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Abstract 

While single-cell RNA sequencing provides a new window on physiologic and pathologic tissue 

biology and heterogeneity, it suffers from low signal-to-noise ratio and a high dropout rate at the 

individual gene level, thus challenging quantitative analyses.  To address this problem, we 

introduce PISCES (Protein-activity Inference for Single Cell Studies), an integrated analytical 

framework for the protein activity-based analysis of single cell subpopulations. PISCES 

leverages the assembly of lineage-specific gene regulatory networks, to accurately measure 

activity of each protein based on the expression its transcriptional targets (regulon), using the 

ARACNe and metaVIPER algorithms, respectively. It implements novel analytical and 

visualization functions, including activity-based cluster analysis, identification of cell state 

repertoires, and elucidation of master regulators of cell state and cell state transitions, with full 

interoperability with Seurat’s single-cell data format. Accuracy and reproducibility assessment, 

via technical and biological validation assays and by assessing concordance with antibody and 

CITE-Seq-based measurements, show dramatic improvement in the ability to identify rare 

subpopulations and to assess activity of key lineage markers, compared to gene expression 

analysis. 
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Introduction  

High-throughput, droplet-based single-cell RNA Sequencing (scRNASeq) has recently emerged 

as a valuable tool to elucidate the diverse repertoire of cellular subpopulations comprising a 

broad range of mammalian tissues. Applications of this technology range from study of tissue 

development (He et. al., 2020) and tumor micro-environment (Qian et. al., 2020), to the 

elucidation of tissue heterogeneity (Zhao et. al., 2020) and even of tissue-level response to 

infectious diseases, such as COVID-19 (Xu et. al., 2020, Speranza et. al. 2021). More 

specifically, scRNASeq data allows identification of representative gene expression signatures 

for thousands of individual cells dissociated from a tissue sample (Zheng et al., 2017; Finak, et 

al., 2017), thus providing fine-grain characterization of the transcriptional state of individual cell 

types contributing to the emergence of complex phenotypes, which would be impossible from 

bulk profiles. This can help elucidate the role of rare populations, for instance, whose gene 

expression signature would be diluted below detection limits in bulk samples (Stuart et al., 

2019). Moreover, in contrast to flow cytometry or CyTOF, scRNASeq generates genome-wide 

single cell profiles, without requiring a priori selection of a limited number of antibody-based 

markers. The value of scRNASeq in tumor biology has been broadly demonstrated in recent 

studies of melanoma (Sade-Feldman et al., 2018; Jerby-Arnon, et al., 2018), pancreatic cancer 

(Elayda et al., 2019), breast cancer (Chung et al., 2017), and renal cell carcinoma (Obradovic 

et. al., 2021). 

The key drawback of scRNAseq technologies is that the total number of mRNA molecules per 

cell, combined with low capture efficiency, fundamentally limits the number of distinct mRNA 

molecules that can be detected in each single cell (UMI reads). As a result, scRNASeq profiles 

are extremely sparse, with as many as 90% of all genes producing no reads in any given cell 

and the majority of detected genes producing one or two reads. This phenomenon, commonly 

known as gene dropout, greatly hinders downstream analysis, making quantitative assessment 
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of differential gene expression extremely challenging. For instance, while broadly different cell 

types can be classified, a majority of biologically relevant genes, including the established 

lineage markers of specific cellular subpopulations, are undetected. As a result, cellular 

subpopulations presenting more subtle differences, such as different fibroblast or macrophage 

subpopulations, may be impossible to differentiate (Elyada et al., 2019, Obradovic et al. 2021). 

Even with cutting edge analysis tools such as the Seurat analysis pipeline (Butler et al., 2018), 

which can often identify individual subpopulations, scRNAseq gene expression data remains 

limited in its ability to elucidate fine-grain biological mechanisms due to its sparseness. 

Additionally, interrogation of individual genes of interest across cells is significantly impaired, 

particularly for transcription factors and signaling molecules, which do not need to be 

abundantly transcribed in order to fundamentally drive cell phenotype through their downstream 

effects on transcriptional state. 

To address these limitations, we have shown that network-based analysis of protein activity, 

using the VIPER and metaVIPER algorithms (Ding et. al., 2018; Obradovic et al., 2021), can 

provide accurate, quantitative assessment for >6,000 proteins, including transcription factors, 

co-factors, chromatin remodeling enzymes, and signaling proteins. Moreover, we have shown 

that protein activity-based analysis can help identify rare subpopulations that are responsible for 

the presentation of key macroscopic phenotypes, ranging from immune evasion (Thorsson et. 

al., 2018) to relapse following surgery (Obradovic et. al., 2021). It can also help identify master 

regulator proteins representing mechanistic, causal determinants of cell state and cell state 

transitions, such as to de-differentiation to a pluripotent stem cell state (Kushwaha, 2015) or 

transdifferentiation between distinct tumor cell states (Laise et al., 2021). However, these 

analyses can be extremely complex because they require assembly of lineage specific 

regulatory networks and master regulator analyses that are challenging for biologists who are 

not trained in network biology.  
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To allow broad access to these methodologies to biologists with relatively limited network-based 

analyses expertise, we introduce a comprehensive pipeline for Protein Activity Inference for 

Single Cell Studies (PISCES), which is made available to the research community via a general-

use R package.  The pipeline automates the optimal generation of lineage specific regulatory 

networks, via ARACNe (Algorithm for Reconstruction of Accurate Cellular Networks) (Basso et 

al., 2005; Lachmann et. al, 2017), measurement of protein activity via VIPER (Virtual Inference 

of Protein Activity by Enriched Regulon Analysis) (Alvarez et al, 2016), as well as the 

identification of molecularly distinct subpopulations via a variety of clustering methodologies, 

and the identification of Master Regulators of cell state and cell state transitions (Figure 1A).  

ARACNe is an information theoretic algorithm for the inference of the direct transcriptional 

targets of transcriptional regulator proteins, as well as the least indirect targets of signal 

transduction proteins. This allows reconstructing the tissue specific repertoire of transcriptional 

targets (regulon) of ~6,500 regulatory and signaling proteins, including surface markers (SMs). 

VIPER computes the activity of each protein based on the differential expression of the genes in 

its regulon, as assessed by weighted gene set enrichment analysis. Since regulons are 

generally large, containing up to several hundred genes, we prune them to include the same 

number of the most likely targets (between 50 and 100), to avoid biasing the statistical 

significance of the gene set enrichment analysis, as discussed in (Alvarez et al., 2016). As a 

result, even when the specific gene encoding for a protein of interest is undetected, VIPER can 

still quantitatively assess its activity (Figure 1B).  

Previous work in the Califano lab has shown the accuracy and reproducibility of these 

algorithms when used to analyze bulk data. Indeed, ARACNe and VIPER have been used 

extensively to identify master regulators (MRs) that were experimentally validated as 

mechanistic determinants of diverse biological states, many of which have been extensively 

validated, see (Rajbhandari et. al., 2018; Carro et al., 2010, Aytes et al., 2014; Alvarez et al, 
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2018), just to cite a few, and resulting in two CLIA-approved clinical tests to predict tumor drug 

sensitivity, including OncoTreat (Alvarez et. al., 2018) and OncoTarget (Zeleke et. al. 2020). 

Most critically, when comparing 30M read RNASeq profiles to down-sampled profiles with 10K 

to 50K reads (similar to typical scRNASeq profiles), VIPER-measured protein activity profiles 

retain high Spearman correlation (ρ ≥ 0.8), while correlation of the raw gene expression profiles 

is extremely poor (ρ ≤ 0.3) (Alvarez et al., 2016).  

To adapt these tools to the analysis of scRNASeq profiles, PISCES implements three major 

modifications. First, an initial gene expression-based cluster analysis is used to identify 

molecularly distinct cellular subpopulations representing distinct sub-lineages. Fine grain cluster 

analysis is not necessary as we have shown that regulatory networks for closely lineage-related 

cells are virtually indistinguishable (Mani et al, 2010). ARACNe is then used to generate distinct 

regulatory networks for each cluster containing at least N = 500 cells. Second, to increase 

regulon coverage, cells within each sub-lineage-related cluster are combined into “meta-cells” 

using a K-nearest-neighbors graph analysis. This creates pseudo-bulk samples that can then be 

analyzed by ARACNe, producing networks with more accurate edges, larger regulons, and 

greater coverage of regulatory proteins. Finally, rather than using VIPER for protein activity 

measurement, we use its derivative metaVIPER (Ding et al., 2018), which is designed to 

optimally integrate protein activity inferences from multiple networks. This allows for the use of 

multiple single-cell and, when available, lineage-matched bulk-tissue-derived networks. 

Downstream of the ARACNe and metaVIPER analyses, PISCES provides access to a variety of 

novel protein-activity based clustering and data visualization algorithms, in addition to 

implementing interoperability with the popular Seurat single-cell data format.  

In order to establish the efficacy of these tools and optimal parameters for future benchmarking 

and improvement, we have performed both technical and biological validation experiments, first 

by evaluating reproducibility of protein activity assessment from progressively downsampled 
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data, and then by assessing concordance of gene expression and protein activity to antibody-

based measurements using multiplexed FACS (Cytek) and CITE-Seq (Stoeckius et. al., 2017).  

Taken together, the results of these benchmarks show that the PISCES analytical pipeline 

dramatically outperforms gene expression-based analyses and even outperforms experimental 

assessment via selected antibodies, while allowing essentially proteome-wide activity 

quantitation. As such, these data suggest that PISCES provides a valuable and highly flexible 

tool for the analysis of scRNA-Seq datasets, which greatly improves the granularity of cell 

subpopulation detection, allowing detection of rare yet biologically relevant subpopulations that 

would be missed by gene expression analysis, due to gene dropout issues, and supports 

accurate assessment of Master Regulators of single-cell states.  

 

Results 

Analytical Pipeline Overview: The PISCES pipeline takes a single-cell Unique Molecular 

Identifier (UMI) count matrix as input, with genes organized by row and cells by column. Initial 

Quality Control filtering is adjustable, with user-defined parameters. By default it will remove 

cells with fewer than 1,000 UMIs or more than 25% mitochondrial gene UMIs. The gene 

expression matrix is then normalized and scaled to generate a matrix of gene expression 

signatures. By default, this is accomplished by converting counts to ��������� �  1�, where 

CPM indicates counts per million. However, it can also be implemented via the Seurat 

SCTransform algorithm (Stuart et al., Apr. 2018 Cell) or any other third-party methods of choice.  

Following normalization, a first-pass clustering is performed on scaled gene expression using 

one of several clustering approaches implemented in the pipeline, including partition around 

medioids (PAM) (Teschendorf et. al., 2017) or Louvain clustering with resolution-optimization 

(Obradovic et. al., 2021). For each gene expression cluster with ≥ 500 cells, by default, 
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metaCells are computed by first selecting 250 unique cells at random and then transforming 

their scRNASeq profile into a metaCell by adding the UMI counts from the k nearest neighbors 

(k = 5 by default).  Independent ARACNe networks are generated from each cluster using the 

��������� �  1� values of each metaCell.  

In parallel, the normalized gene expression profile is transformed into a gene expression 

signature (GES). This can be done in a number of ways, either with an internal normalization 

against mean and standard deviation of all cells to query differences within the dataset or with 

an external reference to answer experiment-specific questions (i.e. the differences between 

cancerous and healthy cells). By default, PISCES will perform a standard internal normalization 

to generate the gene expression signature, which is then transformed into a matrix of protein 

activity using MetaVIPER. MetaVIPER takes as input the GES and the previously generated 

cluster-specific networks and identifies the best network matches to each sample by maximum 

regulon consensus. Enrichment scores from each matched network are then integrated using a 

weighted-average to produce a final enrichment value that can then be used for downstream 

visualization and analysis. The entire pipeline is visualized in Figure 1A.  

Since every scRNAseq experiment is unique—depending on the specific cell types, the quality 

of the data, or the overarching question driving the research—PISCES allows users to fine tune 

the pipeline to match their specific requirements. For instance, since Seurat represents a widely 

used platform for scRNAseq analysis at the gene expression level, the Seurat batch-correction 

and SCTransform data scaling approach are incorporated as optional pre-processing steps to 

generate gene expression signatures before they are analyzed by PISCES. These may, 

however, be substituted by any user defined normalization and data scaling routine, such that 

effect of alternative normalization or pre-processing methods may be tested using PISCES’s 

default technical and biological benchmarks. Output from the PISCES pipeline is converted to a 

Seurat object for convenient export into a variety of external visualization or processing tools, 
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and analyzed by other commonly used tools. In particular, cell type annotation is implemented in 

PISCES at the single-cell level using SingleR (Looney et. al., 2019), which infers cell types 

represented in the dataset by correlation of gene expression to expression of sorted bulk-

RNASeq reference datasets and stores these labels as metadata for downstream analysis.  

  

Technical Validation Shows Improved Recovery of Data Structure From Low-Depth Cells: 

To benchmark PISCES reproducibility relative to gene expression and to establish an optimal 

UMI depth for user-driven adjustment of metacell parameters, we executed the entire pipeline 

using progressively down-sampled profiles from relatively high-depth scRNAseq data. For this 

purpose, we used the SNU-16 cell line, a relatively homogenous stomach adenocarcinoma 

model that is transcriptionally complex and produces high UMI counts per cell (i.e., 40,000-

50,000), on the high end of the typical yield for cell lines and significantly above the yield 

produced by clinical samples. Average UMI count in our dataset was 41,915 across 6157 single 

cells (Figure S2A). To create synthetic data with lower depth, we down-sampled this data by 

first drawing each cell’s total UMI-count from a multinomial distribution with mean target depth 

manually specified and a uniform probability weight over all cells, then drawing the gene-specific 

counts from a second multinomial with probabilities given by the proportions of genes in the 

original, full depth profile for each cell. This procedure was applied with target depths between 

one and ten thousand UMIs at a step-size of 1,000 and between 10,000 and 40,000 UMIs at a 

step-size of 5,000. We then generated meta-cells using a consistent sub-set of 500 cells for 

each down-sampled matrix with depth of 10,000 UMIs or fewer. These data were used to 

generate 27 ARACNe networks in total; one for the full data, 16 from each of the down-sampled 

gene expression profiles, and 10 from each of the meta-cell matrices. 

To generate gene expression signatures, we normalized each down-sampled matrix against the 

Cancer Cell Line Encyclopedia (CCLE) from The Broad. Because this data is from bulk-
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sequencing, we first had to apply the previously described down-sampling scheme in order to 

generate depth-matched reference samples for each single-cell matrix. Gene expression 

profiles were then normalized gene-by-gene by subtracting the mean expression from CCLE, 

then dividing by the standard deviation of the expression in CCLE.  

Finally, we generated VIPER matrices for all pairwise combinations of GES and regulatory 

networks, culminating in 459 VIPER matrices. A flowchart illustrating this experimental design is 

shown in Figure S5.  To assess the reproducibility of gene expression and protein activity 

signatures at different depths, we computed the cell-by-cell Pearson correlation between each 

down-sampled matrix and the full depth data. In each cell, we subset the comparison to those 

genes or proteins with significantly different expression or activity (p-value < 0.05 with 

Bonferroni correction) in the full-depth data, then computed the correlation coefficients cell-by-

cell between full-depth and down-sampled data using this subset. This reduction was performed 

in order to avoid inflation of correlation values based on non-significant data. In protein activity 

signatures generated fully from down-sampled data (down-sampled GEP as input to ARACNe, 

down-sampled GES as input to VIPER), we observe a statistically significant improvement in 

correlation to full-depth data relative to gene expression signature at all depths above 5,000 

UMIs (Figure 2A; p-value < 0.05 by Wilcoxon signed rank test). Strikingly, when an ARACNe 

network generated from full-depth GEP is applied to down-sampled GES as input to VIPER, 

correlation to original full—depth VIPER signature is strongly conserved even at extremely low 

UMI counts, remaining above 0.75 on average at UMI depth of 1000, where average correlation 

of gene expression signature to full-depth data is below 0.1. This emphasizes the importance of 

constructing a high-quality ARACNe network in the VIPER inference pipeline, such that applying 

high-quality networks inferred for a given cell type from one dataset to a matched cell type in 

lower-quality data is likely to provide a significant boost to the power of protein activity inference 

even from very-low-depth data. Additionally, we find a significant improvement in correlation 
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values when constructing metaCell-based ARACNe networks from lower-depth data (Figure 

2B), such that metaCell networks applied to run VIPER on GES matrices with mean UMI count 

of 3000 approach the inference quality seen when running ARACNe and VIPER on gene 

expression matrices with a mean UMI count of 20,000. However, at the very low mean depth of 

1000 UMI/cell this breaks down, and metaCell ARACNe network inference no longer offers any 

statistically significant improvement over inference on low-depth data. Therefore, we strongly 

recommend applying the metaCell ARACNe network inference option in PISCES for any 

datasets with data quality between 1000 and 5000 mean UMIs/cell, which is common in clinical 

datasets.  

Overall, these data show that the correlation between full-depth and down-sampled gene 

expression signatures is poor even at relatively high depth, and decays rapidly to a median 

value of less than 0.25 even at depths of 10,000 UMIs/cell (purple bars, Figure 2A). Protein 

activity, by comparison, is much more robust, significantly outperforming gene expression at all 

depths above 5,000 UMIs/cell. Interestingly, down-sampling only the gene expression signature 

input to VIPER while retaining a full-depth ARACNe network had little effect (red bars, Figure 

2A) on protein activities robustness, while down-sampling either the data using to generate 

ARACNe networks or both ARACNe data and gene expression signature (green and blue bars 

respectively) had a much more significant effect on correlation to original full-depth VIPER 

matrix, which was partially rescued by metaCell ARACNe. The full heatmap showing mean 

correlation across cells comparing all VIPER matrices against full depth data is available in the 

supplement (Figure S3). These findings indicate that the quality of the ARACNe networks is the 

driving force behind protein activity signatures’ ability to retain signal at low UMI depths and 

supports the idea of using metacells to rescue signal within the ARACNe network or use 

context-appropriate bulk networks where available. 
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Biological Validation Shows Improved Concordance with Antibody Profiling: To assess 

whether protein activities measured by PISCES effectively track with direct assessment of 

protein abundance in single cells, thus providing improved mechanistic understanding of single 

cell processes, we compared PISCES-measured protein activity to CITE-Seq single-cell 

measurements of protein abundance in a publicly available dataset of cord blood-derived 

mononuclear cells (CBMCs) (Stoeckius et. al., 2017).  

Single cell clustering based on CITE-Seq measurements, using a pre-selected antibody panel, 

yields six major cell type clusters, including CD4 T-cells, CD8 T-cells, Monocytes, NK Cells, B-

cells, and Hematopoietic Stem Cells (HSCs) (Figure 3C). In sharp contrast, gene expression-

based clustering by Seurat identified only four distinct cell clusters, with NK cells and HSCs 

subsumed into the other major cell types (Figure S1A). Protein activity-based clustering by 

PISCES not only recapitulated all six clusters identified by antibody measurement (Figure S2B) 

but also identified many additional proteins representing established lineage markers of these 

sub-populations, which were completely missed by gene expression analysis. Indeed, the most 

differentially active proteins in each cluster present a highly cluster-specific activity pattern not 

visible by gene expression alone (Figure S2C,D).  

Furthermore, when gene expression-based clustering was limited only to the genes encoding 

for the proteins in the CITE-Seq panel, the single-cell RNA-Seq dropout problem was so severe 

that cluster structure was completely lost (Figure 3D). This suggests that critical proteins, 

whose role in the biology of these populations is extremely well established, are completely 

missed in terms of their gene expression. In sharp contrast, PISCES analysis fully recapitulated 

the experimentally assessed cluster structure when the analysis was limited to the proteins 

represented on the CITE-Seq panel (Figure 3E).  

Critically, the coefficients of variation (i.e., ��
 � �/�), as computed for gene-expression, 

antibody-measured protein abundance, and VIPER-measured protein activity, shows that 
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VIPER-measured activity dramatically outperforms gene expression (p=0.0004 by paired t-test 

across the entire panel) and even antibody measurements for most proteins (p = 0.0083 across 

the entire panel), indicating a significant improvement in reproducibility and signal-to-noise ratio 

(Figure 3A). Finally, we assessed correlation between either gene expression or VIPER-

measured protein activity against protein abundance as assessed by CITE-Seq. Across the 

board VIPER significantly outperformed gene expression (Figure 3B), with strong visual cluster-

separation even on single genes (Figure 3F), and pairwise plots of VIPER activity vs paired 

CITE-Seq antibody staining resembling flow cytometry plots (Figure 4).  

Furthermore, we would like to point out that protein abundance, as assessed by antibodies, is a 

poor proxy for protein activity. This is because, even after a protein is expressed, its activity is 

manifested only when it is effectively post-translationally modified, it is translocated into the 

appropriate sub-cellular compartment, and it has formed complexes with critical cognate binding 

partners. By measuring activity via expression of highly multiplexed gene reporter assay, VIPER 

can effectively report on the activity of proteins, which has been so far elusive, especially in 

single cells. In a separate analysis of CD45+ cells that were isolated from renal clear cell 

carcinoma, then split and profiled at the single cell level using both scRNA-Seq and a CyTEK 

high-throughput flow cytometry panel panel of 19 lymphoid and 19 myeloid antibodies 

(Obradovic et. al., 2021), the de-noising effect of PISCES was even more obvious. Not only did 

these results completely recapitulate the results obtained for the CITE-Seq comparison, but, 

given the larger number of experimentally assessed proteins, they provide further evidence of 

the dramatic improvement offered by PISCES analysis over both gene expression and antibody-

measured protein abundance. This is reflected in three key findings. First, experimentally 

assessed protein abundance (e.g., using the 19 lymphoid markers) was unable to identify the 

clusters that could be identified by VIPER-based measurement of the same 19 proteins, 

including splitting of the myeloid cluster into monocytes and macrophages, the CD8 T cell 
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cluster into CD8 T cells and NK cells, and the CD4 T cell cluster into CD4 T cells and 

Regulatory T cells (Figure S4). Second, proteins not expressed on the surface of the cell, such 

as FOXP3, a canonical marker of regulatory T cells, could not be reliably detected by antibody 

measurements but were clearly detected in the correct sub-population by VIPER. Indeed, taken 

together, only 4 of 38 proteins assessed by VIPER and antibody measurement were not 

effectively and correctly detected by VIPER in the specific cellular sub-populations for which 

they represent an established lineage marker (NT5E/CD73, FCGR3B/CD16b, PTGDR2/CD294, 

CD33). In contrast, 9 of 38 proteins could not be consistently detected by antibody 

measurement or were not restricted to the associated sub-populations due to noisy background 

staining (CD14, CD127, FOXP3, CD38, CD25, CXCR3, CD161, CTLA4, CD39). Indeed, 

clustering on the full set of proteins identified by PISCES on this dataset (Obradovic et. al., 

2021) led to identification of rare cellular subpopulations that play a critical role in post-surgical 

tumor recurrence, and for which PISCES-inferred markers were validated by 

immunohistochemistry.  

This indicates amplification of biologically meaningful rather than artifactual signal from single 

cells by PISCES, and its ability to enable interrogation of individual genes of interest without 

data dropout. In fact, while CITE-Seq is limited by time-consuming antibody titration and panel 

optimization, ultimately profiling relatively few proteins in most experiments, PISCES typically 

captures several orders of magnitude more unique proteins, enabling interrogation of 

intracellular proteins which would otherwise be difficult to stain for without losing cellular RNA, 

as well as select surface markers of interest. Nevertheless, the cell-matched profiling of both 

gene expression and protein abundance by CITE-Seq enables direct comparison of PISCES 

inferences to measured protein abundance for a subset of proteins within the same cells, which 

may be used as a benchmark of the high concordance between PISCES and measured protein 
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abundance, and the degree to which PISCES improves signal-to-noise with respect to antibody-

based measurements.  

 Discussion 

The PISCES package for analysis of single-cell RNA-Sequencing data represents a 

comprehensive and highly generalizable pipeline for inference of protein activity to maximize 

utility of single-cell datasets. We have demonstrated its ability to mitigate the single-cell RNA-

Seq data dropout problem and recapitulate high-depth data structure even from low UMI counts. 

We have also demonstrated its ability to recapitulate biological structure from CITE-Seq 

antibody-based protein profiling with much better gene-by-gene signal than gene expression. 

These technical and biological validations also serve as benchmarks for further refinement of 

the pipeline by which any changes can be comprehensively assessed.  

For biological validation benchmarking, protein selection was based on pre-defined protein 

panels from CITE-Seq experiments. As a result, this represents a completely unbiased set of 

proteins that was not selected to skew performance in VIPER’s favor. While we limited the 

comparison only to the CITE-Seq panel of proteins, PISCES produced activity profiles for 6,500 

proteins. Thus, if these results are further confirmed in follow-up studies, PISCES would provide 

the equivalent of a single cell FACS with 6,500 antibodies, remedying the need to select and 

validate antibodies for specific cellular populations. Indeed, VIPER was originally developed for 

the analysis of proteins that directly control gene expression on the chromatin (i.e., TFs and co-

TFs). As a result, accuracy and reproducibility of VIPER-based measurement of surface 

markers is likely to be significantly outperformed for TFs and co-TFs, which represent the most 

critical class of lineage markers.  

In addition to the technical benchmarking of correlation between down-sampled and full-depth 

data, the extent of improvement by PISCES in coefficient of variation, number of genes 
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recovered, and gene-by-gene correlation to matched antibody profiling represent a critical 

biological benchmark for alternative workflows by PISCES users as new pre-processing 

methods are incorporated and existing algorithms are refined. The pipeline has been 

consciously designed to be highly modular, with customizable workflows and parameter 

optimization enabled by separate pre-processing, meta-cell, and clustering steps and 

interoperability with the popular Seurat workflow. We recommend targeting a median UMI depth 

/ cell of no less than 5000, with the crucial step being inference of ARACNe network from high-

depth data, applying the metaCell algorithm to improve sample depth for ARACNe network 

inference. Wherever a high-depth-derived ARACNe net is available, inference fidelity is high 

even on extremely low-depth datasets, so the increased availability of single-cell RNA-Seq 

datasets across a broad range of tissue contexts will continually allow construction of an 

expanding library of ARACNe networks which can be broadly applied to new data.  

PISCES is chiefly limited by the fraction of 6,500+ total proteins recoverable at low UMI depth, 

although the number of proteins recovered nearly always compares favorably to CITE-Seq, 

which requires time-consuming antibody titration and is limited to predefined cell surface 

proteins, whereas PISCES captures proteins with the strongest signal-to-noise from the data 

and can infer both cell surface and intracellular protein activity. Applying metaCell ARACNe 

network inference addresses this to some degree, such that nearly 100% of all proteins 

recoverable at full depth in SNU-16 cell line sequencing data were recovered at a UMI depth of 

10,000, where only half of the proteins inferred at full-depth were recoverable without metaCell, 

and over half of proteins remained recoverable with metaCell even at critically low UMI depth of 

1,000 (Figure S2C). Future iterations of the pipeline will continue to improve on the fraction of 

recoverable proteins by integrating and testing novel pre-processing procedures and 

optimization of the ARACNe and VIPER inference steps. The development version of the 

PISCES R package will be continually available at https://github.com/califano-lab/PISCES.  
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Online Methods 

Quality Control, Normalization, and Scaling: As a pre-processing step, low quality cells and 

genes lacking enough data to be useful are removed from the analysis. Cell quality is 

determined by two primary factors – read depth and mitochondrial gene percentage. Samples 

with too many or too few reads are likely sequencing errors (doublets or empty droplets), while a 

high mitochondrial gene percentage is indicative of cell stress or damage. This latter group of 

cells will typically have a biased transcriptome not representative of the actual cell state. For 

most data sets, PISCES will simply remove genes with no reads at all. For larger data sets, 

genes that appear in less than 1% of the total cells will be removed in order to optimize 

computational complexity. Cells with fewer than 1000 total UMIs or mitochondrial transcript 

fraction greater than 25% are also removed in quality-control filtering. Filtered data are then 

normalized to log10(counts per million + 1). A gene expression signature is then generated from 

the normalized data using either double rank transformation or Seurat SCTransform scaling 

function. 

 

Seurat Pre-Processing Workflow: Gene Expression UMI count matrices for each sample are 

processed in R using the Seurat SCTransform command to perform a regularized negative 

binomial regression based on the 3000 most variable genes. For datasets combining samples 

across multiple patients, normalized datasets may be integrated using the 

FindIntegrationAnchors and IntegrateData functions in Seurat. The resulting data are projected 

into their first 50 principal components, and further reduced into a 2-dimensional visualization 

space using the RunUMAP function with method umap-learn and Pearson correlation as the 

distance metric between cells. Differential Gene Expression between clusters is computed by 

the MAST hurdle model for single-cell gene expression modeling, as implemented in the Seurat 

FindAllMarkers command, with log fold change threshold of 0.5 and minimum fractional 
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expression threshold of 0.25, indicating that the resulting gene markers for each cluster are 

restricted to those with log fold change greater than 0 and non-zero expression in at least 25% 

of the cells in the cluster. 

 

Initial Clustering and MetaCells: In order to generate accurate, robust networks, ARACNe 

requires data from a population that shares the majority of its transcriptional architecture. In the 

context of single cells, this requires separating the data into coarse cell type clusters before 

network generation. These clusters can be generated in a number of ways; any of the popular 

gene expression methods for clustering will work, as will a simple clustering based on the first 

30 principle components in gene expression space. We have implemented clustering on gene 

expression signature by Partition Around Medioids (PAM), Multi-Way K-Means, and Louvain 

with Resolution Optimization. Once the data have been clustered, meta-cells can be generated 

for input to ARACNe. By pooling cells that are close together in either gene expression or 

VIPER space within a cluster, the number of interactions inferred using ARACNe can be 

increased. PISCES uses a simple K-nearest-neighbors approach to pool cells, then sums reads 

across neighbors and re-normalizing. This data then serves as the input to ARACNe. 

 

ARACNe Network Generation: A full guide for utilizing ARACNe is available on the Califano 

Lab Github at https://github.com/califano-lab/PISCES. For each gene expression cluster, 250 

metaCells are sampled to compute a regulatory network. All networks are reverse engineered 

by the ARACNe algorithm, run with 100 bootstrap iterations using 1785 transcription factors 

(genes annotated in gene ontology molecular function database as GO:0003700, “transcription 

factor activity”, or as GO:0003677, “DNA binding” and GO:0030528, “transcription regulator 

activity”, or as GO:0003677 and GO:0045449, “regulation of transcription”), 668 transcriptional 

cofactors (a manually curated list, not overlapping with the transcription factor list, built upon 
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genes annotated as GO:0003712, “transcription cofactor activity”, or GO:0030528 or 

GO:0045449), 3455 signaling pathway related genes (annotated in GO biological process 

database as GO:0007165, “signal transduction” and in GO cellular component database as 

GO:0005622, “intracellular” or GO:0005886, “plasma membrane”), and 3620 surface markers 

(annotated as GO:0005886 or as GO:0009986, “cell surface”). Each regulator set is run 

separately, as different types of proteins will have different mutual information thresholds. Once 

a set of regulons has been inferred for each group of regulators, the results are combined into a 

single network. ARACNe is only run on these gene sets so as to limit protein activity inference 

to proteins with biologically meaningful downstream regulatory targets, and we do not apply 

ARACNe to infer regulatory networks for proteins with no known signaling or transcriptional 

activity, for which protein activity may be difficult to biologically interpret. Parameters are set to 

zero DPI (Data Processing Inequality) tolerance and MI (Mutual Information) p-value threshold 

of 10-8, computed by permuting the original dataset as a null model. Each gene list used to run 

ARACNe is available on github. 

 

VIPER Analysis and Re-clustering: Once cluster-specific networks have been generated, they 

will serve as the input to a final VIPER run. More accurate networks will naturally lead to more 

accurate inferences of protein activity, which in turn allows for more robust downstream 

analyses. Bulk networks can also be incorporated to fill in any gaps present in the single-cell 

networks, as ARACNe will typically be unable to infer regulons for some proteins even with the 

implementation of MetaCells. These protein activities inferred from bulk should be considered 

less accurate, but they can be used to follow-up on previously known proteins of interest, for 

instance. Once a final VIPER matrix has been inferred, the data can be re-clustered. VIPER-

space will typically allow for the parsing of smaller, more transcriptionally distinct populations. 

These classifications can then be used for a master regulator analysis that identifies the driving 
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regulators of the differential cell state. This can be done in several ways, with a Bootstrapped 

Mann Whitney-U test being the most robust. Cluster-specific Stouffer integration or a data-wide 

ANOVA or Kruskal-Wallis test are also viable alternatives and implemented within PISCES.  

 

Weighted VIPER: Previously, MetaVIPER was developed as an initial adaptation of VIPER to 

single-cell data. By using multiple networks, MetaVIPER sought to accurately recapitulate 

protein activity in populations for which no context-specific network was available. To briefly 

explain this method, protein activity would be inferred from a given gene expression 

signature using multiple networks, which would then be integrated on a protein-by-protein basis 

using the square of the NES. Since a non-relevant network would generate a protein activity 

NES close to zero under the null model, networks that generate more extreme NES’s can be 

interpreted to more accurately match the given biological context and were thus weighted more 

heavily. This approach has been improved on further in PISCES. Rather than relying on the 

square of the NES to integrate networks in a protein-by-protein manner, Weighted VIPER 

utilizes all the proteins in a given sample to determine network accuracy. For each sample, the 

NES’s generated by the set of networks for each protein are ranked, and the ranks are totaled 

across proteins. Networks are then weighted based on their frequency as the most-accurate 

network. As an example, if network A generates the most extreme NES for 50% of the proteins 

in a sample and network B generates the most extreme NES for 25% of the proteins, network A 

will be weighted twice as heavily in the integration. This technique utilizes all proteins as a 

multiplexed reporter of network accuracy, allowing for more accurate matching of samples and 

the most-context specific network available. 

 

Single Cell Visualization Functionality: Visualizing data with thousands of dimensions is a 

fundamental challenge of transcriptomics. PISCES has a number of pre-built plotting functions 
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to aid in the visualization of results. Scatter plots are based in UMAP coordinates, with the 

starting features filtered by the most significant proteins within each sample. Functions within 

PISCES allow for the visualization of clustering schemes, protein activity, or gene expression in 

UMAP space, along with density plotting. Additionally, we provide heatmap functionality for 

more tractable succinct visualization of a set of genes or proteins grouped by cluster, such as a 

set of known markers or a list of candidate master regulators.  

 

Resolution-Optimized Louvain Clustering Algorithm: The default clustering method 

implemented in Seurat is Partitioning Around Medioids (PAM). However, for large datasets 

aggregating hundreds of thousands of single-cells, PAM is computationally slow, requiring more 

computational power than is available to the average user and computation of pairwise distance 

matrices exceeding the vector size limit in R. In such cases, it is preferable to run a network-

based Louvain clustering, as implemented in Seurat, which optimizes network modularity score. 

However, practical implementations of Louvain clustering include a user-adjustable resolution 

parameter which allows over-clustering and under-clustering without an objective cluster quality 

metric. To solve this problem, we have implemented a hybrid clustering approach in PISCES 

which performs cluster assignment in two steps. First, Seurat Louvain clustering is performed 

with resolution values ranging from 0.01 to 1.0 at intervals of 0.01, then cluster quality is 

evaluated at each resolution value to select an optimum in this range. For each resolution value, 

clustered cells are subsampled to 1000, and silhouette score is computed for these 1000 cells 

and their corresponding cluster labels, with correlation distance metric. This procedure is 

repeated for 100 random samples to compute a mean and standard deviation of average 

silhouette score at each resolution value. The highest resolution value that maximizes mean 

silhouette score is selected as the optimal resolution at which to cluster the data.  
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Multi-Way K-Means Clustering Algorithm: In addition to PAM and Louvain with Resolution 

Optimization, PISCES further implements a Multi-Way K-Means Clustering approach. 

Transitioning populations, such as in a differentiation pathway, are extremely common, and 

such relationships will not be accurately characterized by a discrete clustering scheme. To 

handle this set of problems, we adapted the Multiway K-Means algorithm for use in biological 

settings, where samples can be thought of as linear combinations of related phenotypes rather 

than simply belonging to totally distinct populations. Originally developed for clustering 

speciating microbiome populations, Multiway K-Means technique has two primary advantages. 

First, it more accurately captures cluster center (in biological terms, a representative phenotype) 

for each population endpoint. Second, it places cells along a trajectory between cluster centers, 

providing a more accurate representation of cell state and allowing for additional inferences into 

the drivers of transitional populations. 

  

Semi-Supervised Cell Type Calling: For each single cell gene expression sample, cell-by-cell 

identification of cell types is performed using the SingleR package and the preloaded Blueprint-

ENCODE reference, which includes normalized expression values for 259 bulk RNASeq 

samples generated by Blueprint and ENCODE from 43 distinct cell types representing pure 

populations of stroma and immune cells (Martens et. al., 2013; ENCODE Project Consortium, 

2012). The SingleR algorithm computes correlation between each individual cell and each of the 

259 reference samples, and then assigns both a label of the cell type with highest average 

correlation to the individual cell and a p-value computed by wilcox test of correlation to that cell 

type compared to all other cell types. Cell-by-cell SingleR labels with p<0.05 are added as 

metadata and may be projected onto PISCES-generated UMAP space. Unsupervised clusters 

may then be labelled as a particular cell type based on the most-represented SingleR cell type 

label within that cluster. 
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Data Collection and Downsampling for Technical Validation: SNU-16, a stomach 

adenocarcinoma cell line, was dissociated into a single-cell suspension and scRNAseq was 

performed using 10X Genomics Chromium platform (3’v3). Libraries were sequenced on an 

illumina Novaseq 6000 according to 10X Genomics’ protocol. In mid-log growth, SNU-16 is a 

transcriptionally complex cell line that will typically have 40,000-50,000 UMIs/cell with 134,000 

reads sequencing. These data were then down-sampled to depths of 10-40,000 at 5,000 UMI 

intervals and 1-10,000 at 1,000 UMI intervals. Sample depths were first drawn from a uniformly 

distributed multinomial with n = N*x and p1,...,pn = 1 / N, where N was the number of cells and x 

is the target mean depth. Once sample depths were drawn, UMI counts were drawn from a 

sample-specific multinomial with n = di and p1...pg = 1 / G, where di is the sample depth and G 

is the number of genes detected in the original UMI matrix.  

 

Biological Validation Analysis: A highly used public CITE-Seq dataset of cord blood 

mononuclear cells was downloaded from Gene Expression Omnibus (GEO), and subset to 

human cells only. RNA counts were processed by the standard PISCES workflow, and antibody 

dependent tags (ADTs) were concurrently analyzed. ADT matrix was normalized by Seurat 

Centered Log Ratio “CLR” function, and clustered by PISCES resolution-optimized Louvain 

algorithm. Two-dimensional data representation was computed by RunUMAP, and antibody 

staining of all markers was visualized in a heatmap, with cells grouped by ADT cluster. For 

single-cell sequencing data, both gene expression signature and PISCES-inferred VIPER matrix 

were subset to genes encoding proteins represented in the ADT panel, and data were re-

clustered on those gene subsets. For genes shared across all three modalities, coefficient of 

variation was computed as standard deviation divided by mean across all cells, and Spearman 
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correlation was computed between gene expression or VIPER and corresponding protein-

targeting antibody.  

 

Data Availability: The PISCES pipeline is implemented as an R package with all dependencies 

listed and a usage tutorial available at https://github.com/califano-lab/PISCES. All data, 

ARACNe networks, and VIPER matrices referenced in this manuscript are also available at 

https://github.com/califano-lab/PISCES-validation. 
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Figures & Figure Legends 

Figure 1: Graphical Representation of Analysis Pipeline 

1A) Flowchart of overall analysis pipeline, showcasing sequential data transformations from 

original raw RNA-Seq gene expression counts matrix (blue) followed by Quality Control Filtering 

and Normalization (yellow) and data scaling (red), followed by cluster-specific ARACNe and 

final VIPER transformation to generate a single-cell VIPER-inferred protein protein activity 

matrix (green). 1B) Graphical of the gene expression dropout mitigation effect. A theoretical 

ARACNe-inferred regulon of a proteomic master regulator of cell state (MR) and its downstream 

transcriptional targets (g1,g2,g3,g4,….) is shown, along with a matrix showing sparseness of 

expression for MR and each of its targets both in cells with high real activity of MR and cells with 

low activity. From MR expression alone, only a single sample with high MR-activity would be 

correctly identified. However, by integrating the expression values from each target gene, high 

protein activity of MR can be correctly inferred despite the high dropout rate of any single gene 

target. 

 

Figure 2: Technical Benchmarking Shows Increased Recovery of Original Data Structure 

from Downsampled Matrices by VIPER vs Gene Expression 

2A) Boxplot showing distribution across single cells of Pearson correlation between sub-

sampled and original full-depth cells. Along the x-axis is the UMI/cell downsampling quotient. In 

purple, correlation between downsampled and original gene expression is shown to rapidly 

degrade, to a median consistently below 0.5, and below 0.25 even by the relatively high depth 

of 10,000 UMI/cell. In red, correlation is shown between VIPER inference on down-sampled 

gene expression signature with full-depth ARACNe network vs VIPER inference on full-depth 

gene expression signature using full-depth ARACNe network, such that correlation remains high 
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even at extremely low sample depth, with a median above 0.75 even at 1000 UMI/cell. In green, 

correlation is shown between VIPER inference on full-depth gene expression signature using 

ARACNe networks derived from full-depth vs down-sampled data, and in blue correlation is 

shown between full-depth VIPER inference using full-depth ARACNe networks and VIPER 

inference on down-sampled gene expression signature using down-sampled ARACNe network. 

In all cases protein activity improves on gene expression, and down-sampling of both VIPER 

and ARACNe simultaneously still improves correlation relative to gene expression down to a 

depth of 5000 UMI/cell, with Bonferroni-corrected p-values by paired Wilcox test < 0.05.  2B) 

For UMI depths ranging from 1000 to 10000, correlation between full-depth VIPER matrix using 

full-depth ARACNe network and VIPER matrices computed on on down-sampled gene 

expression signatures with either full-depth or metaCell ARACNe. metaCell ARACNe 

significantly improves on correlation with full-depth data for all depths >1000 UMI/cell, by paired 

Wilcox test p-values < 0.05. Mean correlation at low-depth with metaCell ARACNe network 

approaches 0.75, seen only at UMI depths >20000 without applying the metaCell ARACNe 

inference approach.  

 

Figure 3: Biological Benchmarking Shows Dramatically Increased Concordance with 

CITE-Seq Antibody Profiling by VIPER vs Gene Expression 

3A) Coefficient of Variation (computed as σ/μ) for each gene profiled by the CITE-Seq antibody 

panel, shown for antibody staining (red), Gene Expression (green), and VIPER-inferred protein 

activity (blue), with higher Coefficient indicating lower signal-to-noise ratio. 3B) Spearman 

Correlation between Gene Expression vs Antibody (red) and VIPER vs Antibody (blue) 

computed across cells for each gene profiled by the CITE-Seq antibody panel. 3C) UMAP 

projection and clustering of CITE-Seq antibody staining panel, labelled with cell types inferred 

from SingleR and validated by staining for known markers. Row-scaled heatmap is shown 
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below with antibody staining intensity grouped by cluster. 3D) UMAP projection and clustering of 

Gene Expression for the subset of genes concurrently profiled by CITE-Seq antibody staining 

panel.  Row-scaled heatmap is shown below, with excessive noise for meaningful clustering due 

to single-cell RNA-Seq dropout effect. 3E) UMAP projection and clustering of VIPER protein 

activity, labelled with cell types as in 3C.  Row-scaled heatmap is shown below with VIPER 

activity grouped by cluster, for the subset of genes concurrently profiled by CITE-Seq antibody 

staining panel with activity inferred by VIPER. 3F) Representative Correlation plots of Gene 

Expression vs Antibody and VIPER vs Antibody, showing greater concordance of CD3D VIPER 

activity with Antibody intensity, relative to CD3D Gene Expression.  

 

Figure 4: Pairwise CITE-Seq Antibody vs VIPER Correlation Plots 

4A) Correlation Plots of CD3D Gene Expression vs Antibody Intensity (left) and VIPER vs 

Antibody Intensity (right). 4B) Correlation Plots of CD3E Gene Expression vs Antibody Intensity 

(left) and VIPER vs Antibody Intensity (right). 4C) Correlation Plots of CD3G Gene Expression 

vs Antibody Intensity (left) and VIPER vs Antibody Intensity (right). 4D) Correlation Plots of CD4 

Gene Expression vs Antibody Intensity (left) and VIPER vs Antibody Intensity (right). 4E) 

Correlation Plots of CD8B Gene Expression vs Antibody Intensity (left) and VIPER vs Antibody 

Intensity (right). 4F) Correlation Plots of CD14 Gene Expression vs Antibody Intensity (left) and 

VIPER vs Antibody Intensity (right). 4G) Correlation Plots of FCGR3A (CD16) Gene Expression 

vs Antibody Intensity (left) and VIPER vs Antibody Intensity (right). 4H) Correlation Plots of 

PTPRC (CD45) Gene Expression vs Antibody Intensity (left) and VIPER vs Antibody Intensity 

(right). 

 

Figure S1: Clustering of CITE-Seq Dataset on Full Gene Expression and VIPER matrices, 
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S1A) UMAP plot of the CITE-Seq CBMC RNA-Seq data clustered on the entire gene expression 

matrix, showing 4 distinct clusters, labelled according to the majority cell type represented in 

each cluster. S1B) UMAP plot of the corresponding VIPER inferences clustered on the entire 

set of inferred proteins, with clusters exactly recapitulating the cluster structure in Figure 3E, 

capturing all represented cell types. S1C) Gene Expression Heatmap of the top5 inferred 

master regulators of each VIPER cluster, scaled by row. S1D) VIPER Activity Heatmap of the 

top5 inferred master regulators of each VIPER cluster, scaled by row. 

 

Figure S2: Technical Validation Dataset Quality Control and ARACNe Network Size 

S2A) Distribution from original full-depth dataset of UMIs/cell (left, in red), number of genes with 

non-zero gene expression per cell (middle, in green), and percentage of mitochondrial 

transcripts (right, in blue). S2B) Fraction of Total ARACNe network regulons (y-axis) recovered 

at each down-sampling depth (x-axis) relative to full-depth data, such that fraction decreases 

log-linearly with down-sampling depth. S2C) Fraction of Total ARACNe network regulons 

relative to full-depth data (y-axis) recovered at each down-sampling depth from 1000 to 10000 

UMI/cell, with metaCell approach (red) or without metaCell approach (black).  

 

Figure S3: Pairwise Downsampling Correlation Matrix 

Heatmap of mean correlation values compared to original full-depth VIPER matrix with full-depth 

ARACNe network for each combination of down-sampled ARACNe and VIPER gene expression 

signature depth. Each row corresponds to depth of gene expression signature input to VIPER, 

and each column corresponds to depth of gene expression input to ARACNe. Correlation is 

subset to proteins differentially up-regulated or down-regulated (p<0.05) within original full-depth 
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VIPER matrix, on a cell-by-cell basis, and mean correlation across all cells is plotted for each 

box on the heatmap corresponding to a particular down-sampling approach.  

 

Figure S4: Comparison of VIPER Inferences and Gene Expression to Flow Cytometry in 

Renal Clear Cell Carcinoma  Dataset 

S4A) UMAP projection, clustering, and heatmap by flow cytometry proteins profiled in CyTEK 

Lymphoid Panel. S4B) UMAP and clustering by scRNASeq gene expression subset to the 

proteins profiled in S4A, showing noise-induced decrease in clustering resolution. S4C) UMAP 

and clustering by VIPER-inferred protein activity using PISCES, subset to the proteins profiled 

in S4A. S4D) UMAP and clustering by flow cytometry proteins profiled in CyTEK myeloid panel. 

S4E) UMAP and clustering by scRNA-Seq gene expression, subset to the proteins profiled in 

S4D. S4F) UMAP and clustering by VIPER-inferred protein activity using PISCES, subset to the 

proteins profiled in S4D. partially reproduced with permissions from Obradovic et. al., 2021. 

 

Figure S5: Flowchart of Technical Validation Down-Sampling Approach 
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To-Do: Add Single-Cell Type Atlas
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