EPTI ASEs (echo 7 and
39), EPTI pure SE (echo 23), and two EPTI-extracted SE ms-EPI with ETLs of 26 ms (6-shot) and 39 ms
(4-shot). The ASE images with large T," weightings show high activation in both the CSF and gray matter
areas. The pure SE image and the extracted SE-EPI images show overall less activations as expected due
to the reduced activation sensitivity of T, contrast. Despite such a sensitivity difference, it can still be
observed that the three cases of T, images, including the pure SE and the two extracted SE-EPI images,

show a reduction of activation in the CSF areas when compared to the gray matter’s activation level in the
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same maps. The pure SE image shows minimal CSF bias, pointing to EPTI’s ability to provide a more pure
SE contrast with further reduction in T,’ contamination compared to the conventional ms-EPI, and achieve
higher microvascular specificity. The cortical depth analysis of these five cases in 3 healthy volunteers are
shown in Fig. 8. Both the unnormalized and normalized activity profiles are plotted. The unnormalized
profiles demonstrate the sensitivity differences between T»' and T, weighted BOLD contrasts as previously
described above, while the normalized profiles better compare the amount of large vessel bias through their
slope differences. Consistent with the results in Fig. 6 and 7, the data from all the three subjects show that
the pure SE image (echo 23, dark green) achieves the lowest slope and minimal macrovascular bias
compared to the ASE images and the extracted conventional SE ms-EPI. In addition, the results also confirm
that the conventional SE ms-EPI with a longer ETL will have larger pial vessel bias (Fig. 8, light and dark
purple lines).
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Figure 8. Cortical-depth profiles of the unnormalized (left two columns) and normalized (right two columns)
z-score and percent signal change in three subjects (N = 3). Five EPTI data are compared in each plot,

including selected ASE images (echo 7 and 39), pure SE image (echo 23), extracted SE ms-EPI with ETL

=26 ms (6 shots) and 39 ms (4 shots). In all three subjects, the pure SE image shows the lowest slope with

decreased activation at the CSF-GM interface, indicating a reduced level of bias from large veins.

Further confirmation is provided by the comparison between the EPTI acquired images and the actual

acquired in-plane accelerated single-shot GE and SE EPI as shown in Fig. 9. The ASE EPTI images (Echo
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7 and 39) show consistent activation localization to the conventional GE-EPI, with high level of activation
in both CSF and gray matter due to their large T’ weighting. The cortical profile of the conventional GE-
EPI also exhibits large vessel bias near the pial surface similar to the ASE EPTI images (light blue vs. dark
blue or red). The conventional SE-EPI shows a reduced sensitivity to large vessels when compared to the
GE/ASE acquisitions, but still has a higher activation in the CSF and a higher slope (Fig. 9a bottom row,
left-most column and Fig. 9b light green) when compared to the pure SE EPTI image (Fig. 9a bottom row,
right-most column and Fig. 9b dark green). This result further demonstrates the reduced draining vein
effects in the pure SE EPTI image over conventional SE-EPI image. The conventional SE ss-EPI (with a
GRAPPA factor of 3) also shows similar activation to the extracted SE ms-EPI with similar macrovascular
bias. Noted that the conventional images were acquired in a different session than EPTI data and could have
potential residual distortion after correction, which might introduce bias when comparing them with EPTI

data.

Conventional GE ss-EPI EPTI ASE Echo 7 EPTI ASE Echo 39
[ o Normalized percent signal change

9

I conv ss-GE
‘\ —f—conv ss-SE
] —JT-Echo7:R, & R,'

\{ —F-Echo 23: pure R,
—+-Echo 39: R, &R,
—f-ms-EPI ETL= 26ms
—J-ms-EPI ETL= 39ms

Conventional SE ss-EPI Extracted SE ms-EPI EPTI SE Echo 23

ETL = 52 ms) (ETL =39 ms) pure Ry)
7 f F w 3 F'w

A O O N
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b Cortical depth

Figure 9. (a) Comparison between activation maps of the conventional GE-EPI, SE-EPI, and EPTI images.
The ASE EPTI images (echo 7 and 39) with T,' weighting show similar activation localization as the
conventional GE-EPI, while the pure SE EPTI image (echo 23) provides less bias in CSF than the
conventional SE-EPI. (b) Comparison of the cortical-depth profiles between the acquired GE-EPI, SE-EPI,
selected EPTI echo images and EPTI-extracted EPIs with different ETLs.

4. Discussion and conclusions

The visual-task experiments in this study preliminarily demonstrate the ability of EPTI to time-resolve
multi-echo images at a small TE increment to investigate the varying T," weighting across the spin-echo
readout. The observed gradual reduction of large vein bias in image echoes closer to SE with less and less
T,' weighting confirms the expected association between T,' contrast and the macrovascular bias. Moreover,
the pure SE image acquired by EPTI shows reduced macrovascular bias compared with both the EPTI-
extracted SE-EPI and the acquired conventional SE-EPI acquisition, indicating that EPTI exhibits reduced

T,' weighting and a purer T, BOLD contrast over conventional EPI (even with multiple shots) for improved
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microvascular specificity. We have also experimentally confirmed that a longer ETL in SE-EPI will
introduce more macrovascular bias in human experiments, consistent with the result of the previous study
conducted in Monkey V1 (Goense and Logothetis, 2006). The ability of EPTI to simultaneously acquire
multi-contrast images in a single scan provides a powerful tool to examine the microvascular and
macrovascular contribution in T; and T>' BOLD contrasts. This helps to avoid any confounding differences
in activation that occur between scans that would be possible in sequentially acquired runs. The similar
level and consistent localization of activation seen in the EPTI ASEs data and in the GE-EPI data, and as
well as between the EPTI-extracted SE-EPI data and the actual SE-EPI data (Fig. 9), demonstrates the
reliability of these multi-contrast images generated from a single EPTI dataset.

In this study, we focus on investigating the reduced macrovascular contribution and improved
microvascular specificity using the pure T» BOLD provided by EPTI. The multi-echo images with varying
T,' and T, BOLD contrasts, which provide varying levels of both macrovascular-sensitivity and
microvascular-specificity, could also be combined to potentially allow joint modeling to improve both the
sensitivity and specificity to detect neuronal activation using BOLD contrast. The multi-echo images can
also be used to enhance the CNR of BOLD (Poser et al., 2006; Posse et al., 1999) or to remove physiological
noise through multi-echo denoising algorithms (Kundu et al., 2012; Kundu et al., 2017; Posse et al., 1999).
Moreover, while our study uses a relative long TEsg (64 ms) for the EPTI acquisition to allow for extraction
of the conventional EPI data with different ETLs from the same dataset for comparison, the unique time-
resolved imaging approach grants the flexibility to shift the echo train to achieve shorter TEs (Wang et al.,
2021b), which could be particularly useful for investigating TE-dependent signal contributions in SE-
BOLD, such as varying levels of extravascular and intravascular signal changes.

Another advantage of EPTI we presented in this study is that it eliminates the geometric distortion that
is common in conventional EPI-based methods due to field inhomogeneity (Fig. 5a), which is more severe
at ultra-high field and in high-resolution scans. Although post-processing methods have been developed
and widely used to correct the distortion, using a field map or a pair of PE-reversed acquisition, the
correction for dynamic changes in distortions due to susceptibility changes resulted from multiple sources
such as head motion, system drift, and respiration still remains challenging, resulting in voxels
displacements between dynamics or runs and affecting the reliability of the fMRI results. In the analysis,
we have performed distortion correction of conventional EPI data using field maps calculated from pairs of
PE-reversed images acquired before fMRI data acquisition, and we have also accounted for the orientation
change of the field map due to subject movements. However, remaining distortion changes along the PE
direction are still present across different dynamics in the time-series (Fig. 5b), resulting from susceptibility
and field map changes within the scan that are hard to correct using pre-scanned field maps. This can

degrade the subsequent fMRI analysis. EPTI removes the geometric distortion and dynamic distortion
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changes through its time-resolving approach, where each echo image is formed using the data acquired at
the exact same echo time (same By phase). The distortion-free images should help with registration to the
anatomical data and lead to smaller errors in the cortical depth assignment. In addition, the time-resolving
approach can also eliminate the image blurring along PE direction due to signal decay, another major
limitation of conventional EPI.

Instead of geometric distortion in conventional EPI, the By change might lead to local blurring and
elevated reconstruction errors in EPTI data as reported in our previous work (Wang et al., 2019). Here, we
first characterized the impact of shot-to-shot phase variations or By changes on the multi-echo EPTI images.
As expected, it was observed that the ASE images with more By phase accumulation are more sensitive to
inter-shot variations than the pure SE image. To correct for this, the proposed reconstruction framework
utilizes a navigator-based shot-to-shot By variation estimation that provides effective correction and
significantly mitigates the potential blurring. A pre-reconstruction process was also incorporated to correct
for higher-order By changes across dynamics that can further improve the reconstruction robustness.

By using the pure SE EPTI image, the cortical depth profiles of z-score and percent signal change
show minimal pial surface bias. However, small amount of activation or bias was still observed within CSF
or around pial surface. First, due to the use of the temporal correlation across echoes to reconstruct the
highly-undersampled k-t data, we do not rule out the possibility that there might be some T>" contrast
leakage and therefore residual pial surface bias in the pure SE EPTI image. Our original work on EPTI used
a GRAPPA-like reconstruction in the k-¢ space to reconstruct the images. The GRAPPA kernel interpolation
along ¢ could cause local temporal smoothing with an effective ETL estimated at ~7 ms. This could cause
small amount of T,' contamination in the pure SE image, but is still within the range of ETLs that would
provide microvasculature-dominated BOLD (Goense and Logothetis, 2006). In this work, a subspace
reconstruction was employed to take advantages of the signal model prior that can accurately represent the
signal evolution (errors < 0.2%), without interpolating along ¢ as in the GRAPPA reconstruction, which
should result in reduced amount of T,' leakage and provide purer SE. To systematically characterize the
potential residual T»" contamination/leakage in the subspace reconstruction, a generalized approach to
analyze the signal response of non-linear reconstruction (e.g., LLR-constraint subspace reconstruction in
this work) might be required in the future. Second, partial volume effects and potential residual
intravascular signal contribution (longer intravascular T, than expected) could also be possible explanations.
Biophysical modeling and simulation as well as experiments with different SE TEs (Berman et al., 2021;
Pfaffenrot et al., 2021; Pflugfelder et al., 2011) should be helpful to better understand the signal
contributions of SE BOLD fMRI.

At the current resolution, slightly higher activation can already be observed around the middle depth

in the visual cortex, which might reflect higher microvascular density. However, the profiles are still
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relatively flat across depths that could possibly be explained by an averaging effect over the large V1 ROI
and/or by partial volume effects (De Martino et al., 2013; Koopmans et al., 2011). Further increases in
spatial resolution can help reduce partial volume effect and should provide better visualization of such
laminar fMRI responses. Recent laminar fMRI studies have also shown different responses in different
layers in the motor cortex (Huber et al., 2017a), which may be useful to further evaluate the EPTI approach.
The temporal resolution of EPTI acquisition could also be improved to increase the statistical power of
fMRI analysis. These can be achieved by further developments of our EPTI-fMRI method to enable faster
k-t encoding, such as by incorporating low-rank modelling across the fMRI time-series (Chiew et al., 2015),
utilizing more advanced &-¢ sampling trajectories (Dong et al., 2021b; Fair et al., 2020) or combining with
multi-slice or multi-slab acquisition (Han et al., 2020; Setsompop et al., 2018; Setsompop et al., 2012),
which will then open up an exciting opportunity to perform pure SE-fMRI at higher spatiotemporal

resolution and larger spatial coverage.
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